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Abstract This paper provides a comprehensive study of the harmonics generated by a frequency shifted backscatter 
communication system. The suppression and the manipulability of different harmonics are of importance to avoid detrimental 
inter-user interference when a number of backscattering nodes (and perhaps also other active wireless users) operate 
simultaneously in a network. In this paper the harmonics generated by a widely adopted open-short backscatter tag architecture is 
firstly presented. Then the ideal backscatter system which generates no unwanted harmonics is discussed, which inspires various 
harmonic suppression strategies. In particular, practical constraints of the backscatter tag hardware capabilities are applied, e.g. 
the number of discrete reflection coefficients that can be synthesized, and the dimension of the reflection coefficients (real-
valued or complex-valued). Furthermore, the dual-transistor based IQ backscatter modulator is found useful to suppress all 
mirror harmonics and any specified higher order harmonics. The applicability of these proposed harmonic suppression 
approaches are demonstrated by an exemplar backscatter network consisting of multiple nodes performing binary frequency 
shifted keying (2FSK) modulated backscatter communications simultaneously. 
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I. INTRODUCTION1 

ASSIVE machine-type communications (MTC), as 
one of three important pillars to the ever-evolving 5G 

and beyond, have been gaining momentum to become an 
indispensable part of our everyday life [1]. The rise of the 
Internet of Things (IoT) networks is endowing intelligence 
to the world around us, fostering the concepts like Smart 
Home, Smart Factory, and Smart City [2]. The protocols 
and physical-layers have been purposely designed for IoT 
to construct the so-called Low-Power Wide-Area Networks 
(LPWANs), such as the widely deployed Narrowband-IoT 
(NB-IoT) and Long Range Wide-Area Networks 
(LoRaWAN). Featuring very narrow frequency bandwidth, 
those networks are able to reduce the power consumption 
down to the order of tens of mW, e.g. NB-IoT consumes 
20~40 mW [SODAQ Mbili ATmega 1284P]. This low-
level power consumption has negligible effect to the battery 
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life of handheld devices, e.g mobile phones, wherein the 
energy is dominantly consumed on cellular connections, 
e.g. LTE handsets can radiate at a maximum of 500 mW. 
However, when considering the massive nodes in various 
types of wireless sensor networks (WSNs), a typical button 
battery can only support the continuous operation of the 
node for hours. Even in highly duty-cycled operations, the 
lifetime of a battery can hardly be extended to months. This 
brings challenges of unaffordable maintenance cost, e.g. 
replacing hundreds or thousands of batteries regularly (in 
some applications even this is inapplicable as nodes can be 
inaccessible), and environmental cost, e.g. the carbon 
emission associated with battery fabrication and toxic 
battery waste pollution [3]. This demand calls for new types 
of communication technologies that reside in the ultra-low-
power regime, say three orders lower down to tens of µW, 
which in turn can be supported by harvested wireless 
power. This target can only be reached if the current active 
radio transmissions are replaced with the passive 
backscatter transmissions [4], removing the needs of power-
hungry radio frequency (RF) carrier synthesizers and power 
amplifiers. The sources of the wireless energy for powering 
the backscattering nodes can be the purposely designed 
power base-station/beacons [5], the Simultaneous Wireless 
Information and Power Transfer (SWIPT) transmitters [6], 
and even ambient commodity wireless networks [7] [8]. 
The powering strategy and the RF energy harvesting 
process are commonly associated with the downlink (power 
and information) in the networks, which is different to the 
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focus of this paper, i.e. the harmonic suppression 
techniques for the backscatter uplinks. 

The backscatter technology was first utilized for Radar 
during the WWII. In a Radar system, a target object 
featuring a unique Radar Cross-Section (RCS) 
characteristic scatters the purposely generated high power 
illuminating electromagnetic waves in the backward 
direction (namely backscatter). By detecting and processing 
the scattered signals, the target information, e.g. distance, 
speed, etc., can be extracted. Later, by embedding unique 
codes into the backscattered signals, the Radio-frequency 
identification (RFID) technology was developed, which has 
been widely adopted in many scenarios, e.g. for logistic and 
sensing applications [9], [10]. 

