
Remote Sensing Applications: Society and Environment 18 (2020) 100306

Available online 26 March 2020
2352-9385/© 2020 Elsevier B.V. All rights reserved.

Mapping of ferric (Fe3þ) and ferrous (Fe2þ) iron oxides distribution using 
band ratio techniques with ASTER data and geochemistry of Kanjamalai 
and Godumalai, Tamil Nadu, south India 

Gopinathan P a,*, Parthiban S b, Magendran T c, Ayad M. Fadhil Al-Quraishi d, Ashok K. Singh e, 
Pradeep K. Singh e 

a CSIR-Central Institute of Mining and Fuel Research, Ministry of Science & Technology, Govt of India, Ranchi, Jharkhand, 834010, India 
b Vignan’s Foundation for Science Technology & Research (Vignan’s University), Guntur, Andhra Pradesh, 522 213, India 
c Water Resources Department, Public Works Department, State Govt. of Tamil Nadu, Chennai, Tamil Nadu, 600 113, India 
d Dept of Environmental Engineering, College of Engineering, Knowledge University, Erbil, 44001, Kurdistan, Iraq 
e CSIR-Central Institute of Mining and Fuel Research, Ministry of Science & Technology, Govt. of India, Dhanbad, Jharkhand, 826015, India   

A R T I C L E  I N F O   

Keywords: 
ASTER 
Geochemistry 
Iron ore 
Band ratio 
Correlation 
Tamil Nadu 
India 

A B S T R A C T   

The iron ores found in Tamil Nadu State, South India, are major varieties that have been confined with banded 
magnetite quartzite. The occurrence, distribution, and grade of these deposits significantly vary according to 
their geological structure and geomorphologic control. In this article, presents a novel approach, based on 
spectral remote sensing and digital processing of ASTER data, to identify and characterize the iron ores of 
Kanjamalai and Godumalai areas located in Tamil Nadu, India. By analyzing the ASTER images, the abundance 
of iron oxides including ferric (Fe3þ) and ferrous (Fe2þ) components was determined. The band ratioing tech
nique, a multiband analysis was used to generate the abundance of iron oxide content in various parts of the 
study area using different band combinations such as band 2/band 1 (for Fe3þ) and band 5/band 3 þ band 1/ 
band 2 (for Fe2þ). The geochemical analysis is an important part of this work to arrive with the outcome of band 
ratio techniques to decipher the relationship of the band ratio to the chemical composition of the ore samples. 
Accordingly, the correlation between the results of the geochemical analysis of the samples collected from the 
random locations was determined by Pearson’s coefficient of correlation (ρ) and compared with the corre
sponding locations in the abundance image. In addition to ρ, various factors such as mean (μ), variance (σ2) and 
corresponding standard deviations (σ) were also analyzed for a comparative analysis. This comparative analysis 
indicated that most of the samples have considerably high iron oxide content in the locations. Thus, this study 
shows the possibility of detecting iron oxide content and its spatial distribution by using ASTER satellite images 
analysis. Hence, from the mapping results, it is evident that the band ratio technique of ASTER images can be 
used to map and characterize with limited fieldwork and geochemistry.   

1. Introduction 

The southern part of India is endowed with a variety of minerals. 
Among these minerals, some are successfully and economically extrac
ted such as fossil fuel and metalliferous and non-metalliferous minerals 
(GSI, 2006). The state of Tamil Nadu reserves over 500 million tonnes of 
magnetite with an average grade of 38% iron in the major deposits of 
Salem, Tiruvannamalai, Dharmapuri, Tiruchirappalli, Namakkal, Villu
puram and Perambalur districts GSI, 2006. Among these iron ore de
posits, Kanjamalai and Godumalai were selected for exploring iron ores 

using remote sensing techniques with ground truth verification. Remote 
sensing based preliminary study on these sites was previously attempted 
to assess the generic controls of iron ore deposits Gopinathan et al. 
(2015a,b). 

