
NTA-IoT: A Flexible and Modular
Architecture for IoT Applications

Nelson Marcelo Romero Aquino, and Sidney Viana,
Fundación Parque Tecnológico Itaipu Paraguay (FPTI-PY)

Abstract—This work introduces the NTA-IoT, an abstract IoT
architecture that is intended to be flexible and modular, in order
to serve as a generic guide tool for developing IoT projects.The
model is composed of two types of layers: base layers and support
layers, with each layer providing a particular service in the
IoT infrastructure. Some considerations and possible roles for
building IoT projects following the NTA-IoT architecture are
also detailed. Finally, this paper presents an example of a con-
crete implementation of the architecture on a home automation
problem, based on the use of different technologies such as KNX,
MQTT and the Outsystems platform to build a functional end-to-
end IoT project. The correct functioning of this implementation
shows that the architecture is consistent and well-suited to serve
as strategic guide to carry IoT projects with satisfactory results.
Although the example presented in this work is applied to home
automation, the framework is hoped to be applicable to any type
of project.

Index Terms—Internet of Things, IoT Architecture.

I. INTRODUCTION

THE Internet of Things (IoT) is based on the intercon-
nection of everyday or industrial objects through various

platforms that allow these objects to be managed and, mainly,
to analyze the data generated in order to guide users in the
decision making. There are two types of IoT, one based on the
interconnection of elements through the Internet (Internet of
Things) and one in which devices are integrated only using
a local network, within a company, home or infrastructure
(Intranet of Things).

IoT is considered the future of internet communication
between machines [1]. The number of devices connected to the
internet grows each day introducing the necessity to integrate
those devices in order to have synchronized control systems
and to gain insights from all the data collected by those
devices. There is also an increased need for providing means
of connectivity for those devices that originally do not have
that capability. In this scope, there is a need for proper IoT
architectures that establish standardized paths to be followed
when carrying the development of an IoT project. Aspects
such as the heterogeneity of the devices and their working
protocols, and means of communication for these.

Following this tendency, during the recent years, several
works introduced IoT architectures devised to solve different
problems, with the common factor of the interconnection of
devices. For instance, another research work [2] presented a
architecture to perform real time interaction between mobile

*Email address: nmarceloromero@gmail.com (Marcelo Romero).
sidney.viana@pti.org.py (Sidney Viana).

clients and smart things such as sensors and actuators. The
method performs dynamic discovery of connected devices and
endpoints, allowing to connect non-smart devices connected
over Modbus [3]. The data from the devices are represented
using the Sensor Markup Language (SenML), that had its ca-
pabilities extended to support actuator control from the clients.
I. Ungurean and N. Gaitan [4] proposed an architecture based
on OPC.NET specifications1, which define a set of interfaces
to communicate client and server applications through Win-
dows Communication Foundation (WCF). The architecture is
composed of two layers or modules: the data server and the
application. The former acquires data from the sensors whilst
the latter is a client executed on PCs, tablets or smart-phones.
The paper also proposed the development of a gateway to
perform real-time data acquisition, which can acquire data
from different types of fieldbuses such as ZigBee, CANOpen,
among others, and it can be connected to an OPC.NET server
via Modbus TCP/IP or Modbus RTU. Following this line,
based on defining an architecture considering the technology to
be applied as base, an IoT architecture for automatically moni-
tor and track patients, personnel and biomedical devices within
hospital and nursing institutes was proposed [5]. The model is
based on the use of RFID, WSN and smart mobile devices
operating through an network infrastructure that combined
CoAP, LoWPAN and REST. The architecture, named Smart
Hospital System (SHS), which has its core in an IoT Gateway
that provided access to the user interfaces with a layer that
composed of a secure access manager, an application manager
and a 2-way proxy, receiving and acting on the devices from
the hybrid sensing network proposed in the work.

