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ABSTRACT
Radiotherapy is one of the major option used in cancer
management. The treatment involves several steps, one of
which is the construction of a computed tomography (CT)
model of the patient so that the target tissues and organs
at risk (OARs) surrounding that target can be evaluated.
With the CT, the responsible physician delimits the OARs
slice by slice, as the spinal cord that comprises almost all the
tomography becomes more tiring to be segmented and thus
susceptible to errors. Thus, this paper presents a method of
spinal cord segmentation in planning CT for radiotherapy
using template matching, histogram matching and a fully
convolutional neural network. The result achieved an
accuracy of 99.38%, specificity of 99.12%, sensitivity of
93.83%, and dice index of 81.33%, without any segmentation
refinement.

Keywords
Computer-aided detection; medical images; planning CT,
radiotherapy; spinal cord; U-Net.

1. INTRODUCTION
One treatment option in about 50% of cancer cases is

radiotherapy (RT). Because it is an attractive, effective and
common therapy option, RT is a widely used treatment,
especially when surgery and chemotherapy introduce great
risk to the patient’s life. The radiotherapy process consists
of delivering radiation to abnormal tissues so that they do
not affect the healthy tissues surrounding them. Thus, RT
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is widely used as cancer treatment and prevention because
these tissues are sensitive to radiation while normal tissues
better support the incidence of radiation [9]. However,
although they can withstand better radiation doses, excess
radiation can be toxic to organs, so planning radiation
therapy is so important.

According to [9], radiotherapy is a multidisciplinary
treatment, that is, it comprises a series of health
professionals. The involvement of various specialized
professionals intends to make the radiotherapy process more
efficient in effectively delivering radiation to tumor tissues
to have little attenuation to the normal tissues surrounding
it. Despite being a highly careful process and following
several protocols until the beginning of radiation, it is still a
procedure that involves the communication between human
and computer in several phases. If there is a human failure
in any of the stages, which is possible due to several factors,
especially biological fatigue, the patient may be at risk of
death. During the planning phase, this is where there may
be the greatest incidence of error, failure at this stage can
be crucial for the entire process [14].

Over the years, more and more studies addressing
radiation therapy have emerged not only as a treatment but
studies on the toxic effects of radiation on patients [3, 13].
The use of a group professionals and frameworks aid come
up to reduce unwanted effects to radiotherapy [16, 11, 15].
This is characterized by the fact that there is no sense in
a patient who needs to undergo radiotherapy and to have
toxic effects on healthy tissues that surround tumors.

At the planning step, a computed tomography (CT) of the
patient is performed so that the target tissues and healthy
tissues are segmented. These tissues of healthy organs that
need to be protected are called Organs at Risk (OAR) [18].
The spinal cord is an extremely important organ at risk,
this organ extends through most of the three-dimensional
model, and by composing the central nervous system, any
damage to this organ can cause irreversible damage to
the patient, such as total paralysis and partial neurologic
loss [4, 8, 2]. Because it is such an important organ, its
segmentation process must be done cautiously, the specialist
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must carefully check slice by slice to ensure the integrity of
the segmentation.

The purpose of this paper is to propose a computational
methodology for spinal cord segmentation in planning CT
for radiotherapy. By devising an automatic method for
spinal cord segmentation, it is believed that we have
achieved the following contributions: (a) use of U-Net
considered state of the art in segmentation of images for
the task of spinal cord segmentation; (b) a useful method
of automatically segmenting the spinal cord in CT; (c)
an important method that standardizes volumes purchased
from different institutes; and (d) several advances in spinal
cord segmentation task compared to previous works. Thus,
it is believed that if used in large medical centers, can be a
key ally for the expert in the segmentation task of the spinal
cord.

the paper presents 5 more sections. First, the related
works will be presented and what gap our method fills
between them in Section 2. Section 3 the materials used
and the proposed methodology for spinal cord segmentation
will be detailed. The results of applying the methodology
will be presented in Section 4. Conclusion and future work
will be presented in Section 5.

2. RELATED WORKS
Studies can be seen in the literature with spinal cord

segmentation, either in CT scans or MRI. These methods are
still scarce when we talk about segmentation as an OARs.

