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Abstract

Human activities have generated large quantities of plastics that are actively 

dumped or indirectly deposited into oceans. In particular, the use of single-use packaging 

and microplastics in cosmetics and manufacturing has led to significant increases of these 

contaminants in coastal waters. These plastics, because of their size, can be ingested by 

filter-, suspension-, and deposit-feeding organisms who coincidentally consume them as 

potential food sources. As a result, organisms may experience marked reductions in 

growth and/or health due to the accumulation of these plastics in their digestive tracts. 

While research has concentrated on the commercially harvested blue mussel Mytilus 

edulis, none have investigated the critically important ribbed marsh mussel Geukensia 

demissa. This study examined microplastic abundances and distribution trends within a 

bed of G. demissa at Sandy Hook, New Jersey, and investigated microplastic 

ingestion/rejection in a laboratory setting. Results indicate that microplastics in the field 

ranged from 11,000 pieces/m2 to 50,000 pieces/m2. Microplastics were also found in 

significant abundances down to a sampling depth of 10 cm, which was twice the average 

sampling depth of other studies. Furthermore, this study confirms that the G. demissa 

ingests polystyrene spherules (5 pm or less), which were histologically observed 

throughout the digestive system of all experimental mussels. Also, all experimental 

mussels rejected positively buoyant plastics as negatively buoyant feces and pseudo feces, 

which may represent a potential source of buoyant microplastics to the benthos.
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Introduction

1.1 Microplastics

Due to their versatility and affordability, the prevalence of plastic compounds in 

products has increased across varied industries, including commercial, manufacturing, 

and medical fields. The strength, chemical- and light-resistance, adaptability, and low 

cost of plastics create a high demand. Worldwide production has grown from 1.7 million 

tons in 1950 to a staggering 322 million tons in 2015, where single-use plastic packaging 

makes up the largest market sector demand for plastics production (~ 40%) in Europe 

(PlasticsEurope, 2016). The durability of these compounds often exceeds the useful life 

of the product, which allows plastic to enter the environment by accident or through 

improper disposal. A portion of waste plastic enters the ocean by wind or river transport 

and accumulates on coastlines and benthic environments, or in ocean gyres. In fact, a 

report in Science estimated that 4.8 to 12.7 million metric tons of mismanaged plastic in 

coastal regions ended up in the ocean in 2010 (Jambeck et al., 2015). Recently, scientists 

have focused on small plastic fragments known as “microplastics” (Moore, 2008). While 

there is contention over the size of these plastics, the National Oceanic and Atmospheric 

Administration defines microplastics as those plastics that are less than 5 mm in size 

(Arthur et al., 2009).

The small size of these particles makes them particularly available to deposit, 

filter, and suspension feeding invertebrates. Several studies have shown that coral, 

crustaceans, echinoderms, molluscs, and polychaetes ingest microplastics (Browne et al., 

2008; Cole and Galloway, 2015; Cole et al., 2013; Graham and Thompson, 2009; Hall et 

al., 2015; Murray and Cowie, 2011; Thompson et al., 2004; Wright et al., 2013).
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Importantly, there are several studies that have found plastics in the tissues of store- 

bought seafood (De Witte et al., 2014; Li et al., 2015; Mathalon and Hill, 2014; Rochman 

et al., 2015; Van Cauwenberghe and Janssen, 2014). The overall consequences of plastic 

ingestion are under investigation but researchers speculate that these particles may block 

important physiological processes and leach toxic plasticizers into the organism (Cole et 

al., 2013; Teuten et al., 2009). More recent research has shown that oyster larvae (Cole 

and Galloway, 2015), adult oysters (Sussarellu et al., 2016), larval fish (Lonnstedt and 

Eklov, 2016) and adult fish (Rochman et al., 2014) had a negative response to virgin 

plastic concentrations. Furthermore, wayward plastic has been shown to adsorb 

dangerous levels of PCBs, POPs, DDE, nonylphenols, and a number of other chemicals 

that ultimately may harm the organisms that ingest these plastics (Mato et al., 2001;

Ogata et al., 2009; Teuten et al., 2007; Teuten et al., 2009). Rochman et al. (2014) found 

that adult fish that ingested plastics sorbed with PCBs, PAHs and PBDEs displayed early 

signs of endocrine disruption. These concerns have triggered studies across the globe on 

sandy beaches, estuaries, industrial wastewaters, ocean gyres, and freshwater systems to 

track the abundance of microplastics (Acosta-Coley and Olivero-Verbel, 2015; Browne et 

al., 2011; Free et al., 2014; Ng and Obbard, 2006; Thompson et al., 2004). To date, no 

research has focused on microplastic distribution along coastal New Jersey, USA. 

