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ABSTRACT 

 

DEVELOPMENT OF A PHARMACEUTICAL TABLET AUTHENTICATION 

SYSTEM USING SPECTROSCOPIC TECHNIQUES IN COMBINATION WITH 

MULTIVARIATE CHEMOMETRIC METHODS 

 

By 

Md Nayeem Hossain 

May 2020 

 

Dissertation supervised by James K. Drennen, III, Ph.D. 

The spread of falsified drugs is increasing worldwide. Currently, 10%-30% of drugs 

in the world are falsified. Unfortunately, the supply chain system of developing countries 

(from manufacturers to customers) is not well monitored and suffers the highest rates of 

fraudulent activities. Also, the rise of product procurement from the internet increases the 

chance of American consumers' exposure to poor quality drugs. To combat this horrendous 

activity, surveillance of pharmaceutical materials is required in the supply chain system. 

Spectroscopic techniques (e.g., Near-Infrared and Raman spectroscopies) can be a potential 

solution to authenticate samples in different locations; they are non-destructive, safe, rapid, 

portable, and affordable. However, before deploying these techniques in the field, rigorous 

method development is required with the help of chemometrics. The chemometric tools to 

be used should declare the test sample as either target class (authentic samples) or non-
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target class (alternate class or falsified samples). One challenge of method development is 

the sensitivity of spectrometers toward unwanted variabilities including moisture, batch to 

batch variabilities, raw material variabilities, etc. Initial research for this dissertation 

observed that the traditional chemometric methods, which are based on distribution 

assumptions, provided a high number of false negatives due to violation of distribution 

assumptions in the presence of unwanted variations. It was demonstrated that adding 

samples from different seasons in the calibration set created binominal or multimodal 

distributions due to moisture variations - which violated the assumptions of the principal 

component analysis based soft independent modeling of class analogy (SIMCA) method. 

Hence, the support vector data description (SVDD) method—which has no distribution 

assumption—is proposed for use as a class modeling approach for authentication purposes. 

Implementing the SVDD algorithm improved model performance by reducing false 

negatives relative to the traditional multivariate class modeling approach (i.e., SIMCA).  In 

addition, while developing the SVDD method, this dissertation suggested using different 

non-target class samples produced by competitor manufacturers or synthetic samples 

generated in the laboratory using design of experiment (DOE) as test or validation set to 

decrease false positives. This work also evaluated several commercially available products 

in two local pharmacies using portable spectrometers to validate the practical usefulness of 

the proposed methods. To summarize, the research performed for this dissertation has 

demonstrated the value of critical prior knowledge regarding pharmaceutical products, 

pharmaceutical manufacturing/processing, analytical methodology, and advanced 

chemometric techniques in a unique way to develop a successful spectroscopic 

authentication system.
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1 Chapter 1: Introduction 

1.1 Background, Statement of Problem 

A sound authentication process is vital to protect pharmaceutical materials from 

falsification or any fraudulent activities.  According to the World Health Organization (WHO), the 

term “falsified medicines” can be defined as “Medical products that deliberately/fraudulently 

misrepresent their identity, composition or source. Such deliberate/fraudulent misrepresentation 

refers to any substitution, adulteration, or reproduction of an authorized medical product or the 

manufacture of a medical product that is not an authorized product” [1].  Specifically, composition 

refers to the raw material or final dosage form in accordance with applicable specifications 

authorized/recognized by national or regional regulatory bodies. In May 2017, the WHO published 

this definition of falsified products to bring harmony among the member countries and replaced 

the word “counterfeit medicine” which was widely used [1]. 

Protection of pharmaceutical materials from fraudulent activities is becoming increasingly 

critical as falsified products are more widely distributed. Currently, 10%-30% of drugs in the world 

are falsified [2]. Unfortunately, the supply chain system of developing countries (from 

manufacturers to customers) is not well monitored, and suffers the highest rates of fraudulent 

activities [3, 4]. Also, the rise of product procurement from the internet increases the chance of 

American consumers' exposure to poor quality drugs [2].   

A variety of techniques have developed to eliminate such fraudulent activities. Among 

these, visual inspections or image analysis have been used as the very first step of the identification 
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process. However, many counterfeiters and producers of falsified products can evade sophisticated 

visual tests [5]. Therefore, a variety of analytical tools have been used to reveal the different 

chemical compositions of falsified products from authentic samples. Among these analytical 

methods, several rapid screening tools provide an effective way to increase the number of products 

that can be subjected to chemical testing before reaching patients or consumers [6].  Handheld and 

portable instrument platforms provide an opportunity to implement the screening process in more 

locations (e.g., in different locations of the supply chain including rural hospitals, clinics, 

drugstores, etc.). Spectroscopic techniques offer a number of advantages for screening 

pharmaceutical products, including  rapidity, portability, etc. In particular, Near-Infrared (NIR) 

and Raman spectroscopies have been demonstrated to be valuable tools [7]. These spectroscopic 

techniques are fast and easily deployable to different inspection sites, facilitating detection of 

falsified drug products in developing countries to reduce the life-threatening prevalence of this 

scourge [8-10]. Also, these spectroscopic techniques can be applied in the developed world to 

advance internet-of-things (IoT) based smart applications. 

However, the use of such spectroscopic techniques is not straightforward due to the 

multivariate nature of the data and the significant variety of potential factors influencing the 

analytical measurements. Therefore, rigorous method development is required, usually involving 

advanced chemometric methods, before deploying such analytical techniques in the field. These 

analytical systems should declare the test sample as either target class (authentic samples) or non-

target class (an alternate class, or falsified samples). All practical methods should offer good 

performance in terms of limiting both false negatives (identification of samples as false samples 
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when, in fact, they are authentic samples), and false positives (identification of samples as 

belonging to the target class when they are actually false samples). 

Two types of chemometric techniques have been well described in the literature for 

authentication methods, including spectral matching (SM) and class modeling (CM) techniques 

[11]. Most of the current portable spectrometers come with some variety of SM algorithm. These 

algorithms facilitate the comparison of two spectra, including a reference spectrum collected from 

a genuine or authentic material and a spectrum of the unknown material under study [12, 13]. 

These two spectra are used to calculate spectral correlation or spectral distance.  If these correlation 

or distance values match with a target threshold value, the unknown samples are declared as 

genuine or authentic samples. Research showed that the SM method was successful when samples 

included chemical differences, providing sufficient spectral uniqueness to allow detection [14, 15]. 

For example, the SM method was used to identify placebo samples and samples containing the 

wrong API.  However, this method struggled to differentiate samples containing identical APIs 

and similar excipient compositions, resulting in high false positives [16]. 

A variety of class-modeling techniques can also be applied for authentication. Multivariate 

methods such as SIMCA and its extended version, data driven SIMCA, etc. have been used for 

spectroscopic identification of pharmaceutical samples. The primary premise of these methods is 

to develop a target class using representative samples from an authentic source. A calibration 

model is developed from the target class, which is comprised of spectral data containing API and 

excipient information. Class-modeling (CM) estimates a decision boundary which is formed 

around the data at a specific significance level. This boundary is developed based on certain 
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assumptions regarding the data (e.g., normal distribution, 𝜒2 distribution, etc.) [17-19]. The 

pharmaceutical literature reveals several studies proposing that CM techniques are  more powerful 

than the SM method in separating samples containing similar compositions using portable 

spectrometers [15, 20]. Critical considerations for the analytical method developer include 

identifying an appropriate sample of target class product, adequately defining boundary conditions 

for the target class, and selecting suitable non-target samples. CM methods will not be successful 

without suitable training samples. 

To achieve desirable performance, CM methods must account for the anticipated chemical 

and physical variations to be encountered in the target class of product; NIR and Raman 

spectroscopies are sensitive to different physical and chemical factors such as moisture variation, 

tablet hardness, component particle size, instrument drift, etc. This is particularly important for the 

implementation of spectroscopic methods in the field, as samples will be collected in various 

locations. Therefore, models must include this variability at the outset, or must be updated with 

new authentic samples over time to include new sources of variation. To limit the demands of 

calibration updates that might be required due to such new target class variability, different spectral 

preprocessing techniques are applied to remove or limit the spectral effect of this variability. While 

different data processing techniques reduce the unwanted effect of these variabilities, adding new 

samples over time to update the model by including such target class variability is sometimes 

considered the most effective approach. 

Defining appropriate boundary conditions for the target class is a critical aspect of defining 

a suitable set of “good” product samples for model development. A test sample is assigned to the 
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target group if the computed distances of tested samples to model is shorter than a predefined 

threshold value based on a mathematical boundary. However, several challenges arise during this 

boundary formation. As analysts may be required to update the model by adding samples 

containing recently evolved variations into the calibration sample set, these newly added samples 

are often considered as extreme objects or outliers. Moreover, this may violate the assumptions of 

the model by forming clusters or binomial distribution in the model space. Therefore, the caveat 

of defining boundary condition is—without prior knowledge of the shape of the underlying 

distribution of samples, satisfactory boundary formations may not be achieved.  

A CM method can also be developed without relying on distribution assumptions. Unlike 

the traditional CM methods used for the authentication, forming a decision boundary based on 

boundary samples of the calibration set includes all of the samples produced during the model 

update or after the risk-assessment. Support vector machine (SVM) based methods are a viable 

approach for establishing a boundary through the identification of boundary samples. Here, an 

algorithm developed by Tax et al. is proposed as a method for development of a spectroscopic 

authentication system for pharmaceutical products [21]. This method is often identified as a 

support vector data description (SVDD), which has shown similar performance to the one-class 

support vector machine (OC-SVM) developed by Schölkopf et al [22]. The proposed SVDD 

method has been applied for detection of machine faults, outlier detection, etc., but has not yet 

been evaluated for analyzing pharmaceutical samples using spectroscopic data, particularly for the 

authentication purpose. 
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After developing a calibration model using an appropriate decision boundary, an analyst 

should use a complex sample set to test or validate the model performance.  Particularly, to validate 

the model’s capability of rejecting falsified samples, it is critical to evaluate samples from alternate 

classes. These samples are used to test the specificity of the method, which is the portion of 

alternate class samples that are correctly identified as negative or outlier samples with respect to 

the target class. In practice, alternate class samples may be very similar to the target class; 

therefore, alternate class test samples must include samples that are ‘highly similar’ to the target 

class. Usually, these ‘highly similar’ samples are those which contain the same API and similar 

excipient composition and are manufactured using similar techniques. Therefore, the choice of the 

alternate class test samples is essential for assessing false positives (FP). Legitimate generic 

versions of the target class drugs that are manufactured by various producers can be used to test 

the FPs as such drugs should contain identical API and may contain similar excipient 

compositions. These non-target class samples should be used to optimize the boundary condition 

of the proposed SVDD model. This avoids the unnecessary acceptance of non-target class samples 

during boundary optimization and decreases FPs. 

Because the analyst will not always have access to the competitors’ products during method 

development, selecting an alternative strategy such as preparing samples using statistical design 

of experiment (DOE) may be a suitable approach to overcoming the limitations associated with 

inaccessible samples. Various challenging samples can be generated by altering the chemical 

composition of target class samples using DOE. Moreover, depending on the analytical technique 

to be used, the chemical compositions of non-target class samples may be unique based on the 

inherent sensitivity to the chemical compositions. Utilizing both NIR and Raman spectroscopic 
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techniques could prove the value of using different non-target class samples for different 

techniques.  

1.2 Hypothesis and Specific Aims 

The proposed hypothesis is: 

Development of a support vector machine based algorithm with pertinent calibration and 

validation sets enables a multivariate spectroscopic authentication method that provides a 

superior system for both NIR and Raman spectroscopy compared to traditional multivariate 

methods of classification (e.g., SIMCA). 

Given the central hypothesis, the objectives of this dissertation are to: 

1. Demonstrate the development of a robust authentication system using NIRS and a SVM 

based algorithm in the presence of moisture variations. 

2. Demonstrate the use of Raman spectroscopy and the SVDD algorithm for authentication 

in the presence of moisture variations. 

3. Demonstrate model development for the detection of ‘highly similar’ non-target class 

samples collected from different developing countries (produced by various 

manufacturers).  

4. Demonstrate the application of DOE concepts to generate ‘highly similar’ samples for 

testing of NIR and Raman spectroscopic systems. 

5. Demonstrate portable NIR spectrometers as an onsite screening tool for rapid testing of 

pharmaceutical samples. 
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In summary, the objectives of this dissertation were achieved by obtaining two figures of 

merit as described in Figure 1-1: 

 Figure 1-1: Two primary goals of an authentication method, associated 

challenges of each goal and steps taken to address the challenges.  

The first two objectives addressed opportunities to improve the sensitivity of models 

(decreasing false negatives) used for pharmaceutical authentication by addressing the critical 

quality attributes and material attributes relevant to a robust authentication of pharmaceutical 

samples. These parameters are crucial for both NIR and Raman techniques. In Chapters 2 and 3, 

respectively, the work defines how a machine learning based algorithm can be used to improve 

model performance of NIR and Raman spectroscopy and compared with an existing multivariate 

method. 

The next two chapters, Chapters 4 and 5, asses the model's ability to reject non-target class 

samples by decreasing false positives (objectives 3 and 4). In Chapter 4, the document discusses 

the analysis of a variety of highly similar samples, collected from across the globe and 

manufactured by different companies.  These were used to assess the performance of spectrometers 

and models for pharmaceutical tablet authentication. Because a competitor’s product may not 
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always be available, the work of Chapter 5 demonstrated the use of laboratory generated tablets as 

non-target class samples. Since the spectral response of different analytical techniques is unique 

for any composition, unique non-target class samples are likely to be required in model 

development for each different analytical technique. Finally, Chapter 6 describes the use of 

portable spectrometers for sample analysis in the field. Two spectrometers were used to scan 

pharmaceutical samples in local pharmacies.  

The novelty of the work should be apparent due to 1) the requirement of applying critical 

prior knowledge regarding pharmaceutical products, pharmaceutical manufacturing methods, 

analytical methodology, and chemometric techniques, and 2) the application of a specific modern 

approach to calibration development for a new application. 
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1.3 Literature Review of Falsified Drug Detection

Different chemometric methods have been used for the qualitative and quantitative 

analyses of NIR and Raman spectral data to detect various types of falsified products. This 

literature review compiles the details of such previously described work. Critical evaluation of 

these chemometric methods is provided to define the inherent limitations. Finally, directions are 

provided to develop an accurate and robust spectroscopic method for the authentication of 

pharmaceutical products.

1.3.1 Analytical Method Development to Detect Falsified Drugs  

 

Figure 1-2: Method development strategies for a pharmaceutical product 

authentication system 

Analyical method development starts with setting the goals of the analysis. This guides the 

subsequent method development steps (see Figure 1-2). In this case, to protect pharmaceutical 

products from any falsification activities, the analytical system should have the capabilities to 

separate genuine products from falsified products. This target will be effectively achieved if 

analysts are aware of the many potential falsified products. The pharmaceutical literature has 

reported many approaches to falsifying both pure components and finished dosage forms [2]. Such 

falsification frequently involves different counterfeit product composition. This includes, but is 



 

11 

 

not limited to, intentional adulteration of pharmaceutical ingredients, tablets prepared without 

active pharmaceutical ingredient (API) (e.g., using only excipients), tablets manufactured using 

the wrong API, and tablets generated with the correct API, but different compositions of excipients 

(see Figure 1-3). Different types of falsified products are also compiled in Table 1-1.  

 

Figure 1-3: Types of falsified products 

NIR or Raman spectroscopy have been used successfully to detect different approaches to 

falsification; examples of  these counterfeiting activities are discussed in Section 1.3.2 (Step 2 in 

Figure 1-2). Selection of analytical techniques to detect such falsification activities also depend on 

the fundamental capability of the analytical techniques itself, which is further discussed in this 

section [23, 24]. Both NIR and Raman spectroscopy will typically require multivariate modeling 

approaches for the development of a suitable calibration model, discussed in Section 1.3.3 (Steps 

3-4 in Figure 1-2). Development of a robust model will reduce the need to update a calibration 

over time (discussed in Section 1.3.4). Finally, the chemometric approaches proposed in this 

dissertation are provided in Section 1.3.5
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Table 1-1: Overview of  representative pharmaceutical authentication studies using NIR and Raman spectroscopy, 

including model development details regarding preprocessing, number of samples, cross-validation, robustness studies.  

Category of falsified 

products* 

Analyzed medicine, brand 

name in parenthesis. 

Analytical techniques 

and types (L- Lab 

based, P- Portable) 

Product origin(s)/ Source 

Reported chemometric approaches and 

relevant comments - preprocessing, 

internal validation (type, split ratio), 

external validation, model validation, 

robustness testing, performance & 

validation parameter. 

Ref. 

