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1 Introduction

In the present contribution we construct the pure gravity Lagrangian, to cubic order,

using the BRST convolution product of two Yang-Mills theories introduced in [1, 2], in

conjunction with the BCJ double-copy [3–5] and, in particular, the developments of [5, 6].

The BCJ colour-kinematic duality conjecture [3–5] implies that the amplitudes of

N = 0 supergravity,

SN=0 =
1

2κ2

∫
?R− 1

(D − 2)
dϕ ∧ ?dϕ− 1

2
e−

4
D−2

ϕH ∧ ?H, (1.1)

where ϕ is the dilaton and H = dB is the Kalb-Ramond (KR) 2-form field strength,

follow from the double-copy of the amplitudes of pure Yang-Mills theory with arbitrary

non-Abelian gauge group,

SYM =
1

2g2
tr

∫
F ∧ ?F, (1.2)

to all orders in perturbation theory.

Recall, N = 0 supergravity is the common NS-NS sector of the α′ → 0 limit of closed

string theories. In this context, its appearance is understood to be a consequence of “open

× open = closed” property of the string spectrum underlying the Kawai-Lewellen-Tye

(KLT) tree-level scattering amplitude relations of string theory [7]. At the level of the

massless on-shell states we have the straighforward tensor product,

Ai ⊗Aj = hij ⊕Bij ⊕ ϕ, (1.3)

where i, j = 1, . . . , D − 2.
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The BCJ duality for gluons has been established to all orders at tree-level from a

number of perspectives [8–11] and has been generalised to include numerous (super) Yang-

Mills theories [4, 5, 12–38], generating a wide variety of double-copy constructible gravity

theories. Although BCJ duality remains conjectural at loop-level, there is a growing list of

highly non-trivial examples [4, 14, 29, 36, 39–55].

This programme is suggestive of a deep “gravity = gauge × gauge” relation and has

already dramatically advanced our understanding of perturbative quantum gravity. See

for example [12, 43, 52, 53, 55, 56]. This motivates an effort to understand the degree

to which the paradigm can be pushed beyond scattering amplitudes and the identification

of asymptotic on-shell states as in (1.3). For example, it has been shown that one can

manifest BCJ duality at the level of the Lagrangian or field equations from a number of

points of view [3, 4, 57–63]. A related line of research has been the construction of classical

solutions in theories of gravity, such as black holes, from gauge theory solutions. This

comes either in the form of applying a classical double-copy-type map to classical gauge

theory solutions or extracting perturbative classical solutions from the double-copy of gauge

theory amplitudes [6, 64–99]. This has yielded both pragmatic applications, particularly

in the context of gravity-wave astronomy, as well as emphasising interesting questions and

features of the double-copy itself. For a review of these ideas, including the many topics

not mentioned here, their applications and further references see [100–102].

The approach taken here makes key use of the field theoretic convolutive product of

gauge theories, introduced in [1] and further developed in [2, 28, 70–72, 74, 103, 104]. Using

the product, the local symmetries and equations of motion of the resulting gravity theory

have been shown to arise from those of the gauge theory factors, to linear order, making

crucial use of the BRST formalism [2, 72, 104, 105]. The procedure was recently extended

beyond Minkowski backgrounds in [105] and applied to the Janis-Newman-Winicour (JNW)

solution in [72]. Given enough global symmetries in the gauge theory factors, this can

then be used to identify the corresponding gravitational theory and all its symmetries

uniquely [1, 28, 32, 70, 71, 103, 104, 106–110]. The field theoretic product is a priori

independent from the BCJ procedure, however it is consistent with it in the sense that the

double-copy amplitudes correspond to the theory obtained from the field product, as seen

from the matching of symmetries.

Another important and early development [5] particularly relevant here, promotes BCJ

duality and the double-copy to the level of actions. First, it was shown that the Yang-

Mills actions may be put into a purely cubic form that manifestly yields colour-kinematic

dual tree-level amplitudes by introducing an infinite tower of auxiliary fields [5]. This was

demonstrated explicitly to five-points in [5] and a systematic formulation of the manifestly

tree-level BCJ respecting action to all orders was given in [59], albeit without auxiliary fields

so that it is necessarily non-local. Given Yang-Mills theory written in such a form, the

double-copy principle can be straightforwardly applied to generate an action that correctly

reproduces all the tree-level amplitudes of perturbative N = 0 supergravity, as described

in [5] and developed in context of perturbative solutions in [6].