Moreover, past research has largely concentrated on microplastic ingestion by the 

commercially important blue mussel, Mytilus edulis Linnaeus, 1758 (Browne et al.,

2008). There is no information regarding the common and environmentally critical ribbed 

mussel, Geukensia demissa (Dillwyn, 1817).
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1.2 The Ribbed Marsh Mussel Geukensia demissa

Geukensia demissa is a mytilid mussel whose diet consists of phytoplankton and 

particulate organic matter (POM). Feeding by G. demissa reduces water turbidity by 

exerting top-down control of phytoplankton populations and stabilizing significant loads 

of particulates in the water column (Jordan and Valiela, 1982; Newell, 2004). The 

subsequent reduction in turbidity stimulates aquatic plant growth by allowing more light 

to reach the benthos (Dame, 2011). Also, the deposition of suspended POM on the 

benthos in biodeposits allows sediments to “entomb” the nutrients, where anaerobic 

bacteria convert these excess nutrients into an inorganic form before aerobic bacteria 

remineralize the particulates and create anoxic waters (Newell, 2004). More importantly, 

G. demissa maintains a relatively high clearance rate during summer months when food 

is abundant and rejects a large number of particles as pseudofeces (Kreeger and Newell, 

2001), which results in trapping additional POM from the water column.

Geukensia demissa populations are also commonly associated with dense growths 

of Spartina alterniflora (Loisel) in estuaries and intertidal zones along the Atlantic Coast 

of North America (Jordan and Valiela, 1982). Ribbed mussels are often found attached 

by byssal threads to the basal portion of S. alterniflora, which acts to bind the roots and 

stems of the marsh grass together and prevents erosion. S. alterniflora, in turn, reduces 

the flow of water allowing G. demissa to feed on suspended particles in the water column 

and eject sediment-rich pseudofeces atop the root system, thereby further promoting 

marsh growth by delivering nitrogen, phosphorus, and other nutrients to S. alterniflora 

(Bertness, 1984; Gili and Coma, 1998; Newell, 2004). Overall, the ecological roles
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provided by ribbed mussels extend beyond the salt marsh and its importance cannot be 

understated.

Populations of Geukensia demissa live in areas with high concentrations of 

suspended particles increasing the potential for ingestion of microplastics that similarly 

are found in these hydrodynamic conditions. As filter-feeders, these bivalves have a 

mechanism for particle selection, but that process occurs after the particle enters the 

mantle-cavity and thus non-food material is not immediately rejected. In addition, the 

particle-selection process is activated by proteins encoded only during periods when food 

availability is scarce (Espinosa et al., 2008). A past study showed that the reproductive 

cycle of the closely related blue mussel coincides closely with seasonal blooms of 

phytoplankton where larval and adult mussels would have plentiful food resources 

(Newell et al., 1982). This could suggest that G. demissa is most apt to ingest 

microplastics when food availability is high and the mussel is either reproducing or 

developing. Microplastic ingestion has been shown to shift energy allocation away from 

reproduction towards growth and maintenance in adult Pacific oysters, Crassostrea gigas 

Thunberg, 1793 (Sussarellu et al., 2016), and reduced feeding rates in their larvae (Cole 

and Galloway, 2015). Ingestion of these plastic pollutants may induce similar responses 

in the ribbed mussel. Furthermore, the abundance of G. demissa makes the organism an 

excellent source of energy for predators, such as the commercially harvested blue crab 

(Seed, 1980), which opens the possibility for biomagnification in a commercially fished 

species. Though not a commercially harvested species, the green crab Carcinus maenas 

was found to contain microplastics after feeding on contaminated blue mussels in a study 

by Farrell and Nelson (2013). This process could have severe impacts to fisheries and
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human health. In contrast, the rejection of microplastic fragments during particle 

selection could make suspended microplastics available to the benthic community when 

G. demissa traps rejected particles in pseudofeces, which have been shown to settle up to 

40 times faster than normally suspended particles (Widdows et a l, 1998). Once the 

pseudofeces reach the benthic environment they then become available to organisms that 

feed there, or these bound particles could simply be incorporated into the sediment.

This study examined the distribution of microplastics within Geukensia demissa 

mussel beds located in Sandy Hook Gateway National Recreation Area, in Atlantic 

Highlands, New Jersey, and experimentally assessed the ingestion and processing of 

microplastics by G. demissa.

I hypothesized that:

(1) Microplastic distribution is homogeneous, regardless of size, throughout the 

mussel bed;

(2) G. demissa ingests 5 pm-sized and smaller microplastic particles;

(3) Specimens of G. demissa that ingest these microplastics do not digest these 

particles and these particles are egested through the rectum as fecal material; and

(4) G. demissa rejects microplastic particles sized greater than 250 pm as 

pseudofeces.

Methods

2.1 Field Study Location

Plum Island is a remnant spillover fan located at the mouth of the Navesink River 

in Raritan Bay along the western shoreline of Sandy Hook Gateway National Recreation
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Area (Fig. 1). The island is fed by sediments from the Navesink and Shrewsbury Rivers 

("‘Sandy Hook,” 2016) and is exposed to the strong tidal currents of the bay. The 

predominant summer winds blow in from the southwest (“Geologic Setting of the 

Modem Shore,” 2016). The westernmost edge of Plum Island serves as a protective 

barrier to a north and south salt marsh that are divided longitudinally across the center of 

the island by a land bridge. The north and south marshes are each exposed on one side to 

the tidal currents of Raritan Bay from the north and south, respectively. Both marshes are 

fringed by beds of Geukensia demissa and Spartina alterniflora (Fig. lc).

2.2 Sediment Sampling

Sediment cores (n = 36) were collected on June 27, 2014 along four transects.

