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We analyse large deviations of time-averaged quantities in stochastic processes with long-range
memory, where the dynamics at time t depends itself on the value qt of the time-averaged quantity.
First we consider the elephant random walk and a Gaussian variant of this model, identifying two
mechanisms for unusual fluctuation behaviour, which differ from the Markovian case. In particular,
the memory can lead to large-deviation principles with reduced speeds, and to non-analytic rate
functions. We then explain how the mechanisms operating in these two models are generic for
memory-dependent dynamics and show other examples including a non-Markovian simple exclusion
process.

I. INTRODUCTION

Memory effects and long-range temporal correlations
are important in many physical systems [1–5], and in
other scientific fields ranging from biology to telecom-
munications to finance [6, 7]. It is particularly no-
table that long-ranged memory can change fluctua-
tion behaviour qualitatively, compared to Markovian
(memory-less) cases. Demonstrations of this include
non-Markovian random walks [8–13], models of cluster
growth [14–16], and agent-based models where decisions
depend on past experience [17]. The distinction between
Markovian and non-Markovian systems is also important
when formulating general theories. For example, a large
deviation theory of dynamical fluctuations is now estab-
lished for Markovian systems [18–23], but memory can
lead to new effects which cannot be captured by the stan-
dard theory [16, 24–27]. In particular, one finds [24, 25]
a breakdown of the standard large-deviation principles
(LDPs) that hold quite generically in finite Markovian
systems [22].

In this work, we consider non-Markovian systems
where the dynamics depend explicitly on a time-averaged
current, whose value at time t is denoted by qt. This is
a simple type of memory that occurs in a wide range of
physical models [8, 12, 16, 17, 24, 25]. Using methods
of large-deviation theory [18–22, 28], we show how this
long-range memory can lead to anomalous fluctuations
of qt. We explain that much of this behaviour can be
understood by considering two generic fluctuation mech-
anisms, where memory plays an intrinsic role. These gen-
eral mechanisms are useful for classifying previous results
for non-Markovian systems, and for identifying new phe-
nomena.

We illustrate these mechanisms by analysing cur-
rent fluctuations in the elephant random walk (ERW)
of [8, 10, 29, 30], and a related process which we call the
Gaussian elephant random walk (GERW). A key differ-

ence from Markovian systems is that large (rare) fluctu-
ations in these models are associated with currents that
are strongly time-dependent [16, 24, 25, 28] – a large
current at early times biases the subsequent evolution
and can trigger anomalous fluctuations that persist for
large times. The two specific mechanisms that we discuss
are: (i) a very large initial current flow in a finite time
interval, which results in anomalously large deviations
(specifically, an LDP for qt with a speed that is less than
t [24, 25]); and (ii) a large initial current that occurs over
a sustained time interval, which leads to a breakdown of
the central limit theorem (CLT) for qt [8] and an LDP
which generically has a non-analytic rate function [16].
The GERW illustrates mechanism (i), which we refer to
as an initial giant leap (IGL); the ERW illustrates mech-
anism (ii) which we call a long initial excursion (LIE).
We also describe several other examples of systems in
which these mechanisms occur.

The structure of the paper is as follows. Sec. II intro-
duces the models that we analyse, and some relevant the-
ory. In Sec. III we describe the large-deviation behaviour
of the ERW and GERW models. Sec. IV gives a general
theory for the IGL and LIE mechanisms and Sec. V de-
scribes how this theory plays out in several other models,
to illustrate its applicability. Sec. VI gives a summary of
the main conclusions and open questions. Additional de-
tails of calculations are given in Appendices.

II. MODELS AND METHODS

A. Definitions of ERW and GERW

The ERW is a random walk model, in discrete time [8,
9]. The position of the elephant after step t is xt. In
the variant of the model that we consider here, xt takes
values in a finite domain {0, 1, . . . , L− 1}, with periodic
boundaries. (The choice of periodic boundaries does not
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change the physical behaviour but it is useful when com-
paring the large-deviation behaviour with that of Marko-
vian systems, see Sec. II B. In the following we do not
distinguish our periodic variant from the original ERW,
except in the rare cases where this is necessary.) We take
x0 = 0 and denote the displacement of the elephant on
step t by ∆xt. Hence the time-averaged current is

qt =
1

t

t∑
τ=1

∆xτ (1)

with q0 = 0. The dynamical rule is that

∆xt = ±1 with probability
1± aqt−1

2
, (2)

where a ∈ (−1, 1) is a parameter that corresponds to
2p− 1 in [8].

The GERW is similar to the ERW, except that the
position xt is a real number in [0, L), still with peri-
odic boundaries. The dynamical rule is that ∆xt is a
Gaussian-distributed real number with mean aqt−1 and
variance unity. Hence the mean value of ∆xt (conditional
on qt−1) is the same as for the ERW. At first glance,
one might also expect fluctuations in the two models to
behave similarly but in fact their memory-induced large-
deviation behaviour is very different. Note that although
the GERW is rather simple to analyse, it is useful to
study in detail as a contrast to the ERW and to illus-
trate the strong effects of memory.

B. Large deviations for Markovian and
non-Markovian dynamics

For the ERW and GERW, we consider the probabil-
ity density for qt at large times, which we denote by
pt(q). We will be particularly concerned with the tails
of this probability distribution and the associated fluctu-
ation mechanisms, which are characterised by large devi-
ation theory [18–22]. This theory describes rare fluctu-
ations, outside the range of CLTs and their generalisa-
tions [10]. In recent years, it has been applied to time-
averaged quantities in many physical systems, yielding
important new insights [20, 31–34].

For finite Markov chains, there is a well-established
large deviation theory due originally to Donsker and
Varadhan (DV) [35–38], see for example [23, 39] for recent
summaries. Within this theory, time-averaged quantities
such as qt obey LDPs of the form

pt(q) ' exp[−tI(q)], (3)

where t is called the speed of the LDP, and I the rate
function. More generally, one may also consider LDPs of
the form

pt(q) ' exp
[
−tθI(q)

]
. (4)

with θ 6= 1. In some of the non-Markovian models con-
sidered here we find 0 < θ < 1 so the speed tθ is re-
duced, compared to the Markovian case. Physically, this
means that the memory makes large fluctuations less
rare [24, 25]. See [40–42] for some other examples where
LDPs with reduced speed are associated with enhanced
fluctuations.

For large deviations, an important quantity is the cu-
mulant generating function for qt:

G(λ, t) = log〈eλtqt〉 . (5)

To analyse the limit of large t, we consider the scaled cu-
mulant generating function (SCGF) which can be defined
generally for LDPs with speed tθ:

ψθ(λ) = lim
t→∞

1

tθ
log〈eλtθqt〉 . (6)

For the usual case θ = 1 we omit the subscript and write
simply ψ(λ). If the limit (6) exists and certain other tech-
nical conditions are met then the Gartner-Ellis theorem
states that the LDP (4) holds with

I(q) = sup
λ

[λq − ψθ(λ)] . (7)

The classical (DV) theory deals with LDPs of speed
t. Under suitable assumptions, the rate function can be
shown to be analytic and strictly convex. For processes
on discrete state spaces, it is sufficient that (i) the model
is Markovian; (ii) transition rates (or transition probabil-
ities) are independent of time; (iii) the model is finite and
irreducible (and, for discrete-time systems, aperiodic);
(iv) the contribution of each transition to the sum in (1)
is fully determined by its initial and final state. For the
ERW, condition (i) is violated, but the other conditions
still hold. [The ERW was defined on a finite (periodic)
domain so that assumption (iii) is valid.] This enables a
clear comparison with the classical theory. The striking
result of this comparison is that the memory effect in the
ERW leads to a rate function that is (generically) singu-
lar at q = 0, as we show below. Such behaviour is strictly
forbidden in the classical case and is directly attributable
to the memory effect, via the breaking of assumption (i).

By contrast, the GERW does not allow such a clear
comparison with the classical case. The model is de-
fined on a compact domain, and assumption (iii) can be
generalised to account for this, while still ensuring an
analytic rate function. However, the GERW allows for
jumps with |∆xt| > L, in which case the contribution to
(1) is not fully-determined by the initial and final states
(due to the periodic boundaries). In principle, assump-
tion (iv) might be generalised to account for this effect,
but the memory effect means that the typical jump size
can diverge as qt → ∞, which would not be allowed in
the classical case. In this sense, the GERW violates the
classical assumptions more strongly than the ERW. We
show below that this strong violation can lead to an LDP
with reduced speed, θ < 1.
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In fact, the large-deviation behaviour that we will ob-
serve also has implications for a particular class of Marko-
vian models. To see this, note that both the ERW and
GERW can be formulated as Markovian models for ei-
ther the current qt or (equivalently) the displacement
Qt = tqt. The case of the displacement is more natu-
ral: in this case the dynamical rule of the ERW is that
Qt+1 = Qt ± 1 with probabilities (1 ± aQt/t)/2. In this
formulation, one sees that the transition probabilities de-
pend explicitly on time. The GERW may be formulated
in a similar way. Representing the models in this way,
the Markovian assumption (i) above is now obeyed, but
assumption (ii) is violated. It follows that the behaviour
presented here can be viewed as either an extension of the
classical theory to a particular class of non-Markovian
models, or an extension to a class of Markovian models
with explicit time-dependence in the rates.

