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ABSTRACT. In this paper we show different inequalities for fractional order differential operators. In
particular, the Sobolev, Hardy, Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg type inequalities
for the Caputo, Riemann-Liouville and Hadamard derivatives are obtained. In addition, we show
some applications of these inequalities.
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1. INTRODUCTION

There is no doubt that the inequalities not depending on a type of operators are very powerful
for integral and differential equations. Without them, the progress of integro-differential equations
would not be at its present level. Fractional order differential operators are not an exception.

Let us recall some classical results. Let Q ¢ RY be a measurable set and let 1 < p < N, then
the classical Sobolev inequality is formulated as

(L.1) ”””Lp*(g) < C”V””Lp(g)’ ue CSO(Q)’

where C = C(N, p) > 01is a positive constant, p* = A]/V—_” and V is the standard gradient in R". The

14
inequality (1.1) is one of the most important tools in PDEs and variational problems.
Further generalizations of the Sobolev inequality were obtained by Gagliardo and Nirenberg,

independently. In [ Jand [ ] they independently from each other proved the interpolation
inequality

(1.2) ||u||'2p(RN) <C| Vu”]LVZ(ggi/z ||u||(Lzz’}Ex§p—2))/2, ue H'RY),

where

2<p<ofor N=2,
2<p< = for N >2.

Now, it is called the Gagliardo—Nirenberg inequality.
The next important generalization of the Sobolev inequality is the Caffarelli-Kohn—Nirenberg

inequality. In 1984, Caftarelli, Kohn and Nirenberg [ ] established the following result:
Theorem 1.1. Let N > 1. Assume that |, l,, l5, a, b, d, 6 € R be suchthatl,,l,>1,1;,>0, 0 <
6 <1,and
1 a 1 b 1 od+({-06)b
—4—=, —+—, —+———>0.
I, N I, N I N
Then,
(1.3) P02l oy < CHIVall?, xS, u € CRRM),
if and only if
1 6d+(1-6)b 1 a-1 1 b
—t =5+ +A=-8)(—+—=],
e o (g ) o (34 %)

a—d>0, if 6 >0,

od+(1—-06)b —
a—d <1, if§>0andl+L=l+a 1
3 N I N

b

where C is a positive constant independent of u.

Recently, mathematicians started to develop the classical inequalities (1.1), (1.2), and (1.3) for

the p-Laplacian operator. In [ ], Nezza, Palatucci and Valdinoci obtained the p-Laplacian
version of the Sobolev inequality
(1.4) lull o vy < Cluly,

2



for the parameters N > sp, 1 < p < o0,and s € (0, 1), for any measurable and compactly supported
function u. Here, C = C(N, p, s) > 0 is a suitable constant, and [“]s,p defined by

// lu(x)_u(y)lpdxd
5 ry Jry  [x = y|NEsP

N
By using different techmques the authors of the papers [ , , ] proved the
Gagliardo-Nirenberg inequality for the p—Laplacian operator:

(1.5) Nl ey < Clulf IIMIILO,(RN), Vu € C/(RY),
for N>1, s€(0,1), p>1, a>1, > 0,and a € (0, 1] such that

1 (1 s> l—a
—=a|l-—-— )+ .
T p N o

In [ , ] Hughes derived a Hardy-Landau-Littlewood inequality [ ] for the
Riemann-Liouville fractional integral, then for the Riemann-Liouville fractional derivatives in
weighted L spaces. For more information about inequalities related to the fractional order op-
erators, the reader is referred to [ ] and references therein.

In this paper we deal with new inequalities related to some fractional order differential operators.
Especially, the Caputo derivative analogues of the above inequalities are in the field of our inter-
est. Here, we derive the generalizations of the classical Sobolev, Hardy, Gagliardo-Nirenberg and
Caffarelli-Kohn-Nirenberg inequalities. Note that in this direction systematic studies of different

is the Gagliardo seminorm and p*

functional inequalities on general homogeneous (Lie) groups were initiated by the book [ ].
Recently, more attention has been paid to the study of fractional analogues of known functional
inequalities (see e.g. [ , , , , ]). Also, we note that in [ ], the

author considered Sobolev-type inequality for the Caputo and Riemann-Liouville derivatives of
order o > 1.
We start by compiling basic definitions of fractional differential operators.