It is erudite that the digitally processed satellite images can be used 
to locate the assemblages of hydrothermal alteration minerals such as 
iron minerals, silica, and clay. Abulghasem et al. (2011) studied the 
integrated data of remote sensing and geophysical data for iron ore 
exploration. Subsequent image interpretation produces a map of local
ities or prospect with favorable conditions for mineral deposits Sabins 
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(1999), Soe et al. (2005), Ramadan et al. (2009), Zhang et al. (2012). By 
comparing the signatures of known deposits with the unknown deposits 
by using band ratio combination, new reserves can be identified Ciam
palini and Antonielli (2012), Sabreen and Abdelmoneam (2012), El 
Khidir and Babikir (2013). Yang et al. (1998) proposed a new explora
tion technique using a novel exploration parameter, i.e., alteration 
remote sensing anomaly for metallic deposits. Kruse and Prerry (2006) 
carried any regional mineral mapping by extending a hyperspectral 
signature using multispectral data. Hyperspectral images with 0.4–2.5 
micrometer (VNIR.SWIR) spectral range allow direct identification of 
minerals using their fully resolved spectral signatures Kruse (1995), 
Sabins (1999), Magendran et al. (2011), Zhang et al. (2012). Similar 
studies using ASTER were also carried out for geospatial and geological 
mapping of iron ore prospective zones (Crosta et al. (2003), Zhang et al. 
(2007), Salati et al. (2011) and Mishra et al. (2014). Bersi et al. (2016) 
has attempted a research carried out with Aero gravity and remote 
sensing observations of an iron deposit in Gara Djebilet, southwestern 
Algeria, which shows the combination of remote sensing and gravity 
results helped to evaluate the ore potential of Gara Djebilet and to es
timate the tonnage of the iron ore at Gara Djebilet deposits. There are 
numerous examples of the application of spectral remote sensing tech
niques in exploring iron ores.Studies related to the iron ore exploration 
and investigations using the geospatial technologies were attempted by 
Azizi and Saibi (2015), Azizi et al. (2015), Saadi et al. (2008a,b), Mogren 
(2017) have given the ample ideologies in mapping techniques of iron 
ore deposits using remote sensing technologies. Saibi et al. (2018) has 
furnished the applications of Remote Sensing in Geosciences in a 
comprehensive manner. These studies are an important source of intent 
to carry out this present work. Yazdi et al. (2018), successfully 
attempted a study on alteration mapping for porphyry copper explora
tion using ASTER and Quick Bird multispectral images and similar 
studies on hydrothermally altered mineral mapping were studied by 
Nabilou et al. (2018), Fakhari et al. (2019), Mirko et al. (2019), Zamyad 
et al. (2019). These works indicate the credibility of using remote 
sensing datasets for hydrothermally altered mineral mapping. 

Magendran and Sanjeevi (2014) and Mezned et al. (2010) employed 
EO–1 Hyperion, Landsat ETMþ and ASTER images and obtained the 
most reliable mineral detection including iron ore grade estimation. 
Many successful studies on iron ore grade estimation using spectral 
sensing and geochemistry (Morais Maria Carolina de et al. (2010), 
Magendran et al. (2011), Magendran and Sanjeevi (2014), Gopinathan 
et al. (2015a,b), Sadeghi et al. (2013) encouraged us to attempt this 
study for Kanjamalai and Godhumalai regions. 

This work is intent to decipher the potential of spectral remote 
sensing and digital processing of ASTER data, to identify and charac
terize the iron ores of Kanjamalai and Godumalai in terms of its 
geological and geochemical paradigms. By analyzing the ASTER images, 
the abundance of iron oxides including ferric (Fe3þ) and ferrous (Fe2þ) 
components was determined with the help of band ratioing technique to 
generate the abundance of iron oxide content in various parts of the 
study area using different band combinations such as band 2/band 1 (for 
Fe3þ) and band 5/band 3 þ band 1/band 2 (for Fe2þ). 