In terms of methods, it is notable that the SCGF ψ(λ)
in the classical theory can be characterised as the largest
eigenvalue of a matrix, the tilted generator [22]. Hence
the rate function is available, via (7). Such a determi-
nation of ψ(λ) is not possible for the models considered
here, and other methods must be used, for example the
theory of Dupuis-Ellis [43] as in [28], or arguments based
on separation of time scales [24, 25].

We close this section by noting that since the (G)ERW
models are defined on finite periodic domains, they can-
not be formulated as Markovian processes for xt, even
with time-dependent rates. The transition rates (or tran-
sition probabilities) would need to depend on the winding
number around the periodic boundaries.

C. General models

Although we use the ERW and GERW as motivating
examples, we stress that the mechanisms they illuminate
have much wider applicability. To this end, we intro-
duce here a general notation for describing a broad class
of models with similar memory-induced phemenonlogy.
Several examples are given in Sec. V.

We consider models in which the time t may be con-
tinuous or discrete. Let Ct denote the configuration of
the (general) model at time t, this corresponds to xt in
the (G)ERW. This Ct may come from a finite set as in
the periodic ERW, or it may indicate a vector in some
compact domain such as [0, L]d. The periodic GERW is
in this latter class with d = 1.

All models considered are jump processes. We define
a time-averaged quantity that generalises (1):

qt =
1

t

∑
jumps j

αj (8)

where the sum is over all jumps up to time t and αj de-
pends on the properties of jump j. (In the ERW there is
one jump on each time step and αj = ±1 coincides with
∆xt.) In discrete time the model is specified by the con-
ditional distribution of Ct+1 given (Ct, qt), supplemented

by a rule specifying the contribution αj for each jump. In
continuous time the model is specified by a set of jump
rates [dependent on (Ct, qt)], and a rule specifying the
αj . We assume that the dynamical rules do not depend
explicitly on time, but only on (Ct, qt).

All the results that we present can be straightforwardly
generalised to the case where qt is a time-average of a

state-dependent quantity (for example 1
t

∫ t
0
b(Cτ )dτ as

in [23]) but we restrict here to the form (8). The models
that we consider have scalar qt but the analysis is eas-
ily extended to vectorial qt. For continuous-time models
then some regularisation may be required for (8) at short
times, see for example Sec. V A.

Consistent with Sec. II B we observe that these general
models can be formulated as Markov processes (Ct, qt)
but they are not Markovian for Ct. Independent of this
mathematical distinction, the physical role of q is to cap-
ture the role of memory: its definition depends on the
full history of the process.

III. FLUCTUATIONS IN THE GERW AND ERW

In this section we describe the large-deviation be-
haviour of (G)ERW models. For the ERW we draw on
results of [8, 10, 28] and we characterise the relevant fluc-
tuation mechanisms. For the GERW then pt(q) can be
computed quite straightforwardly and leads to an LDP
with reduced speed, we describe the relevant fluctuation
mechanisms in this case too.

A. Preliminary results

We summarise here some preliminary results for the
ERW and GERW with further detail given in Appen-
dices A and B. For 0 < a < 1/2 the memory is relatively
weak in these models and at large times they both obey
a CLT, where the variance behaves asymptotically as

〈q2t 〉 '
1

t(1− 2a)
. (9)

Our work focusses on a > 1/2 where the memory effect is
strong, and both ERW and GERW exhibit superdiffusive
behaviour:

〈q2t 〉 '
χ

t2(1−a)
(10)

where χ is an a-dependent constant which we denote by
χE and χG for the two models. For the ERW we have
χE = 1/[(2a− 1)Γ(2a)] from [8].

For the GERW the total displacement is a sum of
Gaussian-distributed increments so pt(q) is Gaussian at
all times (although the increments are neither indepen-
dent nor identically distributed). As shown in Appendix
A, for large times one has

pt(q) ∝ exp

[
−q

2t2(1−a)

2χG

]
, (11)
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where χG can be obtained from the limit of a series so-
lution. (The proportionality sign is used because a t-
dependent normalisation constant has been omitted. We
use this notation in cases where the normalisation is clear
from the context.) For large times, the corresponding
CGF is

G(λ, t) ' λ2t2aχG

2
. (12)

We now turn to the ERW. Since the second deriva-
tive of the CGF gives the variance of tqt (and using that
the distribution is symmetric) one obtains from (10) an
expansion in powers of λ (at fixed t� 1):

G(λ, t) ' λ2t2aχE

2
+O(λ4) , (13)

which is similar to (12). However, there is no CLT for
qt [44, 45] which has consequences for the correction
terms in (13) and their scaling with t.

Baur and Bertoin [10] considered typical fluctuations of
q at large times (that is, fluctuations with probabilities
of order unity). Their theorem 3 states that pt(q) is a
scaling function of qt1−a, as in the GERW. Hence, G is
described by a scaling form at large t

G(λ, t) ' g(λta) , (14)

which holds as t→∞, with the argument of g held fixed.
In a recent mathematical study, Franchini [28] consid-
ered large deviations in Pólya urn models, which can be
mapped onto the ERW [10]. Corollary 12 of [28] estab-
lishes that pt(q) follows an LDP, and that (14) extends
into the large-deviation regime: taking t→∞ with fixed
λ� 1, one has

g(λta) ' cEt|λ|1/a (15)

for some constant cE (dependent on a). This result is
discussed in Appendix B and a formula for cE is given
in (B10). Hence for q � 1 and t → ∞ one has the
large-deviation result

pt(q) ∝ exp
(
−κEt|q|1/(1−a)

)
. (16)

with κE = (1 − a)(a/cE)a/(1−a). For larger q there are
deviations from the scaling form; the full SCGF is given
in (B4), as derived in [28]. Equ. (16) is an LDP with
speed t and rate function I(q) ' κE|q|1/(1−a). As ad-
vertised above, the long-ranged memory has resulted in
a rate function that is non-analytic (at q = 0), except
in exceptional cases where 1/(1 − a) happens to be an
even integer. From a physical perspective, note that if
qt obeyed a CLT then its asymptotic variance would be
1/I ′′(0): here we have I ′′(0) = 0, which shows that the
scaling is superdiffusive, consistent with (10).

We emphasise that the distributions (11,16) are
sharply peaked as t → ∞. In this sense, both systems
are ergodic [11].
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FIG. 1. Numerical data for ERW and GERW with a = 0.7.
(a) CGF for ERW and GERW, plotted as a scaling function of
λta. The dotted line is the analytical (large-t) GERW result
(12) with χG obtained from Appendix A . The dashed line cor-
responds to (15) and agrees well with the data, given that it
is an asymptotic prediction that assumes that both t and λta

are large. There are no fitting parameters. (b) Distribution of
q for the ERW, which collapses to a scaling function of qt1−a,
as predicted by [10]. (The collapse is not quite perfect, which
we attribute to finite-t corrections to scaling.) The solid line
is the analytical (large-t) Gaussian distribution of the GERW,
for comparison; the dashed line is the prediction (16) for the
tail of the distribution; the constant κE is derived using re-
sults from Appendix B while the proportionality constant is
determined by fitting to the data.

Fig. 1 shows numerical data, which illustrates these
preliminary results. For small values of λta the CGF
for the ERW is proportional to |λta|2 and matches the
large-t GERW result. For larger λta, the CGF for the
ERW matches the large-deviation form (15) without any
fitting [the value of cE is given in (B10)]. For both ERW
and GERW, the distribution pt(q) is a scaling function of
qt1−a. The ERW result (16) is shown in Fig. 1(b) with
a dashed line: the value for κE is derived from cE but
the proportionality constant in (16) is used as a fitting
parameter.