A knowledge-based method for spinal cord segmentation
is proposed in [1]. The technique used for spinal canal
segmentation is based on Hough transform, so the authors
detect circles that fit the spinal canal and have a ”kickstart”
of the spinal cord location and then morphological
operations are used to refine this segmentation. The method
proposed by [5] made the segmentation of the spinal cord
into magnetic resonance imaging. They propose spinal cord
segmentation using a deformable atlas and topological spinal
cord location information. The results achieved by the
authors were a Dice index of 85% and an accuracy of 91%.

[6] also presents spinal cord segmentation in magnetic
resonance imaging. The authors proposed use of Hough
transform to find the spinal cord and from this uses a
knowledge-based approach to segmentation refining. The
results achieved a Dice index of 91%. A recent work
proposed by [10] also shows the importance of segmentation
of the spinal canal (where the spinal cord is located). The
method presents a segmentation algorithm based on extract
the spinal canal from the CT images. The Hough transform
is also used in this work. The method used 10 patients and
achieved an average accuracy of 77.32%.

A proposed work considered state of the art by the
techniques employed and by the results achieved is presented
in [7]. The presented method is divided into 3 steps: first
uses a variation of the template matching to decrease the
region; the second uses a superpixel algorithm to group
candidate regions of the spinal cord and non-spinal cord;
finally, a convolutional neural network (CNN) is used to
classify these regions. The method uses a database with 36
patients and the results achieved by this work are 92.55%
accuracy and Dice index of 78%.

As shown in the aforementioned works, the importance of
spinal cord segmentation is in various imaging modalities,
which is summarized to assist the medical specialist. Most

of the work uses previous knowledge for the task of
segmentation of the spinal cord. Also, some techniques use
Hough transforms and other knowledge-based approaches to
spinal cord segmentation. Observing the state of the art, we
propose a method for spinal cord segmentation as an OAR
in computed tomography. For this, we use U-Net based
approach that do not require knowledge-based information.

3. MATERIALS AND METHOD
This section describes the materials and the proposed

method for spinal cord segmentation as an OAR. First,
the materials used for build and validation of the proposed
method and the complexity of this database are shown; each
step is then presented to achieve spinal cord segmentation.
Figure 1 presents a flowchart of these steps.

3.1 Materials
To validate the methodology, there was a need to use

a very specific database which has OARs marking in
radiotherapy planning, especially the spinal cord. The
database used to build the method is from a challenge
called AAPM Thoracic Auto-segmentation1. In total there
are 36 volumes of CT distributed equally in 3 different
institutes, ie 12 patients per institute. The ground truth
that accompanies each database volume is available in a
Radiotherapy Structure Set (RT-STRUCT) format. In
this challenge, each RT-STRUCT is labeled with 5 organs,
namely right and left lung, heart, esophagus and spinal cord.
The proposed method will only use the marking of the spinal
cord.

The expert marking that accompanies each database
volume is available in a Radiotherapy Structure Set (RT-
STRUCT) format. In this challenge, each RT-STRUCT is
labeled with 5 organs, namely right and left lung, heart,
esophagus and spinal cord. The proposed methodology will
only use the marking of the spinal cord. The spinal cord is
very difficult to see on CT scans. However, when segmented
into planning tomography, the specialist chooses to mark up
the bony limits of the spinal canal. This creates a safety
margin in the segmentation so that when calibrating the
radiotherapy device, you get greater protection to this organ.

Another point, besides different institutes, which makes
this challenge more complex, is the number of slices each
patient has. Because most tests extend from the pelvis to
the head, the slices range from 139 to 247. Another problem
that the base presents is that in some cases there is no spinal
cord marking on all slices. Example of the three institutes
can be seen in Figure 2

3.2 Volume standardization
As we can see, because it is acquired from different

institutes and with different patterns of acquisition
and variation of values of voxels, there is a need to
standardize the values, so that the method is more
effective in recognizing volume patterns. For this, the
histogram matching (or histogram specification) technique is
suggested. In image processing, the histogram specification
is the transformation of an image so that its histogram
corresponds to a specified histogram. The histogram
specification can be used to balance acquisition system
responses, and normalize two images when images have

1Avaliable: http : //aapmchallenges.cloudapp.net/
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Figure 1: Methodology flowchart.

Figure 2: Examples of database: (a) slice of institute
1; (b) slice of institute 2; (c) slice of institute 3; (d)
volume of institute 1; (e) volume of institute 2; and
(f) volume of institute 3.

been acquired by different light sources, sensors, weather,
or lighting [12].