Now, the trend of using backscatter technology for 
wireless communications has become irresistible due to its 
low-power and low-cost, allowing for massive deployment 
to fulfil the ambitious ‘Smart Dust’ [11] mission envisioned 
two decades ago. Enormous efforts have been witnessed to 
address some challenges facing (semi-)passive backscatter 
links. For example, compared with the conventional Ultra 
High Frequency (UHF) RFID links of up to a few meters, 
the communication range of the state-of-the-art backscatter 
communication systems has been extended to hundreds, and 
even thousands of meters, thanks to noise-resilient 
modulation schemes [12]–[14], extra array beamforming 
gains [15], and active gains obtained from tunnelling effect 
[16]. On the other frontline, higher order modulation 
schemes have been successfully implemented to improve 
the link data rates [17], [18], with a recent extension to 
multicarrier, e.g. orthogonal frequency-division multi-
plexing (OFDM) waveforms, reported in [19]. The 
hardware architecture of backscatter tags has also witnessed 
great development in order to support diverse backscatter 
modulation waveforms. In particular, the conventional two-
load switching solution [20] was extended to multiple-loads 
to support higher order modulations [21] [22]. When the 
switching frequency is linearly varied via a Voltage-
Controlled Oscillator (VCO), the LoRa compatible chirp 
signals can be synthesized [23]. Apart from the switching 
solutions, the backscatter tags that are capable of 
continuously changing their impedances were constructed 
using PIN diodes and transistors [24], which opens the 
possibility of backscatter signal pulse shaping.  

Aforementioned advancements have greatly improved 
the performance, with regard to the link budgets and data 
rates, of each individual backscatter link. However, a major 
challenge still exists when integrating a large number of 
them into a network, where the limited spectrum resources 
have to be efficiently shared, and the inter-user interference 
has to be effectively suppressed and managed [24]. Most 
previous backscatter works only pay attention to the in-
band backscatter signals, leaving the harmonics un-treated 
[25]. As a consequence, when harmonics of one user fall 
into frequency bands allocated to other users that are 
required to operate simultaneously, the link performance of 
other users can be greatly compromised. This issue was first 

raised in [26], where a series of four discrete complex 
impedances was used to cancel out the first mirror 
harmonic. This was later extended to 8 discrete complex 
impedances for the 3rd and 5th order harmonic suppression 
[23]. These reported methods, however, are hardware-
specific and are not scalable, i.e. cannot be adopted to 
suppress any specified harmonic components required by 
the network. The challenge and the limitations of the 
previous solutions motivate a comprehensive study of 
harmonic suppression methods in order to optimize the 
usage of backscatter network spectrum resources. 

The contributions of this paper are now summarized as 
below: 
 The ideal frequency shifted backscatter link with no 

harmonics generated is mathematically introduced, 
which needs to be supported by tags that can 
continuously vary their impedance along a complete 
reflection coefficient circle (Section III); 

 The harmonics produced by the backscatter tags with 
discrete complex-valued reflection coefficients are 
investigated, and the results can guide harmonic 
suppression designs in the network. In addition, it is 
found that the methods described in [23] and [26] are 
special cases and non-optimal (Section III); 

 It is revealed that any specified higher order harmonics 
can be purposely removed by carefully designing the 
real-valued (continuous and discrete) reflection 
coefficients-based backscatter tags (Section IV); 

 The IQ backscatter modulator tag architecture is found 
useful in removing all mirror harmonic components 
(Section V); 

 The applicability of various harmonic suppression 
approaches is demonstrated by exemplar systems 
comprising multiple backscatter nodes. The simulation 
results provide the insights about the trade-off between 
network performance and backscatter tag hardware 
complexity (Section VI). 