2. PRELIMINARIES

Let us recall the Riemann—Liouville fractional integrals and derivatives. Also, we give defini-
tions of the Caputo fractional derivatives. In [ , p-394] the sequential differentiation was
formulated in a way that we will use in the further investigations. We refer to [ , ]
and references therein for further properties.

Definition 2.1. The left Riemann—Liouville fractional integral 17, of order a > 0, and derivative
D¢, of order 0 < a < 1 are given by

IJﬂm—H)/U—WlﬂmhtewH

and
AGIOES: mﬂHMtemm

respectively and f € AC|a, b). Here I denotes the Euler gamma function.
Since 1°f(t) — f(t) almost everywhere as a — 0, then by definition we suppose that 1°f(t) =
f(t). Hence D;+f(t) = f/(¢).
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Definition 2.2. The left Caputo fractional derivative of order 0 < a < 1 is given by

oL [f1) =D [f )= f (@] =11, 1 € (a,bl.
Property 2.3. In Definition 2.2, if f(a) = 0, then 9}, = D7 .

Property 2.4. If f € L'([a, b]) and a > 0, f > 0, then the following equality holds

510 f( =I5 f(0).

Property 2.5 ([ D. If f € L'([a,b]) and f' € L'([a, b)), then the equality

19° f(t) = f(O) - f(@), 0 <a <1,

holds almost everywhere on |a, b].

3. THE MAIN RESULTS

In this Section we derive the main results of this paper.

Remark 3.1. We note that in all statements of this section we will work with the Caputo fractional

derivative 0% . But analogous results can be easily obtained for the Riemann-Liouville derivative
R . . ; .

D¢ with the same order a < 1 by adopting the techniques in the proofs and taking into account

Property 2.5.

3.1. Poincaré-Sobolev type inequality. In this subsection we show the Poincaré—Sobolev type
inequality for fractional order operators.

Theorem 3.2. Let u € L*(a,b), u(a) 0% u € LP(a,b) and p > 1. Then for the Caputo

0,
fractional derivative 97, of order a € ( , 1] we have the inequality

S

(b—a)"”

a
a+

-] ~iI—=

(3.D eall oo gy <

(ﬂ - L) " T(a)

p-1 p-1

Lr(ab)

Proof. Letu € L*(a,b), u(a) =0, 05 u € L”(a, b) and consider the function

(3.2) u(t) = 1% 0% u(t).

a+ a+
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Using the Holder inequality with 11—3 + 5 = 1, we obtain
t

|(t - s)""leJru(s)’ ds

12,9,u(0)| <

L
I'a)

! P

r :
< 1 /(t —5)¥ds / 0* u(s)|p ds

a

1
t p

1
ER T i PP
= T a+u N | S
(g —q+ 1) I'(a) |
a—1+1
S (b - a) 1 i aa+u
1 a+7 || Le(a,b)
(ag—q+ 1) I'(a)
1
b—a)"»
= b-a - 0% u
1 at (| Le(a,b)
(ag—qg+ 1) I(a)
1
(b—a) 7 «
PR
(Z-%) r@
where g = ﬁ > 1.
Then,
1
o a (b _ a)a_; (14
(3.3) ”u”L""(a,b) = ”Ia+aa+u”L°°(“’b) = ap 1 ,,% at|| Lo(ab)’
(Z-%) r@
showing (3.1). O
Remark 3.3. In Theorem 3.2, by taking 1 < q < oo, we obtain
1 1
(b—a)"v"a .
(34) ”u”Lq(a,b) < p-1 a+" || Lo(a,b) .
Sm) T

Let us also present the following result.

