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ABSTRACT
Glaucoma is an irreversible pathology, generated by increased
intraocular pressure. Early detection is critical and can pre-
vent total vision loss. Clinical examinations are commonly
used to detect the disease. Still, the time and cost of identi-
fication is quite high. This paper presents a computational
methodology that aims to assist specialists in the discov-
ery of glaucoma through Computer Vision techniques. The
proposed methodology consists in the application of several
texture descriptors combined with a parameter optimiza-
tion done through Grid search with the XGBoost classifier.
A result was obtained with accuracy of 82.37% and ROC of
82.08%.
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1. INTRODUCTION
Glaucoma can be defined as an optic neuropathy, which

can compromise the entire optic nerve structure, cause dam-
age to the nervous system and also increase intraocular pres-
sure [16]. The World Health Organization (WHO) reports
that glaucoma is the second leading cause of irreversible
blindness in the world [22]. Studies show that by 2020 more
than 79 million people could be carriers of glaucoma world-
wide [2].

Glaucoma is an asymptomatic disease in its early stages,
which leads many patients to be unaware of the disease until
it reaches advanced stages, which is why an early diagnosis
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that enables timely treatment is important [7]. Statistically,
the increase of intraocular pressure does not indicate the
presence of glaucoma, but normal intraocular pressure does
not exclude the presence of the disease. This implies that
the diagnosis of glaucoma should be based primarily on the
analysis of the optic disc through fundus images [17].

Diagnoses of diseases in the field of ophthalmology require
analysis of large quantities of images. The image analysis
process for the diagnosis of glaucoma is still done manually
in a slow and subjective manner. In addition, results may
vary among professionals with a very high workload [24].

In this context, this work presents an automatic method
that applies the descriptors Gray-Level Co-Occurrence Ma-
trix (GLCM) and Local Binary Pattern (LBP), combined
with Grid search parameter estimator and Extreme Gradient
Boosting (Xgboost) classifier, with to provide an improve-
ment in the classification of healthy glaucomatous images.

2. RELATED WORKS
Known studies on the problem of classification of fundus

images have become relevant over the years and have become
popular in the scientific world. Table 1 shows a summary of
the main information from related works for the classifica-
tion of glaucomatous images.

3. METHODOLOGY
In this section we expose the methodology used to de-

velop the proposed method. Figure 1 provides a summary
of the steps taken: Image Acquisition, Feature Extraction,
Classification, and Validation Metrics.

3.1 Image Acquisition
The base used for this work was the RIM-ONE R2 [23],

composed of 455 retinal images. The previous diagnostic
process was performed by specialists, who determined a set
of 200 glaucoma images and 255 healthy images. In order to
using the proposed method, the Optical Disc regions were
segmented from masks made available by specialists from
the base itself.

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 84-88, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade Salvador: Portal de Periódicos UNIFACS

https://core.ac.uk/display/327145479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Methodology.

Figure 2: Examples of RIM-ONE R2 base images.
(a) Normal, (b) Glaucoma.

3.2 Preprocessing
At this stage, logarithmic intensity transformation was

used for image enhancement, increasing the contrast of in-
tensity ranges or even binarizing the images. This transfor-
mation maps a narrow range of low input intensity values
to a wider range of output levels, which can be expressed in
Equation 1 [11] where, in the proposed method, C = 80

S = C ∗ log(1 + r) (1)

in which C is a constant and r is the pixel value.

Figure 3: Examples of RIM-ONE R2 base images.
(a) Without preprocessing, (b) Image (a) With pre-
processing using logarithmic intensity transforma-
tion.

3.3 Feature Extraction
In the proposed method, we used descriptors that extract

information related to: spatial distribution, luminosity vari-
ation, smoothness, roughness, regularity, surface structures
and the relationships between nearby pixels [21].

GLCM is a texture descriptor that analyzes competitions
between pixel pairs, storing their relative intensities in a

square matrix. Co-occurrence probabilities are calculated
between two gray levels i and j, using the angles (0o, 45, 90o

e 135o) and a distance named as pixel pair spacing [12].
LBP is used for feature extraction in the image recogni-

tion and classification process. In this method the intensity
of each pixel of an image is replaced by a binary vector,
determined by comparing each neighboring pixel with the
central pixel, where the size of the neighborhood is 3x3,
constituting the default limit value. The values obtained by
neighbors are concatenated and the binary number gener-
ated is converted to the decimal base to replace the central
value [20].