We close this section with a result for conditional av-
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erages. The models have fixed initial conditions and av-
erages over the dynamics are denoted by 〈·〉. Define also
〈·〉qτ as an average that is conditioned on the value of qτ .
For both GERW and ERW, averaging over the possibili-
ties in a single step gives

(τ + 1)〈qτ+1〉qτ = (τ + a)qτ . (17)

It follows [8] that for t > τ ,

〈qt〉qτ = qτ
Γ(t+ a)Γ(τ + 1)

Γ(t+ 1)Γ(τ + a)
. (18)

Hence for large t :

〈qt〉qτ = η
qτ
t1−a

. (19)

with η = Γ(τ + 1)/Γ(τ + a). That is, if the elephant is
conditioned to have a non-typical value of qτ , its sub-
sequent evolution involves regression to the mean (zero)
as a power law with exponent 1 − a. This result will be
used in the following to rationalise the large-deviation be-
haviour of these models. As a point of comparison, time-
averaged quantities in finite Markovian systems generi-
cally have power-law relaxation with exponent 1.

B. IGL mechanism for large deviations in the
GERW

We now analyse large deviations for the GERW, in
detail. Consider a discrete-time trajectory with t steps
which we represent using its sequence of increments:
X = (∆x1,∆x2, . . . ,∆xt). This trajectory occurs with
probability P (X) which is a multivariate Gaussian dis-
tribution, so all correlations can be computed exactly (at
fixed t). Specifically,

P (X) ∝ exp[−S(X)/2] (20)

with

S(X) =

t−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a)]2 (21)

where we recall that qτ is related to the increments ∆x
by (1), with q0 = 0.

To characterise large deviations, the most likely path
that achieves qt = q can be derived, by conditioning
P (X) on this rare event. Collecting terms in (21), one
obtains

S(X) = t2q2t +

t−1∑
τ=1

q2τ
(
2τ2 + a2 + 2aτ

)
− 2

t−1∑
τ=1

qτqτ+1(τ + 1) (τ + a) . (22)

Conditioning on qt, we arrive at a Gaussian distribution
for the (t − 1)-dimensional vector q = (q1, q2, . . . , qt−1).
This is

Pmicro(q|qt) ∝ exp

(
hqtqt−1 −

qTMq

2

)
, (23)

where h = t(t+a−1), and M is a matrix whose elements
can be read from (22). The subscript “micro” recalls that
conditioning on qt = q is analogous to considering a mi-
crocanonical ensemble in thermodynamics. Completing
the square in the exponent, one obtains

Pmicro(q|qt) ∝ exp

[
− (q − hqtµ)TM(q − hqtµ)

2

]
(24)

where µ is given by the (t− 1)th column of M−1. Hence
the most likely path with qt = q is given by

〈qτ 〉micro = µτqh . (25)

This path depends on the value of qt and on the asso-
ciated time t. For finite t, the path can be straightfor-
wardly computed numerically (for all τ < t).

It is also possible to construct an optimally-controlled
process (or auxiliary process) whose typical dynamics
generate the most likely path to qt = q. This is sim-
ilar to the Doob-transformed dynamics of [22, 46], see
also [47–51] and Appendix C 1 of this work for the general
theory. For the GERW, we have derived the optimally-
controlled process, see Appendix C 2. Its average path is
〈qτ 〉con = 〈qτ 〉micro (for τ = 1, 2, . . . , t). Fig. 2(a) shows
results illustrating the average path under the controlled
dynamics, also compared with the ERW (see below). The
mechanism for achieving a rare value of qt is that the
GERW makes very large hops on the first few steps, af-
ter which qτ decreases towards qt.

The results so far are valid for any finite time but we
are interested in large deviations as t→∞. In this case
the problem may be simplified. We characterise the most
likely path as the minimum of the exponent in (24). Writ-
ing the matrix product as a sum over time steps [similar
to (21)], we fix some K and separate the sum into terms
with τ ≤ K and τ > K. For τ > K we make the replace-
ment qτ → q̃(τ) where q̃ is a smooth function of τ ; this
allows the sum to be estimated by an integral. Fixing
values for qK and qt, the action can be minimised (ex-
actly) over the function q̃, which is equivalent to solving
the instanton equation in [25]. One finds

q̃(τ) = C1τ
−a + C2τ

−(1−a) (26)

where C1 and C2 are fixed by the boundary conditions
at τ = K, t. Writing u = K/t (so 0 < u < 1), the
contribution to S from this path is [25]

S1 =
2a− 1

u1−2a − 1

(
qt − qKu1−a

)2
t . (27)

For this optimal path (21) then reduces to

S =

K−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a)]2 + S1 (28)
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FIG. 2. (a) Averaged paths 〈qτ 〉con of the controlled dynamics
with t = 105, 106 and 〈qt〉con = 0.2, for the ERW and GERW
with a = 0.7. These illustrate the IGL and LIE mechanisms.
The dashed line indicates the long-time behaviour (29) which
is common to both ERW and GERW. (In the plot, this has
been offset by C = 0.14, for clarity.) (b) Theoretical estimate
for ψ(λ) in the ERW again with a = 0.7, derived at t = 104

and compared with numerically exact results for small λ. The
dashed and dotted lines indicate the predicted power laws
ψ ∝ λ1/a and ψ ∝ λ respectively.

which is to be minimised over q1, q2, . . . , qK . This is the
procedure used to obtain the GERW paths in Fig. 2(a).
We typically take K = 40, this choice does not strongly
affect the results because replacing the discrete sum by
an integral is accurate for K � 1.

Remembering that we focus throughout on the case
a > 1/2, the behaviour of (26) for large t, τ gives

〈qτ 〉con ≈ qt(t/τ)1−a , (29)

similar to [25]. Comparing with (19), we see that the
long-time behaviour of the optimally-controlled dynamics
matches the natural regression to the mean.

Extrapolating (29) back to τ = 1 indicates that for
(rare) paths that end at qt, the first hop should have size
qtt

1−a, which diverges as t → ∞. In fact the early-time
behaviour is more complex but the size of the first hop

is indeed of this order. The diverging hop is the reason
that we call this mechanism an initial giant leap (IGL).
It applies in the Gaussian elephant for all fluctuations
with qt = O(1) as t→∞.

Two comments are in order. First, the analysis here
for τ > K recovers exactly that of [25], the fact that the
distribution of qt is sharply-peaked under the controlled
dynamics can be used to justify the so-called temporal
additivity assumption in that work, for τ ≥ K � 1.
However for the early part of the trajectory with τ < K,
it is important that the model evolves by discrete time
steps and that qt can change significantly in a single step.
This means that the temporal additivity assumption is
not valid in this regime. For this reason, quantitative
results for pt(q) require a more detailed analysis of early
times, without the temporal additivity assumption. We
accomplish this here by analysing numerically the sum
of terms with τ < K. The second comment is that we
use the language of a giant leap, but we note that the
GERW makes (on average) very large jumps on several
of the early time steps. We explain below that we are
using IGL to refer to any divergent displacement q∗ in a
finite time interval τ∗, see Sec. IV B.

C. LIE mechanism for large deviations in the ERW

As discussed in Sec. III A, large-deviation properties of
the ERW are available from [28]. In particular, there is
an LDP for qt with speed t whose rate function behaves
for small q as

I(q) ' κE|q|1/(1−a) . (30)

Correspondingly,

ψ(λ) ' cE|λ|1/a , (31)

for small λ. [Recall Equs. (15,16).]
We characterise here the mechanism responsible for

(31), by deriving a controlled process which captures the
behaviour of the relevant conditioned path ensemble, see
Appendices C 1 and C 3. This controlled process is simi-
lar to the original process, but now ∆xτ = ±1 with time-
dependent probabilities (1 ± bτ )/2 where (b1, b2, . . . , bt)
are variational parameters that we optimise, to reproduce
the large-deviation mechanism.

This analysis yields a controlled process for which
〈qτ 〉con is shown in Fig. 2(a): for early times, typical
paths have qτ ≈ 1 which is the maximum possible value
in the ERW. This behaviour persists over a finite fraction
of the trajectory, which motivates the name, long initial
excursion (LIE). For larger times, qτ decreases. Fig. 2(b)
shows our theoretical estimate of ψ(λ) obtained by a vari-
ational analysis at finite t, compared with numerically
exact results from direct simulation. The theoretical es-
timate (i) matches the exact result in the region where
numerical results are available; (ii) is consistent with (31)
for t−a � λ � 1; (iii) recovers ψ(λ) ' |λ| for large λ,
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which is the exact result (since q ≤ 1). The controlled
dynamics give a good description of the true ψ(λ).

It can also be shown that the averaged paths in
Fig. 2(a) capture the true fluctuation mechanism. We
sketch the argument. At the level of large deviations, the
true mechanism is the path measure P con that achieves
equality in (C4). From [28], the large-deviation event
qt = q is associated with a single path, in the sense that
the conditional distribution of qαt is sharply-peaked as
t → ∞ for all α ∈ (0, 1]. Our ansatz for the controlled
process is sufficiently general to capture this path, so
minimising over all controlled paths is sufficient to make
(C4) an equality, and hence to obtain the true mecha-
nism. This argument also justifies the temporal additiv-
ity principle of [24] in this case.