Theorem 3.4. Let 9% u € L¥(a, b) with p > 1 and let f € [0, 1) be such that a € (/3 +1 1]. Then

B

o We have

for the Caputo fractional derivative 0

1,1
(b—a) "
3.5) ||a£+u”L°°(a,b) < ‘ J

1
(aq—Pg—q+1)iI'(a—p)
foralll<p§q<oo,wherei+é=1.

a

Le(ab)



Proof. By using Definition 2.2 and Properties 2.4 and 2.5, we introduce the function

(3.6) b u(t) = 1L,77w () = 1719 () = 1570 ().

a+ a+ -+

Using the Holder inequality with i + é =1, we get

t
a— a 1 a—f— a
15708 u(o)| < e / |t = )"0 u(s)| ds

t

1 — \*4—P9—q q
<tasp /ool |

a

o p
oz u(s)| ds

1
! P

= - a)a—ﬁ—1+§ / 0% u(s)| ds
(aq—ﬂq—q+1)$1“(a—ﬂ) f "
1 1 i
- (- / 0% u(s)| ds
(@g—pg—q+DiTa—-p|/ 7
< (-0 @ ,
at || Lr(a,b)

" (ag-Pg—q+1)iT(a—p)

where by assumption « > f + i, we have ag — fig — g + 1 > 0. From this, we obtain

(b—a) "

(3.7 ”ag+u”L°°<a’b) < 1 ‘ % Lr(ab)’
(aqg—Pg—q+ 1) I'(a—p) ’
showing (3.5). U
Remark 3.5. In (3.5), if p = 0, we obtain the Sobolev type inequality.
Remark 3.6. In Theorem 3.4, by taking 1 < q < oo, we get
a_ﬂ_l+l
s (b—a) P a a
(3.8) 108l < o

1
(@q = g —q+ 1) I(a = p)
3.2. Hardy type inequality. Let us show the Hardy inequality.

Theorem 3.7. Let a > 0, u(a) = 0 and (32‘+u € LP(a,b) withp > 1 and a € (1—1), 1]. Then for the
Caputo fractional derivative 0. we have the inequality
a'(b—a)*

= ]
Lr(a,b) < ap 1

———) " I(a)

u

X

a
a+

3.9

LP(ab)

p—1 p—1
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Proof. From a < x < b we have % < i < i By using Theorem 3.2, we calculate

|u(x)|”

(

(3.10)

showing (3.9).

Lo :
dx) =</ x_p|u(x)|”dx>

-1
<a ”u”Ll’(a,b)
GD al(b-a)

a
a+

Lr(ab)’

Let us give the weighted one-dimensional Hardy type inequality.

Theorem 3.8. Lera > 0, u € LP(a,b), u(a) = 0 and 9} u € L?(a,b) withp > 1 and a € <i, 1].
Then for the Caputo fractional derivative 9. of order a and y € R we have

u

@3.11)

where q = Pl.
.

Lr(a,b) B

a

a "=1plrl(p — a)*

(aq — g+ D¢ (@)

b

L(a,b)

Proof. We prove our statement in two stages, namely, when y > 0 and y < 0. Firstly, let us study

the case y > 0. For a > 0, we have b™7~!

dx) <

|u(x)|”

x+Dp

(/

(3.12)

< x7 1< a7 sothat

b ’
- </ |u(x)|pdx>
a’- l(b—a)a </ |aa ulpdx>

(B-%) @

1

—]/—1 — a b Yp ;

_ a (b a) (/ x_laa ulpdx>

XVP a+
(- ) I(a)
p-1 p—1
Plo% ulr \?
xrp

a7 1p’ (b — a)*
or.u

3.1)
<

- =

(:Tpl p= 1) IF( )
a7’ (b — a)"

Wq—q+}ﬁrw)

LP(a,b)



To show the case y < 0, one obtains

1
, :
|lu@l” 1\’

< /a rp

1
b P »
( / Ju0)| dx)
a x(rp+p)
1
b P »
< b7 </ |u(x)| dx)
a xp

G99 a7 h(b - a)* "

p=1 a+

<% ~ _) @) LP(a,b)

p—1 p—1
—1 Y(h — 4\ ?
_ oo ( |a”qux>
(3.13) (f%—;L I(@)

‘lbyb— a ;
_ ( ") < |a“ |de>
(ﬂ_; v
p—1 p—

(/”|0“u|1’ >;l,

a~'b” V(b — a)"‘
aa

pl p—

a’~ b V(b —a)

’

Lr(a,b)

(,:’f’am)p_lm

implying (3.11). U

3.3. Gagliardo-Nirenberg type inequality. Now, we are on a way to establish the Gagliardo-
Nirenberg inequality for differential operators of fractional orders. We show that the Sobolev type
inequality formulated in Theorem 3.4 implies a family of Gagliardo—Nirenberg inequalities.

