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A B S T R A C T 

The locations of structural members can be provided according to architectural pro-
jects in the design of reinforced concrete (RC) structures. The design of dimensions 

is the subject of civil engineering, and these designs are done according to the expe-

rience of the designer by considering the regulation suggestions, but these dimen-

sions and the required reinforcement plan may not be optimum. For that reason, the 

dimensions and detailed reinforcement design of RC structures can be found by using 
optimization methods. To reach optimum results, metaheuristic algorithms can be 

used. In this study, several metaheuristic algorithms such as harmony search, bat al-

gorithm and teaching learning-based optimization are used in the design of several 

RC beams for cost minimization. The optimum results are presented for different 

strength of concrete. The results show that using high strength material for high flex-

ural moment capacity has lower cost than low stretch concrete since doubly rein-

forced design is not an optimum choice. The results prove that a definite metaheuris-

tic algorithm cannot be proposed for the best optimum design of an engineering 

problem. According to the investigation of compressive strength of concrete, it can 

be said that a low strength material are optimum for low flexural moment, while a 

high strength material may be the optimum one by the increase of the flexural mo-

ment as expected. 
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1. Introduction 

In structural systems, both tensile and compressive 
stresses occur under external loads. It is not possible to 
build these structural systems under tensile stresses us-
ing only brittle materials such as concrete. Although 
brittle materials are very useful in terms of compres-
sive strength, they are inconsiderable in terms of ten-
sile strength due to their small tensile strength. In this 
case, ductile materials like steel are quite important to 
meet tensile strength, but there are negative aspects 
like high costs and exposure to environmental condi-
tions. Given the mentioned aspects of concrete and 
steel, the use of reinforced concrete structures is af-
fordable, but the design of structure should be optimal 
and safe. Since two materials with different properties 

are used in the construction of reinforced concrete ele-
ments and the optimal cost structure is a non-linear 
problem, there is no optimal mathematical solution. In 
this case, numerical algorithms are quite useful. 

In order to find the optimal design variables for rein-
forced concrete elements, metaheuristic algorithms are 
quite suitable. Genetic algorithms were proposed in dif-
ferent approaches. Coello et al. (1997) used the genetic 
algorithm in the optimum design of reinforced concrete 
beams. Rafiq and Southcombe (1998), benefited from the 
genetic algorithm for optimization of columns under the 
biaxial bending. Rajeev and Krishnamoorthy (1998) opti-
mized reinforced concrete frame structures using a ge-
netic algorithm-based method. Camp and et.al. (2003) 
used the genetic algorithm to optimize the reinforced con-
crete frame system, taking into account the slenderness 
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of the columns. Ferreira et al. (2003) dealt with the opti-
mization of T-profile beams according to different con-
struction standards. In addition, the genetic algorithm, 
one of the classic metaheuristic algorithms, is used to 
achieve better results by combining it with other algo-
rithms. As examples, combining genetic algorithm with 
simulated annealing optimization for continuous beams 
(Leps and Sejnoha, 2003) or combining genetic algo-
rithm with Hook and Jeeves method for reinforced flat 
slab (Sahab et al., 2005) can be given.  

Simulated annealing optimization is widely used in 
the optimum design of reinforced concrete elements 
such as the genetic algorithm. This algorithm is proposed 
for both cost optimization of reinforced concrete frames 
(Paya et al., 2008; Perea et al., 2008) and minimizing CO2 
emission from reinforced concrete frames (Paya-Zafor-
teza et al., 2009). Similarly, Big Bang - Big Crunch Opti-
mization was used to minimize CO2 emissions from re-
inforced concrete frames (Camp and Huq, 2013).  

Optimization of reinforced concrete retaining walls is 
an important research area as it should be provided both 
structural and geotechnical rules. Simulated annealing 
optimization (Ceranic et al., 2001; Yepes et al., 2008), 
Harmony Search based algorithm (Kaveh and Abadi, 
2011)), Big Bang - Big Crunch Optimization (Camp and 
Akin 2012) and Charged System Search Algorithm 
(Talatahari et al., 2012) for the optimization of rein-
forced concrete retaining walls can be shown as an ex-
ample. 

Harmony search algorithm is used to optimize the 
structural members such as continuous beams (Akin and 
Saka, 2010), T-shaped reinforced concrete (Bekdaş and 
Nigdeli, 2013), columns (Bekdaş and Nigdeli, 2014a; 
Nigdeli and Bekdaş, 2014a), frames (Bekdaş and Nigdeli, 
2014b), walls (Nigdeli and Bekdaş, 2014b), cylindrical 
walls (Bekdaş, 2014; 2015) and biaxially loaded columns 
(Nigdeli et al., 2015). Tabu Search (Rama Mohan Rao and 
Shyju, 2010) and Artificial Bee Colony algorithm (Jah-
jouh et al., 2013) are the other algorithms, which are pro-
posed to optimize the reinforced structural elements.  