Ref. [25] used that principle together with a quadratic
expansion of the action about q = 0, for (symmetric)
models similar to the ERW. This predicts dominant paths
similar to (26). The results presented here show that such
an expansion is not generically valid: for all qt 6= 0, large-
deviation events involve initial excursions far from qt = 0,
and the quadratic expansion breaks down. Nevertheless,
if qt � 1 then the quadratic expansion is applicable at
large times and can be used to show that the optimally-
controlled process behaves the same as the GERW for
large τ , that is 〈qτ 〉con ≈ (t/τ)1−aqt as in (29). [For the
ERW, this result is valid for a > 1/2 and qt � 1 with
t, τ → ∞ such that also 〈qτ 〉con � 1]. A very similar
case is analysed in Sec III.C of [16], for a cluster growth
model.

Comparing (29) with (19), we see that the long-time
behaviour of the optimally-controlled dynamics matches
the natural regression to the mean, for both ERW and
GERW. In other words, the controlled dynamics is almost
that of the original model, when τ is sufficiently large.
In Sec. IV C below, we exploit this fact to show that
the scaling ψ(λ) ∼ |λ|1/a of (31) is generic if optimally-
controlled processes have (i) 〈qt〉con ≈ 1 until some time
τ∗ ∼ t, and (ii) 〈qτ 〉con ∼ τ−(1−a) for long times. This is
the sense in which the ERW is a prototype for a general
fluctuation mechanism.

IV. GENERIC FLUCTUATION MECHANISMS

A. Overview of method

We have explained that the large-deviation behaviour
of the ERW and GERW is different from that expected
in Markov chains. Fluctuations in these models occur by
mechanisms where the particle makes a large excursion
from the origin at early times, which biases all future mo-
tion in the same direction, via the memory effect. This
leads to a reduced speed in the LDP of the GERW and
to a singular rate function in the ERW. The difference
between ERW and GERW arises from the different char-
acters of their initial excursions (a giant leap over a finite
time for the GERW and a long excursion scaling with tra-

jectory length for the ERW). In this section we explain
that such phenomena are relevant for a broad class of
non-Markovian models. We provide general conditions
under which excursions can occur, and explain their con-
sequences for LDPs.

We consider models where qt converges to its mean as
t→∞ (to be precise, this is convergence in probability).
We denote this mean value by

q∞ = lim
t→∞
〈qt〉 . (32)

For simplicity we discuss deviations with qt > q∞; the
opposite case is a straightforward analogue. We consider
excursions which extend over a time period between t = 0
and some time τ∗. The probability pt(q) can be bounded
from below by restricting to paths where the size of the
excursion is at least q∗, that is qτ∗ ≥ q∗. By conditional
probability:

log pt(q) ≥ log pt(q|qτ∗ ≥ q∗) + logP (qτ∗ ≥ q∗) (33)

where P (qτ∗ ≥ q∗) is the probability of the excursion and
pt(q|qτ∗ ≥ q∗) is the corresponding conditional probabil-
ity density for qt.

The inequality (33) is valid for all q∗, τ∗. Now suppose
that q, t are given and we seek a useful bound on pt(q):
this requires that we choose suitable values for q∗, τ∗. To
this end, we introduce the notation 〈·〉q∗,τ∗ for averages
that are conditioned on qτ∗ ≥ q∗. Then we choose q∗, τ∗

such that 〈qt〉q∗,τ∗ = q and we further assume that the
conditional distribution of qt is sharply-peaked at this
value. This means that if we consider trajectories where a
suitable excursion has already taken place before τ∗, then
following the natural dynamics of the model for t > τ∗

will result in qt ≈ q with a probability close to unity.
Under these assumptions, (33) reduces to

log pt(q) & logP (qτ∗ ≥ q∗) . (34)

In other words, we now have a more explicit lower bound
on pt(q) which is valid if

〈qt〉q∗,τ∗ = q. (35)

(The additional requirement that the conditional distri-
bution is sharply peaked is always obeyed in the follow-
ing.)

The strategy in Secs. IV B and IV C below is to char-
acterise situations in which (34) can be used to establish
LDPs that differ from those expected in finite Markovian
models. In particular, we now establish a sufficient con-
dition for memory to have a strong effect on the large-t
behaviour. Physically, the idea is that after the excur-
sion, the time-averaged current relaxes to its steady-state
value as a power law with exponent 1− a, as established
in (19) for the (G)ERW. Finite Markovian systems relax
generically as t−1, so a encodes the effects of memory,
this is related to the fixed-point stability analysis of [25].
The condition that we will require is that for t > τ∗,

〈qt − q∞〉q∗,τ∗ ' (q∗ − q∞)F(q∗, τ∗)

(
τ∗

t

)1−a
(36)
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for some function F , and some number a ∈ (0, 1).
We then arrive at the following method for deriving

bounds on pt(q). We must first establish (36) for a par-
ticular model, at least for q∗ in some range. To bound
pt(q) for specific values of q, t, we must then find a com-
bination q∗, τ∗ such that (36) holds, with qt = q. As long
as this is possible, the constraint (35) is satisfied and the
resulting q∗, τ∗ can be substituted into (34) to obtain a
bound on pt(q). Note that the combination q∗, τ∗ de-
pends in general on t; the final step is to take t → ∞ in
order to characterise large deviations that occur in this
limit. This strategy is similar to those used in [16].

B. Generic IGL mechanism

We now show how a generic IGL mechanism leads to a
useful bound. We achieve this by laying out the proper-
ties that a model should have, in order that this mecha-
nism is relevant. A defining feature of the IGL is that it
takes place over a finite time period τ∗ and that the size
of the excursion diverges in the limit t→∞.

The first requirement is that the model of interest sup-
ports very large excursions. To characterise their proba-
bility, we require that there exists some τ∗ such that for
q∗ →∞ we have

logP (qτ∗ ≥ q∗) ' −γ|q∗ − q∞|β , (37)

with γ, β > 0. Since we consider divergent excursions, we
require that (36) remains valid even as q∗ → ∞. In the
following we take τ∗ to be a fixed parameter, the choice
of its value is discussed below. We define

f∗(τ
∗) = lim

q∗→∞
F(q∗, τ∗) (38)

which we require to be strictly positive. These require-
ments place strong constraints on the range of models for
which the IGL mechanism will determine the large devi-
ations but, as we demonstrate, such models do indeed
exist. Then (33,36) with q = 〈qt〉q∗,τ∗ yield

− log pt(q) . tβ(1−a)|q − q∞|βκIGL (39)

with κIGL = γf∗(τ∗)−βτ
−β(1−a)
∗ .

Equ. (39) corresponds to an LDP with speed tβ(1−a).
If this speed is less than t, fluctuations are qualitatively
larger than one finds in generic Markovian systems. In
principle the bound (39) can be optimised over τ∗. How-
ever, (39) already establishes that the speed of the LDP
can be less than t, without any requirement for optimi-
sation over τ∗. This is the central result. In this sense,
the specific value of τ∗ is not crucial.

The GERW satisfies all the requirements for the IGL
mechanism, with β = 2; one may take τ∗ = 1. The appli-
cability of (36) was already shown in (19). The resulting
bound is consistent with the exact result (11), it gives the
right scaling with t and the correct general mechanism.
However, the constant κIGL obtained from this generic

argument does not coincide with the prefactor in the ex-
ponent of (11): obtaining that result requires the more
detailed (model-dependent) calculation of Sec. III B.

We note in passing that some arguments of [25] are
similar to those of this section, but the connection be-
tween the giant leap and the reduced speed of the LDP
was neglected in that work. In particular, the require-
ment that (36) must hold as q∗ → ∞ means that some
care is required when applying the arguments of [25] to
generic models; they are not valid in the ERW, for ex-
ample.

C. Generic LIE mechanism

The LIE mechanism is generically associated with ex-
cursions that have finite q∗ but diverging τ∗ (proportional
to t). This may be compared with the IGL, which has
fixed τ∗ and diverging q∗. The LIE mechanism has two
central requirements, which must hold for some q∗, dif-
ferent from q∞. First, (36) must hold asymptotically for
1� τ∗ � t. Second,

f‡(q
∗) = lim

τ∗→∞
F(q∗, τ∗) (40)

must be strictly positive. Comparing with (38), the roles
of q∗, τ∗ are reversed.