Pure material 309 different USP materials Raman L USP material 
peak match, correlation, and PP: first 

derivative 
[25] 

Adulterants in the 

raw material 

DEG in glycerin, melamine 

in lactose 
Raman P Lab based experiment 

Spectral correlation method, PLS. PP: 

Savgol 1st Derv, SNV, MNCN, CV: 

LOOCV, Sensitivity, Specificity, RMSEP 

[11] 

Adulterant detection 

in Tablet 
glibenclamide 

NIR-L, solid-phase 

fluorescence 

spectrometry 

Brazil 
SIMCA, PLS-DA, UPLS-DA; WS:GA, 

SPA; Type I, Type II error. 
[26] 

Tablet without API. 

chloroquine, ciprofloxacin 

HCl, hydroxychloroquine, 

levofloxacin, metronidazole, 

quinine sulfate 

Raman P 
Commercially purchased 

sample, simulated counterfeit 

Spectral correlation, PP: SavGol (first 

derivative, 2nd order, W-31-point), 

wavelength selection to the API specific 

regions 

[27] 

Tablet without API. artesunate - 
South-East Asia PLSDA, Ncal=112, Ncounter=55, CV, PP: 

mean-centering. 
[28] 
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Category of falsified 

products* 

Analyzed medicine, brand 

name in parenthesis. 

Analytical techniques 

and types (L- Lab 

based, P- Portable) 

Product origin(s)/ Source 

Reported chemometric approaches and 

relevant comments - preprocessing, 

internal validation (type, split ratio), 

external validation, model validation, 

robustness testing, performance & 

validation parameter. 

Ref. 

Capsule without API miltefosine NIR-L, LC-MS/MS 
Bangladesh 

Spectral investigation [29] 

Tablet without API, 

Tablet with wrong 

API 

artesunate Raman L. 

Vietnam, Laos PDR, Burma, 

China, Ghana, Thailand-Burma 

border 

Spectral peak identification- assigned to 

the corresponding functional groups, PCA, 

K-mean clustering, Ncal- 50. PP: SavGol, 

SNV (to remove fluorescence).  

Robustness issue: API has strong 

fluorescence background. 

[30] 

Tablet with wrong 

API 
atorvastatin 

NIR L and Raman L, 

LC-MS 

Dutch Health Care 

Inspectorate 

PCA, PLS-DA, Robustness issue: Effect of 

storage condition was tested 
[31] 

Tablet with wrong 

API 

acyclovir, amoxicillin, 

cephalexin, ciprofloxacin, 

doxycycline, levofloxacin 

Raman-P 

Commercially purchased, 

counterfeit product was lab 

based (simulated). 

Raman barcode, PP: SavGol to remove 

fluorescence. 
[32] 

Tablet without API, 

Tablet with right API 

but different 

excipient 

compositions 

sibutramine 
NIR L, Raman L, LC-

MS 

Internet, Korea, Egypt, Libya, 

Turkey, Syria, Philippines, 

Thailand 

Spectral analysis, PCA analysis. [33] 

Tablet without API, 

Tablet with right API 

but different 

excipient 

compositions 

aspirin, ampicillin, KCL, 

ampicillin, enalapril, (wide 

variety of falsified drug) 

NIR L Brazil 

PCA/SIMCA, N=50, CV: LOOV, PP: 

SavGol (5 w, 2nd polynomial). 

Robustness: effect of humidity alteration, 

sample position and sample face (for 

tablets) on model performance was tested. 

[34] 

Tablet without API, 

Tablet with right API 

but different 

excipient 

compositions 

sildenafil citrate (Viagra) 

NIR L, TLC, UV, 

HPLC-DAD, HPLC-

DAD-MS 

Netherlands SavGol (2nd derivative) SC, PCA. [35] 
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Category of falsified 

products* 

Analyzed medicine, brand 

name in parenthesis. 

Analytical techniques 

and types (L- Lab 

based, P- Portable) 

Product origin(s)/ Source 

Reported chemometric approaches and 

relevant comments - preprocessing, 

internal validation (type, split ratio), 

external validation, model validation, 

robustness testing, performance & 

validation parameter. 

Ref. 

Tablet without API, 

Tablet with right API 

but different 

excipient 

compositions 

sildenafil (Cialis) Raman L, HPLC 

Medsafe, intercepted at New 

Zealand's International Mail 

Centre 

SIMCA, PLS-DA, SVM. PP= LBC, MSC. 

N=250. Split: Cal-67%. Test-33%.  CV, 

Quantitative modeling: PCR, PLS 

[36] 

Tablet without API, 

Tablet with right API 

but different 

excipient 

compositions 

sildenafil Raman L China, Mexico. 

PCA-HCA, PP: SavGol (13W), NCal=19, 

NTest=9, Robustness: Baseline-corrected 

before presentation, to eliminate the 

influence of broad fluorescence 

background 

[37] 

Tablet with right API 

but different 

excipients 

composition 

sildenafil Raman L 

Federal Agency for Medicines 

and Health Products in 

Belgium (AFMPS/FAG) 

PCA (different wavelength range), LDA, 

K-NN, SIMCA. CV:  LOOCV. Ncal= 26, 

Ntest= 12. 

[38] 

Tablet with right API 

but different 

excipient 

composition 

not specified NIR P Not specified 

SC, PCA, PP: SNV, SavGol (2nd, W-5, 

2nd order), unit vector normalization.  

Robustness: lamp change, lot-to-lot 

variabilities 

[13] 

Tablet with right API 

but different 

excipient 

composition 

atorvastatin calcium 
Raman P, PXRD, X-Ray 

tomography 

India, Thailand, Pakistan, 

Germany 

Characteristic peaks around 1600 cm-1 was 

used to determine whether Atorvastatin 

was present or not. 

[39] 

Tablet with right API 

but different 

excipient 

composition 

trimethoprim, metronidazole NIR Not specified PCA, SIMCA [40] 

Tablet with right API 

but different 

excipient 

composition 

antimicrobial, antispasmodic- 

coated, film coated, crushed - 

wide varieties of counterfeit 

product 

NIR L, NIR Imaging Not specified PCA/SIMCA, PP: MSC, N=10 [41] 
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Category of falsified 

products* 

Analyzed medicine, brand 

name in parenthesis. 

Analytical techniques 

and types (L- Lab 

based, P- Portable) 

Product origin(s)/ Source 

Reported chemometric approaches and 

relevant comments - preprocessing, 

internal validation (type, split ratio), 

external validation, model validation, 

robustness testing, performance & 

validation parameter. 

Ref. 

Tablet with right API 

but different 

excipients 

compositions 

calcium channel blocker NIR P Not specified Correlation coefficient, SIMCA [15] 

Liquid ampoule with 

right API different 

compositions 

dexamethasone 
NIR-L, HPLC-DAD-

MS, CE-UV 
Not specified SNV, SIMCA, PP: SNV, N=30 [42] 

Injectable 
doxofylline, Levofloxacin, 

HPLC 
Raman P China 

SC, CLS models., N(Dox)= 60, 

N(Lev)=60. 
[43] 

Expired tablets paracetamol Raman P China 

Spectral Correlation; PP: max–min 

normalization (MN), SavGol (1st and 2nd 

deriv), N=120, CV: 7-round cross-

validation, SIMCA, PLS-DA, SVM, k-NN. 

(SVM proved robust compared other 

methods.) 

[44] 

Seized products Not specified NIR L, Raman L Not specified 
PCA, HCA, k-NN, PLSD-DA, SVM, 

ANN, CV: venetian blinds, 9 splits. 
[45] 

Note: USP: United Sates of Pharmacopeia; DEG: Diethylene glycol; PP: Preprocessing; Savgol: Savitzky–Golay; Ncal: Number of calibration sample; SIMCA: Soft independent 

modelling by class analogy; PLS-DA: Partial Least Squares Discriminant Analysis; UPLS-DA: Unfolded Partial Least Squares with Discriminant Analysis; WS: Wavelength 

selection; GA: Genetic algorithm; SPA: successive projections algorithm; Ncounter: Number of counterfeit samples; CV:Cross validation; LC-MS/MS: Liquid chromatography- 

mass spectroscopy; LOOV: Leave one out of validation; TLC: Thin layer chromatography; HPLC-DAD: High-performance liquid chromatography with diode-array detection; 

SC: Spectral correlation; SVM: Support vector machine; LBC: linear baseline correction;  MSC: multiplicative scatter correction; PCR: principal component regression; PLS: 

Partial least squares; regression; HCA: hierarchical cluster analysis; LDA: Linear discriminant analysis; K-NN: k-nearest neighbors; PXRD: Powder X-Ray Diffraction; CE: 

Capillary electrophoresis; CLS: Classical Least Squares.* The mentioned category of falsified products are an approximation to give readers an idea of the types of products. 
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1.3.2 Analytical Tools 

1.3.2.1 Near Infrared Spectroscopy 

Near-infrared spectroscopy (NIRS) is based on the absorption of electromagnetic radiation 

in the range of 700 nm to 2500 nm, which includes overtone and combination bands of the 

fundamental vibrations observed in the mid-infrared region [46]. NIRS is a useful analytical tool 

due to its non-destructive nature and flexible sample interface. These properties provide extensive 

opportunities for qualitative and quantitative prediction of critical components of pharmaceutical 

products, managing critical process parameters and for assuring that products meet real-time 

release criteria [47].   

Detecting falsified pharmaceutical materials is one of the potential applications of NIRS. 

Typically, this application is based on the comparison of the presence or absence of spectral 

features of genuine products. A significant number of studies have been undertaken by NIRS for 

the authentication of medicines. Significantly, medicines which are critical for treating diseases 

prevalent in low and middle income countries, including antimalarial, antimicrobial, and 

antispasmodic [28, 41] medicines, were successfully authenticated using NIRS [48]. While NIR 

applications for detecting falsified drugs began in the laboratory, successful results led regulatory 

bodies to use NIRS directly in the field. Initiatives using mobile van laboratories in rural areas of 

China and India have set examples for other regions [49]. Advances in instrumentation technology 

has led to dramatic reductions in the size of NIR spectrometers, with  handheld devices now 

available [50]. These spectrometers are light-weight and do not need any dedicated vehicle to 

mount them onto. Typically, these spectrometers are available with sizes 20x10x5 cm (~8x4x2 in.) 
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or smaller, and weights of just 1 kg (~2 lbs) or less. A good review of different hand-held 

spectrometers will be found in Crocombe et al. [51] 

In addition to the single point NIR spectrometer, another important spectral collection 

mode of NIRS is hyperspectral chemical imaging (NIR-CI). This enables the collection of 

additional information from pharmaceutical products such as the surface distribution of APIs, 

excipients, powders and granules [52].  NIR-CI was shown to be superior to single-point NIRS in 

some cases because it combines the capability of spectroscopy with the potential of visualization 

of API and excipients in the falsified products [52]. Furthermore, NIR-CI can be useful to measure 

both potency and the quality of the formulation, even without knowing the exact composition of 

the drug, which is critical when falsified products are collected without prior information [53]. 

1.3.2.2 Raman Spectroscopy 

Raman spectroscopy, a molecular spectroscopy, generates a polarization in the molecule 

resulting in in-elastically scattered photons [54]. The spectrum observed from a Raman 

spectrometer is a measure of the amount of energy a photon has lost (Stokes Raman scattering) or 

gained (anti-Stokes Raman scattering) which is frequently expressed as wavenumber shift. Stokes 

Raman scattering is most commonly measured because this is of higher intensity than anti-Stokes 

scattering (due to the lower probability of the molecule being in an excited vibrational state). 

Raman spectroscopy has demonstrated value as a method in the array of techniques for 

pharmaceutical analysis [47, 55]. The advent of several configuration of Raman spectrometers 

(backscattering, transmission, surface enhanced Raman (SER), and imaging systems) have opened 

opportunities for the evaluation of different types of falsified samples [30, 31, 37, 56-58]. A 
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primary advantage of Raman spectroscopy is the significant selectivity, which allows 

identification of different APIs, excipients and impurities present in the pharmaceutical materials 

[25, 59].  Packaging materials, including dyes, markers, etc., can also be authenticated with Raman 

spectroscopy, adding to the list of advantages for this method in the fraud detection process [60, 

61]. However, there are other possible ways to authenticate pharmaceutical packaging materials, 

which are out of the scope of this review.  

Like NIRS, application of Raman spectroscopy has also spread from benchtop to field-

based use at the point of sample collection [62, 63]. Although the portable Raman spectrometer is 

relatively new, it shows promise for detecting falsified and unapproved drugs [64]. Moreover, 

similar to NIRS, the imaging configuration of Raman spectroscopy was also successfully used to 

gain an understanding of the spatial distribution of formulation components of tablets [38, 65, 66].  

Although both Raman and NIR spectroscopy have been proven effective for the detection 

of falsified medicine, they are not without limitations. NIRS suffers from a lack of specificity issue 

due to the absence of sharp peak features (due to broad overtones and combination bands) which 

necessitates the careful use of multivariate chemometric methods. On the other hand, Raman 

spectroscopy for chemical analysis suffers from relatively low sensitivity and interference from 

fluorescence [59].  In spite of their relative advantages and limitations, both techniques have been 

used successfully to detect falsified products (Table 1-1). Understanding these the potential of each 

method facilitates selection of the appropriate analytical tool for development of suitable product 

authentication systems.  
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Table 1-2: Some features and shortcomings of NIR and Raman spectroscopy. Italics 

indicate disadvantages  

NIR Raman 

Advantages 

• Noninvasive 

• Sensitive to the Physical factors 

including particle size and 

compression force 

• Pharmaceutical excipients have strong 

NIR signal 

• Penetration is higher for NIR light 

Disadvantages 

• Wide bandwidth 

• Weak fingerprints of API and 

excipients 

 

Advantages 

• Noninvasive 

• Sharper peak features 

• Less sensitive to the physical factors 

• Typically, API has strong 

Raman signal. 

Disadvantages 

• Fluorescence interferences 

• Pharmaceutical excipients exhibit less 

Raman signal relative to the API 

Penetration depth is lower (and often 

insignificant for coated dosage forms) 

1.3.3 Chemometric Techniques for Model Development and Relevant Applications 

Numerous chemometric techniques have been used to extract the relevant chemical and 

physical information from the collected NIR and Raman spectra of falsified samples. These 

chemometric techniques can be divided into three categories:  

i) spectral matching methods 

ii) exploratory analysis, and 

 iii) supervised techniques  

As mentioned, various types of fraudulent activities (formulation approaches to 

counterfeiting) will generate unique spectral characteristics. The chemometric techniques to be 

reviewed have been applied for detecting different scenarios anticipated in counterfeiting. Uses of 
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these chemometric techniques are discussed below, with a description of theory and relevant 

applications. Criticisms of each method will be provided to give the reader an understanding of 

their limitations for the application of authentication. 

1.3.3.1 Spectral Matching Method 

1.3.3.1.1 Theory 

Historically, spectral features of known components have been used to accomplish 

qualitative identification of pharmaceutical samples.  This would involve assigning absorbance 

bands to corresponding functional groups of the expected component. Then, the presence or 

absence of these spectral bands in the sample spectra could be used to distinguish between genuine 

and falsified products [12]. However, this method requires recognition of the distinct peaks and 

may not be suitable for automatic detection by non-specialist analysts in the field. To simplify a 

field analyst’s work, spectral matching (SM) algorithms have been used to compare spectra of 

unknown test samples to a reference spectrum collected from genuine material. SM algorithm 

compare the proximity between vectors of a reference (or genuine) sample and an unknown sample 

to determine sample identity [67]. 

Proximity is computed by calculating distance and spectral correlation. Distance is also 

often described as SD, a spectral dissimilarity (i.e., the greater the distance, the less similar the 

objects are), which is measured based on following relations: the sum of least squares (Equation l 

), and the sum of absolute value differences (Equation 2)  [68]. 
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𝑆𝐷1 = √(100 ∗ ∑
(𝐿𝑖𝑏𝑚 − 𝑈𝑛𝑘𝑛𝑚)2

𝑁
)  

1 

 

𝑆𝐷2 = (
1

𝑁
) ∑ |𝐿𝑖𝑏𝑚 − 𝑈𝑛𝑘𝑛𝑚| 

2 

Here N is the number of data points, and 𝐿𝑖𝑏𝑚 and 𝑈𝑛𝑘𝑛𝑚  is the 𝑚𝑡ℎ absorption value in 

the library spectrum and the unknown spectrum, respectively. As 𝑆𝐷1 and 𝑆𝐷2 calculate 

dissimilarity between the spectra, their minimum value is 0 for identical spectra. On the other hand, 

spectral correlation (𝑆𝐶), which is often mentioned as a similarity, is the equivalent of measuring 

the cosine of the angle between two spectra.   