In contrast to these architectures, which are designed to
be applicable for specific domains, other works introduced
more general frameworks. For instance, [6], which introduced
an architecture structured into a secure API, a backbone and
device networks with interface to the backbone. The layers
of the architecture are based on the OSI stack. A similar
layered structure, was proposed by Dai and Y. Wang [7], with
four layers: Application, Internet, Adaptation and Things. This
abstract-layered architecture was also followed in another pre-
viously research work [8], introducing the Distributed Internet-
like Architecture for Things (DIAT), devised to mainly ad-
dress issues regarding the heterogeneity of IoT devices, by
defining a three-layered model with a core that consists of an
IoT Daemon, which also contains some internal layers. This
architecture aimed at addressing aspects such as scalability,

1https://opcfoundation.org/about/opc-technologies/opc-net-4-0/

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

mailto:nmarceloromero@gmail.com
mailto:sidney.viana@pti.org.py
https://opcfoundation.org/about/opc-technologies/opc-net-4-0/ 


interoperability, security, automation, among others.The model
presents a high abstraction level that could add complexity
to the process of developing an IoT project. Following this
line, the research work proposed by J. Ren, H. Guo, C. Xu,
and Y. Zhang [9] introduced a transparent computing based
architecture, which consists in allowing users to select their
desired services on-demand, avoiding them to be concerned
about details such as their installation or configuration. It
is highly focused on offering device management through
the means of cloud computing. The proposed framework is
composed of five layers: End User Layer, Edge Server Layer,
Core Network Layer, Cloud Layer, and Management and
Interface Layer.

Some architectures proposed in the works mentioned pre-
viously are focused on very concrete applications, defining
fixed data formats and technical standards to be applied when
they are implemented. This makes them strongly dependent
on the technologies in which they are based on, making
them useful only for problems of specific domains. On the
other hand, other models provide a much higher abstraction
level. However, most of them add complexity to IoT projects
through layers that may not be concern-focused. Indeed, there
is a need for a generic architecture focused on atomic and
specific concerns, that could be further extended for specific
applications, if needed.

To cope with the limitations described before, this paper
proposes a generic, flexible and modular architecture, to
serve as conceptual guide to develop IoT applications and
projects with independence from the protocols, programming
languages, operating systems or any other restriction derived
from the state of the technology at a certain period of time. The
architecture is intended to have a simple structure with a fair
level of abstraction, differently from more recent architectures
that could have high abstraction that adds more complexity
to the model. For this purpose, our proposed architecture is
designed as an evolution of the one presented by G. Dai
and Y. Wang [7], introducing modifications such as adding
two more layers that act as support for the main layers, and
describing possible protocols and technologies that could be
used when carrying out IoT projects. We also differentiate
between two types of layers: the base layers (physical, ag-
gregation, exchange and application) and the support layers
(storage and security). The base layers are mandatory through
the architecture, whilst the support layers may be included
only if necessary, although their use is recommended. We
consider that this could be a step forward towards simpler
yet robust IoT projects based on the proposed architecture.

Considering the aspects discussed before, the highlights of
this paper are:

• To provide a simple abstract IoT architecture, named
NTA-IoT, to be guide the implementation of IoT projects.

• To introduce roles in an IoT project based on the NTA-
IoT architecture.

• To describe a real-world implementation of NTA-IoT for
a simple home automation scenario.

This paper is organized as follows. Section II describes
the proposed architecture. Section III details recommendations
when developing IoT projects and introduces the roles devised

for the NTA-IoT framework. Finally, section presents conclu-
sions and future research perspectives.

II. NTA-IOT ARCHITECTURE

The proposed scheme is composed of four base layers:
Physical, Aggregation, Exchanging and Application. There are
two other layers, which we consider as support layers, acting
as complement to the base layers: the Security layer, which
will vary its scope and methods depending on the layer on
which it acts, and the persistence layer (Storage), that allows
to store the data in different manners according to which layer
is applying the persistence strategies. Figure 1 presents an
overview of the proposed architecture. The following sections
present the characteristics of each layer individually.

In addition to the description of each layer, we introduce
a concrete implementation example of the architecture for a
Home Automation scenario. Home Automation Systems [10]
aim at achieving full home control through different means.
The main idea is to have control over physical equipment from
a building, such as its lights, security systems, thermometers,
air-conditioners, access control systems, among others. IoT
pursuits the integration of all these devices physical device
that may be smart or not, by connecting them through the
internet or at least a local network. Figure ?? presents the
concrete case and the technologies used to reach the solution.

A. Physical

The physical layer encompasses different devices such as
sensors, actuators, mobile phones, GPS, surveillance cameras,
among others. There are several manufacturers and even
device standards that can be part of a devices ecosystem.
The main characteristic of the components of this layer is
its heterogeneity, there are several protocols to manage the
devices, each with its own properties and functions that have
to be taken into account when structuring an IoT project.

