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Abstract 

The quality of RGB images can be degraded by poor weather or lighting conditions. Thus, to make computer 

vision techniques work correctly, images need to be enhanced first. This paper proposes an RGB image enhancement 

method for improving feature matching which is a core step in most computer vision techniques. The proposed 

method decomposes near-infrared (NIR) image into fine detail, medium detail, and base images by using weighted 

least squares filters (WLSF) and boosts the medium detail image. Then, the fine and boosted medium detail images 

are combined, and the combined NIR detail image replaces the luminance detail image of an RGB image. 

Experiments demonstrates that the proposed method can effectively enhance RGB image; hence more stable image 

features are extracted. In addition, the method can minimize the loss of the useful visual (or optical) information of 

the original RGB image that can be used for other vision tasks. 
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1. Introduction 

With the increasing availability and deployment of imaging sensors operating in multiple spectral bands, the methods of 

fusing images observed in various spectrum bands, including both visible (RGB) and near-infrared (NIR) bands, have been 

extensively explored and widely used in remote sensing and surveillance applications [1-7]. As each spectral band provides a 

different type of information, the spectral bands could be used selectively and enhanced by different bands.  

In particular, as the NIR band is especially useful under poor weather or lighting conditions, RGB images can be 

enhanced in their clearness, contrast, and details by fusing with NIR images. During the last decade, various RGB-NIR fusion 

methods have been proposed for different applications. For example, Schaul et al. [8] proposed a dehazing method that 

decomposed RGB and NIR images into multi-resolution representations by using weighted least squares filters (WLSF) and 

fused the detail images of RGB and NIR at each level to maximize the contrast of hazy color images. Jang and Park [9] 

proposed a similar dehazing method where a Gaussian low-pass filter was used for image decomposition. Fredembach et al. 

[10] proposed a skin smoothing method that separated RGB and NIR images into base and detail layers by using a fast bilateral 

filter (fast-BF) of [11] and replaced the detail layer of RGB images with that of NIR images. Salamati and Süsstrunk [12] 

proposed a material-based image segmentation method that formed an intrinsic image which is independent of illumination 

from R, G, and B to NIR ratio images and took the intersection between the segmentations obtained from the intrinsic image 

and those obtained from NIR images that are independent of color. Honda et al. [13] proposed a denoising method that 

denoised the difference between NIR and RGB images and added back the denoised difference image to the original RGB 

image. Su and Jung [14] proposed another denoising method that generated the wavelet scale map and used gradients of NIR 
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wavelet coefficients as the weight for WLSF-based smoothing in the scale map. Li et al. [15] proposed a RGB-NIR fusion 

method for improving the classification accuracy in citrus fruit identification. The method fused the contrast from RGB images 

and the homogeneity from NIR images using an entropy filter and a discrete wavelet transformation. Jiang et al. [16] proposed 

a multi-spectral image classification method using a double-channel convolutional neural network (CNN) model. The features 

of the RGB and NIR bands were calculated in two different CNNs, and subsequently, the feature fusion was performed in the 

fully connected layer. Liu et al. [17] also used CNNs to extract multi-layered features from the RGB and NIR images. Kurihara 

et al. [18] proposed a photoplethysmography-based heart rate estimation method which is robust to challenging illumination 

conditions by computing the confidence scores of RGB and NIR images. They used the fact that NIR images can be captured 

and independent of changes in the background illuminations. By measuring correlations between signals extracted from 

background and face regions, they adaptively utilized RGB and NIR images for heart rate estimation. Li and Wu [19-20] 

proposed an RGB-NIR fusion method by using deep learning. They used a network comprising encoder, fusion layer, and 

decoder. NIR and RGB images were first fed into the encoder. Features maps were obtained by convolutional blocks, then 

fused in the fusion layer by using two different strategies (addition and L1-norm). Finally, the fused image was reconstructed 

by decoder network which has the fused feature map as input. Sharma et al. [21] proposed a RGB-NIR fusion method for 

robust face or palmprint recognition. The method separated NIR images into base and detail layers by using fast-BF and WLSF 

respectively, and the NIR detail images were obtained by taking an average/maximum of the detail layers from both filters. 