2. Materials and methods 

2.1. Study area 

The sites selected for this study are located in the northwestern part 
of Tamil Nadu state, South India (Fig. 1). The study area is a part of the 
Archean high-grade granulite-gneissic terrain of South India in Salem, 
Tamil Nadu and this terrain contains rocks of diverse chemical and 
mineralogical compositions Reddy and Sashidhar (1989). Kanjamalai 
and Godumalai are well known banded iron ore deposits (banded 
magnetite quartzite) in southern granulite terrain in Tamil Nadu Gopi
nathan et al. (2015). Table 1 describes the location and typical charac
teristics of the study sites. 

2.2. Geological settings 

Kanjamalai is one of the well-known banded iron ore formation hills 

Fig. 1. Showing the key map of the locations and lithology.  
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(banded magnetite quartzite) in Tamil Nadu, consists of garnet- 
amphibolite gneiss at top of the hill. Flaggy light-colored gneiss, 
banded magnetite quartzite (BMQ), massive garnet amphibolite, banded 
magnetite quartzite (BMQ), hornblendic and feldspathic gneiss, garnet 
amphibole gneiss, banded magnetite quartzite (BMQ), talcosic schist 
and light colored flaggy gneiss with and without garnet are present 
following the order of superposition from the top to bottom of the hill 
GSI, 2006. 

Godumalai hill is situated at a distance of 17.6 km in the east of 
Salem city. Geologically, the Godumalai banded iron formation that 
occurs in the top of the hill expands for 4.8 km in the east and west 
directions (GSI, 2006). Hornblende biotite gneiss covers the entire hill 
and the lithology of the surrounding area includes amphibolite and 
pyroxene granulite. The thickness of the ore bands is 3–5 m. A few other 
bands may exist under the forest cover GSI, 2006. The geological setting 
of the study sites of Kanjamalai and Godumalai is illustrated in Fig. 1. 

3. Methodology 

The ASTER (Advanced Spaceborne Thermal Emission and Reflection 
Radiometer) image data used in this study covering the iron ore deposits 
of Kanjamalai and Godumalai were acquired in 2001. The ASTER image 
data spectrally cover the visible and near-infrared radiometer (VNIR), 
shortwave-infrared radiometer (SWIR), and thermal infrared radiometer 
(TIR) regions with 14 spectral bands and creates high resolution (15–90 
m) multispectral images of the Earth surface (Yamaguchi et al., 2001). 
ASTER measures reflected radiation in three bands between 0.52 to 0.86 
μm (VNIR) and in six bands from 1.6 to 2.43 μm (SWIR) with 15 and 30 
m resolution, respectively. ASTER is also equipped with a back-looking 
VNIR telescope with 15 m resolution; thus stereoscopic VNIR images can 
be acquired at 15 m resolution. In addition, the emitted radiation is 
measured at 90 m resolution in five bands in the 8.125–11.65 μm 
wavelength region (TIR). In this study, VNIR wavelengths were effec
tively used to decipher the spatial distribution of iron oxide at the 
studied sites. 

The adopted methodology was implemented in three steps: (i) 
Analysis of remote sensing data (ii) Field investigation and sample 
collection (ground truth verification), and (iii) Geochemical analysis of 
the collected samples. In the first step, multispectral image data pro
cessing was carried out considering the ASTER satellite datato re- 
evaluate iron ore deposits. In the second step, a field investigation, 
based on the output of the remote sensing approach, was conducted and 
samples were collected. In the third step, geochemical analysis of the 
collected samples was carried out to verify the predictions made by the 
remote sensing approach (Fig. 2).The detailed discussions on the 

analytical results are furnished in the subsequent sections. 