 

II. HARMONICS IN CONVENTIONAL FREQUENCY SHIFTED 

BACKSCATTER SYSTEMS 

Amplitude shifted keying (ASK) modulation is adopted 
in the commercial UHF RFID systems, wherein a 
sophisticated reader is required to extract the weak 
backscatter signals out of the strong carrier waves that 
occupy a same frequency band. The strong in-band 
interference limits the performance of the ASK backscatter 
communication links. By shifting the backscatter signals 
away from the ambient signals in the frequency domain, the 
interference caused by ambient RF carriers is drastically 
reduced, thereby greatly improving the backscatter link 
budget [8], [9]. However, beyond backscattering the signal 
at the desired frequency band, this approach can easily lead 
to additional unwanted harmonics that ultimately 
compromises the use of spectrum. Thus, in this paper, we 
focus on cancelling or suppressing harmonics in frequency-
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shifted backscatter systems. Here, the term ‘frequency-
shifted’ does not mean ‘frequency modulation (FM) or 
frequency shifted keying (FSK) modulation’. It refers to the 
backscatter schemes whose operation bands are shifted 
away from the incoming RF carrier frequency, and the 
backscatter signal modulations can be diverse, e.g. FSK, 
Chirp Spread Spectrum (CSS) modulation in [23] and 
differential binary & quadrature phase-shift keying 
(DBPSK & DQPSK) modulations in [27] [28]. 

The basic operation of the backscatter frequency shifting 
is illustrated in Fig. 1, which is achieved by alternately 
toggling between two loads connected to the tag antenna 
with a frequency that matches the desired frequency shift, 
see fbs in Fig. 1. Based on this operation,  
 when more than one backscatter tones are synthesized, 

the FSK modulation can be obtained [29]; 
 when fbs is not constant, but increases or decreases 

linearly with time, the CSS modulation can be obtained 
[23]; 

 when the square switching function is shifted in time 
with the step of a half (or a quarter) of the period, the 
DBPSK (or DQPSK) modulation can be obtained [27] 
[28]. 

In order to maximize the power of the backscatter 
signals, ideally the two loads Z1 and Z2 in Fig. 1 should be 
oppositely located on the outmost reflection coefficient 
circle in the Smith Chart, making open and short 
termination an obvious choice. 

 

 
Fig. 1.  Illustration of the basic operation of backscatter frequency shifting. 

 
In order to facilitate the discussion later in this paper, the 

frequency shifted backscattering process is now 
mathematically elaborated. 

It is assumed that the incoming electromagnetic wave is a 
one-tone signal Sin with a frequency of f0, see (1). 

 
Sin = cos(2πf0t)                                (1) 

 
Here the magnitude is normalized to unity, and the initial 
phase is set to be 0. When the switch, seen in Fig. 1, is 
toggling between open and short at a constant frequency of 
fbs, the resulting reflection coefficient Γbs at the interface 
between the tag antenna and the loads can be represented as 
a square wave shown in Fig. 2. 

 

t0

Γbs

+1

‒1

Tbs

...

 
Fig. 2.  The reflection coefficient Γbs in time when the switch is toggling 
between open and short at a frequency of fbs = 1/Tbs. 

 
The reflection coefficient Γbs in Fig. 2 can be Fourier 

expanded into a series of sine terms in (2), 
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from which, the backscatter signal Sbs can be obtained,  
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Since cos(x)∙sin(y) = 0.5×[sin(x+y)‒sin(x‒y)], the 

backscatter signal Sbs in (3) contains undesired first order 
mirror harmonic, e.g. at the frequency of f0 ‒ fbs (assuming 
f0 + fbs is the desired frequency component), and higher 
order harmonics at the frequencies of f0 ± nfbs (n = 3, 5, …). 
It is also observed in (3) that the frequency conversion loss, 
namely the power loss when translating the incoming signal 
at f0 to the desired backscatter signal at f0 + fbs, is 
‒20×log10(4/π×0.5) = 3.9 dB. The unwanted mirror 
harmonic contains equivalent power levels while higher 
order harmonics are ‒20×log10(1/n) dB lower when 
compared with the first harmonic, saying 9.5 dB and 14 dB 
lower for the 3rd and the 5th harmonics. 
 