𝑆𝐶 = 100 ∗ √[(𝐿𝑖𝑏𝑚 ∙ 𝑈𝑛𝑘𝑛𝑚)2]/[(𝐿𝑖𝑏𝑚 ∙ 𝐿𝑖𝑏𝑚)(𝑈𝑛𝑘𝑛𝑚 ∙ 𝑈𝑛𝑘𝑛𝑚)]             3 

Here, 𝑆𝐶 measures the similarity between the spectra; and 𝑆𝐶 values range from 0 (poorest 

match possible) to 1 (perfect match).  

Generally, the SM method can be employed for identification and verification. Before 

applying the SM method for identification, a reference library is developed using authentic 

samples. An unknown sample is systematically compared with spectra in the reference library by 

using equations 1-3. The corresponding reference spectrum, which has minimum distance or 

maximum correlation with the unknown sample, is declared as the potential target sample (e.g., 

target product or target manufacturer). This approach is often referred to as a library search. For 

verification purposes (e.g., to verify whether the claimed component is present in the sample or 

not, or if the test sample is an authentic product) the 𝑆𝐷 or 𝑆𝐶 value is directly calculated using 
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target reference spectra. A verification test uses empirically defined target threshold values, 

usually 0.95, to assign a “Pass” or “Fail” determination to the sample under study [69, 70]. 

1.3.3.1.2 Applications of Spectral Matching Method 

The application of a spectral matching methods to the chemical analysis was reviewed 

nearly two decades ago by Penchev [67]. The author evaluated the performance of SM methods 

using infrared spectroscopy. Since 1996, the use of this chemometric technique in the 

pharmaceutical industry has continued, with increased interest in its application using other 

analytical tools, such as Raman and NIR spectroscopic methods [14, 71, 72]. 

McCreery [25] in 1998, was one of the first to use Raman spectroscopy with a SM method. 

His work involved testing the identity of pure pharmaceutical materials. First, a reference library 

was prepared using 309 United State Pharmacopeia (USP) standard compounds. Then, a total of 

26 unlabeled vials were scanned blindly and used as a test set. After that, the developed reference 

library was used to calculate SM values for each of the test samples. The highest matching value 

obtained from the reference library was declared the identity of the test sample, and around 96% 

of the test samples were accurately identified. Authors noted that the use of the right preprocessing 

method was critical for getting a successful result, as it affected matching values significantly  [25]. 

Although the components were successfully identified in the McCreery study, it is important to 

understand that the library search method relies on the listed components already presented in 

library and provided the best probable compound as the possible target sample.  

While detecting pure components using spectroscopy, it is also required to study whether 

the SM method is able to detect contaminants in the sample. As mentioned earlier, to verify 
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whether the contaminant is present in the sample, the matching value of the test sample to the 

claimed compound is calculated directly using SM algorithm. This accurate detection of 

contaminants is of particular importance when dealing with pharmaceutical excipients because 

they are susceptible to economically motivated adulteration with substances having comparable 

physical, chemical, and/or spectroscopic properties. The result is not only financial loss for the 

patient, but these adulterants can also cause severe health risks. For example, several adverse 

events have been reported due to adulteration of glycerin with diethylene glycol (DEG) [73] and 

melamine in baby formula [74]. Therefore, when an analyst uses a spectral matching method to 

identify the presence of active components, the method should also be sensitive to the presence of 

contaminants.  

Several studies using Raman spectroscopy have been conducted to address the SM method 

sensitivity for distinguishing adulterants while detecting the presence of anticipated raw materials. 

[72, 75, 76]. Various adulterants (e.g., DEG in glycerin, melamine in lactose, and DEG in 

polyethylene glycol) were successfully identified using a spectral matching method [11]. However, 

the limit of detection by the SM method depends on the intrinsic spectral properties of the 

materials. For example, glycerin and DEG are spectrally very close and the SC value of glycerin 

gradually changes as the amount of DEG in the test set increases (see Figure 1-4A). Rodriguez and 

colleagues published a method to measure the detection limit of impurities while using SM method 

[72]. Experiments were conducted for a range of DEG in glycerin compositions; 𝑆𝐶 was calculated 

for each of the compositions, and a polynomial line was drawn using 𝑆𝐶 values. From this line, 

the authors estimated the exact DEG compositions that would be expected to cause the 𝑆𝐶 test to 

deliver a failed result. In Figure 1-4B, it can be observed that while changing DEG composition, 

𝑆𝐶 remained unchanged until the composition reached 10%. Afterwards, the 𝑆𝐶 value begins to 



 

24 

 

drop noticeably, crossing the 0.95 threshold when DEG is around 18%. Therefore, the authors note 

that if glycerin contains DEG below a content of 18%, contaminated samples will be misidentified 

as the pure sample. Additional studies are required to justify this detection limit, as the threshold 

value of 0.95 used by this study is an arbitrary value; there is no probabilistic interpretation 

associated with this. While setting the detection limit, other validation criteria such as sample 

repositioning analyst to analyst variability, etc., should also be considered. Other factors which 

may also affect the method quality include intra- and inter-day variability.  Setting threshold values 

based on probability statistics would enhance confidence in the limit of detection.  

Another potential solution to detect DEG might be to use unique spectrometric methods. 

For example, DEG and glycerin may have different spectral features in the NIRS, which will be 

more effective for detecting DEG in glycerin. Of course, thorough investigations would be 

required to develop NIRS methods for detecting adulterants. 
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Figure 1-4: (A) The Raman spectra for a series of glycerin-DEG samples. From 

bottom to top, the spectral correlation value diminishes as the DEG amount 

increases. (Glyc- glycerin; DEG- diethylene glycol). (B) Quantifying the effect of 

increasing DEG on Raman spectra for the glycerin–DEG system. The red dotted 

line is the threshold value (0.95) to pass the test. The spectral correlation value is 

expected to drop below the threshold when glycerin samples contain 18% DEG or 

more. Figures obtained from Rodriguez et al [77], Copyright (2014) with 

permission from  American Chemical Society.  

The SM method has also been applied to detect falsified tablets. One potential approach is 

to detect API in tablets using a pure component spectral library. Since 50% of tested falsified 

products do not have the claimed API, or contain the wrong API [27], such a method can screen 

this type of falsified product. Loethen et al. [27] attempted to detect falsification in antimicrobial 

and antimalarial tablets acquired from multiple manufacturers. The spectral library was prepared 

using the antimicrobial and antimalarial pure components. Results showed that all the samples 

acquired from different manufacturers had a correlation value higher than 0.95 with the claimed 

API while lab-based products, which did not contain any API, had low SC values (see Figure 1-

5). According to this method, samples manufactured by any company can be authenticated using 

a pure component library, eliminating the need to collect sample spectra from each manufacturer 
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while developing a reference library. Therefore, this method would appear promising for detecting 

the presence of the declared API.  

 

Figure 1-5: SC values were calculated for drug product spectra compared to the 

API library spectra. The numbers in parenthesis ( ) are the number of 

manufacturers in the sample set. Adapted from Loethen et al [27], Copyright 

(2015) with permission from Society of Public Analysts (Great Britain), 

Chemical Society (Great Britain), Society for Analytical Chemistry, Society of 

Public Analysts (Great Britain), Royal Society of Chemistry (Great Britain). 

Though detecting API in the finished dosage form is an efficient process, this approach has 

more potential for Raman spectroscopy due to the presence of sharp API features relative to that 

for excipients. While Raman offers sharper absorbance bands, NIRS has an advantage of more 

significant excipient signals compared to Raman, due to the presence of C-H and C=O bonds in 

the excipients. Ultimately, it is assumed that excipient signal will be overlapping with API peaks, 

making Loethen’s method impractical for NIRS. Additionally, samples evaluated by the Loethen 

group were relatively high-dose formulations. Low-dose drugs with overlapping API and excipient 

bands would provide difficulty in extracting the API signal using a SM method.  
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Rather than using the SM method with pure component libraries, some researchers have 

used the method to compare authentic samples with test samples allowing both NIR and Raman 

spectroscopy to be used for authentication of various finished dosage forms [14, 35, 78-80]. 

Because samples spectra would contain the data from each component, this method can be used to 

authenticate whether a solid dosage form contains the correct formulation. However, using sample 

spectra also has barriers. One limitation is the sensitivity of the analytical method. Studies have 

shown that, since different generic samples of a specific therapeutic group will often contain 

similar formulations (i.e., excipient compositions are often very similar to each other), both NIRS 

and Raman were unable to differentiate generic products from different manufacturers using the 

SM method [14, 15]. Therefore, cautions application of this method is recommended for 

authentication purposes. 

1.3.3.1.3 Limitations of Spectral Matching Method 

While the SM method has been useful for authentication of pure materials and finished 

products, the method has many limitations. The biggest drawback is that there is no specific 

direction established for setting a threshold value while using spectral correlation algorithms. 

Many studies used a threshold of 0.95 to determine whether two spectra are matched [13, 15, 35, 

79, 80]. However, this value does not imply any probability or assurance statistics. Moreover, in 

different studies, this threshold was determined on a system-by-system basis to suit the desired 

application and the pass/fail decision was taken based on that unique threshold. Several examples 

are provided in Table 1-3, where different applications demonstrated the unique threshold values. 

For example, to differentiate the products produced from different manufacturers, threshold values 

were set to 0.99 for NIRS and 0.95 for Raman spectroscopy.  
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Table 1-3: Variation of spectral correlation method in different scenarios 

Analytical technique Applications 
Spectral Correlation 

Threshold 
Ref. 

NIR Differentiating batches 0.9999 [80] 

NIR 
Differentiating 

manufacturers 
0.99 [15] 

NIR Differentiating batches 0.996 [13] 

Raman 
Differentiating 

molecules 
0.92 [14] 

Raman 
Differentiating 

manufacturers 
0.95 [27] 

Raman 
Differentiating expired 

products 
0.996-0.998 [44] 

Raman 
Differentiating liquid 

injectable 
0.95 [43] 

 

Additionally, the threshold can be affected by many external factors such as spectral noise, 

environmental temperature, operator variability, etc. Unfortunately,  most of the studies which 

applied the SM method did not validate that the developed method would perform consistently 

over time, since they did not consider the fluctuation of these external factors [72]. While 

developing a spectral library, spectra should be collected more rigorously to avoid the effect of 

this external variability. If an effect is observed, the relative standard deviation of the measurement 

should be reported.  

Another limitation of this method is illustrated when it is used to test high quality falsified 

medicines. High quality falsified medicines are commonly produced with a recipe that is similar 

to the genuine product and manufactured with modern equipment [15, 16, 40]. Most often, one or 

two excipients vary in the high quality fake products, compared to the genuine products. This 

causes minimal spectral differences between samples, which is insufficient to separate falsified 

product and genuine samples by the SM method.[14, 15]  
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Moreover, the effect of excipient variation on the correlation value will vary for different 

analytical techniques. As Raman spectroscopy offers lower spectral absorbance for excipients 

compared to NIR spectroscopy, small changes in formulation may be more difficult to detect using 

Raman spectroscopy [31, 45]. However, a comprehensive comparative study between Raman and 

NIR spectroscopy has not been conducted to fully understand the effect of formulation changes on 

the SM method. Therefore, further studies are required to understand the effect of different spectral 

features of the commonly used excipients on the SM method. 

 

1.3.3.2 Exploratory Methods of Data Analysis 

Exploratory methods of data analysis have been used to measure similarity or dissimilarity 

of samples without any prior information regarding their identity. These types of analyses are often 

called as unsupervised methods, as the analysis procedure does not have affiliation with the group 

or the source of the data. Principal component analysis (PCA) and clustering analysis (CA) are 

two of the most often applied methods for exploratory data analysis.  

1.3.3.2.1 Theory 

Principal component analysis (PCA): The PCA method projects multivariate spectra into 

low-dimensional space, highlighting the variabilities present in spectral data, although not 

specifically identifying the cause of such variability [81, 82]. Spectral variability arising from 

unique sample characteristics (physical or chemical) can often be visualized by this technique. 

PCA decomposes the multivariate response arranged in an X matrix into a product of two new 

matrices as indicated in the following equation: 
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𝑋 = 𝑇𝑘𝑃𝑘
𝑇 + 𝐸                                    4 

 

Where 𝑇𝑘 is the matrix of scores which represent how samples relate to each other, 𝑃𝑘  is 

the matrix of loadings which contain information about how variables relate to each other, k is the 

number of factors included in the model and E is the matrix of residuals, which contains the 

information not retained by the model. Falsified products often have different chemical profiles or 

are produced by different manufacturing conditions which are discernable by this data 

decomposition mechanism [41]. Additionally, PCA is convenient to use for other chemometric 

methods, such as clustering analysis, SIMCA, support vector machines etc., which will be 

discussed in subsequent sections. The reader is referred to the works of Wold et al. [81] and 

Martens & Naes [82] for a more detailed discussion of PCA. 

Clustering method (CA): Clustering involves the partitioning of a dataset of ‘n’ objects in 

such a way that objects in the same group (cluster) are more homogeneous to each other than to 

those in other groups. Clustering analysis is accomplished using the entire spectra or using scores 

of the principal components computed with the previously described PCA models. Grouping of 

multivariate data is based on a similarity criterion. Many concepts and definitions of how to score 

the chemical or physical similarity between two samples or variables have been proposed in the 

literature [83, 84]. Among these, Euclidian distance, Mahalanobis distance, and correlation 

coefficient are commonly used to calculate similarity indices [84, 85].  These similarity indices 

are used to cluster the data in two ways: i) partition clustering and ii) hierarchical clustering. The 

partitioning method uses similarity indices to separate the dataset into user defined groups, 

whereas hierarchical clustering establishes a data hierarchy. It should be noted that while clustering 
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methods may identify patterns in the data, but a conclusion about sample identity (whether falsified 

or genuine) should not be drawn from such method.  

1.3.3.2.2 Applications of Exploratory Methods 

PCA:  PCA has been successfully applied to visualize the difference of genuine and 

falsified samples. Dégardin et al. [86] presented a large and complicated NIR data set which 

included 29 different pharmaceutical product families. Some of the product families have similar 

spectral signatures as they used similar excipients. Moreover, low dosage forms resembled the 

spectral signatures of placebo samples. However, while PCA was applied to this dataset, the first 

two PC scores enabled visualization of only two groups, while PC 3 and PC 4 helped to observe 

at least eight other groups. Consequently, after considering additional PCs, most product families 

were discernable (See Figure 1-6). Therefore, transforming raw spectra to a lower dimension made 

these samples statistically different. This is advantageous for falsified drug detection, as falsified 

products often contain unique formulations in comparison to genuine samples [63].  
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Figure 1-6:  Results of the PCA applied to the calibration spectra pretreated with 

SNV. Each color represents one of the 29 product families. Figure obtained from 

Dégardin et al. [86], Copyright (2016) with permission from Elsevier. 

Since falsified drugs are typically manufactured without the benefit of Current Good 

Manufacturing Practice (cGMP), the poor quality of these products is typically reflected in higher 

inter- and intra-tablet variabilities of components. Inter-batch variability will also be more 

significant than is typical for genuine products [41, 80, 87, 88]. These variabilities can usually be 

distinguished by NIRS or Raman spectroscopy using the PCA method. Rodionova et al. [41] 

showed that the spread of scores (generated from spectral data) in falsified products was higher 

relative to that of the genuine samples (see Figure 1-7A). Here, single point spectrometers were 

used to visualize these inter-tablet variabilities.  
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To demonstrate intra-tablet variabilities, a NIR-CI imaging system was used in other 

studies. Statistical parameters of score distributions (mean, standard deviations, skewness) showed 

significant differences between genuine and falsified medicines [89, 90]. Figure 1-7B shows a PC 

image of the falsified (left) and genuine samples(right). 

 

Figure 1-7: (A) PCA scores plot of genuine tablets (dots) and falsified tablet 

(squares). Tablets were also cut and the internal surface scanned; genuine and 

falsified samples are displayed in open dots and squares B)  NIR Hyperspectral 

imaging of counterfeit (left) and original tablet (right). Figures obtained from A) 

Rodionova et al. [41], Copyright (2005) and B) Wilczyński et al. [90], Copyright 

(2016),  with permission from Elsivier. 

Compared to NIRS, Raman spectroscopy may demonstrate greater sensitivity towards the 

variation of API between genuine and falsified products. Neuberger et al. [91] systematically 

investigated the capability of Raman to differentiate chemically dissimilar samples. Raman 

spectroscopy distinguished samples with different coating levels, varying amount of drug loading, 

and different excipients using PCA. Also, Raman spectroscopy successfully detected the 

degradation of aspirin  over time due to changes in storage conditions [91]. 