Theorem 3.9. Assume that 1 < p,q < o, a € (i, 1] and u(a) = 0. Then we have the following
Gagliardo-Nirenberg type inequality

(3-14) ”u”Lr(a,b) < C”ag_,_u” L(a, b)”u”Lp(a b)’
with
1 —
(3.15) rs =9y
q p

where s € [0, 1].



+ }’(1 5) _

Proof. By using the Holder inequality with & = 1, we have

b b
/|U(X)|ydx:/ o) |7 |u(x) |V d x

rs r(d=s)

b q P
(3.16) g( / |u(x)|qu> ( / |u(x>|"dx)

y(1-s5)
Li(a, b)”u”LP(a,b)’

showing (3.14). U

< Cllo5, ull”?

Let us consider the space H jf(a, b) with a € (% 1] of the following form

H%(a,b) := {u € L*(a,b), 0°,u € L*(a,b), u(a) =0}.

In particular case of Theorem 3.9, which is important for our further analysis, when ¢ = 2 and
a = 1, one obtains the classical Gagliardo-Nirenberg inequality:

Corollary 3.10. We have the following Gagliardo-Nirenberg type inequality

(3.17) el oy < Cllllyy 52

fors € [0, 1].

We also recall another more general special case of Theorem 3.9 with g = 2:

Corollary 3.11. Let a € (%, 1]. Assume also that 1 < p < co and s € [0, 1]. Then we have the
following Gagliardo-Nirenberg type inequality

(3.18) el S Nl Nl 52

=34 1=
for——2 —

3.4. Caffarelli-Kohn-Nirenberg type inequality. Now let us show the fractional Caffarelli-
Kohn-Nirenberg type inequality.

Theorem 3.12. Assume thata > 0, a € (1 — é, 1), l1<pg<oo,0<r<oo,andp+q>r. Let
5 €0,11n[=%,2] and ¢,d,e € R with g + 1qi =2 c=08d—1)+e(l - ) and u(a) = 0. If
1+ (d —1)p > 0 then we have

d
(3.19) 1xull iy < CIAO ull o Iull 52,

Proof. Case 6 = 0.
If 6 =0, then ¢ = e and ¢ = r. Then (3.19) is the inequality
||xcu||L’(a,b) < ”xcu”u(a,b)-

Case 6 = 1.



If6 =1,thenwehavec =d — 1 and p =r. Also,wehave 1 + cp =1+ (d — 1)p > 0. Then by
using weighted fractional Hardy inequality (Theorem 3.8), we obtain

xc+laa u

Ix“ull Logapy < € ot

Lr(a,b)

G20 =C dea“ u

a+

LP(ab)
Case 56 € [0,1]n [%, g].
By assumption ¢ = 6(d — 1) + e(1 — o) and by using Holder’s inequality with % + 1%5 = % we

1
b :
x“ull 1 py = </ X”|M(x)|’dx>
a

b or (1-8)r %
(3.21) =< |u()|°" Ju(x)] dx)

x6r(1—d) x—er(l—é)

calculate

1) 1-6

u

xl—d x—¢

Lr(a,b) Li(a,b)

By using weighted fractional Hardy inequality (Theorem 3.8) with 1 + (d — 1)p > 0, we obtain

u P 1-8
xull o) < ‘ = —
(3.22) @b X | Loay 11X |l Lacan)
d 5 1-6
S C”x aZ+u||LP(a,b) ”xeu”Lq(a’b)’
completing the proof. U

4. SEQUENTIAL DERIVATION CASE

In this subsection we collect results for the sequential derivatives. Indeed, these results are im-
portant due to the non—commutativity and the absence of the semi—group property of fractional
differential operators.