Two transects (1 and 2) were in the north marsh (NM) and two transects (3 and 4) were in 

the south marsh (SM). Each transect spanned from the mussel bed’s leading edge to the 

back edge. Three sediment cores were randomly taken 1 m from the leading and back 

edges, and an area between the other two for a total of 9 cores per transect. Also, a 0.25 

m2 quadrat was randomly laid down in each of the sampling areas and the number of 

mussels within the quadrat was counted. All samples were frozen at -16 °C and stored 

until processing.

Sediment cores were split to differentiate plastics in the top 6 cm of sediment 

versus plastics between 6-10 cm. Microplastic debris was extracted from each cross 

section using methods similar to Thompson et al. (2004). This method separates 

microplastic from sediments using a filtered super-saline solution of NaCl at 200 ppt. The 

solution was poured through a series of standard sieves to separate the debris by size 

class. The mesh sizes were 4 mm, 2 mm, 1 mm, 500 pm, and 250 pm. Using a dissecting
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scope, microplastics were picked directly off the sieves, counted, and separated by size. 

The plastic counts were later pooled into two size classes; plastics that were 1 mm or 

larger (up to 5 mm) and plastics less than 1 mm in size, because it was assumed that the 

smaller sized plastics could enter the mantle cavity of the mussels and affect their health.

2.3 Ingestion by Geukensia demissa and Pseudofeces Collection

Twenty-four specimens of Geukensia demissa, approximate lengths from 5-7 cm, 

were collected from Plum Island. These mussels were scrub-cleaned of epifauna and 

placed in 5-pm-filtered artificial seawater (Instant Ocean®) at 25 ppt, which 

approximated the site salinity (23.5 ppt) during collection activities. Individuals were 

then allowed to acclimate for one week prior to experiments. All mussels were fed a 2 

mL blend of Isochrysis sp. and Tetraselmis sp. (~ 5-6 pm; avg. cell count 4.1 x 109/mL) 

daily. After acclimatization, twelve mussels were placed into 3 L of filtered seawater in a 

3.785 L glass jar. These mussels were separated by tubes made with 1 mm aluminum- 

mesh that were evenly distributed around a Hydor Koralia® 425 wave pump. These tubes 

were constructed to keep the mussels in an “upright” position with their siphons directed 

towards the water surface (i.e. in natural position). The wave pump flow was directed 

straight upwards to create an umbrella-like flow, and was regulated by a Lab-Volt® 

rheostat (model 193P) (see Fig. 2). These twelve mussels were exposed to 0.167 g/L of 5 

pm Visiblex® red-color-dyed polystyrene spherules (sodium azide removed; Phosphorex 

Inc., Hopkinton, MA) and 3.3 g/L of 250-300 pm red-color-dyed polyethylene 

microspheres (Cospheric LLC, Santa Barbara, CA). These larger plastics were selected 

because there was a higher abundance of plastics in this size class recovered from the 

sediment study. The remaining twelve mussels served as a control and were not exposed



to microplastic. Each group of mussels were fed 1 mL of their daily phytoplankton blend 

for two hours. Immediately after feeding for two hours, each mussel was placed in 

separate sealed 1 L glass jars with 600 mL of filtered artificial seawater and an air-stone 

(see Fig. 3). Four hours post-feeding, 4 exposed specimens of G. demissa and 4 controls 

were preserved in 70% ethanol. Another 4 exposed mussels and 4 control mussels were 

preserved 12 hours after feeding, and the remaining 4 specimens from each group were 

preserved 24 hours after feeding. All jars along with seawater were stored at 1°C to 

preserve feces and pseudofeces for later observation and measurement using light 

microscopy. All mussels were later deshelled, rinsed with ethanol to remove foreign 

debris, and dissected to remove the digestive system. These tissues were then prepared 

using standard histological techniques to examine the digestive glands (Humason, 1979). 

Tissues were dehydrated through a series of ethanols up to 100%, then a 50:50 mixture of 

terpineoktoluene, and finally pure toluene. Samples were then processed through two 

changes of molten paraffin before embedding for histological sectioning. Serial sections 

were taken at 7 microns, which were then mounted on glass slides and stained with an 

aqueous solution of toluidine blue. Sections were observed under light microscopy to 

determine the distribution of microplastics within the digestive system, including the 

digestive glands (tertiary tubules).

2.4 Statistical Analysis

Two-way ANOVAs, where the edge location and east/west position served as 

independent factors, were used to determine any differences in microplastic distribution. 

The dependent factors were the number of plastics recovered and included the total
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number of plastics, plastics less than 1 mm, plastics 1 mm or greater, plastics above 6 cm, 

plastics below 6 cm, plastics less than 1 mm above 6 cm, and plastics less than 1 mm 

below 6 cm. Tukey post-hoc tests were used to further analyze any differences found in 

the above two-way ANOVAs. A linear regression was used to compare the number of 

plastics recovered (total core, above 6 cm, and below 6 cm) against the proportion of 

sand (total core, above 6 cm, and below 6 cm), and plastics 1 mm or greater against 

plastics less than 1 mm. A final linear regression was used to evaluate differences in the 

number of plastic per cm3 above 6 cm versus the number of plastics per cm3 below 6 cm3.