Additionally, by analyzing the loadings plot of PCA analysis, it is possible to discern 

probable reasons for score variations. Ryder et al. [92] showed that the loading plot was correlated 
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with narcotic components, which might have been attributed to the API variation. The character 

of a loadings plot may provide information related to the presence of a certain molecule, which is 

especially critical when samples are seized by law enforcement without any packaging or details 

regarding sample origin [92].  

Along with chemical content, the physical structure of the samples often provides useful 

information to detect falsified products, since it is difficult for fraudulent manufacturers to follow 

exact manufacturing steps such as blending, granulation, compression, etc. NIR spectra are 

sensitive towards the physical characteristics of the sample, and this can make NIR measurement 

information-rich. For example, samples manufactured at two different sites can be distinguished 

using NIRS [35]. Vrendenbregt et al [35] demonstrated that similar tablets from two manufacturing 

sites (Europe and the USA) were statistically separated by PCA. In another study, acetaminophen 

tablets prepared in the United Kingdom and Malaysia were also identified accurately using PCA 

[80]. Neuberger et al. [95] aimed that Raman is not adequately sensitive to detect physical 

differences (e.g., density variability associated with compression force, mixing quality), which 

ultimately created minimum PCA variations among these samples (see Figure 1-8). However, this 

study did not consider other physical factors such as particle size variations, tablet size, etc., which 

might have effects on Raman spectra. Therefore, further studies are required to investigate whether 

falsified and genuine samples are differentiable based on the physical factors of the samples using 

Raman spectroscopy. 
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Figure 1-8: Score plot of PC1 and the PC2 of the samples which were prepared 

using different compression force. (very low = black, low = red, optimal = blue 

and high = green). Figure obtained from Nuremberg et al. [91], Copyright (2015) 

with permission from Elsevier. 

Cluster Analysis (CA): It is known that the global spread of falsified drugs is most likely 

funded by organized criminal activity involving manufacturers, wholesalers, distributors and local 

sellers. Hence, there is significant possibility that some falsified products are manufactured from 

common sources [33]. Investigating the source of such falsified drugs will be helpful in finding 

the origin of criminal activities. Various types of cluster analysis facilitate the development of 

dendrograms, which may provide an opportunity to visualize the clusters of the seized samples 

ultimately help to separate genuine from falsified drugs.  
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Figure 1-9: Dendrogram computed using Euclidean distance and average linkage 

method. NIR spectra were collected from capsules and SNV preprocessed. Figure 

obtained from Been et al. [45], Copyright (2011) with permission from Elsevier. 

Been et al. [45] used a large database of samples which were seized from 27 different 

regions and a hierarchical clustering method was applied to form a dendrogram by computing 

Euclidean distances to separate the underlying groups (see Figure 1-9). Authors found that 12 types 

of chemical profiles existed among these seized samples; the unique profiles were later confirmed 

by the reference method. This cluster formation was beneficial for profiling newly acquired 

samples. New samples were projected to these 12 groups and the distances between the test sample 

and different clusters were calculated. The cluster which provided the minimum distance was the 

suspected source of the seized sample.  Therefore, cluster analysis helps to efficiently investigate 

the sources of different falsified products [42, 45, 53, 56]. 

1.3.3.2.3 Limitations of Exploratory Methods  

Though PCA is one potential approach to identifying falsified samples, certain challenges 

exist for the application of this algorithm. One of the drawbacks is that a large number of samples 
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are required to build an effective model. Preparation of a sufficiently large reference library can 

be difficult for the PCA method. Unfortunately,  there is no clear direction as to how many samples 

should be used for method development and the number of samples needed for PCA analysis varies 

across studies [88, 93]. Additionally, the boundary design, which is often 95% equal frequency 

ellipses, varies depending on the nature and quality of samples used in calibration development 

[31, 40, 89, 91]. As PCA explains the variation between groups, it is challenging to separate sample 

groups when intra-group variation is higher than inter-group variability. Therefore, representative 

samples should be collected from the pool of genuine samples for the development of the PCA 

method.  

Cluster analysis is useful to understand the types of seized samples. However, the most 

significant challenge for the analyst is setting an appropriate threshold value, as the actual number 

of potential sample groups is unknown to the analyst. Arbitrarily setting a threshold value often 

results in an over-classification or under-classification problem. This becomes more critical when 

the same source of sample has high batch-to-batch variability. Therefore, samples from the same 

source may be classified into two different clusters. Even genuine samples can be clustered into 

two groups if they are stored under unique conditions [94].  

As there is generally no reference information used for the unsupervised method, careful 

interpretation of PCA or CA results is required. While in typical pharmaceutical applications of 

NIRS or Raman spectroscopy, it is comparatively straightforward to gain an understanding of the 

score variability because samples are relatively well characterized, for falsified sample detection 

the samples are obtained without much detail about the source. To ensure the correct interpretation 

of the visualized differences of PCA or CA, the data collection should be consistent across the 
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samples. For example, if repositioning error dominates in the spectral pattern, it is difficult for the 

analyst to make conclusions about the source of variation in the scores.  

1.3.3.3 Supervised Techniques 

1.3.3.3.1 Theory 

Supervised techniques are the most applicable methods for false product identification 

since they provide direct decisions about the test samples (whether it is falsified/genuine). 

Supervised techniques are mainly classified into two categories: class-modeling and 

discrimination. Class-modeling (also known as the soft classification approach) allows samples to 

be assigned to one or multiple groups. However, discrimination methods (also known as hard 

classification methods) always allow a sample to be considered as a member of only one group 

from the pool of groups being considered. This is illustrated in Figure 1-10, where examples of 

both the class-modeling and discrimination approaches are shown for a data set where objects are 

described by two variables and grouped into three classes (blue, green and brown). When a class-

modeling technique is applied, each class space is separated by a specific boundary from the rest 

of the data space (Figure 1-10A). Considering three unknown subjects (T1, T2, T3), T2 is considered 

as class 2, whereas here T3 is considered as an unclassified object, and T1 falls outside the model 

boundary, and therefore cannot be considered at all.   

B 
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 Figure 1-10: Example of both class-modeling (A) and discrimination (B) on a data 

set including 52 objects described by two variables and grouped into three classes 

(blue, green, and brown circle). Figures adapted from Ballabio et al. [83], Copyright 

(2009) with permission from Elsevier.  

In the case of discrimination, T1, T2 and T3 must be classified into three classes (see Figure 

1-10B). These objects are projected into data space and assigned to the category corresponding to 

the hyperspace where they are placed. T1 and T2 are assigned to class green, even if T1 is far from 

the green samples, while T3 are recognized as blue  [83, 95]. 

The outcome of these two supervised classification methods is assessed by two important 

figures of merit: sensitivity and specificity [83, 96-98]. Sensitivity is defined as the percentage of 

samples correctly classified to the class of interest. Authentication methods should be able to 

identify the genuine samples correctly, reflecting the sensitivity of the model. Specificity is defined 

as the percentage of samples correctly rejected, since it is also important to recognize different 

types of falsified products, and reject them [99]. These two parameters are calculated by the 

following formulas: 

Sensitivity= 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                                                                         5 

A 
B 
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Specificity= 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)                                                                                                        6  

  

where  TP,  TN, FP and FN are true positive, true negative, false positive and false negative, 

respectively [99]. A visual tool that compares sensitivity with (1-specificity), is the so-called 

receiver operating characteristic (ROC) curve, which has been applied in spectroscopic 

classification methods [96, 100]. By calculating the area under the ROC curve, it is possible to 

derive a summary performance parameter for sensitivity and specificity that may serve as adequate 

figures of merit for model comparisons. 

An assortment of multivariate modeling approaches has been developed to be used both as 

class-modeling and discriminant methods. Here, some of the most commonly applied techniques 

are briefly discussed. More detailed information on the considered techniques can be found in the 

technical literature [18, 84, 96, 97].   
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1.3.3.3.1.1 Class-Modeling Approach: SIMCA 

SIMCA is a PCA based approach where calibration samples are used to develop a PCA 

model. After decomposing the data and reducing it to lower dimension, a decision boundary is 

formed. Over the years, different versions of SIMCA models have been developed based on unique 

approaches to boundary formation around the training set. These different versions are based on 

two distances: 1) score distance (SD): determined by computing the distance in PC space between 

an unknown sample and a target group, referred to as Hotelling’s 𝑇2, and 2) orthogonal distance 

(OD): determined by calculating the unknown sample’s squared residual distance to the model 

space, known as the 𝑄 residual [17, 18, 82, 101-104].  

The 𝑄𝑖  statistic is defined as the sum of squares of the residuals and can be calculated 

according to Equation 2, where 𝑒𝑖 is the residual of sample i after applying the SIMCA model.  

The Hotelling’s 𝑇2 measures the information of each sample within the PCA or SIMCA 

model and is calculated by means of Equation 1, where 𝑡𝑖 is the 𝑖-th row of the 𝑇𝑘, the 𝑛 by 𝑘 

matrix of 𝑘 score vectors from the PCA model, and  matrix of 𝑘 scores vectors from the PCA 

model of 𝑛 number of target class samples and 𝛬−1 is a diagonal matrix containing the inverse of 

the eigenvalues associated with the 𝑘 eigenvectors (principal components) retained in the model. 

The 𝑄𝑖statistic is defined as the sum of squares of the residuals and can be calculated 

according to Equation 2 where 𝑒𝑖 is the residual of sample i after applying the SIMCA model.   
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𝑇𝑖
2 = √𝑡𝑖𝛬

−1𝑡𝑖
𝑇

                                                                                        7 

  

𝑄𝑖 = 𝑒𝑖𝑒𝑖
𝑇

                                     8 

 

Figure 1-11:  Graphical representation of Hotelling’s 𝑇2 and 𝑄 residual. Threshold 

boundary based on 𝑇2 versus 𝑄 residual. The acceptance area is the squared space 

in the graph, where samples plotted at any point outside of this area are rejected. 

According to this threshold, nearly every sample will be accepted, with only the 

green sample being rejected. A more flexible boundary could be applied as shown 

by the semi-circular area. Then, both green and red samples will be accepted. Figure 

is adapted from López et al.[100], Copyright (2014) with permission from Elsevier. 

 

A sample is assigned to a target class if the computed distances are shorter than a predefined 

threshold value. These threshold values are based on 𝑇𝑙𝑖𝑚
2  and 𝑄𝑙𝑖𝑚, which are the confidence 

interval for the model under consideration. Confidence limits for SD (that is referred to as 𝑇2 in 

the PLS_Toolbox and related literature) are given from Hotelling’s 𝑇2 to obtain  𝑇𝑙𝑖𝑚
2 , i.e. (𝑇𝑙𝑖𝑚

2 =

𝐹𝑘,𝑛−𝑘𝑘(𝑛2 − 1)/(𝑛 − 𝑘))  considering 𝑘 and  𝑛 –𝑘 degrees of freedom, where 𝑘  is the number 

of PCs and 𝑛  is the number of calibration samples for the target class. The χ2 distribution is used 

for the squared residuals and confidence limits for the orthogonal distance (OD, that is also referred 

to as 𝑄 in the PLS_Toolbox and related literature) are computed by the Jackson and Mudholkar 
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(JM) approximation. Wolf et al. developed SIMCA model based on 𝑄 residual. Candolfi et al. 

proposed a SIMCA model which is based on the Mahalanobis distance; details will be found in 

the relevant literature [68, 105]. 

A more recent approach is to consider both Hotelling’s 𝑇2 and 𝑄 residual. According to 

this approach, boundaries are defined considering the reduced statistics. The reduced Hotelling’s 

𝑇2(𝑇𝑟
2) and the reduced 𝑄 statistic (𝑄𝑟) values can be calculated from the ratio between the 

corresponding statistic of the sample 𝑖 and the corresponding limit at α = 0.05. Here, samples must 

have values under 1 for both statistics to be considered ‘‘within the model’’ which was defined by 

the square boundary in the Figure 1-11. A newer version used by PLS toolbox takes the distance 

defined by Equation  9 [17, 18]. In this case, the boundary considered as ‘‘within the model’’ forms 

a semi-circle with a radius of √2, which is mentioned as d in the Equation 9.  

A variety of methods are proposed to develop an acceptance area are based on different 

distribution assumptions of OD and SD.  Pomerantsev proposed to use the χ2 distribution for both 

of these parameters. This method is referred to as data-driven SIMCA (DD-SIMCA) [106].  

𝑑 = √(
𝑄

𝑄𝑙𝑖𝑚
)

2
+ (

𝑇2

𝑇𝑙𝑖𝑚
2 )

2

                                                                            9 
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1.3.3.3.1.2 Discrimination Analysis: PLS-DA 

Figure 1-12: Partial least squares discriminant analysis (PLS-DA) model for two 

classes, where X is a matrix containing spectral data, Y are dummy variables 

categorized as genuine (Group A) and falsified samples (Group B). Adapted from 

Brereton et al. [107], Copyright (2014) with permission from John Wiley and Sons. 

Partial least-squares discriminant analysis (PLS-DA) is derived from PLS regression to 

develop a model that predicts the class number for each sample. While developing a PLS-DA 

calibration model, the number of groups and the samples that belong to each group are defined 

with dummy variables. For example, if a data set contains just two classes, Y can be set up easily 

by assigning samples in one of the classes as 1 if the samples are in the class, and 0 if it is not. This 

membership is paired with a training set (X block), and PLS is implemented in the usual way 

(Figure 1-12). During the calibration process, the PLS-DA method is trained to compute 

membership values and assigned a class membership. It is reasonable that the model does not 

predict perfectly, so a limit must be set, for example, 0.5, above which the sample is estimated as 

1 and below which the sample is estimated as 0. For spectroscopic product authentication system 

development, PLS-DA can give good insight to the underlying reason for discrimination via 

weight and loadings. Also, it is a popular technique due to the advantages of wavelength selection 

and noise reduction associated with the PLS algorithm. A more detailed discussion of the PLS-DA 

algorithm is available elsewhere [107-109]. 
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1.3.3.3.2 Applications of Supervised Classifications: 

SIMCA: PCA analysis utilizing both Raman and NIR spectroscopy can separate diverse 

samples based on physico-chemical differences (e.g., composition differences, API amount 

differences, etc.). SIMCA, using PCA, is an effective method for detecting falsified drugs. Scafi 

and colleagues [34] demonstrated the use of SIMCA to  detect 12 types of falsified products of 

different compositions. Scafi used PCA, constructed from NIR spectral data generated from the 

genuine samples. Then, falsified products were projected onto these PCA models, and distances 

were calculated for each falsified sample showing clear separation. Here, it is important to mention 

that this method only rejected samples declared as falsified products. Further reference analysis 

could provide better understanding of the specific nature of these falsified samples relative to the 

genuine samples.  

In another study, Storme-Paris and co-authors [20] used SIMCA, noting that the SIMCA 

method distinguished tablets with small differences of composition Raman spectral data. In their 

study, falsified and genuine products varied by 1.0 - 2.5% API (%w/w), and the SIMCA method 

was successfully able to identify the falsified products.  

SIMCA was used in a later study with NIR and Raman to overcome some of the limitations 

of the spectral matching method, detecting a small amount of impurities in the raw materials. This 

study detected a contaminant (DEG) in glycerin up to 5% w/w; three times lower concentration 

range than using the spectral matching method [11]. It is important to note that although SIMCA 

provides certain advantages, this method is only providing information about whether the sample 

is pure or has some adulterants. Additional investigation may provide information about the types 

of chemicals present in the sample.  
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Figure 1-13: (A) Score plots for PCA analysis: (a) PC1 vs. PC2. (Different color 

and shape represent different groups of samples, (B) Result of the Test sets is 

displayed. Here, SIMCA model is developed from the target class (yellow-round). 

Figure adapted from Zontov [15], Copyright (2016) with permission from Elsevier. 

Liquid dosage forms have also been authenticated using SIMCA. One example is the 

authentication of dexamethasone ampules [40]. This study used two genuine batches (G1 and G2) 

of 4% dexamethasone 21-phosphate, and a batch of falsified product (F2) in 1 mL closed 

transparent glass ampoules. NIR spectra were collected through the vials. The performance of this 

approach was evaluated with reference testing by CE-UV, GC-MS, and HPLC-DAD. SIMCA 

analysis of NIRS data demonstrated comparable performance to the reference techniques. 