Then, in order to reconstruct the final enhanced RGB-NIR images, the NIR detail images were fused with the RGB base 

images separated by WLSF. Their method produced more high-quality image features and thus could improve the face or 

palmprint recognition accuracy. 

This paper also proposes the RGB-NIR fusion method. Similar to the conventional RGB-NIR fusion method (i.e., [21]), 

the purpose of the proposed method is to enhance RGB images so that more stable image features can be extracted from them. 

However, unlike the conventional RGB-NIR fusion method [21], the proposed method tries to fuse the RGB and NIR images 

more carefully. NIR images usually have much luminance details, and thus fusing RGB images with NIR images can enhance 

the details of RGB images, which makes more image features extracted. Nevertheless, the detail enhancement may result in 

undesired artifacts or noise, which makes the features match more difficult. In addition, RGB images lose their information 

contents (e.g., texture or color details) which are useful for other vision tasks. Therefore, the method tries to reduce the 

difference between the enhanced and the original RGB images as much as possible. This is because we do not aim at fusing 

RGB and NIR images on the fly for a given application, but making enhanced RGB images used later for a variety of computer 

vision applications. The method was inspired by the WSLF-based detail enhancement method in [22] which enabled to boost 

the image details at different scales. The method attempts to boost the medium details of NIR images and to replace the RGB 

luminance detail images with the boosted NIR detail images to reproduce the enhanced RGB images. 

The remaining of this paper is organized as follows. In Section 2, WLSF is briefly introduced and the previous method 

that used the WLSF to enhance the image detail is explained. Then, the proposed method is explained in detail, and its 

performance is evaluated and compared to other existing methods in Sections 3 and 4 respectively. Finally, conclusion and 

future works are presented in Section 5. 

2. Detail Boosting Using WLSF 

2.1.   WLSF 

WLSF is a non-linear and edge-preserving smoothing filter enabling to construct multi-scale decompositions that capture 

details at a variety of scales as explained in [22]. It smooths a gray-scale image g with a few changes in pixel values as possible. 

Formally, a filtered image u can be obtained by minimizing the energy function as follows. 
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where the subscript p denotes the spatial location of a pixel and λ is a constant that controls the level of smoothness. The 

smoothness weights a and b depend on g and are defined as: 

1
α

( )
ε




 



 
 
 

p

p

ln g
a

x
 (2) 

1
α

( )
ε




 



 
 
 
 

p

p

ln g
b

y
 (3) 

where ln() is the natural logarithm function, the exponent α determines the sensitivity to the gradients of g, and ε is a small 

constant that prevents division by zero. By rewriting Eq. (1) using matrix notation, u is the unique solution of a linear system. 

2.2.   Detail boosting  

By smoothing an image using WLSF with progressively increasing λs, the detail images at multi-scales can be obtained by 

subtracting smoothed images with the next larger λs from the original or smoothed images. Letting u1, u2, ..., uk progressively 

denote coarser versions of a gray-scale input image g, and the k-level detail images are defined as: 

1
 

i i i
d u u  (4) 

where 

i = 1, 2, …, k and 
0
u g  (5) 

Then, the detail images can be boosted while avoiding artifacts and using a boosting function, which is defined as: 

δ
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where d is a detail image and δb is a boosting factor that controls the level of boosting (refer to [22]). The sigmoid function in 

Eq. (6) avoids the hard clipping that would otherwise occur when the detail layers are significantly boosted. Finally, the 

boosted detail images are added up to reproduce an enhanced image. 

3. Proposed Method 

The proposed method enhances an RGB image by fusing it with an NIR image. To enhance an RGB image so that more 

stable image features can be extracted from it and minimize its change after enhancement, more cares, e.g., how to extract the 

good-quality detail images from the NIR image and how to combine the NIR detail images with the RGB image, should be 

taken on. In this paper, we separate out two levels of detail images from the NIR image, properly boost one of them, and 

reproduce the NIR detail image by weighted-summing the two detail images again. Then, we substitute the RGB luminance 

detail image with the reproduced NIR detail image. 

