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A B S T R A C T 

In this study, free vibration analysis of layered composite beams is performed by us-

ing an analytical method based on trigonometric series. Based on the first-order 

shear deformation beam theory, the governing equations are derived from the La-

grange’s equations. Appropriate trigonometric series functions are selected to satisfy 

the end conditions of the beam. Navier-type solution is used to obtain natural fre-

quencies. Natural frequencies are calculated for different end conditions and lamina 

stacking. It was seen that the slenderness, E11/E22 and fiber angle have a significant 

effect on natural frequency. The results of the study are quite compatible with the 

literature. 
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1. Introduction 

Laminated composites, which have become one of the 
important subjects of today, are light and corrosion re-
sistant and have high strength. Commonly used lami-
nated composites are used in beams, columns and plates 
that are structural elements, thus, it is quite essential to 
know and understand static and dynamic behavior of 
such structures. 

There is an extensive research in the literature on the 
laminated composite beams. In these works, different ana-
lytical and numerical techniques were used. Reddy (1997) 
gave analytical and numerical solution procedures for 
bending, buckling and free vibration problems of lami-
nated composite plates and beams considering the differ-
ent lamination theories. In laminated beams, effect of 
shear deformation is highly important. The first-order 
shear deformation theory (FSDT) was thus developed to 
include the effect of shear. In this theory, a constant trans-
verse shear strain through-the-thickness was assumed, 
and a shear correction factor must be used. However, FSDT 
is widely used in the analysis of laminated composite 
beams (Yuan and Miller, 1989; Teboub and Hajela, 1995; 
Banerjee, 1998; Chakraborty et al., 2002; Goyal and Kapa-
nia, 2007; Jafari-Talookolaei et al., 2012; Kahya, 2012). 

The number of studies using higher-order theory is 
quite high in the literature. Song and Waas (1997) used 
the simple higher-order theory that assumes the cubic 
variation for the displacement field through the thick-
ness in buckling and free vibration analyses of stepped 
laminated composite beams. Kant et al. (1998) pre-
sented analytical solution to the natural frequency anal-
ysis of composite and sandwich beams based on higher 
order refined theory. Karama et al. (1998) proposed a 
new laminated composite beam model based on the dis-
crete layer theory for bending, buckling and free vibra-
tion problems of thin and thick beams. Aydogdu (2005) 
studied the vibration of cross-ply laminated beams sub-
jected to different sets of boundary conditions by Ritz 
method is based on a three-degree-of-freedom shear de-
formable beam theory. Zhen and Wanji (2008) gave an-
alytical solutions to vibration and stability problems of 
laminated composite and soft-core sandwich beams ac-
cording to several displacement-based theories. Li et al. 
(2014) presented the free vibration analyses of lami-
nated composite beams using refined higher-order shear 
deformation theory. Mantari and Canales (2016) pro-
vided an analytical solution for buckling and free vibra-
tion analysis of laminated beams using a refined and gen-
eralized shear deformation theory involving thickness 
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expansion. Nguyen et al. (2017) developed a new trigo-
nometric-series solution based on a higher-order theory 
for analysis of composite beams with arbitrary lay-ups. 
Kahya and Turan (2018) presented a higher-order finite 
element for free vibration and buckling of laminated 
composite and sandwich beams. Kahya et al. (2019) pre-
sented free vibration analysis of laminated composite 
beams including open transverse cracks by using a 
shear-deformable thirteen degrees-of-freedom finite el-
ement model.  

This study presents an analytical method for free vi-
bration of laminated composite beams. Free vibration 
analysis of layered composite beams is performed by us-
ing an analytical method based on trigonometric series. 
Based on the first-order shear deformation beam theory, 
the governing equations are derived from the Lagrange’s 
equations. Natural frequencies are calculated for differ-
ent end conditions and lamina stacking. The results of 
the study are quite compatible with the literature. 
 