Under these conditions, we assume that there is an
LDP with speed t as in (3), verify the self-consistency
of this assumption, and establish a bound on the rate
function I(q) for |q − q∞| � 1. Since τ∗ is proportional
to t, this means that

P (qτ∗ ≥ q∗) ' exp[−τ∗I(q∗)] (41)

which is analogous to (37). Using this with (34,36) yields

− log pt(q) . tκLIE|q − q∞|1/(1−a) (42)

with

κLIE = I(q∗)

(
1

|q∗ − q∞|f‡(q∗)

)1/(1−a)
. (43)

The result (42) is consistent with the assumption of an
LDP with speed t, but it shows (for a > 1/2) that the
rate function increases from zero more slowly than any
quadratic function. As noted above, this means that
I ′′(0) = 0, corresponding to superdiffusive scaling.

In addition, by Varadhan’s lemma [a standard result
in large deviation theory [18, 21], which amounts to the
inverse Legendre transform of (7)], one obtains

ψ(λ)& sup
q

[λq − |q − q∞|1/(1−a)κLIE] (44)

which gives

ψ(λ) & λq∞ + |λ|1/acLIE (45)
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FIG. 3. Comparison between the optimally controlled path
for the ERW (similar to Fig. 2) and the corresponding generic
LIE path used to derive (42). We take a = 0.7 with qt = 0.15
and t = 106. The generic LIE path has an excursion with
q∗ = 1, after which qτ relaxes back towards zero, as the system
follows its natural dynamics (19). The generic LIE path does
not capture the details of the optimally-controlled (instanton)
path which means that the coefficient κLIE does not match κE

in (16), but the generic LIE argument is sufficient to capture
the non-quadratic form of the rate function at q = 0.

with

cLIE = a

(
1− a
κLIE

)(1/a)−1
. (46)

All these generic arguments are consistent with the be-
haviour of the ERW, which has q∞ = 0. In particular,
the requirement for (36) to hold asymptotically follows
from (19).

Moreover, the results of Sec. III C indicate that the
true fluctuation mechanism for the ERW is an LIE with
q∗ = 1. Also pt(1) = (1 + a)t−1/2t because all hops
have ∆xt = 1 in this case, so I(1) = log[2/(1 + a)].
The coefficient in (19) is η ' τ1−a as τ → ∞, which
means f‡(q∗) = 1. Hence the bound (39) holds with
κLIE = log[2/(1 + a)]. The exact result for the ERW can
be obtained from κE = (1− a)(a/cE)a/(1−a) as quoted in
Sec. III A, together with (B10).

For the representative case a = 0.7, we find κE = 0.04
while κLIE = 0.16. Given that the generic LIE argu-
ment is much simpler than the full calculation of κE, this
level of agreement is reasonable. The generic LIE argu-
ment is based on a simple path (or equivalently a simple
controlled process) that includes a long excursion: the
path is illustrated in Fig. 3, where it is compared with
the optimal LIE path discussed in Sec. III C. The generic
LIE path captures the correct qualitative behaviour and
matches the optimal path for small and large times. How-
ever, the agreement is not quantitative, and the difference
between κLIE and κE reflects this.

D. Discussion of generic IGL and LIE mechanisms

We summarise the difference between the IGL and LIE
mechanisms. The IGL makes a giant (divergent) excur-
sion in a finite time and leads to an LDP with reduced
speed. The LIE makes a finite excursion over a long (di-
vergent) time period; it leads to an LDP with speed t,
and to a rate function with I ′′(q∞) = 0 which is (gener-
ically) non-analytic at q∞. In all the examples that we
have managed to construct, the IGL mechanism relies on
microscopic transition rates that diverge as qt → ∞, in
order to satisfy (36).

The IGL mechanism has an interesting analogy with
condensation in interacting-particle systems [52, 53]: to
achieve qt = q the system must support an excess current
which may be distributed over a macroscopic fraction
of the time period (as in the LIE), or condensed into a
finite time interval (the IGL). A similar phenomenon is
described by the “single-big-jump” principle for sums of
random variables (including certain types of correlated
process) [54]; the particular history-dependence in our
models, with a > 0, constrains the condensation to take
place at the beginning of the time period.

We close this section by noting that (39,42) are both
lower bounds on the probability pt(q). Physically, this
means that fluctuations can take place by IGL and LIE
mechanisms, so fluctuations of a given size q are at least
as likely as (39,42) predict. We have not ruled out com-
peting mechanisms that might allow fluctuations of the
same size to occur in a more likely way. As a simple
example, an LIE bound can be obtained for the GERW
but does not accurately describe the probability of rare
fluctuations, because the IGL mechanism is available and
occurs with (much) higher probability. [Indeed it is easy
to see that the IGL mechanism, if available, will always
dominate the LIE mechanism if β(1 − a) < 1.] To rule
out competing mechanisms, one would need a matching
upper bound on the probability; this seems to require
more detailed (model-dependent) analysis.

V. EXAMPLE MODELS EXHIBITING IGLS
AND LIES

By considering IGLs and LIEs, we have established
simple and generic requirements which enable bounds on
the probabilities of large-deviation events. It is straight-
forward to construct (or identify) other models that ex-
hibit these mechanisms. In this section we give a brief
discussion of three such cases. Similar to the ERW in
Sec. III C, we establish bounds on the probabilities of
large excursions by using arguments based on optimal
control theory, these computations then enable us to
check conditions for the IGL and LIE mechanisms. Our
main purpose here is not to describe the model behaviour
in detail, but rather to illustrate the general relevance of
the identified mechanisms.
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A. IGL in unidirectional hopping model

As an example in continuous time, we modify the uni-
directional walker model of [24]. Similarly to the ERW,
we consider a particle with integer-valued position xt
which we identify with the configuration Ct. The par-
ticle always hops in the same direction so ∆xt = 1. We
define qt as the total time-averaged displacement which
corresponds to (8) with αj = 1 for all jumps. In the vari-
ant of the model that we consider, the particle makes its
first jump at time t0; subsequent jumps occur with rate

r(qt) = aqt , (47)

where 0 < a < 1. The regularisation parameter t0 is
important because if one allows jumps to occur at arbi-
trarily early times then qt in (8) can become arbitrarily
large after just one jump; combined with (47), this can
lead to pathological fluctuations.

The results of [24] indicate that large deviations with
qt > 0 involve a giant leap of size q∗ ∼ t1−a, leading
to an LDP with speed t1−a. However, that work made
an assumption of temporal additivity which (strictly-
speaking) is valid only for t0 � 1. Here we discuss the
case where t0 takes any positive value; we show that the
IGL mechanism operates, and pt(q) can be bounded as in
(39), which is consistent with an LDP with speed t1−a.

To analyse the IGL we take τ∗ = 2t0. In this case we
show in Appendix D that

logP (qτ∗ ≥ q∗) & −γuniq∗t0 , (48)

with γuni = O(1) as q∗ → ∞. That is, the probability
of a large excursion to q∗ in a finite time decays at most
exponentially in q∗. This establishes the requirement (37)
for an IGL.

Moreover, after the excursion the average displacement
obeys

τ
∂

∂τ
〈qτ 〉q∗,τ∗ = (a− 1)〈qτ 〉q∗,τ∗ , (49)

which follows directly from the master equation of the
model. Similar to (19), integrating this equation yields
〈qτ 〉q∗,τ∗ = q∗(τ∗/τ)1−a which is exactly the required
condition (36) with q∞ = 0 and F(q∗, τ∗) = 1. Note
that this holds even as q∗ → ∞, which is related to the
fact that r(q∗) diverges in this limit. To apply (34) re-
quires that the conditional distribution of qt after the
excursion is sharply-peaked: this is easily verified.

Hence, the conditions for an IGL are in place and we
have established (39) with β = 1 and f∗(τ∗) = 1, that is

− log pt(q) . t1−aκuniq , (50)

with κuni = 2a−1γunita0 , using τ∗ = 2t0, from above.
This corresponds to an LDP with speed t1−a as shown
in [24, 25] by arguments based on an assumption of tem-
poral additivity. Our analysis avoids any such assump-
tion; it also shows that the unusual speed of the LDP
arises because the fluctuation mechanism is an IGL.

The result (50) applies to the unidirectional model
with r(q) = aq but, in fact, the main ingredient required
in the analysis was limq→∞[r(q)/q] = a (with 0 < a < 1).
We therefore expect the IGL mechanism to operate for a
broad class of models where this assumption holds.

B. LIE in cluster growth models

We consider a model of a growing cluster as in [14–16].
The cluster contains two types of particles (for exam-
ple, red and blue) whose numbers at time t are nRt and
nBt . The cluster evolves in discrete time and a single
particle is added on each step, so nRt + nBt = t. (This
is the irreversible model of [14], in that particles are
added but never removed.) The configuration is given
by Ct = (nRt , n

B
t ) and we take qt = (nRt − nBt )/t which

means that αt = ±1 in (8) according to whether a red or
blue particle is added.