One of the main advantages of the BRST formulation of the field theory convolution

product is that it gives an elegant solution to the issue of the mixing of the dilaton and
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graviton degrees of freedom pointed out in e.g. [6, 74], as detailed in [2, 72, 102, 105].1

In particular, the BRST approach opens the door to an off-shell construction for pure

Einstein-Hilbert gravity. As such, it is desirable to extend the construction beyond linear

order. To this end we employ the field theory convolution product and BRST prescription

of [2, 105] in tandem with the double-copy applied to actions, as developed in [5, 6], to

reproduce the BRST Einstein-Hilbert Lagrangian to cubic order.

The paper is organised as follows: we give an overview of the linearised BRST double-

copy procedure in section 2, applied to the simplest case of the product of two gauge

fields. We demonstrate in particular how the ghost fields allow us to truncate to pure

gravity in a robust way. We extend the construction to cubic order in perturbation theory

in section 3, demonstrating that the BCJ construction applied to the BRST Yang-Mills

action to cubic order reproduces Einstein-Hilbert gravity, up to field redefinitions. We also

give an algorithm for mapping between the gauge-fixing functionals of the gauge theory

and gravity sides. We conclude in section 4.

2 A linearised tale told again (with ghosts)

2.1 Review of convolution dictionary and the necessity of the BRST frame-

work

At linear level, the double copy dictionary is constructed from an associative convolutive

inner tensor product with respect to the Poincaré group

[f · g](x) =

∫
dDyf(y)⊗ g(x− y). (2.1)

We will use the notation

[f ◦ f̃ ](x) = [fa · Φaã · f̃ ã](x), (2.2)

where Φ is the convolutive pseudo-inverse Φ = φ−1, with φ · Φ · φ = φ of the bi-adjoint

scalar φ of the BCJ zeroth-copy [22, 23, 33, 60, 62, 64, 65, 67, 68, 111–118]. Note the

circle product can be generalised to include fundamental matter fields, by including a

bi-fundamental scalar field [28]. The product (2.2) applied to left Aµ and right Ãν pure

Yang-Mills theories would be expected to yield N = 0 supergravity off-shell, given the BCJ

amplitude relations and the tensor product of the on-shell states (1.3).

However, this expectation is only met once the BRST formalism is incorporated. This

can be traced back to a number of issues that have been identified in relation to this

construction in the context of off-shell or classical approaches:

• It is difficult to disentangle the graviton and dilaton degrees of freedom [74, 75]. A

formal demonstration of this is presented in [74]. Let jµ and j̃µ be the sources of the

Yang-Mills equation of motion, j
(h)
µν the graviton source and j(ϕ) the dilaton source.

Then we have

j(ϕ) ∝ j(h)ρρ ∝ 1

�
jρ ◦ j̃ρ . (2.3)

1For related considerations in the context of the classical Kerr-Schild double-copy see [96].
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Thus we see that the graviton and dilaton sources are not independent. In particular,

choosing to not source the dilaton will severely restrict the graviton. We can interpret

this as a constraint on gravitational theories that admit a double copy description,

appearing already at the linear order.

• The above comments are a general feature of the classical BCJ double-copy, and not

a consequence of the set-up in [74]. This is evident in the mismatch between the

on-shell and off-shell degrees of freedom. Specifically, Aµ × Ãν has 3 × 3 degrees of

freedom off-shell, which is insufficient to describe the ten off-shell degrees of freedom

carried by the graviton-two-form-dilaton system [2, 74]. This issue only becomes more

apparent with the addition of supersymmetry, where one lacks a full supermultiplets

of off-shell degrees of freedom [1, 119, 120].

• The classical double-copy is usually formulated with some specific gauge fixing on

both the Yang-Mills and the gravity side. However, there is no general proce-

dure determining a mapping between these corresponding gauge choices, poten-

tially introducing ambiguities into the double-copy when taken beyond the domain

of amplitudes.

The BRST dictionary in [2] resolves the above issues by taking products of sets of fields

(Aµ, c
α) and (Ãµ, c̃

α). Here c1 = c and c2 = c̄ are the Fadeev-Popov ghost and antighost,

respectively. The off-shell d.o.f. of the (Aµ, c
α) × (Ãµ, c̃

α) product can now be seen to

correspond to those of the linearised BRST systems for the graviton, two-form and dilaton.2

It also naturally incorporates the ghost and ghost-for-ghost transformations [2, 121].

We will describe in section 2.3 how the BRST procedure resolves the source issue (2.3),

and allows us to obtain a pure gravity theory. We will also present the gauge mapping

algorithm between pure Yang-Mills theory and gravity coupled to a KR 2-form and a

dilaton in section 2.2.