The devices could be smart, which implies that they could
be directly connected to a network and they are usually
programmable by providing user interfaces for such task; and
they could also be not smart, which are non-programmable
devices that do not have direct means to be connected to a
network. Devices that are not smart require a gateway to be
able to be connected to the other devices. This is tackled in
the Aggregation layer, described in Section II-B. Note that this
definition of smartness is specifically regarding connectivity
capability, for a more detailed analysis of the characteristics
of smart systems the reader can refer to [11].

This layer will address the installation, configuration and
basic administration of those devices. It will also determine
the grouping strategies and the basic operating rules, if it
is necessary and if their respective protocols allow it. It
is important to note that this layer does not deal with the
interconnection of devices of different types or protocols, so
each type of equipment is treated individually.

Implementation Example. The physical protocol chosen
for this layer is KNX2, which is a communication standard

2https://www.knx.org

20

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

https://www.knx.org


Fig. 1: Overview of the proposed framework.

Fig. 2: Overview of the technologies used for the implemen-
tation of the example.

specifically devised for home automation. It defines specifica-
tions related to: the proper KNX protocol (including security),
different media, configuration modes and applications. During
the recent years, the KNX Association have been pursuing
to integrate the KNX standard to be prepared to support IoT
applications.

For our implementation, we use the lights of a room and a
counter that defines the number of times a switch was pushed.
The lights receive and send only 1-bit signals (OFF/ON),
whilst the switch counter handles integer values of length
equal to 8-bytes. The devices were configured using the ETS53

software for KNX, which allows to program devices connected
to the KNX bus, and also assigning addresses for each on
them. ETS5 also permits to create groups of devices that can
be identified through a certain address, which is useful when
the user aims at controlling several devices at once.

Among the several available KNX devices, a KNX/IP
interface acts as a converter of signals coming from KNX

3https://www.knx.org/knx-en/for-professionals/software/ets-5-professional/
index.php

devices to be able to communicate through some IP proto-
col (UDP/IP, specifically). This device was used to connect,
through tunneling, the KNX devices to a server running in the
Aggregation layer.

B. Aggregation

The Aggregation layer groups several sub-layers, which in
turn have their own processes, that can be executed partially
or totally depending on the needs of the project.

In this layer it is possible, and even advisable, to pre-
process the raw data coming from the sensors by applying
different strategies such as conversion of formats, unification
of values belonging from several sensors into a single variable,
conversion of units of measurement, among other actions. It
is also possible to filter data by establishing time intervals that
must be met before sending data to the upper layer, applying
multiple sampling, using low-pass type filters on the data flow,
etc. Data cleaning could also be performed by removing noise,
erroneous data or any other factor that could negatively affect
the format of the data. All methods presented above are part
of the Data pre-processing sub-layer.

The two main functions of the Aggregation layer are to
perform aggregation and to provide an IoT gateway (the
Aggregation and Link sub-layers, respectively), with the sec-
ond one being mandatory within this layer. The Aggregation
consists of combining data from heterogeneous devices. By its
nature, IoT involves the collection of a large amount of data
that originate from devices of different types, manufacturers,
protocols, and with differentiated functionalities. All these data
must be unified using tools devised for such purpose, with
the objective of ultimately transmitting the integrated data to
the upper layer. In fact, to carry out this transmission, an IoT
gateway must be available within the Aggregation layer, acting
as a client of the data transmission protocol used in the upper
layer.

Implementation Example. Two servers deployed to per-
form the actions defined in the aggregation layer are tested in
order to assess the modularity of the architecture. The first one

21

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

https://www.knx.org/knx-en/for-professionals/software/ets-5-professional/index.php
https://www.knx.org/knx-en/for-professionals/software/ets-5-professional/index.php


is a proprietary software named iRidium Pro, which allows to
integrate data from different protocols such as Modbus, KNX,
BACnet, among others. This feature is named iRidium Server,
which is the only feature we used in this work. The iRidiurm
Pro framework also provides other tools: iRidium Studio,
an environment to develop interfaces and i3 Pro, a client
application for controlling the devices and server projects.