4. Results and discussions 

4.1. Band selection and ratio analysis 

Ratio analysis is used to enhance the spectral contrasts between the 
bands that are considered in the ratioing process and used in the mineral 
mapping Elsayed Zeinelabdeina and Albielyb (2008). Each object has its 
own spectral reflectance pattern in different wavelength regions. The 
spectral reflectance curve is a kind of fingerprint of an object. The object 
or rock unit may have high reflectance value in some spectral regions, 
though it may absorb in another spectral region. For instance, iron ore 
absorbs in the 0.85–0.9 μm region of electromagnetic radiation (EMR). 
In this context, the band ratio serves as a simple and powerful technique 
to identify and demarcate the iron ore mineral deposits. The ferrous 
mineral abundance maps highlight ferrous (Fe2þ) minerals present in an 
area. The banded magnetite quartzite shows magnetite ridges in the 

Table-1 
Results of Geochemical Analysis of all the samples Collected from the Study Sites.  

Concentration of Component (%) 

S.No Sample ID Al2O3 CaO Fe3O4 K2O MgO MnO Na2O P2O5 SiO2 SO3 TiO2 

1 GS1 1.03 1.324 37.27 0.096 2.002 0.02 0.466 0.372 56.4 0.22 0.04 
2 GS2 0.185 1.525 40.12 0.015 2.836 0.01 0.00 0.372 54.9 0.00 0.00 
3 GS3 1.346 1.562 36.53 0.085 2.032 0.02 0.521 0.416 54.3 0.16 0.46 
4 GS4 0.198 1.136 44.05 0.022 1.864 0.02 0.00 0.324 52.4 0.00 0.00 
5 GS5 0.177 1.279 45.47 0.019 2.06 0.02 0.00 0.261 50.7 0.00 0.00 
6 GS6 1.54 1.198 39.76 0.15 1.16 0.03 0.492 0.25 57.7 0.25 0.07 
7 GS7 17.34 5.193 4.462 2.676 2.797 0.05 6.174 0.224 60.2 0.00 0.51 
8 KS1 1.804 0.894 36.9 0.152 1.586 0.05 0.6 0.102 56.8 0.24 0.29 
9 KS2 14.37 14.1 12.83 0.05 7.331 0.24 2.64 0.054 47.5 0.00 0.00 
10 KS3 1.926 0.586 38.59 0.157 1.491 0.04 0.62 0.278 57 0.31 0.09 
11 KS4 0.151 0.52 48.32 0.00 2.203 0.02 0.00 0.401 48.4 0.00 0.00 
12 KS5 2.05 3.85 24.92 0.144 1.351 0.03 0.572 0.106 66.3 0.25 0.11 
13 KS6 2.14 0.45 50.32 0.16 1.38 0.04 0.461 0.124 45.2 0.18 0.1 
14 KS7 2.07 0.728 39.68 0.152 1.24 0.33 0.642 0.153 57.3 0.19 0.21 
15 KS8 12.03 16.45 15.44 0.102 8.469 0.22 1.18 0.106 45 0.00 0.81 
16 KS9 2.031 0.452 25.02 0.28 1.271 0.24 0.481 0.16 64.8 0.15 0.14 
17 KS10 12.97 13.22 13.55 0.107 12.81 0.23 1.74 0.055 44.5 0.00 0.43  

Fig. 2. Flowchart depicting the methodology employed.  
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visible region of the map. 
In a band ratio image, the red, green and blue bands are used for the 

ratio of any two bands or any arithmetic combination of the bands. 
Although up to six bands can be considered, in practice, only a few bands 
are combined in different ways for iteration. Band ratio images are used 
to remove the effect of uneven illumination caused by the topography 
with an assumption that the ratio of two bands in the same rock type will 
be the same, no matter in which way the slope faces. 

4.2. Abundance mapping of ferrous mineral 

ASTER band 5/3 þ band 1/2 ratio was used to generate ferrous 
mineral abundance map. The ratio images designed to display the 
spectral contrast of specific absorption features have extensively been 
used to identify ferrous iron oxides. The ferrous mineral abundance map 
is used to highlight the ferrous minerals mainly ores of iron in the map. 
The ASTER band combinations used to prepare the ferrous abundance 
map included band 5/3 þ band 1/2. Fig. 3 depicts the areas of ferrous 
abundance at the study sites. 