In this study, the optimum design of reinforced con-
crete beams was investigated. The metaheuristic algo-
rithms, which are used in the optimization process, are 
the harmony search algorithm, bat algorithm and teach-
ing-learning-based optimization. The results are given in 
five cases of the strength of concrete. 

 

2. Methodology 

In optimization of engineering problems, the goal is 
the determination of one or more design variables (xi, i = 
1,…, n) to bring the objective function to the most appro-
priate value. Design constraints which express equal 
equations (h(xi) = 0) and unequal equations (g(xi) ≤ 0) in 
some cases are required to determine design variables. 
Optimal values of design variables are searched step by 
step with meta-heuristic algorithms that are inspired by 
natural events. As the first main design, the design varia-
bles are randomly selected within the limits set by the 
user. These design variables create a solution set. The 
number of solution sets created is equal to the population 

of the individuals and cases used in the simulation of al-
gorithm. All solution sets are collected in a matrix and 
the objective function is calculated for each solution set. 
Design constraints are usually considered with a penalty 
function added to the objective function. After creating 
the first matrices with design variables, these matrices 
are updated according to the algorithm rules. The best 
solution is obtained with step-by-step updates.  

In this study, three different metaheuristic algorithms 
were used to optimize the objective function. These are 
harmony search algorithm, bat algorithm and teaching-
learning based optimization. 

2.1. Harmony Search (HS) 

Geem et al. (2001) developed harmony search algo-
rithm which is a music-based algorithm. A musician 
plays popular notes in his memory to please his audi-
ence. New notes that are similar to these notes can also 
be played to impress the audience more. With this anal-
ogy, the harmony search algorithm is emerging for opti-
mization problems. In the harmony search algorithm, 
the harmony memory matrix, which was originally cre-
ated and contains harmony vectors, is revised step by 
step. Harmony vectors contain design variables which 
are defined by random numbers in the specified solution 
range. Harmony memory size (HMS) is the number of 
vectors in the harmony memory matrix. The harmony 
memory matrix is determined in two ways depending on 
the harmony memory consideration ratio (HMCR). As 
much as HMRC probability, new values are created 
around some of the existing values. In this case, a solu-
tion set covering a smaller area is used, and the ratio of 
this range to the whole area is determined by the pitch 
adjustment rate (PAR). Another new type of vector crea-
tion involves the use of the whole solution area. If the so-
lution sets of the objective function are better than avail-
able solution sets, the results are replaced with the worst 
solution. 

2.2. Bat Algorithm (BA) 

The bat algorithm developed by Yang (2010) was in-
spired by the echolocation behavior of bats. Bats fly ran-
domly to a position with fixed frequency, variable wave-
length and loudness. Because of these properties, the de-
sign variables are included in the displacement vectors 
in the bat algorithm and the number of these vectors are 
equal to the bat population. Each displacement vector is 
modified at every step. Initial values are randomly deter-
mined from the solution set. Loudness and wave ratio 
(ri) are the parameters that change in the algorithm pro-
cess and determine the modification method. The basic 
code of the algorithm is presented in Table 1. 

2.3. Teaching-Learning-Based Optimization (TLBO) 

The analogy of a class is used in teaching-learning-
based optimization method (Rao et al., 2011). This 
method guides two different types of design variables, 
the teacher and the learning process. Unlike other meth-
ods, these processes are applied in order without making 
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a choice between the two processes. After a knowledge 
was imparted by the teacher, the students continue their 
development among themselves. Thus, all the members 
of the class are at a good level. 

Table 1. Pseudo code of BA. 

Objective Function f (x), x=(x1,…….,xd)T 

determine the population (Xi) and speed (vi) (i=1,……,n) of bats 

determine wave frequency (fi) at position xi 

determine wave ratio (ri) and loudness (Ai)  

condition (t < number of iteration) 

Get new results updating speed and locations by  

adjusting frequencies 

if (random number < ri) 

Choose one of the best results 

Create a local solution around selected results 

end 

Create a new solution by flying randomly 

if (random number < Ai and f (xi)< f (x*) 

Accept new result 

Increase ri and drop Ai 

end 

find the best solution (x*) 

condition end 

Print results 

 

In the teacher process, the best result in the matrix is 
chosen as the teacher. It is provided to update the cur-
rent result (Xold) and to approach the best result (Xteacher) 
by using random numbers (rand) as given in Eq. (1). In 
the equation, there is a new generated result (Xnew) with 
the use of the mean of the existing variables (Xmean) and 
the teaching factor (TF), which can randomly take one or 
two as value.  

( )new old teacher meanX X rand X TFX    (1) 

In the learning process, new results are obtained us-
ing two random (j and k) results, and only good results 
are updated. Mathematical expression of this process is 
shown in Eq. (2). 