3.3 Initial segmentation
Because it is a very large three-dimensional volume with

several slices, and because the spinal cord comprises a very
small region of the volume, the initial segmentation step
has the task of generating a subvolume of interest where
the original volume is reduced to only part comprising the
spinal cord and its circumscribing structures. For this
task, a very common technique was used in the context of
image processing and pattern recognition called template
matching. Briefly speaking, from one image, the template
matching technique finds the area with the most pattern
similarity to another, usually smaller, image called the
template. In this work, as in the work of [7], the square
difference combination method was used as a similarity
metric calculation.

3.3.1 Adaptive template matching
First it is necessary to define the standard template. We

use the same pipeline describe by [7] to define this standard
template. First, a random volume is selected in the database
. Then a slice of this volume is also randomly selected. Then

the RT-STRUCT file is used and found where there is a
ground truth, so the center of mass of this marking is found,
and a region corresponding to twice the size of the marking
is cropped on all sides of this slide.

The next step is define the initial template. The process
to build the initial template is defined as follows: first,
the template matching algorithm runs on each slice of
the volume, where the template is the standard template;
second, the similarity for each matching in each slice is
calculated; third, the initial template is defined as the one
that the matching has the greatest similarity in relation to
the standard template, also the number of the slice that
generated the best matching is saved. At the end of this
step, there is the initial template, which will be unique for
each volume.

The initial template will be adapted to each patient.
Template matching will start to execute in slice where
the matching occurred, so will result in two artifacts: the
new template (how will be adaptable for each slice of each
volume, red bounding boxes in Figure 3 represents the
matching for each slice and the new template) and the
resulting image. The new template will execute in the next
slice (as shown in the Figure 3: Slices n + 1 and n + 2),
again, the result will be the new template and the resulting
image. It should be noted that the slice where the initial
template occurred may be in the middle of the volume, so
the same process happens for the previous slices (as shown
in the Figure 3: Slices n − 1 and n − 2). The result must
be a region of interest with the matching in each slice of all
volume.

We propose to execute the template matching only in the
region corresponding to twice the matching region in the
following slices (green bounding boxes Figure in 3) and not
in the whole slice (as proposed by [7]), in this way we reduce
the algorithm computational cost and also that artifacts
outside the patient’s body do not disturb the algorithm

3.4 Final segmentation
At the end of the initial segmentation, we have a volume

of interest (VOI) of each patient. This VOI consists of
the spinal cord and the structures around it. Also what
is done with the patient, is done with the marking of the
specialist, i.e., a VOI with the equal dimension of the patient
is generated, but with the marking of the specialist. For the
segmentation of the spinal cord the VOI of each patient was
passed slice by slice into the network.

The U-Net is a CNN, has the use of same concepts
and layers, such as convolutional layers, pooling layers,
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Figure 3: Adaptive template matching.

activation layers, and dropout layers. The first authors to
propose the use of this network were [17]. U-Net consists of
a contraction path to capture the context and asymmetric
expansion path that allows precise segmentation. In short,
this network can be trained end-to-end, where U-Net simply
concatenates the encoder feature maps to map decoder
feature maps at all stages to form a ladder structure. This
architecture by its concatenation connections allows the
decoder at each stage to learn the relevant features that
are lost when grouped into the encoder.

The U-Net used in this work is the same proposed by [17],
differs only in the fact that the input slice has a different
size from that used in the architecture proposed by them.
Which is passed to the network, are slices of the patient’s
VOI along with the slice of the specialist’s marking. The
output of the network will be a slice classified as a spinal
cord. The network is trained with the dice loss function,
represented by diceloss = 1− 2TP

2TP+FP+FN
. To validate our

method, validation metrics as Dice index, sensitivity (SEN),
specificity (ESP), accuracy (ACC), and area under the curve
roc (AUC) are used.

4. RESULTS AND DISCUSSION
To train and validate our method, we divided the database

into 2 datasets. The first for training, consisting of 30
patients (10 per institute) and 6 for testing (2 per institute).
This division was made randomly, only guaranteeing the
proportion by the institute in the two datasets.

In Volume standardization step, both datasets passed
for the histogram matching algorithm to standardize the
voxel volumes of the three institutes. We assumed that
the volume with the largest number of slices would be our
reference volume for standardizing the rest of the datasets.

In the initial segmentation step, both datasets passed for the
proposed algorithm using template matching. There was no
spinal cord loss in any of the slices of any patient.