2. Material and Method 

Consider a laminated beam as shown in Fig. 1. The dis-
placement field of first-order shear deformation theory 
is given by:  

0 0

0

( , , ) ( , ) ( , ),

( , , ) ( , )

u x z t u x t z x t

w x z t w x t

 


 (1) 

where u0, w0 and 0 are the axial and transversal dis-
placements, and cross-sectional rotation, respectively. t 
is time. The strain-displacement relations are given by  

0 0 0 0

, , ,,xx x x xz xu z w        (2) 

where 
xx  and 

xz  are the normal and shear strains, re-
spectively. 

,( ) x  denotes the derivative with respect to x.  
The constitutive relations for an orthotropic ply configu-
ration are given by 

11 55,xx xx xz xzC KC      (3) 

where 
xx  and 

xz  are the normal and shear stresses, re-
spectively. K is shear correction factor which is taken as 
5/6 for a rectangular cross-section. 

11C  and 
55C  are the 

transformed material constants which are given by 

4 2 2 4
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where   is the fiber angle measured from the positive x-
axis in counter clockwise direction. 

ijC  terms are 

 (5) 

  

where 
ijE  and 

ijG  denote Young’s and shear modulus, 
respectively, 

ij  is Poisson’s ratio. 

The governing equations of motion can be obtained 
by Lagrange’s equations which is given by 

0
i i

d

dt q q

  
  

  
 (6) 

where ( )T U V    is the Langragian functional, qi 
denotes the generalized coordinates corresponding to 
nodal displacements. The strain and kinetic energy of the 
beam can be given by 

 

 (7) 

  

where 

 

 (8) 

  

where k is the layer number. 

 

Fig. 1. Geometry and dimensions of the laminated  
composite beam and the co-ordinate system. 

The work done by axial compressive force 
0P  acting 

on the beam at its ends can be given by 

 
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Assume the solutions to 0 ( , )u x t , 0 ( , )w x t ,and 0 ( , )x t  as: 
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where ( )iu t , ( )iw t  and ( )i t  are the generalized nodal 
displacements, and ( )i x , ( )i x  and ( )i x  are trigono-
metric functions varying depending on the end condi-
tions of the beams, and m is the number of trigonometric 
series. In Table 1, trigonometric functions selected to 
provide support conditions for the beams considered in 
the study are given. Simply-supported (S-S), clamped-
clamped (C-C) and clamped-free (C-F) end conditions 
are considered for different laminated composite beams. 

If the work and energy expressions are written in the 
Lagrange equation, taking into account the trigonomet-
ric functions given in Table 1, the equation of motion for 
the L length beam is given by 

0P 
e g

MX (K K )X = F  (11) 

where M, Ke, Kg and F are the global mass, stiffness, geo-
metric stiffness matrices and load vector, respectively. 

 

 (12) 

 

where Eq. (12) for each term is clearly defined in the Ap-
pendix. For free vibration of the beam without axial load-
ing, ignoring Kg matrix and assuming i te X u  and F=0 
in Eq. (11), we have the following eigenvalue problem:  

2e(K M)u = 0  (13) 

where   denotes the natural frequencies of the beam. 
The natural frequencies of the beam can be obtained by 
non-trivial solutions of Eq. (13). 

 

3. Results 

In this section, numerical results of free vibration anal-
ysis of laminated composite beams with various boundary 
conditions are presented. Analytical results were ob-
tained with the help of a program written in MATLAB. 
Simply-supported (S-S), clamped-clamped (C-C) and 
clamped-free (C-F) end conditions are considered for dif-
ferent laminated composite beams. Laminates are sup-
posed to have equal thicknesses and made of the same or-
thotropic materials whose properties are followed: 

 
Material I (Nguyen et al., 2017):  
E

11
 / E

22
= open, G

12
 = G

13
 = 0.6E

22, G23
 = 0.5E

22, 12
 = 0.25 

Material II (Nguyen et al., 2017):  
E

11
 / E

22
= open, G

12
 = G

13
 = 0.5E

22, G23
 = 0.2E

22, 12
 = 0.25 

Material III (Nguyen et al., 2017):  
E

11
= 144.8GPa, E

22 
= 9.65GPa, G

12
= G

13 = 4.14GPa, G
23 = 

3.45GPa, 
12

 = 0.3, ρ = 1389kg/m3

Table 1. Trigonometric functions. 
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For convenience, the following normalized terms are 
used: 

 (14) 

  

In Table 2, the number of terms to be used in the ana-
lytical solution was investigated. As can be seen, suffi-
cient accuracy is obtained with 10 terms. 