III. HARMONIC SUPPRESSION WITH LOAD IMPEDANCES OF 

COMPLEX-VALUES 

Let us start from an ideal case of a backscatter tag that is 
able to synthesize reflection coefficient values, Γbs1, that on 
the Smith Chart can write a complete circle of magnitude 1. 
When the tag antenna load impedance is varied 
counterclockwise along this circle at a constant phase speed 
ω1, the backscatter signal Sbs1 becomes  

 
Sbs1 = cos(2πf0t+ω1t) = cos[2π(f0+f1)t],              (4) 

 
where f1 = ω1/(2π), and the incoming signal Sin in (1) is 
assumed. 

This process can be mathematically expressed as  
 

 02
1 1Re j f t

bs bsS e    ,                        (5)                    
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where  
 

12
1

j f t
bs e   .                              (6) 

 
From (4) it can be seen that in this ideal scenario, no 

harmonics are generated. It is also noted that when the 
reflection coefficient rotates clockwise at the phase speed 
ω1, a pure backscatter tone at f0 ‒ f1 can be obtained instead. 
However, constructing a backscatter tag that can synthesize 
a continuous reflection coefficient circle as in (6) can be 
problematic. Possible practical architectures can be a 
Single-Pole N-Throw switch connecting to N variable 
reactance loads (e.g. varactors or transistors), each covering 
a subsection of the required reflection coefficient circle, or 
the IQ backscatter module that can span a square area of the 
achievable impedance in Smith Chart [30]. These solutions 
are far from ideal as the loss associated with the active 
components would significantly shrink the magnitude of the 
reflection circle, which in turn compromise the link budget. 
Thus, in the remaining part of this section we investigate 
the effect when the Γbs1 in (6) is discretized into M equal-
spaced (in Smith Chart) complex impedance, see Γbs2 in (7) 
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where k = (0, 1, …) and M ≥ 2. 

Using complex Fourier series expansion, Γbs2(t) can be 
express as  
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  ,                             (8) 

 
where the coefficient Xp (p = ‒∞, …, +∞) of the pth term of 
the Fourier expansion of the quantized reflection coefficient 
Γbs2 in (7) can be calculated as in (9).  
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Substituting Γbs2 in (7) into (9), after derivation we get 
 

X0 = 0,                                        (10) 
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The magnitude of the pth term in (8), namely the 

magnitude of the backscattered signal at f0 + pf1, is 

 
Ap = f1|Xp|,                                    (12) 

 
which, in dB, is listed in Table I. Here operator ‘|∙|’ returns 
the absolute value of the enclosed term. It can be seen that 
the power of the desired first upper band harmonic 
converges to 0 dB when increasing M to infinity. This is the 
ideal case described by (5). For the other extreme case, 
when M is chosen to be 2, there are only two discrete load 
impedances (open and short), and it becomes the 
conventional case illustrated in Fig. 2 and described in (2) 
and (3). As expected, for M = 2, the 3rd (and the 5th) 
harmonic is 9.5 dB (and 14 dB) lower than the first upper 
band harmonic, consistent with the analysis performed in 
Section II. This table can be utilized to guide the system 
designs, such as the selection of parameters f1 and M in 
order to suppress harmonics that cause detrimental 
inference to other users within the network. 
 

TABLE I 
NORMALIZED POWER (AP IN DB) OF BACKSCATTER HARMONICS (UP TO ± 

6) FOR DIFFERENT NUMBERS OF DISCRETE IMPEDANCES 

p 
M 

2 3 4 5 6 7 8 9 
‒6 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒15.9 ‒∞ ‒∞ 
‒5 ‒17.9 ‒15.6 ‒∞ ‒∞ ‒14.4 ‒∞ ‒∞ ‒∞ 
‒4 ‒∞ ‒∞ ‒∞ ‒12.6 ‒∞ ‒∞ ‒∞ ‒∞ 
‒3 ‒13.4 ‒∞ ‒10.5 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
‒2 ‒∞ ‒7.7 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
‒1 ‒3.9 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
1 ‒3.9 ‒1.65 ‒0.91 ‒0.58 ‒0.40 ‒0.29 ‒0.22 ‒0.18 
2 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
3 ‒13.4 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
4 ‒∞ ‒13.7 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
5 ‒17.9 ‒∞ ‒14.9 ‒∞ ‒∞ ‒∞ ‒∞ ‒∞ 
6 ‒∞ ‒∞ ‒∞ ‒16.1 ‒∞ ‒∞ ‒∞ ‒∞ 