3.4 CLASSIFICATION
After the image characterization process, the extracted

features were classified. This process is done with and with-
out parameter optimization through Grid search and the
Extreme Gradient Boosting classifier, using the cross vali-
dation method to give more consistency to the results.

Grid search.
It implements a fit and score method. It also implements

“predict”, “predict proba”, “decision function”, “transform”
and “inverse transform” if they are implemented in the esti-
mator used. The estimator parameters used to apply these
methods are optimized by cross-validated grid search on a
parameter grid [14].

XGBoost.
The XGBoost or Extreme Gradient Boosting algorithm is

based on the gradient boosting machine (GBM) technique
[10] and can be applied in the context of supervised learning.
The method uses predictors (trees) that minimize the chosen
loss function. The loss function consists of two factors: a
calculated error rate on validation and a smoothing factor.
XGBoost is scalable and its details are described in [4].

Cross validation.
It is a computationally intensive technique that uses all

available examples of training and test samples. This type of
underperformance estimation lacks computational efficiency
because the training process is repetitive, but the ultimate
goal is to decrease the estimate variance [25].

3.5 Validation Metrics
To evaluate the performance of the proposed method will

be used the evaluation metrics: sensitivity, specificity, accu-
racy [3], Kappa [6] and Receiver Operating Charac teristic
(ROC) [19].

For evaluation of the test four situations are possible:

1. True Positive (TP): An unhealthy image is correctly
classified;

2. False Positive (FP): A healthy image is considered ill;

3. True Negative (TN): A healthy image is considered
classified;

4. False Negative (FN): An unhealthy image is considered
healthy.

Sensitivity (S) indicates the percentage of times the test
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Table 1: RELATED WORKS.
Working Used Techniques Base Sample Accuracy

[15] Deep learning Various Chinese Clinics 48.116 92.9%

[5]
Use of texture descriptors

And Convolutional Neural (CNN)
DRISHTI e RIM-ONE

in its 3 versions
873 91,06%

[1] Diversity Indexes RIM-ONE version 2 455 93,41%

[9]
Image Decomposition

and Bayesian Optimization
RIM-ONE version 2 455 91,24%

identify sick images, as defined by Equation ( 2).

S =
TP

TP + FN
. (2)

Specificity (P) is the percentage of times that the test
identify healthy images, being defined by Equation ( 3).

P =
TN

TN + TP
. (3)

Accuracy (A) is the percentage of cases classified correctly,
regardless of what is positive and what is negative, being
defined by Equation ( 4).

A =
TP + TN

TP + FP + TN + FN
. (4)

The Kappa index (K) can be classified according to Table
2, suggested by [13]. The closer the Kappa value is to 1, the
greater the agreemen.

Table 2: Levels of classification accuracy according
to the Kappa index.

Índice Kappa (k) Quality
K < 0.2 Poor

0.2 ≤ K < 0.4 Reasonable
0.4 ≤ K < 0.6 Good
0.6 ≤ K < 0.8 Very good

K ≥ 0.8 Excellent

Source: [13]

The receiver operating curve, also called Receiver Oper-
ating Characteristic (ROC), is the area of TPR versus FPR
varying the threshold. These metrics are summarized in
equations 5 and 6 [18].

TPR = S =
TP

TP + TN
(5)

FPR = (1 − S) =
TP

FP + TN
(6)

,
in which, TPR represents true positive rate and FPR false

positive rate.
The ROC chart provides an elegant way to present vari-

ous confusion matrices produced at different boundaries. A
ROC traces the relationship between the true positive rate
and the false positive rate, as shown in Figure 4 [18].

4. RESULTS
After the acquisition of the images, indicated in Section

3.1, and the preprocessing exposed in Section 3.2, tests were
performed to evaluate the proposed method. The tests were

Figure 4: ROC chart illustration
Source: [18]

performed on a set of 455 images, 200 glaucomatous and 255
healthy. Tables 3 and 4 present the results.