Results

3.1 Sediment Distribution

Samples collected in the field showed wide variation among sediment samples 

with plastic particle densities ranging from approximately 11,000 to 50,000 pieces/m2 

(see Table 1). A simple linear regression model found that the presence of plastic pieces 

greater than 1 mm in size is significantly less abundant than the presence of plastic pieces 

less than 1 mm in size ( F 3 3 ,37.08 = 42.1 P < 2.31 x 10'7, see Fig. 4), with an R2 value of 

0.561. There are 2.4 pieces of plastic (< 1 mm) for every plastic greater than 1 mm in 

size. Plastics less than 1 mm in size account for 79.01% of the total number of plastics 

recovered. In contrast, a simple linear regression found that there is no significant 

difference between the number of plastic pieces per cm3 above 6 cm and number of 

plastic pieces per cm3 below 6 cm (F33,o.i9 = 3.34 P < 0.077).

A two-way ANOVA showed that edge location has a significant effect on the 

distribution of all the plastic recovered (F2,29 = 4.05 P < 0.028). Also, position (Fi,29 = 7.2 

P < 0.012) and the interaction between edge and position (F2,29 = 5.29 P <  0.011) had a
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significant effect on the distribution. A Tukey’s post-hoc test showed that there was a 

significant difference in means between the middle (B) sites and the back edge (C; C-B P 

= 0.026) when controlling for edge, and a significant difference in means between the 

east and west (P < 0.012) when controlling for position. A different two-way ANOVA 

for plastics less than 1 mm produced similar results where edge location (F2,29 = 5.09 P < 

0.013), position (Fi,29 = 7.30 P < 0.011), and the interaction between edge and position 

(F2,29 = 6.33 P < 0.005) had a significant effect on plastic distribution. For these plastics 

(< 1 mm), a Tukey’s post-hoc test found that middle (B) sites’ means also significantly 

differed from the back edge (C; C-B P < 0.011) when controlling for edge, and that 

means differed significantly between eastern and western sites (P < 0.011). For plastics 1 

mm or greater in diameter, neither of these factors (edge and position) had a significant 

effect on their distribution (F2,29 = 0.82 P < 0.449 and F i,29 = 3.99 P < 0.05, respectively). 

For plastics (< 1 mm) above 6 cm, a two-way ANOVA showed that distribution was 

significantly affected by east/west position (Fi,29 = 8.68 P < 0.006) where a Tukey’s post- 

hoc analysis revealed a significant difference in means (P < 0.006) when controlling for 

position. In contrast, plastics (< 1 mm) below 6 cm were significantly affected by the 

edge location (¥2,29 = 5.33 P < 0.011). A Tukey’s post-hoc test showed that there was a 

significant difference in means between the middle (B) sites versus the back edge (C; C- 

B P < 0.008) when controlling for edge. In short, plastics (< 1 mm) were significantly 

affected by the edge location and east/west position, but the influence of these factors 

differed based on the depth of the plastic.

All samples’ sediments mainly consisted of sand-sized grains (90% of the total 

sediment dry-weight) with exception to transect 1 quadrats A and B, 74% and 88.83%,
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respectively. A simple linear regression was calculated to predict the abundance of plastic 

based on the proportion of sand grains. No significant regression equation was found 

(F33,69.74 = 0.078 P < 0.782), with an R2 of 0.002. Overall, the distribution of plastic was 

not homogenous and there were differences based on location within the marsh.

3.2 Ingestion by Geukensia demissa and Incorporation in Pseudofeces

Serial sections of experimental individuals showed that microplastic spheres (5 

pm) were found throughout the stomach, intestine, and primary and secondary digestive 

glands of all specimens indicating that 100% of these mussels ingested microplastics (see 

Figs. 5, 6 and 7 for examples). Furthermore, these 5 pm particles were found in the 

digestive tubules of all specimens in the 12-hour and 24-hour post-feeding groups, and in 

75% of the specimens in the 4-hour post-feeding group (see Fig. 8 for example). 

Microplastic spheres were not found in any of the sectioned control specimens.

Polyethylene spheres sized between 250-300 pm were found in the tissue sections 

of 50% of the specimens from the 4-hour post-feeding group but none of the 12-hour or 

24-hour post-feeding groups. These plastics were observed only during sectioning in wax 

embedded specimens (see Fig. 9) but dislodged upon contact with the microtome blade 

making identification of the location within the mussels impossible.

Examination of the experimental specimens’ waste also revealed these larger 

plastic spheres in the feces of several specimens. All experimental mussels ejected both 

size classes of microplastics as feces and pseudofeces (see Fig. 10), and waste production 

was observably greater than the control groups.
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Discussion

4.1 Sediment Distribution

Plastic distribution is not homogenous in the Plum Island marsh. The density of 

microplastics ranged from approximately 11,000 pieces/m2 to 50,000 pieces/m2, which is 

within the range of other studies reviewed by Hidalgo-Ruz et al. (2012) who reported a 

range of 0.21 to 77,000 pieces/m2. However, the estimates used in the present study were 

based on sediment cores that were twice the depth reported in most of the studies 

reviewed by Hidalgo-Ruz et al (2012). For a more analogous comparison with previous 

studies, estimates were produced from plastics found in the top 6 cm, which yielded a 

range of approximately 4,500 to 35,000 pieces/m2. The relative abundance of plastics 

sized less than 1 mm in diameter accounted for approximately 79% of the total proportion 

of recovered plastics and is similar to results from Browne et al. (2010) who reported that 

these particles accounted for 65% of their total plastic debris. They suggested that the 

greater number of smaller plastics could have been the result of abrasion with sediment 

particles and strong wave-action. The present study site did not have direct contact with a 

strong wave front, but it is possible that larger plastics fragmented in the areas adjacent to 

Plum Island before translocating and settling in the marsh’s relatively calm waters. 