Fig. 1 illustrates the entire procedure of the proposed RGB-NIR image fusion method. The method first transforms RGB 

image into YCbCr image. Then, it smooths the luminance (Y) image by using WLSF. The smoothed image serves as base 

image, and a detail image is obtained by subtracting the base image from the original Y image. NIR image is also smoothed by 

using WLSF but with two different λs. The smoothed image with the larger λ serves as base image (𝐼𝑁𝐼𝑅
𝐵 ). Thus, a medium 

detail image is obtained by subtracting the base image from the smoothed image with the smaller λ, and a fine detail image is 

obtained by subtracting the smoothed image with the smaller λ from the original NIR image as follows (refer to Fig. 2). 
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The medium detail image is boosted by using Eq. (6) and scaled by 0.5. Next, the NIR fine and boosted medium detail 

images are combined with the Y base image, which results in a new Y image. Finally, the new Y image and the Cb and Cr 

images are transformed to an enhanced RGB image. In Eq. (6), by adjusting δb, the proposed method controls the boosting 

strength and thus the difference between the enhanced and the original RGB images. 

 

Fig. 1 Process flow of the proposed method 

In Fig. 2, an NIR image was decomposed into base, medium detail, and fine detail images. The values in detail images 

were normalized to [0, 255] for clearly showing the contents. Notice that the fine detail image contains the information related 

to the scene texture or detailed shape, while the medium detail image contains the information mainly related to the scene 

structure or shape. The fine detail (also containing noise) can be significantly changed by image transformation. Therefore, 

boosting the fine detail image may cause decrease in the similarity between an RGB image and its transformations, which 

indicates that less features are matched between the RGB image and its transformations. This is why only the medium detail 

image is boosted. 

 
Fig. 2 Image decomposition by WLSF 

4. Experimental Results and Discussion 

We evaluated the proposed method on images from an RGB-NIR Scene Dataset used in [23] (refer to the examples in Fig. 

3). The dataset has 9 categories (country, field, forest, indoor, mountain, oldbuilding, street, urban, and water) and 954 (477 

RGB and 477 NIR) images. The size of most images is close to 1024 × 700. We conducted the same experiments as done in 

[21]. To quantify the feature quality, the number of SIFT features [24] that were extracted in common from both the images, 

and its transformations was counted; their matching scores, the squared Euclidean distance between the matched feature 
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descriptors, were computed. Then, the performance of the proposed method was compared with other fusion methods, i.e., [8, 

10, 21] which were named Fre_BF, Sch_WLS, BF_WLS_Viv, and BF_WLS_Avg, respectively. Fre_BF used fast-BF [10]; 

Sch_WLS used WLSF [8]; BF_WLS_V and BF_WLS_Avg used both fast-BF and WLSF [21]. We applied synthetic 

transformations, such as rotation (45˚, 90˚, and 180˚) and scaling (0.5, 0.75), to each image of the dataset. The feature matching 

which used vl_sift and vl_ubcmatch with default parameters in the Vlfeat library (refer to [25]) was carried out between the 

original and transformed image pairs. 

 

Fig. 3 A part of the images used in the experiments 

The number of matched features has changed from hundreds to a few thousands depending on the image contents and 

transformations. Then, we computed the changes (in %) in the number of matched features and the matching scores, between 

before and after enhancing the RGB images using each fusion method. We also applied random sample consensus (RANSAC) 

with homography [26-27] to remove the outliers (as done in [21]) and computed the changes (in %) in the numbers of inliers 

and the matching scores achieved by using each fusion method. Finally, in order to evaluate whether each fusion method can 

maintain the information content of the original RGB images, we computed the peak signal-to-noise ratio (PSNR) in dB 

between the enhanced and the original RGB images. The parameters used in each fusion method are shown in Table 1, which 

are the same as those used in [21]. 