4.1. Fractional Poincaré-Sobolev type inequality.

Theorem 4.1. Let 05+u(a) =0 0°0"u e L?(a, b) with a € (i, 1) and f € (0,1). Then the

a+ a+
following inequality is true

(b-a)

B a Af
“4.1) 1053 ull Looay < T 0,,0,,.u an’
(ag—q+ 1)) ’
with + + 1+ = 1.
p q
Proof. Consider the function
B _ ga o f
(4.2) 0y u(t) = 17,07 0, u(?).
10



Using the Holder inequality, one has

a ja f 1 a—13a B
12,07, 00.u(n)| < ) / |t = 5y~ ar, 9l u(s)| ds

q t

t
<1 / (t — 5)“94s / 0% 0 ues)| ds
~ T(a) atrat

a

S =

t

_ (t _ a)a—1+:—l /
(aq — g+ 1)s [(a)

a

=

0% o u(s)|pds

a+ a+

(b _ a)a—l+$

< 9%’ .
= 1 a+ a+ P(a
(ag — g+ 1)7T(a) e
Then we obtain
1
(b-—a)"r .
||af+u”L°°(a,b) < I ‘ 6a+df+u Lr@ab)’
(ag —q+ 1) T(a) ’
completing proof. -
Remark 4.2. If 1 < 0 < oo in Theorem 4.1, then we have
141
/ b-—a) 7" .
19gsutll Logapy < ‘ 9% a“+ Lr(ab)

(ag— g+ 1) I(a)
4.2. Fractional Hardy type inequality. Now we show the following sequential fractional Hardy
inequality.

Theorem 4.3. Leta > 0,y € R anda +u(a) = 0 and 0% o’ ue L?(a, b) with a € <é,1) . Then

a+ at+
the following inequality is true
df N7

X

(4.3) <C|lo* d’

a+ a+

Lr(ab)’
LP(a,b) (@b)

with L +1=1.
p q

Proof. From a < x < b we have % < % < é By using Theorem 4.1, we calculate

b i
</ |0 u(x)IP > _ (/ x-P|afj+u(x)I”dX>

-1
<a ||a£+u”u(a b)
@D g =)
Y ab-a)

(aq—q+ l)q ['(a)

showing (4.3). [
11

“4.4)

6"0

att Lr(ab)’



4.3. Fractional Gagliardo-Nirenberg type inequality. In the same way as Theorem 3.9 is
proved, we can prove the following statement.

Theorem 4.4. Assume that 1 < p,q < oo, and let « € (0, 1) be such that p € <l, 1). Suppose
that 05, dﬁ u € L%a,b) and du € LP(a, b). Then we have the following Gagliardo-Nirenberg type

mequallty
sy d=s)y
4.5) / 0%, u(x)"dx < (/ 107, 0 u(x)l"dx)q </ o u(x)|”dx> o
with
4.6) ARGt A
q p ’

where s € [0, 1].

Proof. Let us calculate the following integral

b b
a _ a s a (1-s)
/ |6a+u(x)|7dx—/ |07, u(x)[*" |0, u(x)|" " dx

4.7) , s (-5
< </ |0Z+u(x)|"a’x> </ 0% u(x)lpdx> ,
with
48) vy door_y
q p

Then by using Theorem 4.1, we obtain

d=s)

b b " b =
|07, u(x)["dx < (/ |()Z+u(x)|qu> (/ |a;’+u(x)|"dx)
3) b pw
<C < / |a{j+ag+u(x)|4dx> < / |9 u(x)l"dx)

The theorem is proved. 0

4.9)

5. HADAMARD FRACTIONAL DERIVATIVE
Let us give the definition of the Hadamard fractional derivative.

Definition S.1. The left Hadamard fractional integral %, of order a > 0, and derivative D of
order 0 < a < 1 are given by

! a—1
SZ+[f](t)=ﬁ / (10g2) f(s)%, t € (a,b),

and

D [f1(1) = ﬁ/ (10g£>_af’(s)%. t € (a,b].