Weinstein et al. (2016) demonstrated that high-density polyethylene (HDPE), 

polypropylene (PP) and polystyrene (PS) plastics broke down more rapidly into 

microplastics (8 weeks) in a salt marsh presumably because of microbial degradation, 

detritivore feeding activity, and micro-abrasion caused by repeated drying and 

rehydrating of biofilms that formed on the plastics. This could also explain the higher 

abundance of smaller plastics in both the present study and Browne et al.’s 2010 study.
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Additionally, while processing sediment cores in the present study, macro-plastics were 

observed tangled in the roots of the marsh cordgrass Spartina cilterniflora that appeared 

to be breaking down into fragments (see Fig. 11).

When the total number of plastics recovered was considered, edge location 

significantly affected distribution (see Table 1). These trends are all consistent when 

comparing only the plastics that are less than 1 mm in size. In comparison, edge location 

did not affect the distribution of plastics 1 mm or larger. Thus, it appears that the 

distributions observed in the present study are affected by the size of the particle. Using 

particle-size to describe distribution patterns is supported by Kowalski et al. (2016), 

where they found that the settling velocity of several plastic polymer-types increased as 

the size of the particle increased. Khatmullina and Isachenko (2016) observed that plastic 

particles with greater angularity and smaller sizes and polymer type, decreased settling 

velocity. Still, if particle size was the only factor affecting plastic distribution we should 

expect a significant linear equation for the number of plastics based on the type of 

sediment (i.e. clay, silt, sand, etc.). In this case, most cores contained a high proportion of 

sand (see Table 2), which did not significantly affect the distribution of plastics, in 

concurrence with Browne et al. (2010) and Mathalon and Hill (2014). More importantly, 

the present study would have identified differences in distribution for plastics 1 mm or 

larger if size was the only factor.

This study differentiated between plastics in the top 6 cm and plastics below 6 cm 

because it was determined that the mussels at Plum Island were found approximately 6 

cm deep in the sediments and that the distribution of plastics could be influenced by these 

mussels. The distribution of plastics above 6 cm is highly variable between edge
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locations (see Fig. 13) and does not appear to be influenced by mussel distributions (see 

Fig. 14). In other words, plastic abundances in the top 6 cm do not appear to increase in 

areas with higher abundances of mussels, which is supported by previous studies (Ertman 

and Jumars, 1988; Santana et al., 2016). Conversely, the distribution of plastics (< 1 mm) 

above 6 cm are significantly affected by their east/west position in the marsh, where 

eastern sites have higher abundances of plastics. The distribution of these plastics is 

likely influenced by particle resuspension from wind/wave currents at the surface, as 

suggested in a recent publication by Critchell and Lambrechts (2016). The present study 

sought only to provide evidence of microplastic abundance and did not measure wind and 

water currents or particle densities and shapes, however, previous studies have shown 

that plastic density/polymer, particle shape, water density, hydrodynamics, wind, and 

proximity to inputs all affect the distribution of microplastics (Browne et al., 2010; 

Browne et al., 2011; Chubarenko et al., 2016; Critichell and Lambrechts, 2016; Jambeck 

et al., 2015; Khatmullina and Isachenko, 2016; Kowalski et al., 2016; Mathalon and Hill, 

2014; Wessel et al., 2016). It should be noted that the eastern side of Plum Island is 

nearest to a heavily used roadway, situated in a raised position relative to the marsh, that 

could be another source of plastic input. These factors may help explain the much greater 

abundance of plastics in the eastern transects, but future research will need to include 

more precise measurements to identify the definitive factors involved.

In contrast, the distribution of plastics (< 1 mm) below 6 cm are significantly 

affected by their edge location (see Fig. 12). These plastics were found in higher 

abundances along the back edges of Plum Island. This is likely due to plastics’ tendency 

to settle along the high strandline, which is why several studies focused on these areas
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(Browne et al., 2010; Corcoran et al., 2009; Costa et al., 2010; Silva-Cavalcanti et al., 

2009). For plastics (< 1 mm) below 6 cm there is less variation in distribution, possibly 

because the mussels provide a physical barrier from the hydrodynamic forces that affect 

the benthic surface. In general, mussels have been shown to provide sediment stability 

(Bertness, 1984). This stability could explain the similar abundances of plastics that 

settled in the other edge locations (A and B). On the other hand, the leading edge at 

transect 2 has the highest abundance of both plastics and mussels. This could suggest that 

the mussels directly affected the local settlement of plastics (< 1 mm), which contrasts 

with findings from Santana et al. (2016) and Ertman and Jumars (1988). However, 

Santana et al. (2016) sampled the brown mussel Perna perna L. (1758) for the presence 

of plastics and did not account for sediment quality. Ertman and Jumars (1988) recorded 

where polystyrene (PS) spherules, used to mimic bivalve larvae, had settled. That study 

used positively buoyant PS (d = 1.06 g cm'3) and results only included the particles that 

settled within the sampling area. It is therefore possible that these particles were rejected 

in the negatively buoyant feces/pseudofeces of the cockle Clinocardium nuttalli (Conrad, 