2.2 Dictionary and gauge mapping

The general form of the BRST action is (having eliminated the Nakanishi-Lautrup auxiliary

field), schematically:

SBRST =

∫
dDx

(
L0[f ] +

1

2ξ
G[f ]2 − c̄Q (G[f ])

)
− fj(f) + j̄c+ c̄j , (2.4)

where L0[f ] is the classical action for the field f , G[f ] is the gauge-fixing functional and

c̄QG[f ] is the ghost Lagrangian. For reducible gauge symmetries there will be additional

ghost-for-ghost terms. For a review of the BRST procedure, see [122–125]. The left and

right (tilde) Yang-Mills fields and ghosts transform as:

QAµ = ∂µc, Qc = 0, Qc̄ =
1

ξ
G(A),

QÃµ = ∂µc̃, Qc̃ = 0, Q¯̃c =
1

ξ̃
G(Ã),

(2.5)

2Note that the d.o.f. counting is now graded by ghost number — see [2] for details.
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while those of linearised N = 0 supergravity transform as:

Qhµν = 2∂(µcν), Qcµ = 0, Qc̄µ =
1

ξ(h)
G(h)
µ ,

QBµν = 2∂[µdν], Qdµ = ∂µd, Qd̄µ =
1

ξ(B)
G(B)
µ ,

Qϕ = 0.

(2.6)

The BRST system for the two-form additionally contains the (anti)ghost-for-ghosts d̄, d

and the ghost number 0 object η, transforming as

Qd = 0, Qd̄ =
1

ξ(d)
∂µd̄µ, Qη =

m(d)

ξ(d)
∂µdµ (2.7)

with ξ(d) and m(d) some a priori arbitrary constants. It is convenient to make a choice of

gauge fixing functional on the Yang-Mills side, and set

G[A] ≡ ∂µAµ, G[Ã] ≡ ∂µÃµ. (2.8)

As derived in [2, 105] a simple dictionary for the linearised fields of N = 0 supergravity

compatible with the symmetries above is given by

hµν = Aµ ◦ Ãν +Aν ◦ Ãµ + aηµν

(
Aρ ◦ Ãρ + ξ̃c ◦ ˜̄c− ξc̄ ◦ c̃

)
,

Bµν = Aµ ◦ Ãν −Aν ◦ Ãµ,
ϕ = Aρ ◦ Ãρ + ξ̃c ◦ ˜̄c− ξc̄ ◦ c̃,

(2.9)

where a is an arbitrary parameter. We can immediately read off the graviton and two-form

ghost dictionaries,

cµ = c ◦ Ãµ +Aµ ◦ c̃,
dµ = c ◦ Ãµ −Aµ ◦ c̃,

(2.10)

from which the antighost dictionaries follow:

c̄µ = c̄ ◦ Ãµ +Aµ ◦ ˜̄c,

d̄µ = c̄ ◦ Ãµ −Aµ ◦ ˜̄c.
(2.11)

Finally, the second order ghosts in the Kalb-Ramond sector are given by

d = −2c ◦ c̃, d̄ = −2c̄ ◦ ˜̄c, η = −
(
ξ̃c ◦ ˜̄c+ ξc̄ ◦ c̃

)
(2.12)

A significant advantage of the BRST set-up is that we can directly derive the gauge-

fixing functional for the graviton and the two-form, given the Yang-Mills gauge-fixing

functional. Indeed, using (2.11) and (2.6), in conjunction with the Yang-Mills transforma-

tions (2.5), we can determine the graviton and two-form gauge-fixing functionals through

Qc̄µ =
1

ξ(h)
G(h)
µ , Qd̄µ =

1

ξ(B)
G(B)
µ (2.13)
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and, making use of the Yang-Mills transformations (2.5), we get

G(h)
µ =

ξ(h)
(
ξ̃ + ξ

)
2ξξ̃

[
∂νhνµ −

1

2
∂µh+

2 + (D − 2)a

2
∂µϕ

]
+
ξ(h)

(
ξ̃ − ξ

)
2ξξ̃

[∂νBνµ + ∂µη] ,

G(B)
µ =

ξ(B)
(
ξ̃ + ξ

)
2ξξ̃

[∂νBνµ + ∂µη] +
ξ(B)

(
ξ̃ − ξ

)
2ξξ̃

[
∂νhνµ −

1

2
∂µh+

2 + (D − 2)a

2
∂µϕ

]
.