Owing to the absorption characteristics displayed by iron oxide in 
the NIR region, it is possible to map the spatial distribution of ferrous 
minerals by using an algorithm. Ferrous minerals can be seen mostly in 
the flanks of slops and the foot hills of Godumalai area. In the Kanja
malai area, they are seen near the ridges and foot of the hills. However, 
the abundance of ferrous minerals is less in Kanjamalai than that in 
Godumalai. Certain scattered patches can be seen at ground level but 
these are mostly red soils and do not correspond to iron mineralization 
in the region. 

4.3. Ferric Mineral Abundance Mapping 

The abundance map of iron oxides was generated to highlight ferric 
minerals. This index map is different from that of the ferrous minerals in 
such a way that the iron oxide includes all the materials showing red 
color on the ground. In other words, it includes iron ores, red soils, and 
laterites. The ASTER band combination used for the preparation of iron 
oxide abundance map is band 2/band1. 

The difference between the abundance map of ferrous and ferric 
minerals is the oxidation states Fe2þ and Fe3þ. The abundance of ferric 
oxide at the study sites is different and readily depicted in the output 
image (Fig. 4). On the other hand, in Godumalai, ferric oxide is not 
abundant, perhaps due to the presence of vegetation on the hill. How
ever, in Kanjamalai, ferric oxide abundance is readily seen at most of the 
parts of the hill. 

4.4. Linear spectral unmixing for grade estimation 

Linear spectral unmixing determines the relative abundance of ma
terials depicted in multispectral imagery considering spectral charac
teristics of materials. The reflectance at each pixel of the image is 

assumed to be a linear combination of the reflectance of each material 
(end member) present within the pixel. However, there are certain 
limitations in applying the linear spectral unmixing technique. The 
number of end members must be less than the number of spectral bands 
and all of the end members in the image must be used for an efficient 
mapping result Kumar et al. (2008). The results of spectral unmixing are 
highly dependent on the input of end members and changing end 
members also changes the final results. 

4.5. Principal components analysis (PCA) 

Different bands in multispectral data are often highly correlated and 
thus contain similar information. For example, Landsat MSS Bands 4 and 
5 (Green and Red, respectively) typically have similar visual appearance 
since the reflectance for the different types of same surface cover is 
almost equal. Image transformation techniques can be used to reduce 
this data redundancy and correlation between bands. One such trans
form is called principal components analysis. The objective of this 
transformation is to reduce the dimensionality (i.e., the number of 
bands) in the data and compress as much as the information in the 
original bands into fewer bands. The "new” bands that result from this 
procedure are called components. This process attempts to maximize 
(statistically) the amount of information (or variance) from the original 
data into the least number of new components. As an example of the use 
of principal components analysis, a seven-band Thematic Mapper (TM) 
dataset may be transformed such that the first three principal compo
nents contain over 90 percent of the information in the original seven 
bands. The interpretation and analysis of these three bands of data can 
be done easily and more efficiently by combining them both visually or 
digitally rather than trying to use all original seven bands. Principal 
components analysis and other complex transforms can be used either as 
an enhancement technique to improve visual interpretation or to reduce 
the number of bands to be used as input to information extraction 
Geological Survey of Canada (2004). 

In the end member selection process, the multiple end members were 
selected to specify the sub-classes of target iron oxide minerals and 
country rocks each of which representing different combinations of pixel 
density, pixel size, and percentage cover that lead to the fluctuation in 
the reflectance value in the spectra. The resulting sub-classes were then 
combined to obtain the final end member spectra of iron oxide and 
country rock (Fig. 5). The red and green envelope spectra represent area 
distributed with iron oxide and white spectra represent different country 
rocks in the study areas. 