1837), which Lobelle and Cunliffe (2011) suggested could affect the density of 

microplastics. This is supported by observations made during the feeding experiments of 

the present study, where buoyant plastics became negatively buoyant after rejection as 

feces or pseudofeces. Furthermore, Ertman and Jumars (1988) suggested that at least 

1,000 bivalves/m2 would be required to increase larval settlement, which is similar to the 

bivalve density observed along the leading edge at transect 2 in the present study (783 

mussels/m2). Thus, mussels may have an influence on plastic settlement, but the present 

study did not measure densities of recovered plastics and thus cannot quantitatively state
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that less-dense particles settled in the leading (A) and middle (B) sites. Future studies will 

need to include spectral analysis of recovered plastics to determine density distribution 

trends, which may help to determine if bivalve biodeposits affect microplastic 

distribution.

Despite the distributional differences between plastics above and below 6 cm, 

there was no difference in the number of pieces per cubic centimeter. These results 

suggest that the relative abundances of plastics are similar and that only the factors 

affecting their distribution are different. There was also no significant trends in 

microplastic abundances by depth in this study, however, Turra et al. (2014) found that 

microplastic peak abundances became more shallow in depth with closer proximity to the 

water’s edge. Nevertheless, that study sampled to a depth of 2 m and found significant 

abundances of plastic pellets throughout their sampling depth. Both the results of the 

Turra et al. (2014) study and the present study suggest that microplastics can be found in 

significant abundances below the 5 cm sampling depth used in most of the studies 

reviewed by Hidalgo-Ruz et al. (2012). Overall, a much more extensive study will need 

to be conducted in the future to clarify the trends in microplastic distribution at Plum 

Island.

4.2 Ingestion by Geukensia demissa and Pseudofeces Production

This study confirms the ability of the ribbed marsh mussel to ingest polystyrene 

microplastics (5 pm or less) with plastic spherules found in the stomach, digestive 

tubules and intestine. These results concur with other studies that found that the related 

blue mussel Mytilus edulis ingested similar sized and shaped microplastics (Browne et
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al., 2008; von Moos et al., 2012; Wegner et al., 2012). Particles reside in the digestive 

system of Geukensia demissa for at least 24 hours, but further research needs to be 

conducted to determine the average residency time. In a study conducted by Browne et 

al. (2008) microplastic spherules remained in the digestive glands of M. edulis for 3 days 

before translocating into the mussels’ circulatory fluids, where the plastics persisted for 

over 40 days. The present study was performed on a much shorter time frame, but 

polystyrene particles were observed in both active and non-active digestive phases of the 

digestive tubules in all experimental groups. This suggests that the plastic particles may 

become lodged in these tubules, which may result in a disruption of normal digestive 

processes. A study conducted by Van Cauwenberghe et al. (2015) found that blue 

mussels that ingested polystyrene particles had a 25% increase in digestive gland energy 

consumption, but there was no net change to the mussels’ overall cellular energy 

allocation. That study, however, was performed using sterile polystyrene spherules. Other 

studies have shown that microplastics can adsorb chemicals from the surrounding 

environment that are toxic to marine organisms (e.g. DDEs, DDTs, PAHs, PCBs, Phe, 

and POPs; Bakir et al., 2014; Ogata et al., 2009; Teuten et al., 2009) and that exposure to 

gut surfactants can increase the rate of desorption of these chemicals (Bakir et al., 2014; 

Teuten et al., 2007). Likewise, microplastics have been shown to host harmful colonies 

of pathogens that differ from the surrounding environment (McCormick et al., 2014). 

Also, the presence of plastic particles in the digestive tubules may represent one way for 

these plastics to enter the circulatory system of the mussel, as noted by Browne et al. 

(2008). Multiple studies suggest that these plastics could translocate to the hemolymph 

via ingestion and transportation into the gastrointestinal tract where they are incorporated
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into the digestive epithelial cells via endocytosis (Browne et al., 2008; von Moos et al., 

2012). A study conducted by Avio et al. (2015) found magnified traces of desorbed 

pyrene in these tissues leading to the hemolymph, which appears to confirm this mode of 

translocation.

Additionally, this study confirms that polyethylene plastics (greater than 250 

microns) can enter the mantle cavity and be rejected as pseudofeces, and can also enter 

the stomach and exit through the intestine to be rejected as feces. These larger 

polyethylene plastics appear to be completely rejected from the digestive glands after 4 

hours post-feeding and some time before 12 hours post-feeding. Observing these larger 

plastics in the gut and feces was not expected because of the mussels’ particle selection 

size range. For example, Mytilus edulis has been repeatedly shown to only ingest 

particles sized between 4-23 microns (Prins et al., 1991; Ward and Shumway, 2004), 

however, it is likely that the high concentration of these larger plastics in the experiments 

led to the ingestion and rejection of these large particles. Future research should consider 

“natural” concentrations of these plastics to see if this observation persists. Feces and 

pseudofeces from all experimental mussels contained both sizes and types of plastics, and 

waste production was observably higher in experimental groups than in control groups. 

The latter observation is supported by a study conducted on the blue mussel by Wegner et 

al. (2012) where a linear relationship between nanopolystyrene concentration and 

feces/pseudofeces production was documented, as well as a reduction in filtering activity. 