 

In fact, the works in [26] and [23] focused on backscatter 
signal modulations, with a light touch on harmonic 
suppression. They found out that when the tag reflection 
coefficients are designed with 4-discrete [26] (and 8-
discrete [23]) complex impedances the 1st mirror (and the 
3rd and 5th) harmonics can be cancelled out. Clearly, these 
findings are the special cases shown in Table I, see the 
columns of M = 4 and 8. With the generic and systematic 
analysis provided in this section, it is realized that the 
backscatter signal waveforms with M = 3 and 7 should 
achieve similar harmonic suppression performance. These 
cannot be derived with the methods presented in [26] and 
[23]. 

 

IV. HIGHER-ORDER HARMONIC SUPPRESSION WITH LOAD 

IMPEDANCES OF REAL-VALUES 

In the last section, we discussed the ideal frequency 
shifted backscatter system which generates no undesired 
harmonics. It is achieved with a continuous change of the 
tag antenna load impedance so that the reflection coefficient 
is moving along a circle centered at the perfectly matched 
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condition (i.e. center of the Smith Chart). This ideal 
scenario was further approximated by using only a limited 
number of discrete impedances of which most are complex, 
revealing a trade-off between harmonic suppression and the 
tag complexity. In this section we aim to further reduce the 
tag complexity by utilizing only real-valued reflection 
coefficients, which can be readily obtained using a single 
active component, such as a transistor [24]. The approaches 
of suppressing or cancelling higher order harmonics are 
now elaborated as below, leaving the treatment on mirror 
harmonics in Section V. 

A. Continuous Real-valued Impedance 

When the impedances of the tag loads can be 
continuously varied along the real axis on Smith Chart, a 
sine-shaped reflection coefficient in time can be 
synthesized as 
 

Γbs3 = sin(2πf1t).                              (13) 
 
As a result, the backscatter signal Sbs3 can be calculated as 
 
             Sbs3 = Γbs3∙Sin = sin(2πf1t)∙cos(2πf0t) 

= 0.5×{sin[2π(f0+f1)t]‒sin[2π(f0‒f1)t]},         (14) 
 

of which no higher order (larger than one) harmonics exist.  

B. Discrete Real-valued Impedance 

When the impedances of the tag loads can only be 
selected from a limited number of discrete real values, only 
a subsets of higher order harmonics can be suppressed or 
cancelled out. 

Recalling the backscatter signal in (3) generated by the 
two-state real-valued square reflection coefficient, the 
higher order harmonic components are extracted and 
expressed in (15). 
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(15) 

 
Here, B, the magnitude of the square reflection coefficient 
seen in Fig. 3, is added to facilitate the later discussion in 
this paper. 

When it is preferred in a network to eliminate the third (n 
= 3) harmonics, we can synthesize another square-shaped 
reflection coefficient Γbs4 with a frequency of fbs4 = 3fbs, see 
the dashed curve in Fig. 3. The first harmonics associated 
with this newly generated Γbs4 can be derived as 
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          ,  (16) 

 
where C is the magnitude of Γbs4. 
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+C
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Fig. 3.  Discrete real-valued reflection coefficients for third harmonic 
cancellation. 