Here I denotes the Euler gamma function.
12



Property 5.2 ([ D. If f € L'(a,b) and f' € Lll(a, b), then the equality

D () = f(1) ~ fla@), 0<a <],

holds almost everywhere on |a, b].

Now for p > 1 we define the weighted Lebesgue space L‘i (a, b) with the norm

X

(5.1) ||”||L1’ (ab) * </ |U(x)|pdx>

For our further purpose we will need the following property of the weighted space L‘i (a, b).

X

Property 5.3 ([ 1). Suppose that f € Lll(a, b). Then for the parameters a > 0 and f > 0 we

have the following equality

L0 =S5 F ),
for almost all t € (a, b).

5.1. Poincaré-Sobolev type inequality. In this subsection we show the fractional order Poincaré—
Sobolev type inequality.

Theorem 5.4. Let a > 0 and p > 1. Assume that u € L”(a, b) and D% u € L’i (a, b) with u(a) =

X

Then for the Hadamard fractional derivative D% of order a € <i, 1] we have

(5.2) [ ||

Proof. Letu € L’i (a,b), u(a) =0, @Z S L?(a, b) and consider the function

(5.3) u(t) = 3¢, D2, ue).
13



Using the Holder inequality with 11—3 + % = 1, we obtain

t

‘ ~a 1 1\ ds
‘5a+§)a+u(t)| < m/ (10g;> @(Hu(s) 1
g SP a
1 1
t il 1 »
1 t|“ " ds rds
< — log - — D —
~ I'(a) / ©2 s s / ‘ a+H5) s
a—1+21 t 1
0t>l 10g z ! P dS !
:” 1 / ’Q)Z+u(5)| T
(ag—q+1)sT(@) |/
a—1+1
‘log% !
= 1 H Z+ ||L” (a,b)
(g —q+ 1) I(a) i
-1
‘logs !
- 1 H at ”L” (a,b)
(g —q+ 1)i I(a) E
!
‘logg !
N o NG H s @y’
(#-%) @ "
where g = ﬁ > 1, showing (5.2).
O
Remark 5.5. In Theorem 5.4, by taking 1 < 6 < oo, we have
1 a—l
(b—a)o [log2|
(5.4) lll e < |2
2 - L) T :
p—1 p—1

5.2. Hardy type inequality. Here, we show the Hardy inequality for the Hadamard derivative.

Theorem 5.6. Let a > 0 and p > 1. Assume that ®Z+u € L’i (a,b) and u(a) = 0. Then for the

X

Hadamard fractional derivative D%, of order a € <i, 1] we have

1 1 b a—é
u a(b—a)r log;|
(55) o 5]
Xl Le(a,b) ap ! ”TF L i (a,b)
(=-5) r@ '

14



Proof. From a < x < b we have % < i < i By using Theorem 5.4, we calculate

b : b .
(/ lu(xt)lpdx> = </ x"’lu(x)l"dx)

< a_lllu”Lp(a,b)

(5.6) ol
log ﬂ !

H a
p—1 a+ P ’
Ll(a,b)

(ﬂ_L>7r(a) %

1
(5.2) a'(b—a)r
<

p—1 p—1

showing (5.5). [
Let us show the weighted Hardy inequality with the Hadamard derivative.

Theorem 5.7. Let a > 0, u(a) = 0 and ‘E)Z+u S L’i(a, b) with p > 1. Then for the Hadamard

fractional derivative D' of order a € <1—1), 1] and y e* R, we have inequality

a
@aJru

x7

u

<

Lr(a,b)

6.7

L” (a,b)

X

Proof. We prove this result in two steps. Let us first show the case y > 0. Since a > 0 we have
b1 < x7=! < @7~!, and by the direct calculations one obtains

1 1
b 5 b 5
u(x) 14 p o P

< lx(yﬂ)lp dx> <a7! </ |u(x)|pdx>

1 a—

—y—1 - b
G2 @’ (b—a)r 108;‘ b Ldx )’
< — | D], ulf—
. X

<ﬂ _ L)T (a)