On step t, the added particle is red (+) or blue (−)
with probability (1 ± tanh Jqt−1)/2 where J > 0 is a
parameter that reflects the difference in energy on adding
either a red or blue particle. In this case, the dynamics
of the quantity mt = (nRt − nBt ) is similar to that of the
ERW position xt, but with the nonlinear tanh function
replacing the linear function in (2). This nonlinearity
leads to a symmetry-breaking transition: for J < 1 then
qt ≈ 0 at long times (“mixed” clusters) but for J > 1
then qt ≈ ±m̄, which corresponds to spontaneous de-
mixing. Here m̄ is the order parameter for the underlying
phase transition [14]. Large deviations in this model were
discussed previously in [15, 16], it may be also formulated
as an urn model so the results of [28] are applicable.

In the mixed (one-phase) regime, the behaviour of this
model is qualitatively similar to the ERW. It can be
analysed similarly to Sec. III C, using the same (gen-
eral) controlled model: red/blue particles are added with
probabilities (1 ± bt)/2. The theoretical arguments of
Appendix C 1 can then be applied. Indeed, these ideas
were already applied to the growth model in [16]: for
1/2 < J < 1 this led to a result analogous to (13), with
a = J . However, that paper did not come to a definitive
conclusion about the speed of the LDP in this regime.
The general results of the present work can be used to
resolve this open question, and to understand the rare-
event mechanism. We outline the argument below (again
for 1/2 < J < 1).

The results of [28] prove that the LDP for this model
must have speed t, so one may expect an LIE mechanism,
similar to the ERW. Moreover, Ref. [16] showed that (19)
holds in this system for relaxation as t → ∞ after an
initial excursion. However, contrary to the ERW, this
result is now valid only for 〈qt〉qτ � 1. This establishes
that (36) holds, but only for small values of q∗.

We therefore fix some small value for this parame-
ter and construct the LIE, using (36) as in Sec. IV C
to fix τ∗ = t(q∗f‡(q∗)/qt)−1/(1−a) so that the natural
dynamics after the excursion arrives at qt with proba-
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bility 1. By [28], this excursion has Prob(qτ∗ ≥ q∗) '
exp[−τ∗I(q∗)], although the rate function I is not known
explicitly. These results can be used with (34) to obtain

− log pt(q) . tκLIE|q|1/(1−a) , (51)

as in (42). Since the validity of (36) is restricted to small
q∗, this construction is restricted to small q (strictly pos-
itive and fixed as t → ∞). Still, this generic bound is
sufficient to establish the non-analytic behaviour of the
rate function at q = 0. The use of a fixed small value of
q∗ is convenient for this argument but is not expected to
be optimal for the large-deviation mechanism; in fact we
anticipate the true large-deviation mechanism to involve
an excursion with q∗ = 1, as for the ERW. This means
that the prefactor κLIE is likely to be far from optimal,
but the scaling (51) is expected to be robust.

The overall picture is that for small values of qt (fixed
as t → ∞), the cluster growth model with 1/2 < J <
1 behaves similar to an ERW with a = J , exhibiting
an LIE fluctuation mechanism and a rate function that
increases from zero with exponent 1/(1− a). Physically,
the similarity can be explained by an argument similar
to the fixed-point stability analysis of [25], because the
exponent that appears in the LIE bound only depends on
the asymptotic (long-time) dynamics close to the fixed
point. For models that can be formulated as urns [28],
we therefore expect these similarities with the ERW to
be generic, based on an expansion of the urn function
about the fixed point.

C. LIE in a non-Markovian exclusion process

We consider a non-Markovian simple exclusion process
(SEP) where N particles hop in continuous time on a
periodic one-dimensional lattice of L sites, subject to
the constraint that each site may contain at most one
particle. We define ni = 1 if site i contains a parti-
cle, and ni = 0 otherwise. A configuration is speci-
fied as C = (n1, n2, . . . , nL). The time-averaged current
is qt = (Lt)−1

∑
jumps j ∆xj , as in (8), where the sum

is over all particle hops, with ∆xj = ±1 according to
whether the hop is to the right or the left. Large devia-
tions of qt have been studied extensively in the Markovian
case [55, 56]. For non-Markovian models, similar quanti-
ties have been studied in [25, 57]. Given the connections
between exclusion processes and traffic modelling [58],
the generalisation of such models to include memory of
previous flow (current) is quite natural [25].

We introduce here a memory of mean-field type, so
that every particle hops either right (+) or left (−) with
rate w± = [1 ± tanh(νqt)]/2, as long as the destination
site is empty. The non-linearity in this model is similar
to that of the cluster growth model which leads to some
similar phenomenology.

It is useful to note that detailed balance is broken in
this model (except for qt = 0), but the dynamical rules for
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FIG. 4. Numerical results for a non-Markovian simple ex-
clusion process with (N,L) = (8, 16), so νc = 3.75. (a) For
ν = 2.4, 2.8, particle motion is superdiffusive so the variance
of qt decays as a power law consistent with (10), dashed lines
indicate power-law behaviour with the theoretically-predicted
exponent a = ν/νc. For ν = 1.5 the behaviour is diffusive,
〈q2t 〉 ∝ t−1, since ν < νc/2. (b) The distribution of qt for
ν = 2.8 at t = 105 is similar to the ERW in Fig. 1, the dashed
line is a fit to (16) with a = ν/νc.

any given qt correspond to an asymmetric simple exclu-
sion process with periodic boundaries, whose stationary
state has all particles distributed independently (subject
to the exclusion constraint). Assuming that the system is
in such a stationary state at time t, and its time-averaged
current is qt, the (average) rate for accepted particle hops
is 〈

L
d

dt
(tqt)

〉
qt

= N
L−N
L− 1

tanh(νqt) . (52)

Here the factor of (L−N)/(L−1) is the probability that
a site adjacent to a given particle is vacant. Expanding
the tanh about qt = 0 shows that the zero-current state
〈qt〉 = 0 is stable only if ν < νc with

νc =
L(L− 1)

N(L−N)
. (53)

We identify νc as a phase-transition point, directly anal-
ogous to the cluster-growth model.

For ν < νc, expansion of (52) about qt = 0 yields
(36) with a = ν/νc, which is again similar to the growth
model and indicates that the LIE scenario is applicable,
at least for small q∗. As a controlled model, we con-
sider a (Markovian) asymmetric simple exclusion process
with a time-dependent asymmetry parameter, so hops in
the (±)-direction have w± = (1± bt)/2. This controlled
model also has particles distributed independently at all
times. In this case the KL divergence may be computed
similarly to (C9). This allows numerical optimisation of
the controlled dynamics – the optimal behaviour is sim-
ilar to the ERW and cluster growth models, showing an
LIE mechanism. An explicit LIE bound may also be de-
rived by following exactly the same steps as used for the
cluster growth model in Sec. V B.

Contrary to the other models considered here, we do
not expect this controlled model to fully capture the
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large-deviation mechanism, because it neglects interpar-
ticle correlations which are important for large deviations
in exclusion processes [55]. This effect might be captured
by combining the temporal additivity principle [25] with
results for large deviations in Markovian exclusion pro-
cesses [55], but such an analysis is beyond the scope of
the present work. However, we expect the general fea-
tures to be robust: a large excursion at early times and a
rate function scaling as (42). Numerical results confirm-
ing the similarity between this non-Markovian SEP and
other LIE models are shown in Fig. 4. This analysis illus-
trates that the generic fluctuation mechanisms described
in this paper are not limited to simple one-particle sys-
tems.

As a final observation, note that since particles do not
pass each other in exclusion processes, trajectories with
time-averaged current qt = c at long times must have
single-particle currents whose time averages all converge
to c also. For this reason, we would expect similar be-
haviour if each particle had an individual memory of its
own individual displacements, in contrast to the simple
(mean-field) case considered here, where the motion of
each particle is affected by the memory of the whole sys-
tem.