SIMCA has also been used to detect high quality falsified products. However, to detect this 

type of product, adjustment of the decision boundary improved the model performance, 

demonstrated using DD-SIMCA. Figure 1-13A shows, when products contained the same API but 

have one or two different excipients, PC scores generated from different products were closely 
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grouped. This tight representation of scores also reflects the similarity of the formulation of the 

scanned samples. In Figure 1-13B it was observed that, if method developed using one group 

(yellow-round), and all the other groups (green- triangle, red-triangle, brown-square, blue-

diamond) projected onto the developed model, then initially developed model rejected two of its 

test samples (yellow-round). This decreases the sensitivity of the model by tuning the confidence 

interval. The authors moved the boundary from 1 to 2, which changed the acceptance area of the 

model. This change avoided rejection of two genuine samples and improved the sensitivity of the 

model [15, 16, 110-113]. Despite this successful result, risks of changing boundaries may be high 

without using an independent validation set to test the consistency of the result. Without an 

independent validation, it is difficult to predict if the model will be adequately sensitive to accept 

other batches of genuine samples consistently. Also, enhancing the model with representative 

genuine samples from different batches would reduce this concern. Above all, this study 

emphasized the importance of considering a change in the decision boundary to enable detecting 

high quality falsified products [17, 111]. 

Though there are advantages of using SIMCA, it is also highly sensitive towards small 

variation of external factors which can decrease the performance of the method. For example, 

operator and instrument variabilities caused spectral perturbation, which often projected genuine 

test samples outside the PCA space,  causing degradation of model performance [114, 115]. This 

introduces new challenges, especially when the analyst needs to transfer the model from one 

instrument to another instrument [116]. Some of these issues can be resolved by removing 

unwanted variables, which have small discriminant power [117].  Selection of appropriate 

preprocessing methods may help to reduce some of this variability. For example, offset or baseline 

drifts are removed by derivative, standard normal variate (SNV), or multiplicative scatter 
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correction (MSC) algorithms [18]. Calibration transfer and method algorithms are useful when 

analysts are required to use multiple instruments. The following studies provide direction for 

analysts who must transfer spectroscopic methods [116, 118, 119]. 

Another essential model parameter is selection of the appropriate number of PCs to use for 

calibration development. Rodionova et al [16] developed two SIMCA models by selecting a 

different number of PCs. Here, a model developed using three PCs successfully separated samples 

prepared in the different seasons, whereas the model developed including only two PCs did not 

[15, 105]. Proper statistical approaches should be followed in selecting PCs. One way to select the 

appropriate number of PCs is via cross-validation (CV) [82]. Finally, selecting the proper number 

of PCs avoids unnecessary rejection of genuine samples (false negative) or incorrect authentication 

of falsified products (false positive).  Analysts should be careful about both factors, as rejecting 

falsified samples are important from a patient’s perspective, but, similarly, accepting genuine 

samples is critical from a manufacturer’s perspective. Further discussion about selecting principal 

components can be found in Bro el al. [120]  

PLS-DA: PLS-DA successfully identified falsified tablets containing the wrong API in an 

example by Piender et al [31].  Lovastatin is occasionally used in falsified products instead of 

atorvastatin. For discriminating lovastatin from atorvastatin, Piender et al [31] demonstrated PLS-

DA as a useful technique for discriminating the two active components. Moreover, investigations 

of the regression vector of PLS-DA analysis demonstrated the important features which helped to 

distinguish the differences (Figure 1-14) [31, 45, 121]. Similarly, tadalafil and sildenafil were 

separated using the PLS-DA method. Another potential application for the PLS-DA method is to 

detect adulterated products [26]. However, it is important to note that, while developing a 
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calibration method, samples containing the expected amount of impurities should be added into 

the model as an alternate class of the pure sample. Otherwise, impure samples may be accepted as 

pure samples, which will give false positive result.  

 

PLS-DA is also useful for identifying expired products which are often repackaged and 

resold, resulting in a major public health risk. Qun et al.[44] used both expired and non-expired 

products to develop the PLS-DA calibration model, where expired products and non-expired 

products are used as two classes. Then expired products were detected by using an independent 

test set [20, 36, 44]. The success rate of detecting the expired product in this study was possible 

due to a change in the expired tablet’s matrix. Raman spectroscopy was sensitive to the change of 

the tablet matrix. However, this might not be true in other cases. Therefore, before implementing 

the PLS-DA method to detect expired products, analysts should carefully investigate whether the 

expiration of the product creates any change in the sample spectra. PCA can also be an important 

tool to understand the variabilities among the expired and non-expired products before developing 

PLS-DA method. It is also suggested that manufacturers store their expired products and develop 

Figure 1-14: Class prediction plot (A) and regression vector(B) of the PLS-DA 

model of NIR spectra based on three LV’s to discriminate counterfeits (•) from 

genuine tablets (▼). Figure obtained from Peinder  [31]. Copyright (2008) with 

permission from Elsevier. 
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a reference library. This will be helpful to develop an authentication system to detect expired 

products in the future.   

Similar to SIMCA, proper wavelength selection and preprocessing methods also help to 

improve PLS-DA classification model performance [36]. For example, baseline removal by a 

derivative method minimizes spectral changes associated with the tablet geometry, physical 

differences in tablet faces, and sample position relative to the probe beam [34]. Theoretical and 

experimental evidence showed that elimination of useless predictors (wavelengths which are not 

carrying important information) increases the anticipated performance of PLS-DA [121, 122]. Li 

et al [121] showed that classification of five different manufacturers of anisomide tablets was 

successfully accomplished by appropriate variable selection method. Here, iterative PCA (iPCA) 

was successfully applied to find the superior spectral regions to predict and classify falsified 

products. However, wavelength selection is not always necessary. In fact, Fernandes et al [26] 

demonstrated cases where false sample identification was less effective with wavelength reduction 

as there is a risk of inadvertently removing an essential wavelength region [44, 121]. 

1.3.3.3.3 Limitations of Supervised Techniques 

It is evident from the literature that SIMCA and PLS-DA are often used for the same 

application, and their performance has been compared [20, 45]. However, this comparison is not 

necessarily reasonable, since different models use varying amounts of information. In the case of 

PLS-DA, the algorithm uses information regarding several classes and develops a decision 

boundary based on the existing classes; whereas SIMCA develops a decision boundary based on 

only one (its own class).  
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Depending on the different scenarios, PLS-DA and SIMCA should be used carefully. For 

example, SIMCA is one of the best choices when the variabilities of falsified samples are not 

possible to be sampled sufficiently. By using genuine samples, a target class can be developed, 

and any new unknown sample which is dissimilar from the genuine samples is projected outside. 

However, when an analyst develops a PLS-DA model, the model assigns class membership based 

on the variability modeled from available samples. Then, predicted unknown samples are assigned 

to any of the classes, even if they have very different compositions. This leads to an incorrect 

recognition of new samples [123]. 

On the other hand, when the potential variability of falsified samples has a limit, PLS-DA 

is applicable. For instance, when the types of impurities found in falsified samples are expected, 

then the discriminant techniques may perform better than class-modeling. Since data from genuine 

and impure samples have different directions in the score space, effective boundaries around 

different groups’ scores form easily. For the above reasons, PLS-DA and SIMCA should be 

selected depending on the target sample.  

Supervised classification methods provide only diagnostic results (in class or out of class), 

but other specific information, such as types of impurities, whether a sample contains any harmful 

content, or whether a tablet contains any API or not, is not typically identified using this method. 

Therefore, while developing authentication systems, the analyst should consider a variety of 

chemometric techniques to enhance the potential for a successful authentication method (see Table 

1-4).  
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Table 1-4: Comparison of different chemometric methods: 

Data 

Analysis 

Method 

Method Aim Relevant applications and comments 

Spectral 

matching 

 

Spectral 

correlations 

Spectral 

Distance 

Similarity and 

dissimilarity 

measurement 

between spectra 

• Prescreening of raw material identification 

• Impurities/adulterant detection 

• Detection of API or excipients in the 

finished dosage form. 

• Must determine a useful threshold. 

• For NIRS broad overtones and combination 

bands reduce the usefulness of this 

applications. 

Exploratory 

analysis 

 

PCA 

Projection and 

visualization of 

data in a 

low- dimensional 

space 

• Physico-chemical differences of the 

genuine and falsified products captured by 

spectroscopic techniques.  

• PCA forms data clusters, which are related 

to the sample variance. Examples: 

composition differences between genuine 

and falsified products, variance observation 

between genuine and falsified samples. 

Clustering 

method 

Partitioning data 

into clusters 
• Link developed between seized samples 

from different regions based on differences. 

Supervised 

techniques 

Class- 

Modeling: 

SIMCA 

Genuine 

samples are 

used to develop 

class and 

unknown 

sample is 

classified based 

on its distance 

to the class 

The class-modeling approach is useful for detecting 

unknown falsified samples: 

• Finished falsified dosage forms which are 

highly similar to genuine products, and 

difficult to separate by spectral matching 

method, are easily identifiable.  

• Drugs containing the wrong active 

substance and or the correct active 

substance with wrong dose are detectable. 

Adulterated raw materials (API and 

excipients) may be detectable.  

• Rigorous method development is required. 

Discriminant 

analysis: 

PLS-DA 

Covariance 

between data 

and class 

membership is 

stablished to 

develop 

classifications 

• Classification methods are developed from 

two or more classes, for example, a) the 

original drugs with expired date and  b) 

drug developed from different APIs.   

• Directions in the data space that 

discriminates the two or more medicine 

classes can be directly developed from this 

method.  
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1.3.3.4 Other Methods 

Raman Barcode: Lawson and colleagues developed an interesting method to screen 

whether seized finished products contain API or not, which they stated as “Raman barcode” 

method [32, 64]. A barcode is developed from API spectra and finished products by replacing zero 

intensity to every wavelength shift except the wavelength shift that represented Raman peaks. The 

identity of API was ensured by comparing the percentage of nonzero overlap between the target 

API barcode and finished drug product barcode (Figure 1-15). This method was successfully 

applied to test 18 different original products acquired from the market and nine simulated falsified 

products. A Raman barcode was applied only for high dose drug products with the assumption that 

excipients are Raman inactive. However, this conjecture restricted the use of this method only for 

Raman spectroscopy, as NIRS demonstrates high excipients signal. Additionally, this method was 

only applied for samples containing a single API and was not tested for the tablets which contained 

multiple APIs. Overlapping of different API peaks increases the risk of detection of a specific API.  
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Figure 1-15: Generation of Raman Barcode. All peaks denoted with a green circle 

are included in the barcode spectrum. Figure obtained from Lawson et al. [32],  

Copyright (2016) with permission from American Chemical Society. 

Machine Learning Method (Support Vector Machine):  A Support Vector Machine 

(SVM) is developed by constructing the best separation hyperplane to maximize the margin 

between different groups. The widest margin between the two groups is identified using several 

samples residing in the boundary, which are called support vectors. This margin can be linear or 

nonlinear depending on the type of kernel function that is applied. Finding the optimal hyperplane 

requires optimization of the model parameters. Details of the methods are discussed elsewhere 

[124, 125].  

SVM can handle some of the challenges usually related to a) large datasets [86],  b) samples 

which are collected using a limited spectroscopic wavelength range[63], and c) calibration transfer 

[116]. For example, newly developed pocket size spectrometers span a limited wavelength range 
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compared to full size spectrometers, creating sensitivity challenges in terms of detecting product 

identity. However, falsified products can be successfully separated from genuine products using 

SVM even with limited wavelength range. SVM is also less affected by small spectral perturbation 

when compared to SIMCA, which makes it a better algorithm for calibration transfer [116, 126]. 

However, careful optimization of SVM parameters are required before implementation.  

Though classical SVM has been applied for falsified drug detection, other forms of the 

SVM algorithm, such as the support vector data description (SVDD) method, can also be useful 

for class-modeling.   The advantage of SVDD is that it does not require two classes of samples 

during method development. Therefore, it is more suitable to use class-modeling techniques for 

analysis of pharmaceutical samples. In this dissertation project, SVDD was explored as a potential 

class-modeling technique for falsified drug detection. 

Multivariate Quantitative Analysis: Hyperspectral chemical imaging systems use different 

multivariate regression methods to quantify the composition of falsified products. In most cases, 

compositions of the seized samples are generated without knowing actual formulations. Different 

algorithms, for example, classical least-squares (CLS) and multivariate curve resolution (MCR) 

methods, are useful to determine the compositions. Details of such algorithms are found elsewhere 

[66].  
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Figure 1-16: PLS predicted images of (a) genuine tablet; (b) falsified tablet– red 

pixels indicate higher concentration and blue pixels indicate lower concentration of 

the target component [89], Copyright (2010) with permission from Elsevier.  

Lopes and co-authors [89] implemented Classical Least Squares to quantify pure 

components of  falsified and genuine samples. Concentration maps of each pure material, including 

the API (lamivudine) and the excipients microcrystalline cellulose, sodium starch glycollate, rice 

starch and talc, were estimated using CLS [89]. Imaging of predicted concentration of the 

components showed apparent differences in the sample (see Figure 1-16) [127].  

1.3.4 Challenges and Considerations of Routine Spectroscopic Authentication Methods 

Many sources of variability impacting the spectra of pharmaceutical samples occur during 

the life-cycle of a spectroscopic technique. Some examples include manufacturing process 

variability, analytical instrument variability, and environmental fluctuations. Sample variability is 

introduced through raw material inconsistencies or through the impact of a manufacturing process 
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on material variability. Lot-to-lot variations of incoming raw materials introduce new physical and 

chemical variations to which both Raman and NIR spectra have been shown to be sensitive [128, 

129]. However, the significance of variabilities on spectral quality depends on the sampling 

configuration, collection modalities, etc. [130-132]. For Raman spectroscopy, the effect of particle 

size variation in tablets between backscatter and transmission mode were compared. As the Raman 

backscatter mode generates most of the signal from the tablet surface, it was relatively less 

impacted by the variation in particle size relative to the transmission mode [133]. Tablet surface 

roughness also affected the impact of particle size on the spectra for the backscatter mode. 

However, in transmission mode, photon propagation characteristics were more influenced by 

particle size variations due to the scattering coefficient and optical path length [1, 133-135]. A 

change of size, shape or density of tablets due to the changes in the manufacturing process also 

generate spectral variabilities [134, 136, 137]. Physical factors are very critical for NIRS, as this 

method is highly sensitive to physical variations of the samples mentioned above [138-144]. These 

sources of variability are well known, but their effect on the model is not always well characterized. 

One way to test the effect of such physical variation is to develop calibration models with and 

without these variations in the model, and then determine whether including the variabilities 

improves the model performance.  

Another challenging source of variability that analysts often encounter with the 

spectroscopic method development and deployment is environmental variability; for example, 

relative humidity often varies from the warehouse, where materials are stored, to the 

manufacturing facilities where samples are analyzed. The impact of relative humidity and extreme 

temperatures on model performance is critical to product quality and must be considered during 

method development [34].  Figure 1-17  demonstrates the spectral variability two samples scanned 
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using NIRS over the duration of a one year period .The variability was due to moisture variations 

of the testing period.  This highlights the importance of including moisture variability in a NIRS 

model development [71, 91, 145-147].    

Figure 1-17: PCA plots (PC1/PC2) and the related 95% confidence intervals of two 

lubricant spectra recorded five times over a 1-year period. Figures obtained from 

Vredenbregt [148], Copyright (2003) with permission from Elsevier.  

For Raman spectroscopy, although water has a weak Raman scattering, it was found that 

for tablets exposed to high humidity and temperature, the spectral baseline demonstrated variation. 

As chloroquine has broad fluorescence background, moisture variability caused spectral artifacts 

in the form of baseline variations, which is associated with fluorescence quenching  [146]. This 

caused failure of the detection method. Fluorescence quenching also happens due to long laser 

exposure to samples. It was reported that due to the fluorescence background, obtaining reliable 

Raman spectra was an issue [147]. Using a 1064 nm laser can decrease fluorescence background, 

but requires longer exposure time to acquire similar S/N compared to 785 nm [149, 150]. 

McCreery showed that among 308 reference samples, around 8% of compounds showed a 

fluorescence background, and 3% of compounds were misidentified using the SM method  [25]. 

However, the effect of moisture on different supervised models needs to be investigated more 
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rigorously for Raman Spectroscopy. Also, the suitability of baseline removal algorithms for 

removing this unwanted effect should be carefully evaluated.  

Two recommendations are proposed to fill the gap in current literature regarding 

authentication method development. First, before developing a multivariate calibration model, a 

thorough investigation should be conducted to identify and understand the possible risks that may 

occur throughout the life-cycle of the method [151, 152]. Introducing systematic risk assessment 

based on previous experiences can be helpful to achieve this goal. For example, using Ishikawa 

diagrams and Failure Mode and Effects Analysis (FMEA) can be beneficial for developing a robust 

authentication model. Such risk assessment techniques were used to develop robust quantitative 

modeling in past studies [153, 154]. It is recommended that even for qualitative modeling to detect 

falsified drugs, risk assessment approaches may be quite practical. In  Figure 1-18, an Ishikawa 

diagram showed critical factors for NIR and Raman spectroscopic techniques to detect falsified 

samples.  