= -

p—1 p—1
arlb-arflog|T o NG
- ([ Fmert)
(5.8) (E ~ L) @
p—1 p—1

1
a—-

—y=1¢p i ¥ bl" » « 1
< a’(b—a)b |10ga‘ < b |§)a+u|pg>p

(ﬂ_L>%‘F(a) e

p—1 p—1

1 ast
a7\ (b—a)r b |10g 2‘ 1|28 u

) (ﬂ_L>%F(Q)

L’ (a.b)
x

p—1 p—1
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Now to prove the case y < 0 we arrive at
b - b -
lu)IP . \” lu)I? . \*
dx| = dx
. X+bp . Xuptp)

b ;
<b (/ Iu(X)I"dx>
a xP

(5.5) b‘}’a‘l(b — a); lOg s‘a_;
< o
- N H at L (a.b)
(B) 0
V4 V4
1 b’a—l
bra'(b—a)r [logt| 7, /b ;
- ([ o)
a, 1 pT a X
(5.9) (;”1 _ pj) I(a)

i a1
bra b -ayflog|" T o en NG
= — </ —|§)“+u|"—>
fimd . X'P a X
(ﬂ _L> " T(a)

p—1 p—1

b7 a1 (b — a)r

_1
log | (/ |s>z+ulpdx>i

<
- | p=l xrp X
ap _ p
<1: p—1> M@
b7~ (b — a)r 1og§)“7 o u
ap 1 [%] L (a,b)
(%-%) @ %
showing (5.7). ]

5.3. Fractional Gagliardo-Nirenberg type inequality with Hadamard derivative.

Theorem 5.8. Assume that a« € <i, 1], 1 < p,g < o©. Then we have the following Gagliardo-
Nirenberg type inequality

(5.10) lull gy < CNDGullye o Nl

L @by 1" Loy

with

1 -
ys o rd=9s _
q p

(5.11) 1,

where s € [0, 1].
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Proof. By using the Holder inequality with % + % = 1, we get

b b
/|u(x)|ydx=/ ()| [u]?~d x

b = b 1=
(5.12) < (/ |u(x)|qu> (/ |u(x)|”dx>
(2 ’ ’

a s y(1=s)
< CIDully 0l

X

completing the proof. U

5.4. Fractional Caffarelli-Kohn-Nirenberg type inequality with Hadamard derivative. Now
we are in a position to show the fractional Cafarrelli-Kohn-Nirenberg type inequality.

Theorem 5.9. Leta > 0,1 < p,g < o0, a € <1—i,1), and 0 < r < oo such that p+q > r.
Suppose that 5 € [0,1]1 N [=£, £] andc,d,eeRwith§+l;—5 =%andc=6(d—1)+e(1—5).

—_—, =
r r

Assume that xd@ZJru € L’i (a,b), xu € Li(a, b) and u(a) = 0.

Moreover, let 1 + (d — i)p > 0 then we have x‘u € L"(a, b) and

6

(5.13) 1Xtll iy < C |)xdis>g+u [|xcCul| =2

L’ (ab) Lia.b)’

X

Proof. Case 6 = 0.
If 6 =0, then ¢ = e and g = r. Then (3.19) is the inequality

||xC“||Lr(a,b) < ”xcu”u(a,b)-
Case o = 1.
If6=1,thenwehavec=d —1and p =r. Also, wehave l + cp =1+ (d — 1)p > 0. Then by
using weighted fractional Hardy inequality (Theorem 5.7) we obtain

xc+1 Qa u

”xcu"Lp(a,b) <C at

L’;(a,b)
(5.14) _c ”xd@a .

a+

L? (ab)

Case 56 € [0,1]n [%, g].
By assuming ¢ = 6(d — 1) + e(1 — ) and using the Holder’s inequality with g + ? = % we