VI. OUTLOOK

We have presented two mechanisms by which large de-
viations can occur in non-Markovian processes, leading
to generic bounds (39,42) on the probabilities of these
rare events. To prove that these bounds give the right
scaling in specific cases requires more detailed analysis, as
illustrated here for the simple ERW and GERW models.
(Such analyses are necessary to rule out competing mech-
anisms with larger probability then the IGL and LIE.)
Our results indicate that the LIE mechanism operates
in a non-Markovian exclusion process, and the general
mechanistic insights have enabled us to clarify and ex-
tend several other results from the literature [16, 24, 25].
This understanding is also relevant in socioeconomic de-
cision models that can be approximated by generalised
urn/elephant models [17]; by revealing fluctuation mech-
anisms in these systems, our analysis may be utilised to
predict and control their long-term fluctuations. We look
forward to future work exploiting these new insights, in
order to elucidate the rich fluctuation behaviour of non-
Markovian systems.
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Appendix A: Typical fluctuations in the GERW

We derive (10) for the GERW. Suppose that after t
steps Qt = tqt has a Gaussian distribution with mean
zero and variance vt. Then Qt+1 − Qt is normally dis-
tributed with mean aqt and variance 1 so the distribution
of Qt+1 is

p(Qt+1) =
1

zt

∫
exp

[
− [Qt+1 − (1 + a

t )Qt]
2

2
− Q2

t

2vt

]
dQt

(A1)
with zt =

√
4π2vt. This distribution is normal with mean

zero and variance vt+1 = 1 + vt(1 + a/t)2. From this re-
cursion relation one finds a series solution for vt in terms
of the gamma function:

vt =
Γ(a+ t)2

Γ(a+ 1)2Γ(t)2

(
t−1∑
n=1

Γ(a+ 1)2Γ(n+ 1)2

Γ(a+ n+ 1)2
+ 1

)
.

(A2)
The form of the large-t behaviour can be obtained di-
rectly from the recursion by writing vt = v(t) so that
v′(t) ≈ 1 + 2av(t)/t. Hence v(t) ≈ t/(1− 2a) + ct2a and
so the variance of qt is

Var(qt) =
v(t)

t2
≈ 1

t(1− 2a)
+ cat

−2(1−a) (A3)

where subleading terms at higher order in t−1 have been
omitted. The second term is dominant for a > 1/2 and
the constant ca corresponds to χG in the asymptotic vari-
ance; its value can be extracted as a limit from the series
solution. For a = 0.7 as used in Fig. 1 numerical evalua-
tion of the limit yields χG ≈ 3.4.

Appendix B: Large deviations in ERW by mapping
to urn model

For large deviations of qt in the ERW, the SCGF ψ(λ)
can be obtained exactly by adapting results of [28]. We
state the equations and characterise the behaviour at
small λ.

The ERW can be interpreted as an urn model [10].
If the fraction of + steps before time t is st then the
probability that ∆xt+1 = +1 is π(st) where

π(s) =
1 + a(2s− 1)

2
(B1)

is the corresponding urn function [28]. Given this urn
function, the parameters (a, b) of Corollary 12 of [28]
correspond to ((1− a)/2, a) in the notation of this work.
Since qt = 2st − 1 then

G(λ, t) = log〈eλt(2st−1)〉 . (B2)

Define ψ̃(µ) = limt→∞ t−1 log〈eµtst〉 as the SCGF of [28],
denoted in that work by ψ. Then (6,B2) yield

ψ(λ) = ψ̃(2λ)− λ . (B3)
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Hence by Corollary 12 of [28] one has for λ > 0 that

ψ(λ) = − log
[
1− we−2wλy1/aB (w,−2w, y)

]
−λ , (B4)

where we introduced shorthand notation w = 1−a
2a and

y = 1−e−2λ (used only within this Appendix), and where

B(w, v, y) =

∫ 1

y

(1− t)w−1tv−1dt (B5)

is a particular case of the incomplete Beta function.
We now compute the behaviour of ψ at small λ, ob-

serving that y ' 2λ in this limit. Our regime of interest
is 1/2 < a < 1 so that 0 < w < 1/2. In this case
B(w,−2w, y) diverges as y → 0. To extract the nature of
this divergence, introduce a factor of 1 = t+ (1− t) into
the integrand of (B5) to yield

B(w, v, y) =

∫ 1

y

[
(1− t)w−1tv + (1− t)wtv−1

]
dt

=
v + w

v

∫ 1

y

(1− t)w−1tvdt− yv(1− y)w

v
,

(B6)

where the second line used an integration by parts, with
the assumption that w > 0. There is no such assumption
on v, the case of interest is −1 < v < 0. The limiting
behaviour at small y can now be extracted: for v > −1
and y → 0 then

B(w, v, y) ' v + w

v
B(w, 1 + v)− yv

v
+ o(1) . (B7)

Here B(x, y) is the (complete) Beta function which is

given for x, y > 0 by
∫ 1

0
tx−1(1 − t)y−1dt, it is fi-

nite and positive. Moreover, the relation B(w, v) =
v+w
v B(w, 1 + v) extends the Beta function to negative

arguments. Using these results with (B4) and identify-
ing −2w = (a− 1)/a gives

ψ(λ) =

− log

[
1− wy1/a

(
B(w,−2w) +

y(a−1)/a

2w
+ o(1)

)]
− λ . (B8)

Finally, noting that y ' 2λ and using that ψ is an even
function:

ψ(λ) =
1− a

2a
|2λ|1/aB

(
1− a

2a
,
a− 1

a

)
[1 + o(1)] . (B9)

Hence

cE =
2(1/a)−1(1− a)

a
B

(
1− a

2a
,
a− 1

a

)
(B10)

in (15,31). Analysing the subleading term shows that
in fact the first correction to (B8) is ψ(λ) = cE|λ|1/a +
O(λ2).

Recall that we assumed here 1/2 < a < 1, since this is
the regime of interest for this work. However (B4) also
applies for 0 < a < 1/2 – similar analysis can also be
carried out in that case. For a < 0 the corresponding
result is given in [28], the resulting ψ is analytic.

Appendix C: Controlled dynamics

1. Outline of general theory

As discussed in the main text, one method for
analysing fluctuation mechanisms is to construct con-
trolled processes whose typical trajectories reproduce the
rare-event behaviour of interest. Such processes can be
analysed variationally.

We work in the generic framework where the configura-
tion of the system at time t is Ct. A trajectory or sample
path is denoted C and its probability C in the original
model is denoted by P (C). Throughout our analysis, we
fix t as the trajectory length and we use τ to indicate a
generic time within the trajectory. Now let Pcon(C) be
the probability of C in some controlled model, which has
different dynamics. Optimal-control theory provides the
following general inequality [43]

G(λ, t) ≥ λt〈qt〉con −D(Pcon||P ) (C1)

where 〈·〉con indicates an average in the controlled model,
and D(Q||P ) is the Kullback-Leibler (KL) divergence be-
tween the distributions Q and P . To prove (C1) define

Pcano(C) = eλtqt−G(λ,t)P (C) (C2)

which is a normalised probability distribution, by defi-
nition of G. (The subscript “cano” indicates that this
definition is analogous to that of the canonical ensemble
in thermodynamics.) Then by definition of the KL di-
vergence, the right-hand side of (C1) can be expressed
as

λt〈qt〉con−D(Pcon||P ) = G(λ, t)−D(Pcon||Pcano) . (C3)

The KL divergence is non-negative so the right-hand side
is less than or equal to G(λ, t), and (C1) follows. More-
over, there is equality in (C1) if and only if Pcon = Pcano.

In addition, setting θ = 1 in the definition (6) we ob-
tain ψ(λ) = limt→∞ t−1G(λ, t) so (C1) yields

ψ(λ) ≥ lim
t→∞

[
λ〈qt〉con −

1

t
D(Pcon||Pcano)

]
. (C4)

If this bound is saturated then the controlled process
gives an accurate representation of the rare event of
interest, see also below. We emphasise that for non-
Markovian processes as considered here, the limit in (C4)
involves controlled processes where the dynamical rule at
time τ depends both on τ and on the total trajectory
length t; accurate bounds require controlled processes
with time-dependent rates.
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2. GERW

We construct the optimally-controlled process for large
deviations of qt in the GERW. Using (C2) one obtains a
distribution for the trajectory X, as defined in Sec. III B:

Pcano(X) ∝ exp

[
λtqt −G(λ, t)− S(X)

2

]
. (C5)

where qt also depends onX though (1). This distribution
is Gaussian for the increments and for the qτ , and one
has an analogue of (25) which is

〈qτ 〉cano = µτ 〈qt〉canoh (C6)

where h, µτ are the same quantities that appear in (25).
That is, choosing λ in the canonical ensemble fixes
〈qt〉cano. Then the average path in this ensemble coin-
cides with the average path in a corresponding micro-
canonical ensemble with qt = 〈qt〉cano.

Since Pcano in (C5) is Gaussian, it is possible to con-
struct exactly an optimally-controlled process that gen-
erates trajectories according to this distribution. This
process achieves equality in (C1) and captures the mecha-
nism by which large rare fluctuations occur in the GERW.
This is similar to the Doob transform, as discussed in [22],
with time-dependent rates as in [16]. Within the con-
trolled system, the displacement on step τ is Gaussian
with mean aqτ−1 + bτ and variance unity. This means

that Pcon(X) = exp(−S̃(X)/2) with

S̃(X) =

t−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a)− bτ+1]2 , (C7)

analogous to (21). Hence

S̃(X) = S(X)−2tqtbt+2

t−1∑
τ=1

qτ [(τ+a)bτ+1−τbτ ]+

t∑
τ=1

b2τ .