On the other hand, we developed a simple yet intuitive
integrator using Python, version 3.7, with the libraries KNXIP4

and PAHO5, the first allows to perform the tunneling between
the Python application and the KNX/IP interface, whilst the
last one provides an interface to connect to a MQTT server,
which is the resource used in the Exchange layer.

The aggregation using both, iRidium Server and the Python
Client, was performed by connecting the KNX addresses from
the devices to MQTT topics. Hence, for a light with the KNX
address 0/0/1, the topic related related to that address will be,
for instance, building1/room1/light1. It is worth mentioning
that all the data processing and formatting is performed by
iRidium Server or the Python Client. Both software are able
to give the KNX data the proper format. In order to send that
formatted data to the Exchange layer the payload was simply
the raw value of the data in this case.

C. Exchange

This layer includes data transfer protocols such as Hypertext
Transfer Protocol (HTTP) or Advanced Message Queuing
Protocol (AMQP) that allow to exchange data provided by
the IoT gateways of the Aggregation layer and the final
applications, located in the Application layer. Although the
choice of protocols to be used ultimately depends on the
needs of each application, the recommended protocols for
IoT are those based on the subscription-publication pattern
such as Message Queuing Telemetry Transport (MQTT) or
Constrained Application Protocol (CoAP).

The Exchange layer is the core of an IoT project, since it
acts as a middleware devised to connect the Aggregation layer
with the Application layer. This resource is usually publicly
visible for Internet of Things applications. Hence, the proper
authentication methods should be addressed when configuring
it. It is highly recommended to use Transport Layer Security
(TLS) in this layer in order to have end-to-end encryption of
the transferred data.

Implementation Example. For this layer we deploy a
MQTT6 server with authentication and TLS, in order to have
end-to-end encryption of the data. MQTT is a lightweight
publish/subscribe messaging transport protocol. It receives the
data sent to a certain topic and makes that data available for
all clients that are subscribed to that topic.

D. Application

It includes the final applications that allow users to access
the data coming from the IoT devices and in turn sends

4https://pypi.org/project/knxip/
5https://pypi.org/project/paho-mqtt/
6https://mqtt.org/

commands to manage them if necessary. Applications can be
mobile, web, console, among other types. How the received
data is used, the business logic to be applied on that data and
which part of the data will be considered more relevant, are
factors that are exclusively dependent on the final objective of
the application. Therefore, no limitations or patterns of appli-
cations are established in this section. However, the emphasis
is placed on applying a good user experience design [12], in
order to produce intuitive applications with high usability.

In addition to traditional applications, it is also possible
to use devices to use them as interfaces i order to access
data. Devices such as smart watches or smart glasses could
be useful as interfaces within the Application layer. Although
at the same time they could also be devices from the Physical
sending data to the upper layers.

The final goal of the Internet of Things is the analysis of
the data obtained from the various devices used for decision
making. Therefore, an Intelligence sub-layer is proposed in
order to generate visualizations, predictions, classification and
grouping of data.

Implementation Example. A mobile application is devel-
oped using the Outsystems platform7. The application is able
to receive data from the MQTT server by acting as a MQTT
client and subscribing for specific topics, and also act on the
devices that provide such capability. Therefore, to control the
light with the KNX address 0/0/1, the application sends the
proper value to the topic building1/room1/light1, which is
the same configuration used in the Aggregation layer by the
integrator (iRidium Server or the Python Client). Figure 3
presents screenshots of the application.

Fig. 3: Screenshots of the mobile application.

Note that this application could also be a web app or
a console app. The only thing that must be considered is
to properly provide the connection with the Exchange layer
protocol, which is MQTT for this example. In fact, a Python
MQTT Client could be configured to run in console in order
to perform the same actions.

Although we did not use storage options in this layer, or in
any other layer of the architecture, for this project, it is possible
to do so by connecting the application to a data server in order
to process and analyze that data afterwards. The application
could also have authentication features to increase security.

7https://www.outsystems.com/

22

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

https://pypi.org/project/knxip/
https://pypi.org/project/paho-mqtt/
https://mqtt.org/
https://www.outsystems.com/


E. Storage

It is possible to store the state of the data within the IoT
flow, using different approaches depending on the needs of
the project. Relational databases (Oracle, MySQL, etc.), non-
relational databases (MongoDB, DynamoDB, etc.) and even
persistence methods focused on Big Data (Hadoop) could be
used. The storage method to be used would ultimately depend
on the type and amount of data that will be processed. For
applications that involve a large amount of data that have to
be processed in real time, it is advised to store and process
the data through big data solutions, such as the Hadooop
framework8. On the other hand, applications that do not
involve the processing of a high quantity of data could use
traditional relational or non-relational databases.