They speculated that the additional waste production increases energy expenditure, 

which, when combined with decreased feeding activity, can lead to starvation of the 

mussel (Wegner et al., 2012). Moreover, these rejected plastics are aggregated into a
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biofilm that may change their characteristics. A study by Lobelle and Cunliffe (2011) 

suggested that biofilms could increase plastic densities and decrease their buoyancy. This 

suggestion is supported by the present study, which observed buoyant plastics become 

negatively buoyant when contained in feces/pseudofeces. This could mean that mussels 

are a source of microplastics that become available to other benthic organisms or that 

mussel beds can serve as a sink for microplastic pollutants.

Overall, no discemable difference in tissue health was observed between control 

and experimental specimens, however, this study was not designed to observe changes in 

animal health and thus cannot determine if Geukensia demissa is affected by plastic 

ingestion, although other studies have demonstrated issues. For instance, when exposed 

to microplastics, specimens of Mytilus edulis reduced filtering activity, increased waste 

production (Wegner et al., 2012), and formed granulocytomas (inflammatory response) 

while the lysosomal membrane degraded (von Moos et al., 2012). The adult Pacific 

oyster Crassostrea gigas displayed significant decreases in oocyte quantity and size, and 

reduced sperm velocity when exposed to microplastics for 2 months, while the 

development and number of viable offspring declined (Sussarellu et al., 2016).

Additional studies will need to be performed to identify any possible adverse effects that 

ingested microplastics may have on adult and juvenile ribbed marsh mussels. 

Furthermore, most studies, including the present study, performed analyses using 

polystyrene spherules. A recent study conducted by Li et al. (2015) found that the 

leachates of various types of plastics had different toxicity levels to the nauplii of the 

barnacle Amphibalanus amphitrite (Darwin, 1854). This finding suggests that
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microplastic ingestion is far more complex than previously thought and that the types of 

plastics used in each study will need to be considered going forward.

Conclusions

Microplastic distribution is complex and highly variable over relatively short 

spatial scales. This study showed that microplastics can be found in abundance beyond 

the sediment depth sampled in most other studies. The full spectrum of factors 

responsible for the distribution of microplastics in this study remains unclear given the 

limited metrics used. Past studies have confirmed that wind/water currents, water density, 

inputs, and topography can have a significant effect on microplastic distribution (Browne 

et al., 2010; Chubarenko et al., 2016; Jambeck et al., 2015; Wessel et al., 2016). 

Furthermore, this study only used a microscope to identify all recovered plastics, which 

Song et al. (2015) suggested leads to a significant underestimation of plastic abundances. 

Future work will need to include spectral analysis of recovered plastics to improve 

abundance estimates and to distinguish between changes in plastic distribution due to 

differences in the polymer densities, which has been documented in other studies 

(Browne et al., 2010; Khatmullina and Isachenko, 2016; Kowalski et al., 2016). Also, 

future studies will need to include more measurements of the local environmental 

conditions to better understand microplastic distributions, and more sites need to be 

considered to determine if mussel beds differ from each other, as well as other habitats in 

microplastic abundances and distribution trends. Most importantly, we need to 

standardize sampling and reporting protocols (e.g. equipment, depth, metrics, etc.) to 

ensure comparability between studies.
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Geukensia demissa ingests plastics (5 pm or less and between 250-300 pm) and 

these plastics can be either rejected as pseudofeces or passed through the digestive 

system and ejected in feces. Plastics (5 pm or less) were observed throughout the 

digestive system during the entire length of the experiment (24 hours). Waste production 

in the experimental mussels was observably increased in comparison to the control 

mussels, however, there were no changes in health noted. Nevertheless, the sole intention 

of this study was to demonstrate that the environmentally critical ribbed marsh mussel is 

at potential risk from microplastic pollution, which was accomplished. Future studies will 

need to consider using more “natural” concentrations of plastics to eliminate accidental 

ingestion of plastics. Also, future work will need to increase the duration of the 

experiments and record changes in behavior/health to gain better insights into 

microplastic residence times and potential health risks to these mussels. Overall, this 

study demonstrated that the ribbed marsh mussel can reject plastics in their pseudofeces 

and feces, which alters the density of plastics enough to make them negatively buoyant. 

Also, this study proved that plastics can be found in significant abundances beneath 

populations of G. demissa, and that distribution of plastics differs above and below these 

mussels.
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Fig. 1. (a) Map showing the location of Plum Island within Sandy Hook Gateway 
National Recreation Area (b) Map showing the sample site’s position at Plum Island (c) 
An illustration of the transect and sampling/quadrat locations.

Fig. 2. Image of the microplastic feeding setup. A 3.785 L glass jar with 3.0 L of artificial 
seawater (25 ppt). A wave pump is directed toward the water surface and centered at the 
bottom of the jar with 12 metal-mesh tubes surrounding the pump. The tubes were used
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to keep the mussels in an upright position. The device in the left-portion of the photo is a 
rheostat and it was used to regulate the flow of the wave pump, which was set to 
approximately 65%.