( )new old j kX X rand X X    (2) 

3. Numerical Examples 

In the numerical examples, the design having the op-
timum material cost, including concrete and steel bar for 
reinforced concrete (RC) beams under the effect of the 
different bending moment (250 kNm and 500 kNm) are 
investigated. Also, the effect of different compressive 
strength of concrete such as 20 MPa, 25 MPa, 30 MPa, 35 
MPa and 40 MPa. The cost difference for 5 MPa increase 
of strength is taken as 5 $/m3. 

The design variables of the problem are presented in 
Fig. 1 and the design constants and ranges of design var-
iables for optimization problem are shown in Table 2. 

h

bw

n11

n22

n33

n44

 
Fig. 1. Design variables of RC beam. 

Table 2. Design constants for RC beam. 

Design constant Value 

Concrete cover (mm) 35 

Maximum aggregate diameter (mm) 16 

Compressive strength of concrete (MPa) 20-40 

Yield strength of steel (MPa) 420 

 Stirrup diameter (mm) 10 

Unit concrete cost ($/m3) 30-50 

Unit steel cost ($/ton) 400 

Range of longitudinal steel bars (mm) 10-30 

Range of beam breadth (b) (mm) 250-400 

Range of beam height (h) (mm) 300-500 

 

In the study, the reinforcement design is done accord-
ing to rules of ACI 318: Building code requirements for 
structural concrete and commentary (2005).  

The optimization process is continued as long as the 
difference between the best and worst result is more 
than 2%, and this condition is stopping criteria of the op-
timization problem. The optimum results employing HS, 
BA and TLBO algorithms are summarized in Tables 3-5 
for selected cases. 

Table 3. Optimum results for 250 kNm  
and 20 MPa strength of concrete. 

 HS BA TLBO 

h (mm) 500 500 500 

bw (mm) 250 300 300 

ϕ1 (mm)  26 22 22 

ϕ3 (mm) 16 30 10 

n1 3 4 4 

n3 0 0 0 

ϕ2 (mm)  12 10 10 

ϕ4 (mm) 30 12 10 

n2 4 4 4 

n4 0 0 0 

Optimum cost 
($/m) 

10.12 10.21 10.43 
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Table 4. Optimum results for 500 kNm  
and 20 MPa strength of concrete. 

 HS BA TLBO 

h (mm) 500 500 500 

bw (mm) 400 400 400 

ϕ1 (mm)  26 26 26 

ϕ3 (mm) 14 26 18 

n1 6 6 6 

n3 3 2 4 

ϕ2 (mm)  14 10 10 

ϕ4 (mm) 30 30 10 

n2 6 6 6 

n4 0 0 0 

Optimum cost 
($/m) 

20.23 20.69 20.56 

Table 5. Optimum results for 500 kNm  
and 35 MPa strength of concrete. 

 HS BA TLBO 

h (mm) 500 500 500 

bw (mm) 300 350 350 

ϕ1 (mm)  30 28 28 

ϕ3 (mm) 12 24 10 

n1 4 5 5 

n3 3 0 0 

ϕ2 (mm)  26 14 14 

ϕ4 (mm) 24 12 10 

n2 2 4 4 

n4 0 0 0 

Optimum cost 
($/m) 

19.85 19.32 19.32 

 

 
       According to the results for the 250 kNm flexural 

moment for 20 MPa compressive strength, single rein-
forced solution is optimum. Whereas double reinforced 
design is optimum for 500 kNm for the same concrete 
class. By the increase of the concrete strength, singly re-
inforced design become also optimum for 500 kNm flex-
ural moment. In Table 5, HS approach result is a little ex-
pensive than the others, and doubly reinforced design is 
found as optimum with a smaller cross-sectional area.  

 

4. Conclusions 

In the study, three different algorithms i.e. HS, BA, 
TLBO are used for optimization of the RC beam member 
and the optimum results are compared. The optimum 
cost values for two flexural moment cases are shown as 
bar diagrams in Figs. 2 and 3 for comparison of algo-
rithms and the best choice of the compressive strength 
of concrete.  

In this study, a penalty function is not used in case the 
design constraints are not provided. Instead, variables 
are randomly generated until all design constraints are 
provided at each step. Therefore, optimum results are ef-
fective and fast. 

 

Fig. 2. The optimum costs for 250 kNm flexural moment. 

 

Fig. 3. The optimum costs for 500 kNm flexural moment. 

As seen in Fig. 2, the best case for 250 kNm flexural 
moment value is 25 MPa compressive strength. By the 
increase of the moment, 35 MPa compressive strength 
has the minimum cost due to singly reinforced optimum 
design without compressive reinforcement bars. If the 
compressive strength is lower than that value, compres-
sive reinforcement bars are needed.      

It is clearly seen that there is no specific algorithm 
which is dominantly distinguished than the others. This 
situation proves that even in different parameters cases 
of the same optimum design problem, the best algorithm 
choice may be different.  
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