Based on the data presented in Table 3, using the GLCM
descriptor the best result obtained was in the red channel
with the parameters of: distance = 1 and angle = 90. With-
out applying the Grid search, it was obtained an accuracy
of 75,77% and ROC of 75,73%. With the Grid search, it was
obtained an accuracy of 76,87% and ROC of 76,68%.

Based on the data presented in Table 4, using the LBP
descriptor the best result was the green channel with the
parameters: radius = 5 and number of neighbors = 10.
Without applying the Grid search, an accuracy of 81,71%
and ROC of 81,43%. With the Grid search, an accuracy of
82,37% and ROC of 82,08%.

The results obtained with the proposed method indicate
that Grid search makes it possible to achieve better results
in the green and red channels.

Cross-validation brings greater assurance to these results.
Each channel of the Optical Disc (OD) image is capable of
producing a different representation of the anatomy of the
fundus of the eye. The Optical Disc and its edges are most
visible in the red channel. This property is used to check
for changes caused by glaucoma that are close to the edges
of the OD. The green channel has better contrast and, as in
the blue channel, the excavation is more visible because its
pixels have a higher intensity (brighter) than the pixels in
the rest of the OD [8].

5. CONCLUSION
This paper presents a computational methodology that

aims to assist specialists in the quantification of glaucoma
through Computational Vision techniques. The proposed
methodology uses LBP and GLCM to characterize the tex-
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Table 3: Classification results applying the GLCM descriptor and Logarithmic Intensity Transformations.
Without Grid Search With Grid Search

Channel A (%) S (%) E (%) ROC (%) K (%) A (%) S (%) E (%) ROC (%) K (%)
Green 70,27 67,53 73,00 70,27 40,28 71,80 68,18 74,60 71,39 42,74

69,85 66,00 73,70 69,85 39,77 70,04 65,84 73,41 69,62 39,29
69,37 66,15 72,58 69,37 38,61 68,94 65,44 71,48 68,46 36,69

Red 75,55 73,29 77,18 75,24 50,16 76,87 75,67 77,69 76,68 52,70
75,77 75,56 75,89 75,73 50,21 73,78 71,20 75,66 73,34 46,56
75,77 75,56 75,89 75,73 50,21 73,78 71,20 75,66 73,24 46,56

Blue 70,04 66,84 72,34 69,59 38,90 71,14 69,71 72,04 70,87 40,67
68,28 65,21 70,37 67,79 35,10 70,48 67,18 72,90 70,04 39,86
68,28 65,21 70,37 67,79 35,10 68,72 65,42 71,05 68,23 36,13

Table 4: Classification results applying the LBP descriptor and Logarithmic Intensity Transformations.
Without Grid Search With Grid Search

Channel A (%) S (%) E (%) ROC (%) K (%) A (%) S (%) E (%) ROC (%) K (%)
Green 81,71 77,61 85,24 81,43 63,09 82,37 78,74 85,42 82,08 64,37

80,61 77,33 83,26 80,30 60,72 82,37 79,60 84,58 82,09 64,25
80,61 80,00 81,04 80,52 60,32 80,39 76,69 83,46 80,08 60,34

Red 76,43 72,54 79,60 76,07 52,26 75,55 72,68 77,69 75,18 50,20
76,43 72,54 79,60 76,07 52,26 75,11 71,68 78,17 74,73 49,53
75,77 71,49 79,35 75,42 51,00 74,88 70,33 78,77 74,55 49,28

Blue 77,75 72,68 82,35 77,51 55,23 77,97 72,81 82,70 77,75 55,70
75,99 72,50 78,74 75,62 51,26 77,75 76,06 78,94 77,50 54,54
75,55 70,37 80,25 75,31 50,80 77,75 75,78 79,16 77,47 54,59

ture and parameter optimization using the grid search in the
Xgboost classifier. The tests were performed on the RIM-
ONE R2 database and yielded promising results in which the
grid search showed a considerable improvement in the per-
formance of the glaucoma classification. For a future work,
we intend to evaluate the impact that grid search has on the
performance of the results of other classifiers and descrip-
tors.
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In Anais do XIX Simpósio Brasileiro de Computação
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