Fig. 3. Image of the control group mussels separated post-feeding. Each jar was 1 L in 
size and contained 600 mL of artificial seawater (25 ppt) and an air stone. The top of the 
jars was sealed with plastic wrap. The same setup was used for the experimental mussels.
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Plastics Less than 1 mm VS Plastics 1 mm or Greater

Fig. 4. A simple linear regression comparison of recovered plastic averages by diameter, 
where the x-axis represents plastics 1 mm or greater and the y-axis represents plastics less 
than 1 mm. There are approximately 2.4 pieces of plastic (< 1 mm) for ever plastic piece 
1 mm or larger.

30



Fig. 5. A primary duct filled with polystyrene spherules, which are the countless clear 
orbs throughout the duct. Please note that the annotation reads “4.03 pm.”
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Fig. 6. A polystyrene spherule lodged in the epithelial lining of a secondary duct found in 
a 12-hour post-feeding experimental mussel.

Fig. 7. Six polystyrene spherules (< 5 pm) inside a digestive tubule in a 24-hour post­
feeding experimental mussel.
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Fig. 8. A polystyrene spherule in an active digestive tubule of a 4-hour post-feeding 
experimental mussel.
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Fig. 9. A polyethylene spherule (> 250 pm) inside an experimental mussel. The location 
of this spherule within the mussel could not be identified because these plastics became 
dislodged when contacted by the microtome blade.
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Fig. 10. (a) Polystyrene (< 5 pm) and polyethylene (> 250 pm) spherules in the feces and 
pseudofeces of an experimental mussel, (b) A polyethylene spherule (> 250 pm) in the 
fecal waste.
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Fig. 11. Macroplastic caught in the root structure of Spartirla alterniflora. (a) Top down 
view of a plastic wrapper entangled in the root structure of Spartirla alterniflora and the 
byssal threads of Geukensia demissa. (b) A frontal view of the same plastic wrapper. 
Byssal threads can be seen attached to the wrapper and roots can be seen passing through 
the wrapper. Also, a fragment of the wrapper can be seen in the foreground.
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Fig. 12. A boxplot from a two-way ANOVA testing plastics (< 1 mm) below 6 cm 
against the edge location and east/west position. Edge location had a significant effect on 
plastic distribution (F2,29 = 5.33 P = 0.011) and a Tukey post-hoc comparison of means
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showed that the back edges (C) had significantly higher abundances of plastics than the 
middle (B) sites (C; C-B P < 0.008). Plastic abundance is highest along the leading edge 
(A) at transect 2 in the east where the highest density of mussels was recorded. Also, the 
abundances of plastics between sites appears to be more stable than plastics above 6 cm.
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Fig. 13. A boxplot from a two-way ANOVA testing plastics (< 1 mm) above 6 cm 
against the edge location and east/west position. The distribution of plastics is 
significantly affected by their east/west position in the marsh (Fi,29 = 8.68 P < 0.006), 
where eastern transects (2 and 4) had a higher abundance of microplastics. Plastic 
distribution is also more variable between sites than the plastics distributed below 6 cm.
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Fig. 14. A plot of the mussel densities recorded at each site. From left to right is north to 
south. Mussel density was highest along the leading edge (A) of transect 2 in the east 
(783 mussels/m2).
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Tables

Trans. Edge Avg. Est. m2 Liter Avg. Plastic Est. m2
Plastic (Total Core) (Total Core) (Top 6 cm) (Top 6 cm)

1 A 117.67 25,805 258.05 64.33 14,107.57
1 B 55.33 12,133 121.34 32 7,017.60
1 C 148.33 32,528 325.29 57.33 12,572.47
2 A 229.33 50,292 502.92 110.33 24,195.37
2 B 89 19,517 195.18 48.67 10,673.33
2 C 143.67 31,506 315.07 63.33 13,888.27
3 A 51 11,184 111.84 20.67 4,532.93
3 B 122 26,754 267.55 85.33 18,712.87
3 C 217 47,588 475.89 137.33 30,116.47
4 A 193.33 42,397 423.97 159.33 34,941.07
4 B 151 33,114 331.14 107.33 23,537.47
4 C 174.33 38,230 382.31 113.33 24,853.27

Table 1. Microplastic averaged abundances and estimates. The first estimate is based on
the average of all the plastic recovered in each core and the surface area of the core (A =
45.6 cm2). The second estimate is based on the average of all the plastic recovered in 
each core and the total volume of each core (V = 70.69 cm3). The last estimate is based 
on the average of the plastics recovered in the top 6 cm of sediment and the surface area
of the core (A = 45.6 cm2). This last estimate was performed to provide better
comparison to other studies, which sample to a depth of 5 cm on average.

Transect Edge Position Avg. Plastic Sand
1 A West 117.67 74%
1 B West 55.33 89%
1 C West 148.33 97%
2 A East 229.33 91%
2 B East 89 94%
2 C East 143.67 95%
3 A West 51 97%
3 B West 122 91%
3 C West 217 91%
4 A East 193.33 93%
4 B East 151 93%
4 C East 174.33 95%

Table 2. The proportion of sand at each location was based on sediment analysis from a 
randomly selected core from each site. All sediments consisted of sand with proportions 
greater than 90%, except for transect 1 edges A and B, where proportions were 74% and 
89%, respectively. A simple linear regression comparing the proportion of sand against 
the number of plastics recovered at each site yielded no significance ( F 3 3 ,69.74 = 0.078 P < 
0.782).
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