Table 1 Parameters of each fusion method used in the experiments 

Fusion method Parameters 

Fre_BF ([10]) All parameters (for space and range Gaussian functions) are adapted for each image 

Sch_WLS ([8]) λ = 0.1, c = 2, α = 1.2, and n
†
 = 6 

BF_WLS_Viv ([21]) λ = 0.125, α = 1.2, and n = 1 

BF_WLS_Avg ([21]) λ = 0.125, α = 1.2, and n = 1 

Proposed λ1 = 0.05, λ2 = 0.5, λy = 0.05, α = 1.2, and n = 1 
†
 n is the total number of levels of decomposition 

Fig. 4 shows the intermediate images produced in each processing step of the proposed method. The detail images were 

normalized to [0, 255] for clearly showing the contents. The enhanced luminance image RGBY  has better texture than the 

original luminance RGBY .  

Fig. 5 shows some of fusion results. Tables 2-4 show the feature matching and PSNR results of each fusion method. In 

[21], BF_WLS_Avg performed the best among the existing fusion methods. It was the same in our experiments, although the 

results of each method were slightly different, Fre_BF increased the number of feature matches by 4% but had the worst 

performance in terms of matching scores. Its matching scores even got worse in most images, which indicates that the feature 

matching got worse qualitatively. Sch_WLS had poor performance in increasing the number of feature matches and matching 

scores. Furthermore, its PSNR was too low, which indicates that Sch_WLS severely loses the information content of the 

original RGB images (refer to Fig. 5). 
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Fig. 4 Intermediate images produced in each processing step of the proposed method 

 

Fig. 5 Visual comparison of RGB images enhanced by different RGB-NIR fusion methods 
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The performance of the proposed method depends on the boosting factor δb. As shown in Fig. 6, larger boosting factors 

increased the number of feature matches at an expense of a loss in the PSNR. In addition, the increase in the number of feature 

matches is not correlated with the increase in matching scores. On the contrary, smaller boosting factors retained high PSNR, 

but the number of feature matches are not increased as much as BF_WLS_Avg in most images. Therefore, we set the boosting 

factor so that the proposed method worked well in terms of both feature matching and PSNR. The optimal boosting factor is not 

largely different across different images. For the dataset used in our study, the proposed method worked the best in terms of 

both feature matching and PSNR when the boosting factor was set to 4. 

 

Fig. 6 Performance of the proposed method adjustable by the boosting factor 

In Fig. 5 and Tables 2-4, the results of the proposed method are those obtained when the boosting factor is set to 4. The 

proposed method can extract better NIR details, which is exactly useful for feature matching, by boosting and combining 

details extracted at different scales. As a result, the proposed method outperforms BF_WLS_Avg in terms of both feature 

matching and PSNR. Specifically, the method results in increased feature matches over RGB images by 7.17% (with SIFT) 

and 7.64% (with SIFT + RANSAC) on average while retaining the PSNRs to more than 33dB. The increase in feature matches 

was approximately 0.3% larger than BF_WLS_Avg, and the PSNR was approximately 0.2dB better than BF_WLS_Avg. The 

improvement by the proposed method might not be that much. However, the proposed method worked more consistently 

across images than BF_WLS_Avg (refer to the standard deviation values in Table 2). 
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Table 2 Changes in the numbers of matched features 

Fusion method Using SIFT (%) Using SIFT + RANSAC (%) 

Fre_BF ([10]) 3.83  2.39 4.02  2.39 

Sch_WLS ([8]) 1.43  0.86 1.88  0.96 

BF_WLS_Viv ([21]) 1.56  3.04 1.70  3.08 

BF_WLS_Avg ([21]) 6.84  4.22 7.31  4.13 

Proposed (δb = 4) 7.17  2.22 7.64  2.25 

In Table 3, the decrease in matching scores ensures that the feature matching was not just improved numerically but also 

qualitatively. In terms of matching score, the method was also comparable to BF_WLS_Avg, but with better consistency. In 

addition, depending on applications, we can adjust the results of the method by changing the boosting factor. 