 

Figure 1-18: Ishikawa diagram for a risk assessment of a NIR spectroscopic techniques of 

pharmaceutical tablets. 
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Second, using an independent validation set over time to validate model performance will 

be helpful.  This will also ensure long-term model performance [109, 151, 155]. 

1.3.5 Project Description  

In this dissertation project, detailed investigations were conducted to demonstrate an 

optimized spectroscopic authentication method using class-modeling techniques for the detection 

of falsified pharmaceutical samples.  

Appropriate prior knowledge of the pharmaceutical product, the manufacturing process, 

the spectroscopic technique, and the mathematical algorithm for calibration were required to 

develop and validate a sensitive, selective, and robust method. For a proper spectroscopic 

authentication system, the method was validated using independent sample sets, and the developed 

method met two validation criteria: 1) acceptance of genuine products and 2) rejection of falsified 

products.  

The first validation parameter was that the model must accept authentic samples. To ensure long 

term model performance, proper risk assessment was investigated during method development. 

This risk assessment explored a variety of critical factors, including the effect of variability in 

materials, environmental conditions, manufacturing variability, and analytical instrument 

parameters. To understand the effect of these factors on the multivariate model performance, 

further studies were conducted. When it was found that certain factors were a risk for the model 

performance, inclusion of these factors improved the long-term model performance and decreased 

the burden of updating the model over time.  Also, this work demonstrated that the typical current 
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method, e.g., SIMCA, had certain limitations that may be resolved with more modern algorithms, 

in particular, a SMV based algorithm. 

The research project generated simulated falsified samples to test the capability of the 

analytical technique and to test the second validation criteria, i.e., rejection of falsified product. A 

variety of falsified sample characteristics were simulated in the lab. Specifically, the models were 

tested against falsified samples which contained the appropriate API but different excipient 

compositions. This was the most difficult condition of falsified samples to detect.  To evaluate the 

ability of the analytical techniques and the developed chemometric model, a systematic variation 

of excipients was required in the formulations. Statistical method such as design of experiment 

(DOE) is a valuable tool to explore the spectroscopic capability to identify different falsified 

products. DOE is also helpful to understand which falsified samples are spectrally similar in 

comparison to genuine samples, and which pose a risk on the developed method. Carefully 

developed DOE, accomplished with appropriate prior knowledge, minimized the risk of model 

failure. Using samples created at small scale, in the laboratory, reduced the burden of sample 

preparation and made the model development efficient.   

A detailed discussion of these strategies is offered in the following chapters. 
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2 Chapter 2: Evaluation of SVDD and SIMCA methods as 

Class-Modeling Techniques using Near-Infrared 

Calibration Sets of Pharmaceutical Tablets Containing 

Moisture Variation 

2.1 Introduction 

Protection of pharmaceutical materials from fraudulent activities is becoming increasingly 

critical due to the growing distribution of falsified products. The rise of procurement of internet 

products by American consumers increases the chance of exposure to these falsified products [6]. 

Currently, 10%-30% of drugs in the world are falsified [156, 157] and pharmaceutical tablets are 

the most common type of falsified products.  

The primary method of pharmaceutical tablet falsification is to vary the chemical 

composition. This includes, but is not limited to, tablets prepared without active pharmaceutical 

ingredient (API), tablets manufactured using the wrong API and tablets generated using the correct 

API but different excipient compositions. Implementation of tools to monitor the chemical 

composition of pharmaceutical products during distribution from manufacturers to customers can 

reduce fraudulent activities [3, 4].     

Near infrared spectroscopy (NIRS) offers the ability to rapidly determine the chemical 

content of pharmaceutical tablets. In studies utilizing NIRS, antimalarial, antimicrobial, 

antispasmodic and other medicines were successfully authenticated [28, 34, 96].  In these studies, 
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medications were collected from around the world and tested in the laboratory. Further progress 

in instrumentation technology has led to opportunities for NIRS to be implemented as portable, 

even handheld spectrometers, for the detection of falsified products in the field. These 

spectrometers allow screening for the quality of medicines in multiple locations (e.g., in different 

locations of the supply chain including rural hospitals, clinics, drugstores, etc.) [51].  

However, developing authentication methods using NIRS is challenging due to sample 

constraints and the multivariate nature of the collected data. Only authentic samples are available 

during method development, as it is impracticable to produce or collect all types of falsified 

samples.  Additionally, rigorous chemometric methods are required to statistically compare an 

authentic sample’s NIR spectrum with an unknown sample’s spectrum  to determine  whether the 

unknown sample is genuine or falsified.   

Two types of chemometric techniques are highlighted in the literature for authentication of 

pharmaceutical tablets: 1) spectral matching (SM) and 2) class-modeling (CM) techniques [11]. 

SM compares two spectra, including a reference NIR spectrum from an authentic tablet and an 

unknown spectrum from a sample. The spectral correlation or spectral distance is calculated 

between these two spectra and, if these values fall within a target threshold, the unknown sample 

is declared to be genuine [158]. Research has shown that the SM method is successful when 

samples have large chemical differences providing sufficient spectral uniqueness [14]. For 

example, the SM method was used to identify placebo samples and samples containing the wrong 

API.  However, this method struggled to separate samples containing identical APIs and similar 

excipient compositions or what would be considered high quality falsified products [15].  

Moreover, most current portable spectrometers provide limited sensitivity and selectivity relative 
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to research instruments, and insufficient spectral resolution to distinguish the differences between 

authentic and falsified samples. Regardless, SM is a popular technique included in most of the 

current portable spectrometers due to its rapid and relatively simple assessment of authenticity. 

Class-modeling (CM) is another chemometric technique that can be applied for the purpose 

of authentication. Multivariate methods such as SIMCA and its extended versions have been used 

for spectroscopic class-modeling techniques for authentication. The primary premise of these 

methods is to develop a target class using representative samples from an authentic source. A 

calibration model is developed from the target class, comprised of NIR spectral data containing 

API and excipient information. CM estimates a decision boundary which is formed around the 

calibration data at a specific significance level. For example, the boundary of different versions of 

SIMCA is developed based on the distribution assumptions such as normal, 𝜒2, etc. [17-19]. 

Several studies have compared the performance of SM and CM, and proposed that CM techniques 

are more effective than the SM method. In these studies, portable spectrometers successfully 

separated pharmaceutical tablets containing similar compositions [15, 20]. 

The CM methods require two critical considerations: suitable target class samples and the 

establishment of appropriate boundary conditions. A typical target class includes authentic 

samples; however, it does not necessarily include the variabilities that have a critical impact on 

NIR spectra. For example, a CM method using NIRS data based on a target class including 

authentic samples from one batch may consider an authentic sample from a different batch to be 

falsified because batch-to-batch variability is not considered in the original calibration. Batch-to-

batch variability can have a severe impact on the performance of NIR prediction models, 

potentially due to small physical and/or chemical differences in the samples from unique batches. 
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Specific sources of small chemical and physical changes between authentic samples include raw 

material variability and environmental (i.e., temperature, relative humidity) fluctuations. 

Specifically, environmental variability is of high concern because authentic samples are often 

produced in different manufacturing sites around the world with varying relative humidity 

conditions. NIR spectra are highly sensitive to moisture; thus, the relative humidity variation needs 

to be considered during method development, especially if the NIRS method is to be directly 

applied at these different sites. To reduce the impact of these potentially important variabilities, 

several spectral preprocessing techniques are available. However, these pre-processing techniques 

are not always sufficient; an additional, valuable option is to update the calibration model using 

new samples comprising these variabilities. 

The addition of samples to the target class to create a robust model can be accomplished in 

two ways. First, the empirical approach where the model is updated over time by adding samples 

to include newly evolved variabilities. This empirical approach depends on stepwise addition of 

newly available samples to the calibration set and rebuilding the model over time  [159]. Another 

approach can be taken by implementing risk-assessment concepts during method development. 

According to ICH-Q9 guidelines, a risk-assessment can be conducted while developing the 

calibration method, and factors which can be risks for spectroscopic method performance are 

added into the target class during model development [154]. 

In addition to sample considerations for development of a suitable target class, the 

boundary conditions are also important.  The boundary around the target class decides if an 

unknown sample is authentic or falsified. The CM method assumes that the target class forms one 

cluster, with the boundary formed around this cluster. However, including spectrally different 
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samples (e.g., samples with different moisture levels) may introduce multiple clusters within the 

target class. This violates the assumption of the model by forming a binomial or multimodal 

distribution in the model space. In addition, the boundary formed around the multiple clusters may 

not include all potential calibrations samples, and the model will be more prone to rejecting 

authentic samples. Therefore, the caveat of this approach is that without prior knowledge of the 

shape of the underlying distribution of samples, satisfactory results may not be achieved.  

 This chapter explores the use of a support vector machine based method to resolve 

boundary condition issues of a traditional CM method. Support vector machine methods create a 

spherically shaped boundary around the samples. The boundary is typically described by a few 

training objects which are mentioned as support vectors. It is possible to replace normal inner 

products by kernel functions to obtain more flexible data descriptions. This method is often 

referred to as a support vector data description (SVDD) approach, proposed by Tax et al [21]. This 

method has been used for the detection of machine faults, outlier detection, etc., and has shown 

similar results to the one-class support vector machine (OC-SVM) developed by Schölkopf et al 

[22]. However, the SVDD method has not yet been evaluated for analyzing pharmaceutical 

samples using spectroscopic data, particularly for authentication purposes. 

The objective of this paper is to explore the performance of SVDD as a class-modeling 

technique relative to that of the widely used SIMCA method in order to authenticate 

pharmaceutical products. This study emphasized the suitability of these chemometric techniques 

in the presence of seasonal variations. To demonstrate the capabilities of these methods, tablets 

were prepared in-house (in the laboratories of the Duquesne University Center for Pharmaceutical 

Technology) throughout a year’s worth of environmental variation. Although these samples were 
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generated in the laboratory, this study provides direction for further development of an 

authentication method using spectroscopic data.  

2.2 Materials and Methods 

2.2.1 Theory 

2.2.1.1 SIMCA based Approach  

SIMCA is extensively used as a class-modeling technique for authentication purposes. The 

procedure for SIMCA first involves decomposing calibration samples using a PCA model with the 

optimal number of principal components.  Classification rules are then constructed to create a 

decision boundary. Different versions of classification rules have been developed over time; this 

is discussed extensively in existing literature [17, 103, 160]. However, in this study, one of the 

most immediate and commonly used versions was applied for the SIMCA analysis. In this method, 

the boundary around a training set of SIMCA is based on two distances: 1) score distance (SD) 

and 2) orthogonal distance (OD). The SD is determined by computing the distance, in the space of 

the PCs, between an unknown sample and a target group, commonly referred to as the Hotelling’s 

𝑇2. The OD is determined by calculating the unknown sample’s squared residual distance from 

the model space, referred as the 𝑄 residual [17, 82]. Hotelling’s 𝑇2 measures the information of 

each sample within the PCA, or SIMCA model, and is calculated by Equation 1, where 𝑡𝑖 is the 𝑖-

th row of the 𝑇𝑘, the 𝑛 by 𝑘 matrix of 𝑘 score vectors from the PCA model, and  matrix of 𝑘  scores 

vectors from the PCA model of 𝑛 number of target class samples and Λ- 1 is a diagonal matrix 

containing the inverse of the eigenvalues associated with the 𝑘 eigenvectors (principal 

components) retained in the model. 
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The 𝑄𝑖  statistic is defined as the sum of squares of the residuals and can be calculated 

according to Equation 2 where 𝑒𝑖 is the residual of sample i after applying the SIMCA model.   

𝑇𝑖
2 = √𝑡𝑖𝛬

−1𝑡𝑖
𝑇 1 

  

𝑄𝑖 = 𝑒𝑖𝑒𝑖
𝑇 2 

  

A sample is assigned to a target class if the computed distances are shorter than a predefined 

threshold value. These threshold values are based on 𝑇𝑙𝑖𝑚
2  and 𝑄𝑙𝑖𝑚, which are the confidence 

intervals for the model under consideration. Confidence limits for SD (referred to as 𝑇2 in the 

PLS_Toolbox and related literature) are given from Hotelling’s 𝑇2 to obtain 𝑇𝑙𝑖𝑚
2 , i.e. (𝑇𝑙𝑖𝑚

2 =

𝐹𝑘,𝑛−𝑘𝑘(𝑛2 − 1)/(𝑛 − 𝑘)  considering 𝑘 and  (𝑛 – 𝑘) degrees of freedom, where 𝑘  is the number 

of PCs and 𝑛  is the number of calibration samples for the target class. 

The χ2 distribution is used for the squared residuals and confidence limits for the 

orthogonal distance (OD, also referred to as Q in the PLS_Toolbox and related literature) are 

computed by the Jackson and Mudholkar (JM) approximation. 

The limit of Hotelling’s 𝑇2(𝑇𝑙𝑖𝑚
2 ) and the limit of 𝑄 statistic (𝑄𝑙𝑖𝑚) values can be 

calculated from the ratio between the corresponding statistic of the sample 𝑖 and the corresponding 

limit at α = 0.05 [𝑒. 𝑔. , (𝑇𝑙𝑖𝑚
2 =  𝑇95%

2  and 𝑄𝑙𝑖𝑚 = 𝑄95%] [17]. A more flexible boundary is 

developed by a semi-circle with a radius of √2, which is mentioned as d; this d is calculated 

according Equation 3. 

𝑑 = √(
𝑄

𝑄𝑙𝑖𝑚
)

2

+ (
𝑇2

𝑇𝑙𝑖𝑚
2 )

2
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 This distance measure gives equal weighting to distance in the model space, i.e. scores 

distance (SD or 𝑇2) and residual space, i.e. orthogonal distance (OD or 𝑄).  The outcome of this 

boundary was depicted in Figure 2-1. 

2.2.1.2 SVDD based Approach 

The theory of SVDD has been extensively described in the literature [21, 161].  Therefore, 

only a brief description of the concept of SVM in the framework of classification is given here.  

Figure 2-1: Threshold boundary based on the confidence interval of Hotelling’s 

𝑇2 versus  𝑄  residual. The squared acceptance area is the green space in the graph, 

where samples plotted at any point outside of this area are rejected. According to 

this threshold, nearly every sample will be accepted, with only the green sample 

being rejected. A more flexible boundary could be applied as shown by the semi-

circular area. Then, both green and red will be accepted. Figure is adapted from 

López et al.[100] Copyright (2014) with permission from Elsevier. 
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Figure 2-2: The hypersphere containing the target data (blue), described by the 

center a and radius R. Five objects (red) are on the boundary. Three object (red) 

xi is outside and has ξi > 0. 

The SVDD algorithm avoids the estimation of a complete probability density; it obtains a 

data boundary by forming a circle or hyperplane around the data where  𝜇 is the data center and  𝑅 

is the distance from the center to the hyperplane that forms the boundary around the samples 

(Figure 2-2). However, it is not always possible to include all data within the boundary.  Therefore, 

this algorithm has adapted to tolerate errors for some objects that fall outside of the boundary. 

 

3 

 

4 

∅(𝑅, 𝑎, 𝜉) = 𝑅2 + 𝐶 ∑ 𝜉 

||𝑥𝑖 − 𝑎||2 ≤ 𝑅2 + 𝜉,         𝜉 ≥ 0 
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Usually, slack variables 𝜉, allow a probability that some of the training samples will be placed 

outside the boundary. Samples which reside on the boundary (𝜉 = 0), or outside of the hypersphere 

(𝜉 > 0), are referred to as support vectors. Development of the hypersphere is based on the 

optimization of these support vectors, where the distance of each of the samples should be less 

than or equal to 𝑅2 + 𝜉 . Therefore, mathematically, it is possible to define a structure error 

function (∅) for an SVDD model with a constraint.  

In Equation 4, 𝐶 shows the trade-off between the volume of the hypersphere (calculated by 𝑅2 ) 

and the number of errors (𝜉) and therefore controls the fraction of samples lying outside the 

boundary. The higher the 𝐶  value, the more samples are included in the model space. This 𝐶  can 

also be expressed as “a fraction of target class samples rejected” by 𝐷  value which is defined in 

Equation 5. 

𝐷 =
1

𝑛𝐶
 

 

5 
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The C and D are related by 𝑛 which is defined as the number of samples in the calibration 

set. 𝐷 has some analogy to confidence levels in distance-based classifiers. When 𝐷 = 0, no target 

samples are misclassified, whereas 𝐷 = 0.05 means 5% of samples will be outside the boundary. 

However, this number is an approximation. This optimization problem was further modified using 

the Lagrangian method which simplified the calculation [21]. 