The format and content of the data will depend on the layer
in which the persistence operation is performed. For instance,
the Application layer could incorporate a database to store the
received data and use it within the applications to perform
data analysis, presentation of visualizations and prediction of
trends. Although using a database at the application level
may seem redundant because in the Aggregation layer could
already incorporate one, the Application layer could store
the data in its final version, post-processed by the logic of
the application and even store data referring to conclusions
obtained from the data received from the Exchange layer.
For example, a mobile application can receive the image of a
security camera and a detection and recognition algorithm can
be applied to people who are in the scene and store data such
as time, date and their identities.

It is worth mentioning that only storing the data is not
recommended. The data should be treated, analyzed and used
to rise conclusions and considerations that could add value to
the IoT project. Predictive analysis could be performed using
the acquired data to create datasets useful to train intelligent
systems able to perform such tasks, which is part of the
Intelligence sub-layer described in Section II-D.

F. Security

Due to the nature of IoT, which rests on the interconnection
of devices, security is an aspect of utmost importance when
developing an application. It is important to have security
schemes in each of the layers, because each one is susceptible
to different types of attacks. This is even more relevant in
case the architecture follows an Internet of Things scheme,
that permits the devices of the physical layer to be connected
to the Internet. For an Intranet of things scenario, the risks
are lower, although they are also present. Hence, the proper
security measures must be taken.

In an IoT scenario, there are two types of attacks: passive
and active. The active attack directly blocks the operation of
the devices while the passive one monitors the information of
the IoT network without its presence being detected [13]. The
proper measures to avoid these attacks must be taken.

The Physical layer should be based on choosing or devel-
oping devices that meet security standards. The capability to

8http://hadoop.apache.org/

support the appropriate methods of authenticating users of
the final applications should also be mandatory. Encryption,
authentication and access control must be used in this layer.
Regarding the security of the physical equipment used in this
layer, it is recommended to use or develop devices that meet
the standards defined in the good practices guide introduced by
the Institute of Electrical and Electronic Engineering (IEEE)
for IoT devices9.

The Aggregation and Exchange layers, on the other hand,
must use consistent protocols and software capable of iden-
tifying situations and behaviors that may represent potential
threats. As mentioned before, since the Exchange layer is
usually a public resource, the proper measures must be taken.
Applying end-to-end data encryption in this layer is highly
recommended.

In the Application layer, the emphasis should be focused on
the availability of applications, taking into account the large
amount of data coming from a high number of connected
devices. In addition to that, there should be global policies and
standards defined for authentication mechanisms and security
strategies throughout all the client-side applications.

We also advise to follow the considerations presented by
previously research work [14], which introduces several se-
curity measures with a layered-based security architecture, in
which the measures for their Perception layer act over the
Physical and Aggregation layers of our model, whilst those
from the Transportation layer act over as our Exchange layer.
Finally, the considerations regarding the Application layer
should be applied over the final layer of our architecture, with
the same name.

III. CONSIDERATIONS

A. Recommendations

The following considerations are recommended when estab-
lishing an IoT end-to-end infrastructure10.

1) Data uniformity: there must be data format standards,
mainly between the Application layer and the Exchange layer.
In general, there is a pattern based on payloads (payloads)
that contain the data to be transmitted in each exchange of
messages.

2) Constant update: software and firmware of the devices
must be kept constantly updated in order to provide the proper
high-level security to the IoT infrastructure.

3) Resource centralization: it is relevant to provide de-
centralized servers, if necessary, so as not to suffer from
bottlenecks in case that there is a large data flow.

4) Internet connectivity: internet connectivity must be used
only when it is essential, in order to improve the security of the
architecture. If it is used, it is recommended to apply the proper
authentication mechanisms and end-to-end data encryption.