In the final segmentation, the result found by the initial
segmentation will be presented to U-Net. The images used
for the network input were of 128 × 64, based on the
randomness of the standard template creation, this was the
size that did not exceed the generated image. After several
training sections, and parameter setting, the parameters
used in the training of the nets were: number of epochs
equal to 50, size of batch equal to 1, Adadelta optimizer
with initial learning rate equal to 1 and 10% of volumes for
validation.

First, a test was performed without using the
standardization volume step, then, after model generation
with 30 volumes of training, they were applied to the 6
test volumes (2 patients per institute) and validation metrics
were taken. We made tests with two loss functions, cross-
entropy and dice. These results are described in Table 1.

Analyzing the Table 1 with cross-entropy, we can
identify that the method was promising in the spinal cord
segmentation. Even with ESP, ACC and AUC metrics
greater than 90%, the SEN value that says the number
of positive class cases were correct was less just 83.92%.
By using the dice loss, all metrics were above 90% and an
improvement in the dice value was achieved. It is noteworthy
that as described in [7], many patient slices do not have
markings, which detract from the dice.

In a second test, in order to validate the use of the
standardization step, the entire methodology was performed
and compared to the result without the standardization step.
Results are shown in Table 2

Note that by standardizing the database, we have an
improvement in almost all metrics. Only the specificity
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Table 1: Results of the step of final segmentation without standardization step.

Loss function Dice(%) SEN(%) ESP(%) ACC(%) AUC(%)
Cross-entropy 79.18 83.62 99.47 99.18 91.55

Dice 80.83 92.64 99.30 99.24 95.97

Table 2: Comparative of results of the step of final segmentation.

Standardization Dice(%) SEN(%) ESP(%) ACC(%) AUC(%)
Without 80.83 92.64 99.30 99.24 95.97

With 81.33 93.83 99.12 99.38 96.36

metric fell 0.18 %. However, by looking at the overall
importance of the sensitivity metric that assesses how well
you hit the positive class (of what is in fact the spinal cord)
there is a crucial improvement in the results. Still, with the
improvement in the spinal cord accuracy, the improvement
in the Dice, showing once again the importance of the
standardization step and the methodology as a whole.

To fit our method into the literature, we will compare the
related work.

As we can see, several methods that do spinal cord
segmentation utilize some sort of a priori knowledge.
Still, method like [6] use magnetic resonance to make
the detection. It is noteworthy that the spinal cord
segmentation in planning computed tomography is delimited
by the bone limits, and therefore some of these works, make
detection of the spinal canal also served as a comparison.

Looking at the Table 3, none of the literature has greater
accuracy than our proposed method using U-Net. When
comparing with works that use K-B, our work fills the
gap of relying on some technique such as atlas or active
contour. Moreover, work like [1], use Hough transform for
segmentation, which is not very usual, since it is not sensitive
to the edges of the bone limit. Despite the work of [5, 6]
have a Dice higher than the proposed method, we used a
larger amount of planning CT images and does not require
prior knowledge. Still, when looking at the other metrics,
our method surpasses in metrics of accuracy, sensitivity,
specificity, and AUC.

New approaches like [7, 10] propose the use of CNN for
spinal cord segmentation. As already reported, this kind
of approach is promising, since using CNN abstracts the
extraction and feature selection steps. However, there is
always a need to generate an input image, either in patches
or with some form of information. Thus, we highlight that
the proposed method that uses U-Net achieved satisfactory
results in spinal cord segmentation as a method fully
automatically, which, besides not using prior knowledge, can
also perform a more precise segmentation.

5. CONCLUSION
The proposed method is composed of three steps. Volume

standardization allows the rest of the method for better
spinal cord segmentation by standardizing the entire dataset
from 3 different institutes. Initial segmentation consists of
the use of an adaptive template matching, which decreases
the area of interest in the entire patient volume. The second
step is to classify this area of interest into spinal cord using
U-Net.

The result found were dice index of 81.33%, sensitivity
of 93.83%, specificity of 99.12%, accuracy of 99.38% and
AUC of 95.36%. Thus, the proposed method proved to be
promising in the task of spinal cord segmentation, serving as
an ally to the specialist in large centers. As future studies,
we include others U-Net variations to verify the efficiency
in the segmentation. In addition, the use of 3D U-Net
aggregating more information. Also, it is suggested to use
some bio-inspired algorithm to find the best parameters.
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