4.6. Fraction images 

Fraction images were generated by using two end members such as 
iron oxides and country rocks for the study sites. It shows that higher 
values are displayed as brighter and lower values are displayed in darker 
tones for each pixel. This fraction image for the two study sites gives 

Fig. 3. Ferrous Mineral Abundance Map of Study sites (a) Kanjamalai and (b) Godumalai.  
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information about the relative abundance of the end member material 
considering each end member present in a pixel. Two end members for 
each study site were used to describe the resultant images (Fig. 6). 

The fraction images of the study sites clearly indicate the presence of 
iron oxide minerals and the country rocks. The brighter areas in the 
fraction images represent higher abundances of the corresponding end 
member components. Most of the brighter areas in the iron oxide frac
tion images indicate only the iron ore ridges and the moderate abun
dance of iron oxide is prominent in slopes of the hill. Similarly, brighter 
areas in the country rock fraction images represent country rocks such as 
quartzite, amphibolite, pyroxene granulites, feldspathic gneiss, garnet 
amphibole gneiss, etc. 

4.7. Grade wise categorization mapping of iron ores 

Grade wise categorization maps were generated as the iron ore 
fraction images, which provided iron ore grade variations at the study 
sites. By density slicing of the fraction images, the iron oxide grades 
were categorized. Grade wise categorization maps were generated from 
the iron ore fraction images, since these fraction images provide infor
mation about iron ore grade variations in the study sites and thus the 
categorization was done by density slicing of the fraction images. Den
sity slicing is an image processing technique that is applied to a single- 
band monochromatic image to highlight the areas appearing uniform in 
tone. Grey scale values (generally 0 to 255) are converted to a series of 
specific slices and different colors are assigned to each slice. This tech
nique is often used to highlight variations in vegetation. However, in the 
present study, the variation in ore grade is highlighted in the fraction 
images by using this technique. 

Thus, the entire data range of a fraction image is selected and sliced 
into three different categories of classes and represented in different 
colors. In the output image, the high-grade iron oxide is assigned and 
represented by the yellow color, the medium grade iron oxide is 
assigned and represented by the blue color and the low-grade iron oxide 
is assigned and represented by the green color. This procedure was 
applied to the fraction images of both study sites. The grade wise cate
gorization map of iron ores based on the abundance is shown in Fig. 7. 

It is necessary that the grades of these iron ore pockets estimated by 
remote sensing are validated and compared with the actual geochem
istry of the samples. Hence, the geochemical analysis was carried out to 
relate the actual geochemistry of the samples and the abundance of the 
iron ores in the selected locations with high grade, medium grade, and 
low grade. The next section presents the results of the geochemical 
analysis of the iron ore samples. 

4.8. Sample collection and geochemical analysis 

In order to validate the prediction made by remote sensing, field 
investigation and sample collection were conducted. The ground survey 
was conducted for field investigation or ground truth verification after 
processing and analyzing the ASTER image data. Based on the iron ore 
abundance map, the field verification was done and various sampling 
locations were identified using a portable global positioning system. A 
total of 17 samples were collected from various parts of the study sites 
(Fig. 8) Due care was taken during the sample collection in such a way 
that the samples fall in the iron ore exposure area, which was identified 
from the ASTER data process and analysis (see Fig. 9abc). 

The geochemical analysis of the samples was aimed to relate the 
abundance of the iron oxide determined by the satellite data analysis 
with the actual geochemistry of the collected samples. After collecting 
iron ore samples during the field investigation and ground truth verifi
cation, the samples were powdered to 100-μm size. These powdered 
samples were prepared for XRF analysis to identify the total iron content 

Fig. 4. Ferric Mineral Abundance Map of Study sites (a) Kanjamalai and (b) Godumalai.  

Fig. 5. End Member Spectra collected for the Study Sites (a) Kanjamalai and 
(b) Godumalai. 
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Fig. 6. Fraction images generated for study sites (a) Kanjamalai: (i) Iron ore fraction image; (ii) country rock fraction image and (b) Godumalai: (i) Iron ore fraction 
image; (ii) country rock fraction image. 