9https://internetinitiative.ieee.org/images/files/resources/white papers/
internet of things feb2017.pdf

10https://www.ccn-cert.cni.es/informes/certifications-ccn-cert-buenas-practicas-bp.
html

23

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

http://hadoop.apache.org/
https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2017.pdf
https://www.ccn-cert.cni.es/informes /certifications-ccn-cert-buenas-practicas-bp.html
https://www.ccn-cert.cni.es/informes /certifications-ccn-cert-buenas-practicas-bp.html


5) Data analysis: the behavior of the IoT devices is pre-
dictable, using Machine Learning [15] algorithms can be a
useful option to identify and even predict abnormal situations
or behaviors in order to respond to problems or threats, or in
order to obtain conclusions that could aid at making decisions
related to the project.

B. NTA-IoT Roles
The main idea of the development of a layer-based model is

to decouple the components of each layer so that they could be
independent from each other. This allows to achieve a modular
structure, which is inherently. Hence, any modification on any
of the layers will have no influence on the overall infrastructure
or on the technologies used in the other layers. Likewise,
expanding the features or the number of components of a
layer will result in a minimal work of adaptation in the
upper or lower layers, and in some cases even without any
modification. Taking advantage of this structure, a division of
roles is proposed when developing an IoT project:

1) Devices administrator: This role is based on the in-
teraction with devices at a low level. The responsible must
configure each device, groups of devices and their basic rules,
if necessary. For not smart devices, this role must work on their
connection to a proper IP gateway that will communicate with
the service of the Aggregation layer through some IP protocol,
such as TCP or UDP.

2) Aggregation manager: the aggregation manager will
work in the connection between the physical and the digital
part of the IoT architecture. This role will be the user,
or even developer of software and equipment designed to
aggregate data coming from the devices of the Physical layer.
The methods and algorithms (and how they are going to be
configured) that the aggregation service will apply to perform
data pre-processing, data formatting, data filtering, aggregation
and provide the gateway service must be configured by this
role.

3) Exchange layer manager: the servers and gateways
used in the Exchange layer must initially be configured and
subsequently maintained by one or more managers.

4) Application developer: this role is based on the devel-
opment of mobile, web or other types of applications that
will be connected to the devices. They must follow the data
patterns previously defined for the architecture. This role will
focus on the design and implementation of the applications,
on the manner that the received data will be processed during
the application run-time and on providing an optimal user
experience based on the available data.

5) Data Analyst: the data analyst will use the data obtained
in each layer to apply data analysis, prediction and classifica-
tion techniques, in order to obtain relevant information that
will serve as guide for decision making. This role could also
be in charge of the implementation of intelligent models able
to inject value into the final client-applications applications.

It worth mentioning that each role must also take into ac-
count other common aspects such as security and availability.
For the security layer, the figure of a security manager may
be created, in order to manage and coordinate the security
strategies used by each of the roles.

6) Roles in the Implementation Example: Note that in
the context of the implementation example presented in the
previous section, the authors performed the activities of all
roles except for the Data Analyst, considering that no data an-
alytics techniques were applied to obtain insights from the data
gathered through the use of the application. Notwithstanding,
this will be addressed in future work.

C. Characteristics and Limitations

As a layered-architecture, the NTA-IoT provides the sepa-
ration of concern [16] among the components of each layer,
which implies that the functioning of the components of each
layer is independent from the others. This is how modularity
is achieved. However, a layer depends on the output of the
previous layer to be able to operate. Hence, issues within a
layer that do not allow the data to flow into the next layer
will have a repercussion on the following layers. On the other
hand, the architecture is centered on the data flow between its
origin (devices) and the final application, without considering
the particularities of existing data in data warehouses, data
lakes, etc., that will be used at the application level. The NTA-
IoT architecture contemplates this aspect only superficially
(with the Storage layer) although a proper framework with
its definition must be adopted for that purpose. Finally, it is
worth mentioning that the architecture is devised to support
use cases from different domains, allowing to change or add
new elements without significantly changing the architecture.
This is how flexibility is achieved [17].

IV. CONCLUSION

This work introduced a flexible and modular framework for
developing IoT applications. The architecture is based on four
base layers (Physical, Aggregation, Exchange and Applica-
tion) and two support layers that act on the overall scheme
as auxiliary and non-mandatory resources. This simple and
abstract architecture is named NTA-IoT. We also introduced
suggested roles to be applied to lead IoT projects based on
the proposed architecture. Finally, we presented a practical
example of the implementation of the framework for a home
automation problem.