It is also possible to incorporate kernel functions into the model to create a non-linear 

boundary (Figure 2-3) [21]. It provides additional dimensions which transform the shape of the 

data. The shape of the boundary can be optimized using different kernel function, but most popular 

is the Gaussian radial basis function (RBF),  

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝
−‖𝑥𝑖 − 𝑥𝑗‖

2σ2
 

 

6 

σ =1 
σ =5 σ =25 

Figure 2-3: Data description trained on a banana-shaped data set. The kernel is a 

Gaussian kernel with different width sizes σ. Support vectors are indicated by the solid 

circles; the dashed line is the description boundary (adapted from Tax et al. [160]).  

Copyright (1999) with permission from Elsevier. 
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The broader the Gaussian, the smoother is the surface; hence, the radius of the RBF (or σ) 

relates to how ‘bumpy’ the surface is, and varying this parameter can change the appearance of 

boundaries between points.   Using a small σ results in a sharp Gaussian that effectively forms a 

boundary around each point (or occasionally neighboring points). Therefore, a small σ value may 

overfit the model, whereas as σ increases, the model becomes smoother and more circular, 

resembling a PCA or SIMCA models.  It is essential to understand that the number of samples on 

the boundary decreases as σ increases—this is because fewer points are required to model a smooth 

boundary and so fewer SVs are required. 

2.2.2 Figures of Merit 

In the class-modeling approach, two validation parameters are used for performance 

analysis. The goal of the method is to accept target class samples. This is referred to as the 

sensitivity of the model. It describes the ability of the model to declare genuine samples. The 

following formula calculates the sensitivity of the method (accepting genuine samples): 

Sensitivity=TP/(TP+FN)                                                                                   7                                   

where TP and FN are true positive and false negative, respectively.  If the model accepts 

falsified samples, it needs further optimization.   

The second measure of model performance is rejection of the non-target class samples. 

This is called specificity.  The specificity of the method (rejecting falsified samples) is used as a 

validation parameter. The following formula calculates this parameter: 

Specificity=TN/(TN+FP)                                                                                                8                     
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where TN and FP are true negative and false positive, respectively.   

To consider both factors simultaneously, the geometric average of these two parameters 

were calculated. The average of sensitivity (Equation 7) and specificity (Equation 8) will be 

indicated as average performance (see Equation 9).  

Average performance= (Sensitivity + Specificity)/2                                          9 

2.2.3 Sample Set 

2.2.3.1 Sample Preparation 

For this study, acetaminophen (APAP) was used as a model drug.  The target formulation 

was APAP (27.30%w/w), microcrystalline cellulose (MCC 200; 34.15% w/w), lactose (34.15% 

w/w), hydroxypropyl methyl cellulose (HPMC; 3.90% w/w), and magnesium stearate (0.5% w/w).   

Tablets were generated with a wet-granulation approach. First, granules containing APAP, HPMC, 

and lactose were manufactured using a fluid bed granulator (model WSG 5, Glatt, Binzen, 

Germany).  Then, granules and extra-granular excipients (MCC 200, lactose, magnesium stearate) 

were mixed in a 3.5 quartz V-blender for a total blend mass of 1 kg for 45 min. Target blending 

time for homogeneity was tested using NIRS. The blends were subsequently compacted on a 38-

station rotary tablet press (Elizabeth-Hata International, Inc., North Huntingdon, PA, USA).  The 

target tablet weight was 350 mg.   

To consider non-target class test samples during model development, another set of 

samples containing low concentration of API (19% w/w) was manufactured. The shape and size 

of both sets of tablets were the same.  
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2.2.4 NIR Scanning 

NIR reflectance measurements were acquired for both sides of each tablet over the 

wavelength range of 925 to 1700 nm at a 6.38 nm increment, averaging 5000 scans (JDSU 

MicroNIR). Before scanning, the tablets were precisely centered using the positioning iris, 

standard on this instrument.  A period of two weeks elapsed between compression and spectral 

collection to allow the tablets to undergo viscoelastic relaxation. 

All spectral data were analyzed in  Matlab  (version 8.6, MathWorks, Natick, MA) using 

PLS_Toolbox (version 8.8, Eigenvector Research, Inc, Manson, WA) [162], and software 

developed by the Duquesne University Center for Pharmaceutical Technology. 

2.2.5 Reference Testing 

Acetaminophen reference values for all compacts were determined using high-pressure 

liquid chromatography (HPLC; Waters Alliance 2790, Milford, MA, USA), followed by 

ultraviolet detection (Waters 2487). A method, modified from USP29-NF24 (“Acetaminophen 

Tablets’’), was employed [41]. The mobile phase was water: methanol: acetic acid (80: 17: 3), and 

the stationary phase was a 15 cm by 4.6 mm C18 column with 3μm packing. The detection 

wavelength was 243 nm. The error of the reference measurement was estimated at 0. 83%. 

2.2.6 Sample Considerations for Calibration, Test and Validation 

During the study, a total of six granulations and fourteen tablet batches of the target 

formulation were manufactured.  There was significant variability in the particle-size distribution 

of the granules and in the moisture content of the excipients and granules. These variabilities were 



 

76 

 

observed because the environment of the laboratory in which the experiments were performed was 

not controlled for humidity; during winter the air was dry (20–30% relative humidity (RH)). 

During the summer months, typical RH was between 60 and 70%.   

Samples prepared in the lab were used to investigate these seasonal spectral variabilities 

and the subsequent effect on the model performance during spectroscopic analysis. Samples were 

prepared using six different granules (containing different particle size distribution) and in 

different seasons of the year (in the presence of different relative humidity). 

The target class samples were developed from the target concentration, and the non-target 

class product was prepared using a lower concentration of API, as mentioned previously. 

Calibration, test, and validation sets were the sample sets used for the model development 

process. The model was optimized using the test set which contained both target and non-target 

class samples, whereas the calibration set contained only target class samples. Non-target class 

samples  were used during the optimization process to enhance the model performance (Figure 2-

4) [163]. 
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Figure 2-4: Method development flow chart and considered samples. 

Three calibration scenarios were created to demonstrate three conditions of calibration sets: 

1) Basic: Samples prepared in the summer (lab humidity ~ RH65%) were added to the 

calibration set. This set will be further mentioned as the “basic calibration set”.  

2) Updated: The updated data includes the basic calibration set and additional samples 

created during the winter, representing a real-life scenario in terms of the likely scenario for the 

model update. This data set will hereafter be called the “updated calibration set.”  

3) Risk-based: In this approach, samples prepared during the summer were stored in lower 

humidity condition (~20% RH) to mimic the winter condition, and later added into the calibration 
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sample set along with the samples of the basic calibration set. This will be henceforth described as 

the “risk-based calibration set.” 

Calibration sets for model development: Samples were considered for calibration set from 

three scenarios mentioned above. Each of these calibration sets were used to generate SIMCA and 

SVDD  model.  Test sets were used to optimize calibration model and validation sets were used to 

measure the final performance. (Table 2-1).  

 Test sets for model optimization: Cross-validation was conducted using calibration sample 

sets of target class samples. Samples of similar composition containing a low level of API 

(19%w/w) were used as non-target class samples to optimize the model parameters. 

 Validation sets for performance evaluation: The model was challenged with the validation 

set to test whether it could accommodate seasonal variabilities present in the independent target 

class samples. Three batches of target class validation sample sets were generated from new 

granules (that had not been present   in the calibration set) and manufactured under summer, spring, 

and winter conditions.  

Table 2-1: Details of the modeling scenarios 

 Scenarios 

 Basic Updated Risk-Based 

Calibration Set    
Moisture variations High High+Low High+Low 

API Concentration Target Target Target 

Test Set    

Moisture variations High+Low High+Low High+Low 

API Concentration Target+Low Target+Low Target+Low 

Validation Set    

Moisture Variation High+Low High+Low High+Low 

API Concentration Target+Low Target+Low Target+Low 
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2.3 Results 

2.3.1 Spectral Investigation and Exploratory Analysis 

Samples were prepared using granules containing different particle size distributions and 

created in different seasons of the year (containing different relative humidity conditions).  Figure 

2-5 shows the second derivative treated spectra of tablets. Figure 2-5A used the same granules 

manufactured in two different seasons. Different spectral regions of the samples generated in the 

summer (~60% RH) and in the winter (~25%RH) demonstrated intensity differences [164, 165]. 

The preprocessing method removed the effects of physical variation by eliminating the baseline 

differences. However, the water bands around 1470 nm exhibited significant variability compared 

to other regions of the spectra. This 1470 nm region represents primarily the combination bands 

of water. This spectral change depicts the influence of moisture on the spectra [164, 165]. Figure 

2-5B showed the spectral difference in the 1167 nm region due to APAP concentration differences; 

here, the target concentration and low concentration tablets represented target class and non-target 

class product, respectively.  
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Figure 2-5: A) NIR spectra of different moisture conditions B) Two different 

concentration levels of API. 

A  PCA algorithm was used to decompose the calibration spectra after SNV and mean-

centering treatment [81].  Figure 2-6A shows that the scores of the first two PCs, generated from 

the basic-calibration set, are uniformly distributed.  However, when the PCA algorithm was 

applied to the updated and risk-based calibration scenario data (preprocessed), two clusters formed 

in the PCA space (Figure 2-6B). This clustering indicates that variabilities were present across the 

calibration set, mostly in the PC2 direction. As most of the samples were prepared and scanned in 

the summer-season, the largest group contained summer-samples. Whereas, the smaller group 

contained samples added from the winter-season (low humidity condition). Also, a boundary was 

developed using a 95% confidence interval of PC1 and PC2 scores. It was observed that the 

developed confidence interval in the PC space of the updated calibration model mostly excluded 

samples from the smaller cluster (Figure 2-6B). Therefore, the samples that resided outside the 

boundary were primarily from the winter season. Nevertheless, increasing the confidence interval 

includes all samples within the boundary (Figure 2-6C).  
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Figure 2-6: A) PCA of the basic calibration model with a 95% confidence interval, 

B) PCA of the updated calibration model with a 95% confidence interval, and C) 

PCA of the updated calibration model with a 99% confidence interval. Here the red 

circles are samples, and the dashed line is the confidence interval.
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Table 2-2: Performance of the different modeling approaches 

Different Models with  

predefined threshold 

Calibration scenarios 

Basic  Updated  Risk-based 

 Sensitivity Specificity Average  Sensitivity Specificity Average  Sensitivity Specificity Average 

SIMCA (𝑻𝟐 & Q=0.95) 0.5 1 0.75  0.67 1 0.83  0.85 1 0.925 

SIMCA (𝑻𝟐 & Q =0.99) 0.5 1 0.75  1 0.92 0.96  1 0.6 0.80 

PCA-SVDD (D=0.05) 0.5 1 0.75  1 1 1  0.93 0.98 0.955 

PCA-SVDD (D=0.01) 0.5 1 0.75  1 1 1  0.94 0.94 0.94 

Spectral SVDD (D=0.05) 0.5 1 0.75  1 1 1  0.93 1 0.965 

Spectral SVDD (D=0.01) 0.5 1 0.75  1 1 1  0.93 1 0.965 
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2.3.2 Model Performance of SIMCA and SVDD Methods 

2.3.2.1 SIMCA Method Performance 

While developing the SIMCA calibration model, several parameters were optimized. 

Spectra were preprocessed and PCs were determined using independent test sets (containing both 

target and non-target class samples) by maximizing the classification average performance of 

sensitivity and specificity. The baseline correction method was required as a preprocessing method 

to minimize batch-to-batch variabilities  due to particle size differences. Standard normal variate 

(SNV) helped to remove these variabilities.  The number of selected PCs has a major impact on 

the classification results.  Adding more PCs into the model increases the complexity of the model, 

which typically helps to reject non-target class samples.  However, a more complex model means 

that a higher amount of variation in the training set is considered; adding more PCs may result in 

an over fitted model and a potential risk of rejecting target samples during routine analyses. Hence, 

a model containing a minimum number of PCs to generate adequate specificity is preferable. This 

approach is often referred to as a parsimonious approach [163].  

After establishing a PCA model, an acceptance area is developed based on a threshold 

value. In this study, the decision threshold is set at √2 which creates a semi-circle in Hotelling’s-

𝑇2 and 𝑄 residual plot. This is based on a priori significance level of Hotelling’s 𝑇2 and 𝑄 residual. 

This significance limit for these two statistics are estimated based on the internally cross-validated 

values of 𝑇2 and 𝑄 residual associated with the calibration samples. In this study, two fixed 

significance levels, 95% and 99%, were used to measure the performance.  
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In Table 2-2, the performance of SIMCA models is shown. Here, it was observed that, 

regardless of the significance level, the basic design scenario showed 100% specificity using 1 PC 

(rejected all the non-target class samples). According to Figure 2-7A, these non-target class 

samples have higher 𝑄 residual and Hotelling’s 𝑇2 and resided outside the boundary. Non-target 

class samples, containing a lower concentration of API, were separated from the target class. 

However, the other critical parameter, sensitivity of the model, is 50%. The rejected target samples 

have high 𝑄 residuals in the diagnostics plot (Figure 2-7A), which indicates that the target-class 

samples in the validation set had unmodeled variance. This performance is not unexpected, as 50% 

of validation target class samples were generated in the winter and had different moisture content. 

The model accepted target class samples which were manufactured during the summer seasons 

and had similar features of the basic calibration design set. 

The updated calibration scenario (which was developed by adding winter samples to the 

summer sample set) improved sensitivity compared to the basic set. This result indicated that to 

improve model performance, winter samples are required in the calibration set. Moreover, 

changing the threshold value from 0.95 to 0.99 further improved sensitivity.  The diagnostic plot 

in Figure 2-7B, showed that calibration samples prepared in the winter season had higher 𝑄  

residuals and Hotelling’s 𝑇2 relative to the samples prepared in the summer. While developing a 

decision boundary using 95% CI, most of these winter samples resided near the boundary or 

outside of the decision boundary. These samples are typically referred to as high-leverage samples. 

Similar patterns were observed for the risk-based calibration model (Figure 2-7C). Changing the 

significance level of Hotelling’s 𝑇2 and 𝑄 residual to 99% placed these high leverage samples into 

the decision boundary.  This change in the significance level improved the sensitivity of the model 

by accepting validation samples which were rejected in the previous model threshold. However, it 
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is also important to understand that the specificity of the model decreased due to the change of the 

significance level. Hence, with this higher significance level (99%), the model began to accept 

non-target class samples (Figure 2-7D).  

Figure 2-7: Diagnostics plots  of SIMCA using 95% threshold value of Hotelling's 𝑇2 and 

𝑄 residuals of A) Basic calibration set, B) Updated calibration set,  C) Risk-based 

calibration set,  and 99% threshold value of Hotelling's 𝑇2 and 𝑄 residual of D) Risk based 

calibration set. Here, red indicates the calibration samples from the target class, green 

indicates validation samples from the target class, and blue indicates validation samples 

from the non-target class. 

Similar results were observed for the risk-based scenario. By including samples stored in 

the low humidity condition, the sensitivity of the model improved. As the model also contained 

samples stored at 11% RH, model performance improved by accepting validation samples 



 

86 

 

generated in the winter. This was an efficient approach of method development as it included 

moisture variabilities in the calibration set without considering samples generated during winter 

seasons.  Therefore, analysts were not required to wait to update the model until generating 

samples, which is often a tedious process. However, this model also had high leverage samples; 

changing the threshold value from 0.95 to 0.99 improved sensitivity but decreased the specificity 

of the model by accepting non-target class samples.   

2.3.2.2 SVDD Method Performance 

In this study, the SVDD algorithm was applied to the PCA decomposed data and 

preprocessed spectral data; these will be mentioned as PCA-SVDD and Spectral-SVDD 

subsequently. Both approaches were optimized individually using the test set to obtain the best 

possible results. During optimization, different factors such as the preprocessing method, the 

number of PCs, and the parameters of SVDD (i.e., D and σ) were considered. Previous literature 

suggested to fix the rejection fraction of the calibration model (D) according to a predefined value 

and then to optimize σ. In this study, two D values: 0.05 and 0.01 were considered. These two 

values represent the comparative performance of 95% CI and 99% CI of the method [166]. To 

optimize σ for three calibration scenarios, a search was performed based on the test set. While 

calculating the σ value, a series of values ranging from 0.1-2.5, with incremental steps of 0.1, was 

used.  
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Figure 2-8: A boundary was developed using a support vector machine approach for 

updated calibration samples. Each row represents different D values whereas each 

column represents σ values. 
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While developing the PCA-SVDD method, the first two principal components’ scores were 

selected to develop the model for each calibration scenario. PCA-SVDD models were developed 

by optimizing σ. The impact of the σ parameter on the boundary development of the updated 

calibration scenario was visualized in Figure 2-8. Decreasing the σ value tightened the non-linear 

boundary of the updated calibration scenario by exploiting a higher number of support vectors 

(samples resided on the boundary) [21].  However, analysts should be cautious about the 

unnecessary tightening of the boundary, which may increase risk of overfitting of the model. Also, 

changing D values allowed more samples to reside outside the boundary, which is representing a 

similar approach to the confidence interval of PCA or SIMCA. One crucial difference between the 

decision boundary of SIMCA (based on the confidence interval) and PCA based SVDD analysis 

was identified. In the SVDD approach, samples from both summer and winter samples resided 

inside the boundary. However, while developing a SIMCA model based on the 95% CI, the model 

excluded most samples from the winter season. 