(2.14)

Note, one can repackage these gauge condition into left/right transverse gauges for the

trace-reversed generalised metric Z̄µν = h̄µν +Bµν ,

G(h)
µ =

1

2ξ

(
∂ρZ̄ρµ + ∂µχ

+
)

+
1

2ξ̃

(
∂ρZ̄µρ + ∂µχ

−) ,
G(B)
µ =

1

2ξ

(
∂ρZ̄ρµ + ∂µχ

+
)
− 1

2ξ̃

(
∂ρZ̄µρ + ∂µχ

−) , (2.15)

where

χ± =
(2 +Da)

2
ϕ± η. (2.16)

Here we see the rôle of the dilaton appearing in the gauge-fixing functional in direct analogy

to the familiar appearance of η in the KR gauge-fixing functional. This reflects the fact that

it receives a contribution from the ghost-antighost sector of Yang-Mills squared, ξ̃c◦˜̄c−ξc̄◦c̃.
For ξ = ξ̃ = ξ(h) = ξ(B) and a = 2

2−D , the gauge fixing functionals reduce to

G(h)
µ = ∂νhνµ −

1

2
∂µh,

G(B)
µ = ∂νBνµ + ∂µη,

(2.17)

the natural choices for Einstein frame.

Knowledge of the gauge fixing functionals (2.17) now allows us to write the linearised

Lagrangians:

L(h, ϕ) =
1

4
hµν�hµν +

1 + ξ

2ξ
(∂µhµρ∂νh

νρ − ∂µh∂νhµν)− 1 + 2ξ

8ξ
h�h− c̄µ�cµ +

1

2
ϕ�ϕ,

L(B) =
1

4
Bµν�Bµν +

1 + ξ

2ξ
∂µBµν∂ρB

ρν − d̄µ�dµ +
ξ

2
d̄�d− 1

2ξ
η�η. (2.18)

2.3 Pure gravity

Here we remove the dilaton and KR two-form to leave pure Einstein-Hilbert gravity. First,

it is straightforward to see from (2.9), (2.10), (2.11) and (2.12) that we can truncate out

the entire Kalb-Ramond sector by identifying the two Yang-Mills theories:3

Aµ = Ãµ, c = c̃, c̄ = ˜̄c. (2.19)

3Remember that Aµ ◦ Ãν = Aaµ · Φaã · Ããν , where we are summing over the adjoint indices a, ã. In

principle, this would allow us to more generally set the two-form sector to vanish without picking (Aµ, c, c̄) =

α(Ãµ, c, c̄), with α some constant. However, we find it convenient to make this choice, and set α = 1.

– 6 –
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To illustrate how the dilaton can be removed, we couple arbitrary sources to the right hand

side of the Yang-Mills eom:

�Aµ −
ξ + 1

ξ
∂µ∂A = jµ, �c = j, �c̄ = j̄. (2.20)

Note that, in contrast with the standard treatment of BRST, we have coupled sources to

the ghost/antighost. The graviton/dilaton equations, as coming from (2.18) coupled to

sources, become:

1

2
�hµν −

1 + ξ

ξ
∂ρ∂(µhν)ρ +

1 + ξ

2ξ
∂µ∂νh+ ηµν

[
1 + ξ

2ξ
∂ρ∂σhρσ −

1 + 2ξ

4ξ
�h

]
= j(h)µν

�ϕ = j(ϕ)
(2.21)

Then using (2.20) and (2.9), we can read off the source dictionaries,

j(h)µν =
1

�
jµ ◦ jν −

2(1 + ξ)

�2
∂µ∂νj ◦ j̄ −

(ξ + 1)2

�3
∂µ∂ν∂j ◦ ∂j

+ ηµν

[
ξ(1 + ξ)

�2
∂j ◦ ∂j +

1 + 2ξ

�
j ◦ j̄

]
j(ϕ) =

1

�
jρ ◦ jρ +

ξ2 − 1

�2
∂j ◦ ∂j +

2ξ

�
j ◦ j̄,

(2.22)

where from here-on-in we set D = 4 for notational clarity, although all of the conclusions

hold for arbitrary dimension. If we wish to eliminate the dilaton, we first set its source to

vanish by picking sources for the ghosts such that

j ◦ j̄ = − 1

2ξ
jρ ◦ jρ −

ξ2 − 1

2ξ

1

�
∂j ◦ ∂j (2.23)

which allows us to set

c ◦ c̄ = − 1

2ξ
Aρ ◦Aρ ⇒ ϕ = 0. (2.24)

The graviton source reduces to

j(0)µν =
1

�
jµ ◦ jν +

1 + ξ

ξ�2
∂µ∂νj

ρ ◦ jρ −
(ξ + 1)2

ξ�3
∂µ∂ν∂j ◦ ∂j

− ηµν
[

1 + 2ξ

2ξ�
jρ ◦ jρ −

(ξ + 1)2

2ξ�2
∂j ◦ ∂j

] (2.25)

and we note that it is unconstrained, even after eliminating the dilaton. On the other

hand, in the absence of the ghost contributions setting the dilaton and its source to vanish

would constrain the trace of (2.25) to be vanishing, cf. (2.3).