(C8)
The optimally-controlled process has Pcon = Pcano [recall
(C3)], which is achieved by setting bt = λ and using
bτ−1 = bτ (1+ a

τ−1 ) iteratively to fix the bτ . For the CGF

this identification yields G(λ, t) = 1
2

∑t
τ=1 b

2
τ .

3. ERW

For the ERW, a variational characterisation of ψ(λ)
is available following [28]. This construction also allows
computation of the dominant paths shown in Fig. 2.

We outline the approach, which is to define a controlled
process that almost achieves equality in (C1), up to a
correction that vanishes on taking the limit in (C4). The
typical path of this controlled model captures the mech-
anism of the (rare) fluctuations that achieve qt = q in the
ERW. (Specifically, for large t and any u > 0, the condi-
tional distribution of qut for paths that achieve qt = q is
sharply peaked at 〈qut〉con, see [28].)

We use (C1) with the controlled dynamics described
in the main text for which (b1, b2, . . . , bt) are variational
parameters. The KL divergence between Pcon and P is

D =
1

2

t∑
τ=1

[(1 + bτ ) log(1 + bτ ) + (1− bτ ) log(1− bτ )]

− 1

2

t∑
τ=1

(1 + bτ ) 〈log(1 + aqτ−1)〉con

− 1

2

t∑
τ=1

(1− bτ ) 〈log(1− aqτ−1)〉con , (C9)

and we have

〈qτ 〉con =
1

τ

τ∑
k=1

bk . (C10)

Moreover, the variance of qτ in this controlled process
is at most 1/τ so it is consistent to assume that qτ is
sharply peaked for almost all terms in the sums in (C9).

Hence D ≈ D̂ with

D̂ =
1

2

∑
τ

[(1 + bτ ) log(1 + bτ ) + (1− bτ ) log(1− bτ )]

− 1

2

∑
τ

(1 + bτ ) log(1 + 〈aqτ−1〉con)

− 1

2

∑
τ

(1− bτ ) log(1− 〈aqτ−1〉con) . (C11)

Using (C10) this is an explicit function of the bτ vari-
ables, so the right-hand side of (C1) can be maximised
numerically, which yields a numerical estimate of G(λ, t)
and hence (by considering large but finite t) one may
estimate ψ(λ).

For numerical work we use a similar method to that
for the GERW: we split the sums in (C11) into contri-
butions from small τ and large τ and we approximate
the sum over large-τ contributions by an integral (which
is also estimated numerically). This combination of sum
and integral is maximised numerically to obtain estimates
of ψ(λ) and of the corresponding (average) path (C10).
This yields the results of Fig. 2.

Appendix D: IGL mechanism in unidirectional
hopping model

This Appendix establishes (48), which means that (37)
holds for the model of Sec. V A, with β = 1. For this
condition, it is sufficient to consider a finite-time interval
between t0 and τ∗ (there is no large-time limit because we
are focussing on the excursion that occurs at early times).
For a compact notation we work on the interval (t0, τ ] and
we write k for a generic time within this interval.

Consider a controlled process where the first hop is at
time t0 (as for the original model), after which hops take
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place with a time-dependent rate b(τ). Then (τqτ − 1) is
Poissonian with mean

∫ τ
t0
b(k)dk and so

τ〈qτ 〉con = 1 +

∫ τ

t0

b(k)dk . (D1)

The KL divergence of (C1) is

D =

∫ τ

t0

{
b(k)

〈
log

b(k)

aqk

〉
con

− b(k) + 〈aqk〉con
}

dk ,

(D2)
similar to (C9). In addition to (C1), the KL divergence
also allows a bound on the probability distribution of
qt. Roughly speaking, if one can construct a controlled
process such that the large-deviation event occurs with
probability one, Pcon(qτ ≥ q) = 1, then the probability
of this event in the original model can be bounded from
below:

− logP (qτ ≥ q) ≤ D(Pcon||P ) . (D3)

This may be proved by Jensen’s inequality; a more pre-
cise statement is given (for example) in Equs. (14,15)
of [16]. Hence we seek an upper bound on D.

To achieve this, we use log(1/x) ≤ (1/x)− 1 with x =
qk/〈qk〉con to write

D ≤
∫ τ

t0

{
b(k) log

b(k)

a〈qk〉con
− 2b(k) + 〈aqk〉con

+ b(k)〈qk〉con
〈

1

qk

〉
con

}
dk . (D4)

For a Poisson random variable X with mean x, one has
〈 1
1+X 〉 = e−x

∑∞
n=0 x

n/(n + 1)! = (1 − e−x)/x. Since

(kqk − 1) is Poissonian, we obtain

D ≤
∫ τ

t0

{
b(k) log

b(k)

〈aqk〉con
− 2b(k) + 〈aqk〉con

+ b(k)〈kqk〉con
1− e−〈kqk−1〉con

〈kqk − 1〉con

}
dk . (D5)

To recover the results of [25] one should assume that
kqk � 1 throughout the integration range, so that the
second line of the integrand reduces to b(k). This is valid
for t0 � 1. Then one sets τ = t and minimises the re-
sulting KL divergence over the path q̂(k) = 〈qk〉con, using
(D1) to replace b(k)→ (∂/∂k)(kq̂(k)). The optimal path
behaves for short times as kq̂(k) = 1+A[(k/t0)−1] where
A is proportional to the size of the giant excursion [25].

Our approach here does not require t0 to be large: we
retain all terms in (D5), and use (D3) with τ = τ∗ to
establish (37). To obtain a convenient bound we set τ∗ =
2t0 and choose b(k) such that 〈kqk〉con = 1 + Ax with
x = (k/t0) − 1 and A = 2q∗t0 − 1. This requires b(k) =
A/t0 and ensures that 〈qτ∗〉con = q∗. [Note, b(k) is only
independent of k for k < τ∗ (i.e., during the excursion),
the controlled process reverts to the natural dynamics of
the model for k > τ∗.] Then (D5) with τ = τ∗ becomes

D ≤ A
∫ 1

0

{
log

A(1 + x)

a(Ax+ 1)
− 2 +

a(Ax+ 1)

A(1 + x)

+ (1 +Ax)
1− e−Ax

Ax

}
dx . (D6)

We are concerned with the limit q∗ → ∞ which corre-
sponds to A→∞. The integral can be evaluated in this
limit and the KL divergence scales as

D . γuniq
∗t0 (D7)

with γuni = 2[log(4/a) + a(1 − log 2) − 1]. To apply
(D3) we require additionally that Pcon(qτ∗ ≥ q∗) → 1
as q∗ → ∞: this holds because the distribution of qτ∗

is Poissonian with a diverging mean equal to q∗, so it
is sharply peaked at q∗. Hence (D3) is applicable with
KL divergence (D7) and the probability of the excursion
obeys (48), as required.
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[26] C. Maes, K. Netočný, and B. Wynants, J. Phys. A 42,

365002 (2009).
[27] A. Faggionato, arXiv:1709.05653 (2017).
[28] S. Franchini, Stoch. Process. Appl. 127, 3372 (2017).
[29] B. Bercu, J. Phys. A 51, 015201 (2017).
[30] V. M. Kenkre, arXiv:0708.0034.
[31] J. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[32] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98,
195702 (2007).

[33] L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chan-
dler, Science 323, 1309 (2009).

[34] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L.
England, Phys. Rev. Lett. 116, 120601 (2016).

[35] M. D. Donsker and S. R. S. Varadhan, Comm. Pure Appl.
Math 28, 1 (1975).

[36] M. D. Donsker and S. R. S. Varadhan, Comm. Pure Appl.
Math 28, 279 (1975).

[37] M. D. Donsker and S. R. S. Varadhan, Comm. Pure Appl.
Math 29, 389 (1976).

[38] M. D. Donsker and S. R. S. Varadhan, Comm. Pure Appl.
Math 36, 183 (1983).

[39] H. Touchette, Physica A 504, 5 (2018).
[40] D. Nickelsen and H. Touchette, Phys. Rev. Lett. 121,

090602 (2018).
[41] G. Gradenigo and S. N. Majumdar, J. Stat. Mech. 2019,

053206 (2019).
[42] B. Meerson, Phys. Rev. E 100, 042135 (2019).
[43] P. Dupuis and R. S. Ellis, A weak convergence approach

to the theory of large deviations (Wiley, 1997).
[44] F. N. C. Paraan and J. P. Esguerra, Phys. Rev. E 74,

032101 (2006).
[45] M. A. A. da Silva, J. C. Cressoni, G. M. Schütz, G. M.
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