 
Comparing (16) and the third harmonics (n = 3) in (15), 

it can be seen that when C = B/3, the first harmonics 
associated with the Γbs4 and the third harmonics associated 
with Γbs are identical. This indicates that the combined 
reflection coefficient (Γbs ‒ Γbs4) generates no unwanted 
frequency components at f0 ± 3fbs. The resulting four-state 
discrete reflection coefficient (Γbs ‒ Γbs4) is plotted also in 
Fig. 3 (the dotted line). In a two-state square waveform 
case, see Fig. 2, the maximum magnitude of the reflection 
coefficient is 1, which results in the first harmonics of ‒3.9 
dB. While in the four-state case in Fig. 3, B + C = 4B/3 has 
to be less than 1, so that B ≤ 0.75. This gives an additional 
2.5 dB reduction to the first harmonics. Using the same 
approach, we can further cancel out other higher order 
harmonics, which would ultimately converge to the 
continuous real-valued case discussed in Subsection A 
earlier that has the first harmonics of ‒6 dB. In practice, 
according to the system and network requirements, we can 
selectively eliminate (or suppress down below a defined 
threshold) the harmonics that present in the allocated 
frequency bands for other users.  

 

V. MIRROR HARMONIC SUPPRESSION WITH ORTHOGONAL 

LOADS 

In Table I, it can be observed that when M > 2 there is no 
first order mirror (p = ‒1) harmonic, but the harmonics of 
the orders (1 ‒ M) and (1 + M) are present. In this section, 
we explore a different approach and hardware architecture 
to remove all mirror harmonics. 

From the trigonometric identities shown in (17) and (18), 
it is realized that if a 90° shifted copy of the incoming 
signal Sin in (1) and 90° shifted copies of all terms in (2) can 
be created, namely cos(2πf0t+π/2) and sin(2nπfbst+π/2), all 
the mirror harmonics, i.e. at (f0 ‒ nfbs), can be cancelled out. 
 

cos(x)∙sin(y) = 0.5×[sin(x+y)‒sin(x‒y)]             (17) 
 

sin(x)∙cos(y) = 0.5×[sin(x+y)+sin(x‒y)]             (18) 
 
The 90° shifted Sin can be readily obtained by adding a 

quarter wavelength. Whereas in order to generate 90° phase 
shifted copies of all the terms in (2), we move the square 
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waveform Γbs in Fig. 2 leftwards by Tbs/4, i.e. replacing t by 
t + Tbs/4 in (2). All these operations can be performed using 
the IQ backscatter modulator described in [14] [18], which 
is shown in Fig. 4. Here, the incoming signal Sin is first 
equally power split before being phase delayed by 45° in 
the top branch. As the signal will experience this phase 
delay twice, the total phase shift of the 0.707×Sin in the top 
branch becomes the required 90°. To facilitate readers’ 
understanding, the signal flows are labelled in Fig. 4. The 
backscattered signal Sbs5 can be expressed as  

 
Sbs5 = 0.5ΓQ∙cos(2πf0t) ‒ 0.5ΓI∙sin(2πf0t),       (19) 

 
where ΓI and ΓQ are the reflection coefficients of the two 
transistors, controlled by the gate voltage VI and VQ in Fig. 
4. As discussed earlier, ΓI is designed to be a quarter time 
period shifted when compared with ΓQ. They can be Fourier 
expanded and are written in (20) and (21). 
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Substituting (20) and (21) into (19), we get 
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 .        (22)      

 
It can be seen from (22) that all the lower-band mirror 
harmonics are removed. 

Similar to the analysis in Section IV, the nth (n ≥ 3) 
higher order upper-band harmonic can be further eliminated 
by creating another pair of ΓI and ΓQ that are square 
waveforms with a frequency of nfbs. For example, the first 
Fourier expansion terms of the ΓI1 and ΓQ1 in Fig. 5 are 
identical to the third Fourier expansion terms of the ΓI and 
ΓQ, wherein C = B/3. As a consequence, in the IQ 
backscatter modulator, when the 4-state discrete reflection 
coefficients (ΓI ‒ ΓI1) and (ΓQ ‒ ΓQ1), seen in Fig. 5, are 
synthesized by the two transistors in the two branches, the 
harmonic at f0 + 3fbs is removed. Again, since the 
magnitude of the reflection coefficient is upper bounded by 
1, a 2.5 dB loss is introduced to the desired frequency 
component at f0 + fbs. 
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Fig. 5.  Reflection coefficients at I and Q paths required to remove lower-band harmonics and the third upper-band harmonic. 
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VI. EXEMPLAR SYSTEMS 