Finally, we can invert the dictionaries (2.9), (2.10) and (2.11) to get:

Aµ ◦Aν =
1

2
hµν

c ◦Aµ =
1

2
cµ

c̄ ◦Aµ =
1

2
c̄µ

c ◦ c̄ = − 1

4ξ
h

(2.26)
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and the gauge-fixing functional reduces to the familiar de Donder gauge,

Gµ[h] = ∂νhνµ −
1

2
∂µh, (2.27)

with the pure gravity BRST action

L(h) =
1

4
hµν�hµν +

1 + ξ

2ξ
(∂µhµρ∂νh

νρ − ∂µh∂νhµν)− 1 + 2ξ

8ξ
h�h− c̄µ�cµ. (2.28)

3 Einstein-Hilbert from the double-copy to cubic order

3.1 Gravity as it comes

We work with the standard Yang-Mills BRST action

LYM = −1

4
F aµνF

µνa +
1

2ξ
G[A]aG[A]a − c̄a∂µDac

µ c
c, (3.1)

where F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , Dac

µ = δac∂µ + gfabcAbµ and the gauge-fixing

functional is linear G[A]a = ∂ρAaρ. Note, here Feynman gauge corresponds to ξ = −1. Up

to cubic order this becomes

LYM =− 1

4
F a(0)µν Fµνa(0) +

1

2ξ
∂ρAaρ∂

ρAaρ − c̄a�ca

− gfabc∂µAaνAµbAνc − gfabcc̄a∂µ
(
Abµc

c
)
,

(3.2)

with F (0) = ∂µA
a
ν − ∂νAaµ. The cubic terms can be written as

L(3)YM = igfabc
∫
d̄p1d̄p2d̄p3 e

−i(p1+p2+p3)x
[

1

6
nµνρ(pi)A

a
µ(p1)A

b
ν(p2)A

c
ρ(p3)

+nµαβ(p1)c
a
α(p1)A

b
µ(p2)c

c
β(p3)

]
,

(3.3)

with d̄p = d4p

(2π)4
and we have isolated the BCJ satisfying, in the sense that it is totally

antisymmetric, kinematic numerator

nµ1µ2µ3(pi) = −(pµ312η
µ1µ2 + pµ123η

µ2µ3 + pµ231η
µ3µ1), (3.4)

where pij = pi − pj . The above is as in classical Yang-Mills,4 however note that we

now have a contribution coming from the ghost-antighost-gluon interaction term with ki-

netic numerator

nµαβ(p) = −pµσαβ+ , σ± =
1

2
(σx ± iσy) , (3.5)

where for convenience we have introduced the ghost-antighost doublet, cα = (c, c̄). Here

σi are the Pauli matrices and σαβ+ cαcβ creates a ghost number zero state.

4This is a consequence of choosing a linear gauge-fixing functional. It would be interesting to study

models where G is a nonlinear function of Aµ.
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When performing the double-copy, we must take all possible combinations: the gluon-

gluon-gluon term with itself will contribute graviton-graviton-graviton interactions, same

as the ghost-antighost-gluon term with itself, while the cross terms will contribute the

graviton-ghost-antighost interactions. Note, we have no a priori reason to believe the

ghost sector of gravity generated through the näıve double-copy presented above will be

consistent. However, as we shall demonstrate, it yields up to field redefinitions Einstein-

Hilbert gravity with BRST respecting gauge-fixing and ghost sectors, as required.