Fig. 7. Grade wise Categorization Map of the Study sites (a) Kanjamalai and (b) Godumalai.  

Fig. 8. Field photographs showing banded iron ore formations of the study area.  
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in the samples. The results of geochemical analysis of all the samples are 
presented in Table 1 - Table-1. Results of Geochemical Analysis of all 
the samples Collected from the Study Sites, should come here. 

4.9. Pearson’s correlation coefficient between the results of ASTER vs 
geochemistry 

Linear spectral unmixing techniques are useful in categorizing the 
grade of iron ores based on their abundance. The correlation between 
the different factors of the collected samples was established by Pear
son’s correlation coefficient. Besides the correlation analysis, other 
significant factors were also analyzed and compared for better inter
pretation. The correlation between the predicted iron oxide abundance 
and the actual geochemistry of the samples was established by the 
following equation: 

Pearson’s correlation coefficient. 

ρðx; ​ yÞ ¼ ​ Covðx; ​ yÞ
σx⋅σy 

where mean μx ¼ ​
P

x
n ; meanμy ¼

​
P

y
n ;Covðx; ​ yÞ ¼

P
xy

n �

P
x

n ⋅
P

y
n σx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x2

n �

�P
x

n

�2
s

and. σy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

y2

n �

�P
y

n

�2
s

Where ‘n’ is the number of items taken for the samples. 

Pearson’s correlation coefficient for Fe3O4 vs. DN value of fraction 
image  

Fe3O4 vs. DN value of Fraction Image 

Mean ​ μFe3O4
¼ 25:2455  Mean ​ μFraction ​ Image ¼ 0:5307  

Variance ​ σ2
Fe3O4

¼ ​ 119:5369  Variance ​ σ2
Fraction ​ Image ¼ ​ 0:0219  

Standard Deviation σFe3O4 ¼ 10:9333  Standard Deviation σFraction ​ Image ¼ 0:1480  
CovðFe3O4 ; ​ Fraction ​ ImageÞ ¼ 1:2108  
ρðFe3O4; ​ Fraction ​ ImageÞ ¼ ​ 0:7490  
⇒R2 ​ ¼ ​ ρ2 ¼ ​ 0:5610   

The correlation between the predicted iron oxide abundance versus 
actual geochemistry is R2 ¼ 0.5610, indicating that there is a good 
correlation between the ASTER observation and actual geochemistry of 

Fig. 9 (a). Correlation between Fe3O4 and DN value of fraction image.  

Fig. 9(b). Correlation between the actual iron oxide and band ratio for ferrous oxide (Fe2 þ 5/3 þ 1/2).  
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the ore for iron oxide. 
Karl-Pearson’s correlation coefficient for band ratio Fe3O4 vs. Fe2 þ

5/3 þ 1/2  
Fe3O4 vs. Band ratio Fe2 þ 5/3 þ 1/2 

Mean ​ μFe3O4
¼ 29:1595  Mean ​ μFe2 ​ þ ​ 5=3 ​ þ ​ 1=2 ¼ 0:8962  

Variance ​ σ2
Fe3O4

¼ ​ 177:9058  Variance ​ σ2
Fe2 ​ þ ​ 5=3 ​ þ ​ 1=2 ¼ ​ 0:1392  

Standard Deviation σFe3O4 ¼

13:3381  
Standard Deviation σFe2 ​ þ ​ 5=3 ​ þ ​ 1=2 ¼

0:3731  
CovðFe3O4; ​ Fe2 ​ þ ​ 5=3 ​ þ ​ 1=2Þ ¼ � 3:5340  
ρðFe3O4; ​ Fe2 þ ​ 5=3 ​ þ ​ 1=2Þ ¼ ​ � 0:7102  
⇒R2 ​ ¼ ​ ρ2 ¼ ​ 0:5044   

From the above factors the standard deviations of Fe3O4 and Fe2 þ 5/ 
3 þ 1/2 that is σFe3O4 ¼ 13.3381 and σFe2þ ​ 5=3 ​ þ ​ 1=2 ¼ ​ 0:3731are also 
comparatively very low in magnitude. The variance of band ratio Fe2 þ

5/3 þ 1/2, that is, σ2¼ 0.1392, is considerably less and there is a positive 
correlation between Fe3O4 and Fe2 þ 5/3 þ 1/2 derived by ASTER. 