The normalized fundamental frequencies are pre-
sented for cross-ply laminated beams in Table 3. The re-
sults of higher-order shear deformation theory given by 

Mantari and Canales (2016) and Nguyen et al. (2017) 
are assumed. As seen, the results are in good agree-
ment. As the slenderness (L/h) increases, the frequen-
cies increase, too. Here, we again observed that the 
agreement between the results is good for symmetrical 
lay-ups. However, the difference between the results 
becomes greater for thicker beams with unsymmetrical 
lay-ups. 

Table 4 shows the normalized fundamental frequency 
for symmetric (0/ 𝜃/0) and unsymmetric (0/±𝜃/0) com-
posite beams with various boundary conditions. As the 
fiber angle (𝜃) increases, the normalized natural fre-
quencies decrease. The analytical results are consistent 
with the literature.     
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Table 2. Normalized fundamental frequencies of laminated composite beams with various boundary conditions  
according to the number of terms to be used in analytical solution. 

Beams m 

Boundary Conditions 

S-S C-C C-F 

Material III 

(0/90/90/0) 

L / h = 15 

2 2.5023 4.7584 0.9304 

4 2.5023 4.6798 0.9269 

6 2.5023 4.6524 0.9259 

8 2.5023 4.6384 0.9255 

10 2.5023 4.6298 0.9252 

12 2.5023 4.6240 0.9252 

16 2.5023 4.6167 0.9252 

Material I 

(0/90) 

L / h = 10 

E11 / E22 = 40 

2 6.883 13.483 2.545 

4 6.883 13.286 2.536 

6 6.883 13.219 2.534 

8 6.883 13.185 2.533 

10 6.883 13.164 2.532 

12 6.883 13.150 2.532 

16 6.883 13.132 2.532 

Table 3. Normalized fundamental frequencies of (0/90/0) and (0/90) composite beams (Material I, E
11

/E
22

= 40). 

B.C. Beams Theory 

L / h 

5 10 20 30 50 

S-S 

(0/90/0) 

Present 9.205 13.661 16.355 17.056 17.452 

Nguyen et al. (2017)  9.208 13.614 16.338 17.055 17.462 

Mantari and Canales (2016)  9.208 13.610 - - - 

       

(0/90) 

Present 5.953 6.883 7.201 7.265 7.300 

Nguyen et al. (2017)  6.128 6.945 7.219 7.274 7.302 

Mantari and Canales (2016)  6.109 6.913 - - - 

C-F 

(0/90/0) 

Present 4.182 5.499 6.070 6.196 6.263 

Nguyen et al. (2017)  4.234 5.498 6.070 6.198 6.267 

Mantari and Canales (2016)  4.221 5.490 - - - 

       

(0/90) 

Present 2.342 2.532 2.588 2.599 2.604 

Nguyen et al. (2017)  2.383 2.543 2.591 2.600 2.605 

Mantari and Canales (2016)  2.375 2.532 - - - 

C-C 

(0/90/0) 

Present 10.621 19.328 29.709 34.332 37.708 

Nguyen et al. (2017)  11.607 19.728 29.695 34.268 37.679 

Mantari and Canales (2016)  11.486 19.652 - - - 

       

(0/90) 

Present 9.069 13.164 15.489 16.073 16.399 

Nguyen et al. (2017)  10.027 13.670 15.661 16.154 16.429 

Mantari and Canales (2016)  9.974 13.628 - - - 
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Table 4. Normalized fundamental frequency for symmetric and unsymmetric composite beams  
with various boundary conditions (Material I, E

11 / E
22

 = 40). 