To implement the BCJ double-copy we introduce a super-index M = (µ, α) and send

ifabcXMNP → α(MNP,M̃ÑP̃ )X
M̃ÑP̃XMNP , where there is no sum between the set of nor-

malisation parameters, α, and the non-zero components of X, which are determined by the

allowed diagrams,

Xµνρ = nµνρ, Xµαβ = nµαβ , X = 0 otherwise. (3.6)

This yields the momentum space double-copy Lagrangian,

L̂(3,dc)(grav) = α(MNP,M̃ÑP̃ )X
M̃ÑP̃

[
1

6
nµνρAµM̃AνÑAρP̃ + nναβcαM̃AνÑcβP̃

]
=

1

6
α1n

µνρnµ̃ν̃ρ̃Aµµ̃(p)Aνν̃(k)Aρρ̃(q) + α3p
µpµ̃C̄(0)(p)Aµµ̃(k)C(0)(q)

− 2α+
2 n

µνρpν̃C̄µ(p)Aνν̃(k)Cρ(q),

(3.7)

where for convenience we have labelled the non-zero constants5

α1 = α(µνρ,µ̃ν̃ρ̃), α+
2 =

1

2

(
1

6
α(µνρ,µ̃α̃β̃) + α(µαβ,µ̃ν̃ρ̃)

)
, α3 = α(µαβ,µ̃α̃β̃) (3.8)

and defined

Aµν = F [Aµ ◦Aν ]

Cµ = F [Aµ ◦ c], C̄µ = F [Aµ ◦ c̄]

C(0) = F [c ◦ c̄] = −C̄(0)

(3.9)

with F denoting the Fourier transform. Making use of the linear dictionary (2.26), the

graviton sector of the above can be rewritten in position space as

L(3,dc)(grav) =− α1

8
hµν

(
hρσ∂ρ∂σhµν − ∂µhρσ∂νhρσ − hρσ∂σ∂νhµρ

+ 2∂νhρσ∂
σh ρ

µ − ∂ρhνσ∂σh ρ
µ −

α3

4ξ2α1
h∂µ∂νh

)
.

(3.10)

5Note that only a linear combination of the normalisation parameters α(µνρ,µ̃α̃β̃) and α(µαβ,µ̃ν̃ρ̃) will be

fixed through the double copy. This is a consequence of the fact that we have restricted to the symmetric

sector in order to focus on pure gravity. In the full construction, the orthogonal combination

α−
2 =

1

2

(
1

6
α(µνρ,µ̃α̃β̃) − α(µαβ,µ̃ν̃ρ̃)

)
will be fixed by studying the ghost sector of the two-form Bµν [126].
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Note that this is simpler than the Einstein-Hilbert action at cubic order given in (3.12),

thus revealing one of the advantages of the double copy dictionary. As observed in [5], the

double-copy of the purely gluonic sector of the Yang-Mills action performed in this manner

will give a graviton action that correctly reproduces the on-shell amplitudes to this order.

The terms of (3.12) that vanish in the on-shell amplitude, due to the transverse-traceless

polarisation tensors and momentum conservation, simply do not appear here. However,

the ghost-antighost sector reintroduces a term depending on h, which allows one to fix

the Einstein-frame dilaton to vanish, as will be demonstrated in section 3.2. Said another

way, the vanishing of the Einstein-frame dilaton at linear order given in (2.24) remains

consistent at higher orders.

3.2 Matching to perturbative Einstein-Hilbert gravity

At cubic level, the standard BRST action for gravity is

L3,BRST = L(3)class +
1

ξ
Gµ[h](1)Gµ[h](2) − {c̄µQ [Gµ[h]]}(3) , (3.11)

with the superscripts denoting the order in perturbation theory. L(3)class is just the cubic

part of the Einstein-Hilbert action:

L(3)class =
1

2
hµν

(
1

2
∂µh

ρσ∂νhρσ−
1

4
ηµν∂σhτρ∂

σhτρ+∂νh

(
∂ρhµ

ρ− 1

2
∂µh

)
+∂νhµ

ρ∂ρh−∂ρh∂ρhµν−
1

2
ηµν∂

ρh

(
∂σhρ

σ− 1

2
∂ρh

)
+∂ρhµν∂σhρ

σ

−2∂νhρσ∂
σhµ

ρ−∂ρhνσ∂σhµρ+∂σhνρ∂
σhµ

ρ +
1

2
ηµν∂ρhτσ∂

σhτρ
)
.

(3.12)

The linear part of the gauge fixing functional is determined via the BRST procedure

in (2.27):

Gµ[h](1) =

[
∂νhνµ −

1

2
∂µh

]
, (3.13)

while the second order part Gµ[h](2) is to be determined by matching with the BCJ ac-

tion (3.10). The normalisation factors in the double copy dictionary are fixed to

α1 = 1, α3 = ξ2, (3.14)

and we find that one needs to perform a nonlinear field redefinition of the graviton fluctu-

ation

hµν → hµν −
1

4
hµνh+

1

2
h ρ
µ hνρ −

1

16
ηµν

(
hρσh

ρσ − 3

4
h2
)
. (3.15)

Comparing (3.11) with (3.10), we derive the next order in the gauge fixing functional prior

to the field redefintion

Gµ[h](2) =
3

8
hνρ∂µhνρ −

5 + 2ξ

32
h∂µh+

4− 3ξ

16
h ρ
µ ∂ρh

− 1

2
hνρ∂ρhµν +

1

4
h∂ρhµρ −

4− ξ
4

h ν
µ ∂

ρhνρ.