Pearson’s correlation for Band Ratio Fe3 þ 2/1 vs Fe3O4  
Fe3O4 vs Band Ratio Fe3 þ 2/1 

Mean ​ μFe3O4
¼ 29:1595  Mean ​ μFe3þ ​ 2=1 ¼ 1:2340  

Variance ​ σ2
Fe3O4

¼ ​ 177:9058  Variance ​ σ2
Fe3þ ​ 2=1 ¼ ​ 0:1912  

Standard Deviation σFe3O4 ¼ 13:3381  Standard Deviation σFe3þ ​ 2=1 ¼ 0:4372  
CovðFe3O4; ​ AverageÞ ¼ � 4:1777  
ρðFe3O4; ​ AverageÞ ¼ ​ � 0:7164  
⇒R2 ​ ¼ ​ ρ2 ¼ ​ 0:5132   

It can be seen in the above factors that the standard deviations of 
Band Ratio Fe3 þ 2/1 and Fe3O4 that is, σFe3þ2=1 ¼ ​ 0:4372and σFe3O4 ¼

​ 13:3381are also comparatively very low in magnitude. The variance of 
Fe3 þ 2/1 that is σ2¼ 0.1912 is considerably less and there is a 
reasonable correlation between Fe3O4 and fraction image derived by 
ASTER. 

The ratio technique showed a good correlation with the iron oxide 
content (R2 ¼ 0.5044 and R2 ¼ 0.5132), thus it seems to be an acceptable 
and reliable technique for iron ore mapping and grade estimation using 
ASTER images. 

5. Conclusion 

This study further confirmed that satellite remote sensing technique 
offers the exploration of a large area in a very short time and at low cost. 
The spectral remote sensing and digital processing of ASTER images 
provided useful information about the abundance of iron oxide at the 
study sites. Band ratioing technique with different band combinations 
was found to be efficient in estimating the abundance of iron oxide 
content at the study sites by using band 2/band 1 (for ferric Fe3þ) and 
band 5/band 3 þ band 1/band 2 (for ferrous Fe2þ) contents. The 
fraction images that resulted from the technique of spectral unmixing of 
the ASTER image pertaining to the study sites clearly demarcated the 
iron oxide mineral and country rock. Most of the brighter areas in the 
iron oxide fraction images corresponded to the iron ore ridges only and 
moderate abundance were prominent in the hill slopes. Similarly, the 
brighter areas in the country rock fraction images represented country 
rocks such as quartzite, amphibolite, pyroxene granulites, feldspathic 
gneiss, and garnet amphibole gneiss. 

The results of the geochemical analysis of the samples collected from 
the random locations were correlated and compared with the corre
sponding locations in the abundance image. The correlation of the iron 
oxide percentage with the structural pattern confirmed that Godumalai 
and Kanjamalai have an average of 37.87% and 35.9% of iron oxide 
content. This further clarified that the banded iron ore formations 
associated with Godumalai and Kanjamalai are comparatively 
dominant. 

In summary, the current study established that it is possible to detect 
the narrow and low iron oxide content and quantitatively estimate its 
spatial distribution using ASTER image data. Moreover, the ratio tech
nique is useful in the identification of the abundance of iron oxide 
content including lateritic areas. Linear spectral unmixing techniques 
are useful in categorizing the grade of iron ores based on their abun
dance with reasonable accuracy. This study demonstrated that using the 
remote sensing and digital image processing of satellite images such as 
ASTER, the superficial extension of iron ore deposits can be identified 
and characterized with limited field works and geochemistry. 
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