Table 3 Changes in the matching scores 

Fusion method Using SIFT (%) Using SIFT + RANSAC (%) 

Fre_BF ([10]) -0.88  2.30 -0.36  1.34 

Sch_WLS ([8]) -1.09  1.72 -0.49  0.53 

BF_WLS_Viv ([21]) -1.24  0.63 -0.18  1.34 

BF_WLS_Avg ([21]) -3.26  0.86 -2.83  1.60 

Proposed (δb = 4) -3.25  0.68 -2.06  0.50 

 

Table 4 PSNR and processing time resulted from each fusion method 

Fusion method PSNR (dB) Time (s) 

Fre_BF ([10]) 32.77  1.58 0.10 

Sch_WLS ([8]) 19.89  4.27 19.13 

BF_WLS_Viv ([21]) 33.52  2.58 3.32 

BF_WLS_Avg ([21]) 32.86  1.62 3.33 

Proposed (δb = 4) 33.01  1.74 4.67 

BF_WLS_Viv, where RGB and NIR images were decomposed into base and detail images by using WLSF, and the RGB 

detail image replaced by the NIR detail image (refer to [21]) had high PSNRs but showed the worst performance in increasing 

the feature matches. It indicates that a simple use of WLSF cannot improve the performance for feature matching. 

BF_WLS_Viv is worse than Fre_BF that uses fast-BF instead of WLSF at the same framework. Although the proposed method 

also uses WLSF, its performance is much better than BF_WLS_Viv. This is because the proposed method more precisely 

decomposes the NIR details and boosts the details in an effective manner. 

However, the thing we need to know is that NIR images do not always have better details than RGB images as shown in 

Fig. 7. For example, in far water regions, NIR images lost the underwater details. Therefore, instead of simply substituting the 

RGB luminance detail image with the enhanced NIR detail image, which of the NIR image and the RGB images contains better 

local details and should be determined first. Depending on the results, the image fusion should be done adaptively and locally. 

This would be a good direction for future improvement of the proposed method. 

 

Fig. 7 Details in NIR and RGB images (The yellow circles represent the regions that have fine details) 
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All the fusion methods were implemented by using Matlab R2017b. Their processing times on a PC equipped with 

i7-7700 3.6GHz CPU and 32GB RAM are shown in Table 4. WLSF was relatively time-consuming than BF, thus the 

processing time was in proportion to the number of running WLSF. Therefore, in terms of processing time, Fre_BF was the 

best. Since the proposed method needs to run WLSF once more compared to BF_WLS_Viv and BF_WLS_Avg, it was a little 

slower than BF_WLS_Viv or BF_WLS_Avg. 

5. Conclusion 

This paper proposed an RGB-NIR image fusion method that decomposed RGB and NIR image by using WLSF into detail 

and base images respectively and substituted the RGB detail image with the NIR detail image. The NIR detail image was 

obtained in two different levels: fine detail and medium detail. Then, the medium detail image was boosted in an analytical 

manner. The proposed method outperformed the existing fusion methods in improving the performance for feature matching 

and maintaining the information content of the original RGB image which can be useful for other vision tasks. Specifically, the 

increase in feature matches was approximately 0.3% larger, and the PSNR was approximately 0.2dB better than the state of the 

art. In addition, the proposed method worked much more consistently.  

In our experiments, we set the boosting factor that controls the strength of detail boosting. However, the optimal boosting 

factor can be different across images or applications. Therefore, we are currently studying an automatic way to compute the 

optimal boosting factor. 

In this paper, we assumed that RGB and NIR images were geometrically well aligned. Nevertheless, some images in the 

dataset used in our experiments were slightly misaligned. Therefore, the method for geometric registration between RGB and 

NIR images, such as [28-31], is required to improve the fusion results. This remains as future work. 
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