(3.16)
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Once the field redefinition (3.15) is applied, the gauge-fixing functional simplifies and is

proportional to the free parameter ξ, as expected,

Gµ[h](2) → ξ

8

(
hµ

ν∂ρhν
ρ − 1

2
h∂µh−

3

2
hµ

ν∂νh

)
. (3.17)

Note, restricting to local field redefinitions, (3.15) and (3.17) are uniquely determined.

Note moreover, there is no local field redefinition matching Einstein-Hilbert without the

ghost-antighost sector.6

Once the gauge fixing term at second order has been found, the ghost terms in the cubic

action are uniquely determined by the last term in (3.11), together with the perturbative

BRST transformation

Qhµν = 2∂(µcν) + κ
[
cρ∂ρhµν − 2cρ∂(µhν)ρ

]
(3.18)

This can be matched to the BCJ ghost terms

L(3,dc)(gh) =− α+
2

4
(hνρ∂

ρc̄µ∂
νcµ − hµρ∂ρc̄ν∂νcµ − ∂µhνρ∂ρc̄νcµ

+ ∂νhµρ∂
ρc̄νcµ + hνρ∂

ρ∂µc̄
νcµ − hνρ∂ρ∂ν c̄µcµ)

(3.19)

by fixing the normalisation parameter

α+
2 = 1 (3.20)

and performing a non-local transformation on the ghost and antighost fields, which is not

unique. A convenient, in the sense that it places no restrictions on the range of ξ, example

is given by:

cµ → cµ +
3ξ − 4

32
hcµ +

3

4
h ν
µ cν +

1

2�

[
ξ + 3

8
∂ρh∂µc

ρ +
1

2
∂µh∂ρc

ρ

− 1

2
∂σhµσ∂

ρcρ −
ξ + 2

4
∂ρhσρ∂µc

σ − ξ + 2

4
∂ρhσρ∂

σcµ +
ξ + 1

2
hµρ∂

ρ∂σcσ

]
c̄µ → c̄µ −

3ξ + 4

32
hc̄µ −

ξ + 2

8
h ν
µ c̄ν +

1

�

[
− 2ξ2 − 3ξ + 4

16ξ
∂ρ∂µhc̄

ρ − ξ − 1

4ξ
∂µ∂

σhσρc̄
ρ

+
1

4ξ
∂σ∂ρh

σ
µ c̄

ρ − 1 + 2ξ

4ξ
∂ρ∂σhρσ c̄µ −

3ξ2 − 12ξ − 4

32ξ
�hc̄µ +

1 + 2ξ

16
h∂µ∂ρc̄

ρ

]
hµν → hµν −

1

2
c̄(µcν)

(3.21)

Although the above is non-local, of course, the resulting action is local. This follows from

the fact that the linear component of the gauge-fixing functional was determined by the

double-copy to be de Donder (2.27). This yields a specific form for the quadratic ghost

action (2.28) proportional to c̄ρ�cρ, prior to any field redefinitions, which excludes all

possibly non-local terms that may have arisen from (3.21).

6Recall, we are setting the dilaton in Einstein-frame to vanish, and thus, forbidding further field redefi-

nitions.
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4 Conclusions

In this paper, we demonstrated that the BRST convolution product, in conjunction with

the BCJ algorithm, can reproduce the Lagrangian of pure BRST Einstein-Hilbert gravity

up to cubic order. We found that the ghost sector of the Yang-Mills action played a crucial

rôle in achieving this in the pure graviton sector. We additionally derived the gauge

fixing functional up to second order in fluctuations and the corresponding diffeomorphism

ghost action.

We have focused here on the pure gravity case as a proof of principle, in particular that

the graviton and dilaton may be disentangled from one-another. While the inclusion of the

full N = 0 multiplet would in fact simplify the analysis in certain regards, as reflected by

the double-copy amplitudes, it is not required for this purpose and, moreover, would serve

to obscure this point. However, the full N = 0 supergravity construction, including the

two-form and dilaton, would be of interest, both conceptually and from the perspective of

classical solutions [6, 69, 96, 127]. Work on this is in progress [126].