1
b ¥
| x“ull 1rop) = </ x”|u(x)|’dx>
a

b sr (1-8)r :
(5.15) =< |u(0)|°" |u(x)| dx)

x&r(l—d) x—er(l—&)

calculate

o 1-6

u

u

x—e

1-d :
X L?(a,b) L4(a,b)
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By using the weighted fractional Hardy inequality (Theorem 5.7) with 1 + (d — 1)p > 0, we obtain

o 1-6

u u
X ull Loy < ‘ 1=d x—¢
516 d iP(a,b)(s Lz(a,b)l y
<C|lx Q)HMHL,)I (a’b)”x ””Lq(a,b)’
showing (5.13). )

6. APPLICATIONS

In this Section we show some applications of the obtained inequalities for the real-valued func-
tions u.

6.1. Uncertainly principle. The inequality (3.9) implies the following uncertainly principle:

Corollary 6.1. Leta > 0, u(a) = 0 and 0% u € L’(a, b) with p > 1. Then for the Caputo fractional

L o 1 L .
derivative 0, of order a € (;, 1] we have following inequality

-1 o
) a ' (b—a) a
(61) ||u||L2(a,b) < -1 o+ || Lo ”xu”Lq(a,b)’
7R
<p—l p-1 ) o)
where g = -,
p—1
Proof. By using (3.9), we obtain
-1 a 6
a (b—a) CENIP
- Z+ ”xu”L‘l(a,b) 2 = ||xu||Lq(a,b)
1\ 7 Lrab) Lr(a.b)
(6.2) (ﬂ _ —) (@)
p-1  p-1
2
Z ”u”Lz(a,b) ’
completing the proof. U

Remark 6.2. Also, the uncertainly principle holds for the Riemann-Liouville derivative.
Let us show uncertainly principle for the Hadamard derivative.

Corollary 6.3. Let a > 0 and p > 1. Assume that D LU € L’i (a, b) and u(a) = 0. Then for the

X

Hadamard fractional derivative D' of order a € <i, 1] we have

| a-t
i a'(b - a)r 1og§( Z
63) . < =[] Pl
a L) x
Hok) T
- 2
where q = pat
Proof. Proof is similar to Corollary 6.1 with using Theorem 5.6. U
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6.2. Embedding of spaces. Let us consider the space H Y(a,b) with @ € (%, 1] introduced in
[ , ] in the following form

H%(a,b) := {u € L*(a,b), 0°,u € L*(a,b), u(a) =0}.

If @ < f, then by the Poincaré—-Sobolev-type inequality (3.1) we have H” (a,b) & H “(a, b).
Let us introduce the space Wﬁ in the following form

Wi(a,b) 1= {u € L*(a,b), D u € L*(a,b), u(a) =0},

where D7 is the left Hadamard derivative. If a < f, then by the Poincaré-Sobolev-type inequality
(5.2) we have W/(a, b) > W4(a, b).

6.3. A-priori estimate. Here, we seek a real-valued solution to the following space-fractional dif-
fusion problem

6.4) u(x,1)+ Dy 0% u(x,1) =0, (x,1) € (a,b)x(0,7T),
' u(x,0) = uy(x), Vx € (a,b),

where a € (% 1], ue L>0,T;H(a,b)),u, € L*(0,T; H*(a, b)) and uy € L*(a, b).
Now we show an a-priori estimate for this problem. Let us define

b
1) = G, I, = / luCr, ) Pdx.

Then by multiplying (6.4) by u, integrating over (a, b), and by using integration by parts, we compute

b b
/u,(x,t)u(x,t)dx+/ u(x, 1)Dy_0% u(x, t)dx

1 d [’ ’

(6.5) =_-= / lu(x, t)|*dx + / 0%, u(x, 1)|*dx
ldI(t) .
=5 /a |07, u(x, |*dx.

By using (3.1) with p = 2 in (6.5), we get

I G 1dI(t 20 — HI? ’
T2 ar 2 di (b —ay*

Consequently, we arrive at dg(’) < 0. This means that 1(7) is a non- decreasmg function. Then for
all > 0 we have 1(¢) < I(0). Thus,

l|u(x, )||L2(a b = ||”0||L2(a b)*
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