L / h Beams 

 S-S  C-F 

 Present Mantari and Canales (2016)  Present Mantari and Canales (2016) 

5 

(0/30/0)  9.3770 9.4651  4.2540 4.3218 

(0/45/0)  9.3142 9.3801  4.2264 4.2855 

(0/60/0)  9.2570 9.2946  4.2029 4.2519 

(0/30/-30/0)  9.3029 9.4194  4.2096 4.2821 

(0/45/-45/0)  9.1779 9.2928  4.1464 4.2129 

(0/60/-60/0)  9.0727 9.1699  4.0977 4.1548 

(0/90/0/90)  7.8579 7.7822  3.3337 3.3187 

10 

(0/30/0)  13.8742 13.8823  5.5764 5.5791 

(0/45/0)  13.7875 13.7795  5.5427 5.5412 

(0/60/0)  13.7190 13.6889  5.5184 5.5116 

(0/30/-30/0)  13.6945 13.7306  5.4905 5.4982 

(0/45/-45/0)  13.4676 13.5092  5.3913 5.3987 

(0/60/-60/0)  13.3053 13.3371  5.3248 5.3289 

(0/90/0/90)  10.2652 10.2007  3.9182 3.9002 

Fig. 2 shows variation of the normalized fundamen-
tal frequencies with the slenderness for (0/90)s beam 
with properties of Material II and different end condi-
tions. When the slenderness increases, the normalized 
fundamental frequencies increase, too. Effect of the 
slenderness is more pronounced on the results for C-C 
end conditions. For thicker beams (L / h < 10), we can 
say that the slenderness is more effective on the re-
sults. 

Fig. 3 shows the effect of material anisotropy 
(E11/E22) on the normalized fundamental frequencies for 
(0/90)s and (0/90) composite beams with simple ends. 
As seen, normalized fundamental frequencies increase 

with increasing E11/E22. Any change in E11/E22 is more ef-
fective on the results for (0/90)s beam compared to 
(0/90) beam. We can also see here, (0/90)s beam has 
greater normalized fundamental frequencies than those 
of (0/90) beam. 

Figs. 4-6 show variation of the normalized funda-
mental frequencies according to fiber angles of beams 
with different boundary conditions having different 
layer arrangement are given. As the fiber angle (𝜃) in-
creases, the normalized natural frequencies decrease. 
The values obtained for (0 / 𝜃) are greater than those ob-
tained for (𝜃) and (𝜃 / -𝜃)s. The results are the same for 
(𝜃) and (𝜃 / -𝜃)s

 
Fig. 2. Variation of the normalized fundamental  
frequency with span-to-depth ratio for (0/90)s  

laminated beam (Material II, E
11

/E
22

 = 10). 

 
Fig. 3. Variation of the normalized fundamental  
frequency with E

11
/E

22
 for (0/90) and (0/90)s  

simple beams (Material I, L/h=10). 

(a) (b) 
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Fig. 4. Variation of the normalized fundamental  

frequency of simple beams according to  
fiber angle (θ) (Material III, L / h = 15). 

 
Fig. 5. Variation of the normalized fundamental  

frequency of cantilever beams according to  
fiber angle (θ) (Material III, L / h = 15).

 
Fig. 6. Variation of the normalized fundamental frequency of fixed-ended beams  

according to fiber angle (θ) (Material III, L / h = 15).

4. Conclusions 

Free vibration analysis of layered composite beams is 
performed by using an analytical method based on trig-
onometric series. Based on the first-order shear defor-
mation beam theory, the governing equations are de-
rived from the Lagrange’s equations. Appropriate trigo-
nometric series functions are selected to satisfy the end 
conditions of the beam. Navier-type solution is used to 
obtain natural frequencies. Natural frequencies are cal-
culated for different end conditions and lamina stacking. 
The results of the study are quite compatible with the lit-
erature. According to results of the study: 
 The slenderness (L/h) increases, the normalized fun-

damental frequencies increase, too. 
 As the fiber angle (𝜃) increases, the normalized natu-

ral frequencies decrease. 
 For thicker beams (L / h < 10), we can say that the 

slenderness is more effective on the results. 
 As seen, normalized fundamental frequencies in-

crease with increasing E11/E22. 
 

Appendix A. Elements of the global mass matrices 
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Appendix B. Elements of the global stiffness matrices 
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Appendix C. Elements of the geometric stiffness matrices 

2 2

2 2

x

1
0 0

2
0 0

0 0
2 m m

L

m

L





 
 
 

  
 
 
 

22
G

 
(A3)

 

Appendix D. Load vector 
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