Another obvious generalisation would be to promote one of the factors to a full off-

shell N = 1 vector supermultiplet as in [1]. In this case, the ghost-antoghost sector would

produce an entire chiral multiplet, reflecting the fact that on-shell “N = 0 Yang-Mills ×
N = 1 Yang-Mills” yields N = 1 supergravity coupled to a chiral multiplet.

We also note that we have made a choice of a linear gauge fixing functional G[A]a =

∂ρAaρ for the YM theory. It would very instructive to study non-linear gauge choices — the

challenge in this context would be to understand how the BCJ rules need to be modified.

Note, we have from the beginning eliminated the Nakanishi-Lautrup auxiliary field

corresponding to the Yang-Mills antighost. It would perhaps be instructive to understand

what rôle it might play in the convolution product. The full Batalin-Vilkovisky formalism

and BRST complex will be treated, from an independent perspective not relying on the

convolution product, in work in progress [128].

Of course, an important question is how to proceed to higher orders in perturbation

theory. A path towards this would possibly make use of the BCJ respecting Yang-Mills

Lagrangians of [5] and [59], which include identically vanishing non-local terms to all orders

that then need to be made local and cubic through the introduction of auxiliary fields as

described at four and five points in [5].
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[84] M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical

double copy in three spacetime dimensions, JHEP 07 (2019) 167 [arXiv:1904.11001]

[INSPIRE].

[85] H. Johansson and A. Ochirov, Double copy for massive quantum particles with spin, JHEP

09 (2019) 040 [arXiv:1906.12292] [INSPIRE].

[86] B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles

and black holes, JHEP 12 (2019) 156 [arXiv:1906.09260] [INSPIRE].

[87] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the

effective action of dilaton-gravity at NNLO, Phys. Rev. D 100 (2019) 086006

[arXiv:1906.05875] [INSPIRE].

[88] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes

and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,

Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].

[89] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Black Hole Binary

Dynamics from the Double Copy and Effective Theory, JHEP 10 (2019) 206

[arXiv:1908.01493] [INSPIRE].

[90] N. Arkani-Hamed, Y.-t. Huang and D. O’Connell, Kerr black holes as elementary particles,

JHEP 01 (2020) 046 [arXiv:1906.10100] [INSPIRE].

[91] R. Alawadhi, D.S. Berman, B. Spence and D. Peinador Veiga, S-duality and the double

copy, JHEP 03 (2020) 059 [arXiv:1911.06797] [INSPIRE].

– 17 –

https://doi.org/10.22323/1.318.0177
https://arxiv.org/abs/1803.07670
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07670
https://doi.org/10.1007/JHEP03(2018)044
https://arxiv.org/abs/1711.03901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03901
https://doi.org/10.1007/JHEP12(2017)004
https://arxiv.org/abs/1710.01953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01953
https://doi.org/10.1007/JHEP01(2019)107
https://arxiv.org/abs/1809.04063
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.04063
https://doi.org/10.1103/PhysRevD.99.024021
https://arxiv.org/abs/1807.09859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09859
https://doi.org/10.1016/j.physletb.2018.11.026
https://doi.org/10.1016/j.physletb.2018.11.026
https://arxiv.org/abs/1810.08118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08118
https://doi.org/10.1088/1361-6382/ab03e6
https://arxiv.org/abs/1810.08183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08183
https://doi.org/10.1007/JHEP11(2018)162
https://arxiv.org/abs/1806.07388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07388
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02489
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10950
https://doi.org/10.1007/JHEP07(2019)167
https://arxiv.org/abs/1904.11001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11001
https://doi.org/10.1007/JHEP09(2019)040
https://doi.org/10.1007/JHEP09(2019)040
https://arxiv.org/abs/1906.12292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12292
https://doi.org/10.1007/JHEP12(2019)156
https://arxiv.org/abs/1906.09260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09260
https://doi.org/10.1103/PhysRevD.100.086006
https://arxiv.org/abs/1906.05875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05875
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04424
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01493
https://doi.org/10.1007/JHEP01(2020)046
https://arxiv.org/abs/1906.10100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10100
https://doi.org/10.1007/JHEP03(2020)059
https://arxiv.org/abs/1911.06797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06797


J
H
E
P
0
7
(
2
0
2
0
)
0
9
3

[92] I. Bah, R. Dempsey and P. Weck, Kerr-Schild Double Copy and Complex Worldlines, JHEP

02 (2020) 180 [arXiv:1910.04197] [INSPIRE].

[93] J. Plefka, C. Shi and T. Wang, Double copy of massive scalar QCD, Phys. Rev. D 101

(2020) 066004 [arXiv:1911.06785] [INSPIRE].
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