It is expected that the flexibility and modularity of the
proposed architecture will lead to achieve satisfactory results
when leading IoT projects. On the other hand, the proposed
architecture is focused only on data streams between the
devices and the final application, any other data source that
already exist in the Application layer should be properly
treated following a more specific framework. Future work may
aim at exploring other architectures derived from the NTA-IoT
and to apply the framework to case studies in areas such as
healthcare, industrial automation, commerce, among others.

REFERENCES

[1] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The
internet of things architecture, possible applications and key challenges,”
in 2012 10th International Conference on Frontiers of Information
Technology, Dec 2012, pp. 257–260.

[2] S. K. Datta, C. Bonnet, and N. Nikaein, “An iot gateway centric
architecture to provide novel m2m services,” in 2014 IEEE World Forum
on Internet of Things (WF-IoT), March 2014, pp. 514–519.

24

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc



[3] I. Modbus, “Modbus application protocol specification v1. 1a,” North
Grafton, Massachusetts (www. modbus. org/specs. php), 2004.

[4] I. Ungurean, N. Gaitan, and V. G. Gaitan, “An iot architecture for things
from industrial environment,” in 2014 10th International Conference on
Communications (COMM), May 2014, pp. 1–4.

[5] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono,
M. L. Stefanizzi, and L. Tarricone, “An iot-aware architecture for smart
healthcare systems,” IEEE Internet of Things Journal, vol. 2, no. 6, pp.
515–526, Dec 2015.

[6] I. Gronbak, “Architecture for the internet of things (iot): Api and
interconnect,” in 2008 Second International Conference on Sensor
Technologies and Applications (sensorcomm 2008), Aug 2008, pp. 802–
807.

[7] G. Dai and Y. Wang, “Design on architecture of internet of things,” in
Advances in Computer Science and Information Engineering. Springer,
2012, pp. 1–7.

[8] C. Sarkar, A. U. N. S. N., R. V. Prasad, A. Rahim, R. Neisse, and
G. Baldini, “Diat: A scalable distributed architecture for iot,” IEEE
Internet of Things Journal, vol. 2, no. 3, pp. 230–239, June 2015.

[9] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable
iot architecture based on transparent computing,” IEEE Network, vol. 31,
no. 5, pp. 96–105, 2017.

[10] R. Teymourzadeh, S. A. Ahmed, K. W. Chan, and M. V. Hoong, “Smart
gsm based home automation system,” arXiv preprint arXiv:1806.03715,
2018.

[11] M. Romero, W. Guédria, H. Panetto, and B. Barafort, “Towards a charac-
terisation of smart systems: A systematic literature review,” Computers
in Industry, 2020.

[12] C. Moser, “User experience design,” in User experience design.
Springer, 2013, pp. 1–22.

[13] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things
(iot) security: Current status, challenges and prospective measures,” in
2015 10th International Conference for Internet Technology and Secured
Transactions (ICITST), Dec 2015, pp. 336–341.

[14] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, pp. 2481–2501, Nov 2014. [Online]. Available:
https://doi.org/10.1007/s11276-014-0761-7

[15] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[16] C. SantAnna, E. Figueiredo, A. Garcia, and C. Lucena, “On the modu-
larity assessment of software architectures: Do my architectural concerns
count,” in Proc. International Workshop on Aspects in Architecture
Descriptions (AARCH. 07), AOSD, vol. 7, 2007.

[17] A. Aerts, N. B. Szirbik, and J. B. Goossenaerts, “A flexible, agent-based
ict architecture for virtual enterprises,” Computers in Industry, vol. 49,
no. 3, pp. 311–327, 2002.

25

Revista de Sistemas e Computação, Salvador, v. 10, n. 1, p. 19-25, jan./abr. 2020 
http://www.revistas.unifacs.br/index.php/rsc

https://doi.org/10.1007/s11276-014-0761-7

	Introduction
	NTA-IoT Architecture
	Physical
	Aggregation
	Exchange
	Application
	Storage
	Security

	Considerations
	Recommendations
	Data uniformity
	Constant update
	Resource centralization
	Internet connectivity
	Data analysis

	NTA-IoT Roles
	Devices administrator
	Aggregation manager
	Exchange layer manager
	Application developer
	Data Analyst
	Roles in the Implementation Example

	Characteristics and Limitations

	Conclusion
	References