Various harmonic suppression approaches in the 
frequency shifted backscatter links are presented in 
Sections III, IV and V. It is worth noting that the authors do 
not intend to compare these methods, as different frequency 
allocations of backscatter users and tag hardware 
constraints require a bespoke combination of harmonic 
suppression solutions in the network. This aspect is now 
presented using a series of examples. 

Prerequisites: An example backscatter network 
comprises up to 4 backscatter nodes, all of which 
performing 2FSK modulation. Here it is assumed that the 
frequency shifts (relative to the incoming RF carrier 
frequency at f0) of the two tones in the 2FSK signals for 
each user are f1_user{1,2,3,4} = {1,‒1,3,5} kHz and f2_user{1,2,3,4} 
= {2,‒2,4,6} kHz. The 2FSK symbol periods for all users 
are chosen as 2 ms, which guarantees the orthogonality of 
the two sinc-function shaped tones in the frequency domain 
[31]. Both Time Division Multiple Access (TDMA) and 
Frequency Division Multiple Access (FDMA) schemes, as 
well as their combinations, can be adopted to coordinate 
multiple user links. The harmonic suppression methods 
proposed in the previous sections are useful when multiple 
users are required to be accommodated in a shared time 
slot. The 4 subsections below are now investigating the 
scenarios where different numbers of users are operating 
simultaneously in this example backscatter network. 

A. Single-user 2FSK Modulated Backscatter Link 

In this subsection, the performance of a single-user (i.e. 
User1) 2FSK modulated backscatter link is presented via 
simulated bit error rates (BERs). This is acted as the 
benchmark for the multi-user backscatter networks that will 
be discussed in the following subsections.  
 

 
Fig. 6.  Simulated BER results of the single-user 2FSK modulated 
backscatter links. The cases of ideal continuous reflection coefficient circle 
in (2), and the discrete complex reflection coefficients with M = 2, 3, 4 
(see (7) and Table I) are assumed, respectively. (When M = 2, it is the case 
of the square reflection coefficient waveform plotted in Fig. 2.) 

 
From the BER simulation results in Fig. 6, it can be seen 

that as expected the case of the ideal continuous reflection 
coefficient circle described in (2) gives the 2FSK 

modulated backscatter link the same performance as the 
theoretical 2FSK link because no backscatter energy is 
wasted via harmonics. While in practice, the performance is 
commonly traded off with the significant reduction of the 
tag circuitry complexity, i.e. using a limited number of 
discrete load impedances instead of the continuous varied 
impedances. These simplified tags require extra signal to 
noise ratio (SNR) of values shown in both Table I and Fig. 
6 to achieve the same BER performance in the ideal 2FSK 
link. Here, the SNR is defined as the ratio of received signal 
power, including desired and all undesired harmonics, and 
the system/channel noise power. 

B. Two 2FSK Modulated Backscatter Users 

When the User1 and User2, who occupy mirror 
symmetric frequency bands relative to f0, are required to 
operate simultaneously, the 1st and 2nd mirror harmonics of 
both users cannot present. It is noted that the 2nd mirror 
harmonic of f1_user{1,2} falls into the band of f2_user{2,1} in this 
example. As evidenced in Fig. 7, without the treatment of 
harmonics when both User1 and User2 adopt square 
waveform reflection coefficients, neither of the user links 
work. From Table I, it can bee seen that when M ≥ 4, no 1st 
and 2nd mirror harmonics exist. In addition, as discussed in 
Section V the IQ backscatter modulator is able to suppress 
all mirror harmonics. Hence, both these two approaches are 
capable of eliminating inter-user (User1 and User2) 
interference, the BER performance of which is plotted also 
in Fig. 7. It is noted that the IQ backscatter modulator-
enabled mirror harmonic suppression tag achieves the same 
performance as that in the conventional square waveform-
based backscatter tag. 
 

 
Fig. 7.  Simulated BER results of the backscatter network comprising two, 
i.e. User1 and User2, 2FSK modulated links operating simultaneously.  
 

When the User1 and User3, who occupy consecutive 
frequency bands on the same side relative to f0, are required 
to operate simultaneously, the 3rd and 4th harmonics (and 
the 2nd harmonic) of f1_user1 (and f2_user1) fall into the 
frequency band of User3. As a consequence, all the 2nd, 3rd 
and 4th harmonics for User1 should be avoided. On the 
other hand, no harmonics of User3 will affect the operation 
of User1. 

As can be seen in Fig. 8, when both users perform square 



8 
 

 

waveform based 2FSK backscatter modulation, i.e. the 
Case1, User1’s performance is unaffected, whereas the 
User3’s performance is slightly degraded due to the 3rd 
harmonic interference of (‒13.4+3.9) = ‒9.5 dB caused by 
f1_user1, seen in Table I. Other approaches, like the discrete 
(M = 4) complex Γbs (Case2), the continuous real-valued Γbs 
(Case3), and discrete (with the 3rd harmonics removed) real-
valued Γbs (Case4), are able to avoid inter-user interference. 
However, only the Case2 has better performance compared 
with that in the Case1.  

 

 
Fig. 8.  Simulated BER results of the backscatter network comprising two, 
i.e. User1 and User3, 2FSK modulated links operating simultaneously. 
 

C. Three 2FSK Modulated Backscatter Users 

When the User1, User2 and User3 operate in a same time 
slot, the User1 and User2 will severely interfere each other 
and they will degrade the performance of the User3 if no 
harmonic control is applied, see Case1 (conventional square 
waveform based Γbs for all users) in Fig. 9. Since the 
frequency band of the User1 locates on the same side 
(relative to f0) with that of the User3, while the frequency 
band of the User2 is on the opposite side, different 
harmonic suppression strategies are required. For Case2 in 
Fig. 9, it can be observed that when the User1 is designed 
based on the discrete (M = 4) complex Γbs, and the mirror 
  

 
Fig. 9.  Simulated BER results of the backscatter network comprising 
three, i.e. User1, User2 and User3, 2FSK modulated links operating 
simultaneously. 

 

harmonics are removed for the User2, no inter-user 
interference exist. There is no constraint on the User3. In 
the Case2 example, it is assumed that the User3 adopts the 
conventional square waveform based 2FSK design. 

D. More 2FSK Modulated Backscatter Users 

Some typical harmonic suppression strategies and their 
applicability are illustrated in the previous subsections. 
When more users are configured to backscatter 
simultaneously, the similar harmonic planning approaches 
can be exploited, subject to the constraints on the tag 
circuitry architecture and power budgets. It is noted that 
higher order harmonics tends to have limited interference 
effects as the power is generally low. In Fig. 10, the BER 
simulations of a 4-user example for two configuration 
scenarios are presented. There can be plenty of 
combinations with the trade-off adjusted among BER 
performance for each individual users and their tag 
complexity. 
 

 
Fig. 10.  Simulated BER results of the backscatter network comprising 
four, i.e. User1, User2, User3, and User4, 2FSK modulated links operating 
simultaneously. 

 

VII. CONCLUSION 

It is the first time that the harmonics in the frequency 
shifted backscatter communications have been 
systematically investigated. This study has revealed several 
tradeoffs between the system complexity, i.e. the 
requirements on tag antenna reflection coefficients, and the 
harmonic suppression performance. Importantly, this paper 
proposed approaches to independently manipulate mirror 
harmonics and higher order harmonics. The effectiveness of 
the various methods has been demonstrated using an 
example multi-user backscatter network. This paper can 
serve as a guideline for network engineers to optimize the 
spectrum usage and efficiency in large-scale backscatter 
networks. The laboratory and field measurement campaign 
will be conducted to validate the various proposed 
approaches in this paper. 
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