Performance of the different calibration scenarios is presented in Table 2-2. Basic 

calibration scenarios of PCA-SVDD did not contain moisture variation in the calibration model, 

and, therefore, failed to accept validation samples from different seasons. This performance is 

comparable to the SIMCA modeling approach. However, the performance of PCA-SVDD 

generated from updated and risk-based scenarios improved significantly relative to the SIMCA 

approach. The developed PCA-SVDD model successfully accepted more target class validation 

samples, compared to SIMCA, and demonstrated higher sensitivity. Additionally, the model 

successfully rejected non-target class samples by projecting them outside the boundary. Therefore, 

the PCA-SVDD algorithm improved the model performance of the NIRS method. The risk-based 
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scenario also showed a similar trend to the updated approach. D values of both 0.01 and 0.05 

showed improved performance compared to SIMCA. 

Figure 2-9: Depiction of selected support vectors of updated  calibration set 

where the blue spectra are support vectors, red spectra are summer samples and 

green spectra are winter samples. Particular section is magnified to visualize the 

data clearly. 

The Spectral-SVDD approach also showed improved prediction results compared to 

SIMCA. Data is visualized in Figure 2-9. As the boundary was not possible to show for the 

multivariate spectral data, support vectors were depicted using the preprocessed spectra. 

According to Figure 2-9, the SVDD algorithm selected blue samples as support vectors from the 

calibration sample set. These support vectors were chosen from both summer (red) and winter 

(green) samples, indicating that the boundary was selected using both summer and winter sample 

sets, unlike the SIMCA approach. 
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2.4 Discussion and Summary 

Traditional development of decision boundaries for CM models is based on the assumption 

that there is a specific distribution that exists in the multivariate space (i.e., F- distribution or χ2 

distribution on the Hotelling’s 𝑇2 and 𝑄 residual space). Though these assumptions often vary in 

different versions of SIMCA, analysts develop decision boundaries at a specific significance level 

α (often set to 0.05) [17]. However, these assumptions are frequently violated as samples 

containing spectral variabilities may introduce bimodal, multimodal, non-symmetric statistical 

uncertainties, degrading model performance.  

This work proposes the use of SVDD as a class-modeling technique using NIRS. Due to 

distribution free boundary development, SVDD is a promising technique for use in both the 

laboratory and field for solving the calibration development challenges described above.  The most 

important advantage of SVDD is that boundary samples are determined without relying on 

distribution assumptions. Using a well-known example from NIRS (the effect of moisture on NIR 

spectra), this chapter demonstrates the advantage of SVDD.  

Though compared to the traditional SIMCA method, SVDD has not been widely used in 

pharmaceutical applications of chemometrics. However, it has been proven useful for class-

modeling applications. Moreover, the kernel feature allows the development of a non-linear 

boundary around calibration samples, offering a significant analytical advantage compared to 

traditional CM methods.   

One challenge of the SVDD approach is the visualization of data. While it is impossible to 

visualize the highly dimensional data, observation of selected samples as support vectors may 
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provide valuable insights about the developed method.  Another risk of using SVDD methods is 

overfitting. Here in this study, independent samples were used as test and validation sets, 

decreasing the risk of overfitting. However, analysts may not always have access to independent 

samples for optimization. In that case, separating the training set into two sets might be an option. 

To separate samples into two sets, randomization algorithms will ensure homogenous distribution 

of the available samples.  

Many studies have demonstrated the capabilities of different class-modeling techniques for 

pharmaceutical samples, but the development of methods for validating such models is still in its 

infancy. However, as regulatory bodies attempt to implement different spectroscopic techniques 

in the field for routine surveillance, analytical methods must be validated to ensure that these 

methods perform consistently during routine analyses. This work offers insight on 1) 

understanding the physical and chemical variability of typical pharmaceutical tablets, required 

knowledge for development of robust models, and 2) the advantages of SVDD methods for the 

detection of falsified drugs using spectroscopic techniques.  
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3 Chapter 3: Application of Class-Modeling Techniques 

using Raman spectroscopy in the Presence of Moisture 

Variation 

3.1 Introduction 

Raman spectroscopy has emerged as a promising tool for detection of falsified drug 

products due to sharp peak features offering inherently good chemical specificity, the non-

destructive nature of the method, and the flexibility in sampling interfaces.  

One of the proposed uses of Raman spectroscopy is to detect active pharmaceutical 

ingredient (API) in the test sample. A pure component spectrum collected from API and a spectrum 

from the test sample may be utilized to determine correlation by a spectral matching algorithm. 

Because 50% of the falsified products detected in a recent study did not have the claimed API or 

contained the wrong API [27], this method was used to detect such falsified products.  

In another approach, instead of using pure component spectra, samples collected from an 

authentic manufacturer have been used to find the correlation between authentic and test spectra 

[14, 35, 78-80]. Utilizing authentic sample spectra allows the analyst to verify the correct 

formulation (including excipient composition) of the test sample. However, relying on the sample 

spectrum to calculate correlation has drawbacks. One limitation is that pharmaceutical excipients 

generally have less Raman signal compared to the API. Studies have showed that, since different 

generic samples of a specific therapeutic group contain similar formulations ( i.e., excipient 

compositions are often very similar to each other), Raman was unable to differentiate generic  
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products using correlation values because of the inadequate signal intensity from different 

excipients [14, 15]. This drawback of SM algorithms is also true when an analyst wants to detect 

highly similar falsified products (samples containing the same API, but unique excipient 

composition). Therefore, using class-modeling techniques can offer advantages of decreased false 

positives and false negatives. 

As an important step in development of any class-modeling technique, a calibration model 

development effort is required. While developing Raman calibration methods, it is necessary to 

ensure that models meet the required performance standards; in particular, the sensitivity and 

specificity must meet predetermined validation criteria. One of the widely used class-modeling 

algorithms, soft independent class modeling analogy (SIMCA), has been used to create models for 

detection of falsified medicines [109, 151, 155]. Though this method allows the analyst to extract 

relevant chemical and physical information about samples to get qualitative information, numerous 

sources of spectral variability that occur during the method life-cycle may confound Raman 

measurements and may ultimately decrease the sensitivity of the model (ability to accept target-

class samples). Therefore, to ensure long-term model performance, model sensitivity may be 

enhanced by including such sources of spectral variability in the target-class. These sources of 

variability may be identified during a risk assessment. Understanding the impact of such variability 

on the spectra and the effect of these spectral changes on model performance is a critical part of a 

sound model development process [151, 152].   

Many sources of Raman spectral variability arise during the pharmaceutical manufacturing 

process, including sampling error, analytical instrument instability, sample property variation and 

environmental fluctuation.  Sample variability may be introduced through raw material or process 
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variability or as a result of sampling procedure: the time, location and method of sampling is often 

at fault. Typically, lot-to-lot differences of incoming raw materials introduce new physical and 

chemical variations [128, 129]. The consequence of these variations on Raman spectra may depend 

on the sampling configuration, spectral collection modalities, etc. [130-132] As an example, the 

effect of particle size variation in tablets has been compared for backscatter and transmission 

Raman spectroscopy [133]. Because backscatter Raman generates most of the signal from very 

near the tablet surface [167], particle size had a reduced impact relative to the transmission mode. 

In the case of transmission measurements, photon propagation characteristics were more 

influenced by particle size variation due to the effect of light scattering on the effective optical 

path length. When particle size variability was not included in the calibration set, quantitative 

model accuracy suffered. Spectral processing methods such as derivative, normalization, etc., were 

applied to remove the baseline effect of particle size variation, thereby improving model 

performance. Also, by matching particle size variability for both API and excipients in the 

calibration, adequate quantitative predictions were obtained for independent test sets [1, 133-135].  

A change of size, shape or density of tablets due to changes in the manufacturing process can also 

introduce spectral variability [136, 137]. By adjusting laser power and accumulation time, or 

enhancing density range in the calibration model, robustness can be enhanced against tablet size 

and density variations [134, 136].   

While the implementation of Raman in pharmaceutical applications has increased 

dramatically over the past decades due to the improvement of instrumentation [54, 168, 169], one 

continuing challenge, and a major source of spectral variability causing interference with the 

Raman spectral signal, is fluorescence. Produced by emission of photons from low-lying excited 

electronic states, fluorescence often masks the vibrational shift of Raman spectra. This effect 
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occurs in a sample whenever the frequency of the excitation laser coincides with transition energy 

from the ground to an electronically excited state. Different experimental strategies and instrument 

modifications have been developed to overcome this problem [170]. By using excitation sources 

in the near-infrared region coupled with multichannel detectors, modern dispersive Raman 

spectrometers decrease the fluorescence background and provide adequate Raman intensity [171]. 

Different spectral preprocessing methods have been used to reduce the impact of fluorescence 

signal on prediction results [172-175]. Moreover, model performance should be adequate as long 

as both calibration and validation sets contain similar fluorescence background without 

introducing other spectral disturbances [176].   

One of the challenging sources of variability that analysts often encounter during 

spectroscopic model development and deployment is environmental variability; for example, 

relative humidity will often vary from the warehouses where raw materials are stored to the 

facilities where products are manufactured.  This can cause significant variability in the amounts 

of water sorbed by pharmaceutical samples [177-179]. Additionally, falsified products are often 

seized after being exposed to unknown storage conditions. Therefore, the impact of relative 

humidity on model performance is critical and needs to be tested. Most often, Raman analytical 

methods ignore the effect of moisture because Raman presents relatively weak water scattering.  

However, because pharmaceutical samples exhibit fluorescence from active pharmaceutical 

ingredient (API) [146] , excipient [173, 174], dyes [175], capsule shells [180], etc., the effect of 

moisture as a fluorescence quencher needs to be considered [181]. This can introduce unwanted 

spectral inconsistency across calibration and test samples. Nevertheless, there is not enough 

literature evidence to show the moisture effect on Raman spectra. Therefore, influence of moisture 

on Raman spectra was investigated, along with the model performance. 
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The objectives of this chapter are to investigate the effect of moisture and fluorescence on 

Raman spectroscopic analysis for pharmaceutical solid oral dosage forms. The effect of these 

changes on Raman spectra and multivariate qualitative model performance was assessed. As 

SVDD is a potential class-modeling technique, performance of this method was compared with 

the SIMCA method during this investigation. Finally, strategies for the development of robust 

qualitative calibration models were discussed. 

3.2 Experimental Plans 

In this chapter, two datasets were used to provide adequate understanding of the effect of 

moisture on calibration model performance.  

1) Dataset 1: Lab-based acetaminophen tablets- Acetaminophen tablets were manufactured 

in the Duquesne University Center for Pharmaceutical Technology (DCPT). 

2) Dataset 2: Artemether- lumefantrine combinations tablets- Artemether-lumefantrine 

fixed dose combination tablets were collected from a generic manufacturer. 

3.3 Dataset 1: Lab-based acetaminophen Tablets 

Tablet were prepared at two scales of manufacturing for this data set, including:  

A) Lab-scale tablets, to study the effect of moisture on Raman spectra. 

B) Pilot scale tablets, to study the effect of moisture on Raman model performance.  
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3.3.1 Lab Scale Tablets to Understand the Effect of Moisture on Raman Spectra 

This experiment investigated the deleterious effects of water quenching on Raman spectra. 

To demonstrate this, a formulation composed of acetaminophen, lactose, microcrystalline 

cellulose (MCC), hydroxypropyl methylcellulose  (HPMC) and magnesium stearate was used.   

Granules of acetaminophen (APAP; Mallinckrodt Inc., Raleigh, NC, USA), HPMC 

(Pharmacoat 606, Shin-Etsu Chemical Co. LTD, Tokyo, Japan) and lactose (modified spray-dried; 

Foremost Farms USA, Rothschild, WI, USA) were manufactured using a fluid bed granulator 

(model WSG 5, Glatt, Binzen, Germany). The active containing granules were mixed with extra-

granular MCC (MCC; Avicel PH 200, FMC Biopolymer, Mechanicsburg, PA, USA), lactose and 

magnesium stearate (Fisher Scientific, Waltham, MA, USA) in a bin blender. The mixture 

comprised of the aforementioned components were blended in a 3.5-quart V-blender (total mass 

of 1 kg) for 45 min. NIRS was used to demonstrate homogeneity at the target blending time. 

The tablets were generated on a Carver automatic tablet press (Model 3887. 1SD0A00, 

Wabash, IN, USA) using a 13 mm die and flat-faced punches. Target tablet weight was 700 mg. 

A five by three level, two factors [active content (19.11%, 23.21%, 27.30%, 31.40% and 35.49% 

w/w; and excipient ratio levels 2, 1, 0. 5)] full factorial design was created.  The use of a full-

factorial experimental design provided orthogonality between the active ingredient and the 

excipient ratios. While it would have been possible to have all other components vary 

independently from the active ingredient, the use of excipient ratio helped to reduce the number of 

design points, as summarized in the design (Table 3-1). After allowing the tablets to undergo 

viscoelastic relaxation (two weeks), they were placed in environmental chambers at room 

temperature. The four chambers equilibrated with a relative humidity (RH) of 11% (saturated 
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lithium chloride), 32% (saturated magnesium chloride), 52% (saturated magnesium nitrate) and 

75% (saturated sodium chloride). Tablets were left to equilibrate in each chamber, beginning with 

the lowest moisture level. Once the mass of tablets had equilibrated in the 11% RH chamber, they 

were analyzed and moved to the 32% RH chamber. The equilibration and analysis were repeated 

for each chamber. Tablets were moved from low to high relative humidity to simplify the 

experimental design and reduce the experimental period.  

Table 3-1: Design for lab-scale tablets to vary API and excipients level 

Design 

# 

Acetamino-

phen 

Hypro- 

mellose 

Intra-

granular 

lactose 

Micro-

crystalline 

cellulose 

Extra-

granular 

lactose 

Magnesium 

Stearate 

Excipient 

ratio 

1 19. 11 2. 73 5. 46 51. 77 20. 43 0. 50 2. 0 

2 23. 21 3. 32 6. 63 48. 65 17. 70 0. 50 2. 0 

3 27. 30 3. 90 7. 80 45. 53 14. 97 0. 50 2. 0 

4 31. 40 4. 49 8. 97 42. 41 12. 24 0. 50 2. 0 

5 35. 49 5. 07 10. 14 39. 29 9. 51 0. 50 2. 0 

6 19. 11 2. 73 5. 46 38. 83 33. 37 0. 50 1. 0 

7 23. 21 3. 32 6. 63 36. 49 29. 86 0. 50 1. 0 

8 27. 30 3. 90 7. 80 34. 15 26. 35 0. 50 1. 0 

9 31. 40 4. 49 8. 97 31. 81 22. 84 0. 50 1. 0 

10 35. 49 5. 07 10. 14 29. 47 19. 33 0. 50 1. 0 

11 19. 11 2. 73 5. 46 25. 89 46. 31 0. 50 0. 5 

12 23. 21 3. 32 6. 63 24. 33 42. 02 0. 50 0. 5 

13 27. 30 3. 90 7. 80 22. 77 37. 73 0. 50 0. 5 

14 31. 40 4. 49 8. 97 21. 21 33. 44 0. 50 0. 5 

15 35. 49 5. 07 10. 14 19. 65 29. 15 0. 50 0. 5 
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Fluorescence quenching effect 

To understand the nature of spectral change due to fluorescence quenching, spectra of pure 

components were collected in the presence of water and molecular gases, oxygen (O2) and nitrogen 

(N2).  To investigate the impact of water, pure component compacts were created by compressing 

approximately 700 mg of each material in the Carver press. Then, these pure component compacts 

were stored in the four aforementioned humidity conditions to observe the effect of moisture on 

Raman spectra. In addition, spectra were collected in the presence of O2 and N2 using custom gas 

chambers.  

3.3.2 Pilot scale Tablets to Understand the Effect of Moisture on Raman Model 

Performance  

In this experiment, the blends were compacted on a 38-station rotary tablet press 

(Elizabeth-Hata International, Inc., North Huntingdon, PA, USA). The stations were tooled using 

3/8 in. (9.5 mm) diameter, round biconvex punches and the corresponding dies. Only two stations 

were tooled to facilitate the collection of the tablets post ejection. Three tablets were collected 

every minute for 20 min. The turret speed was left constant at 30 rpm, and the target compression 

force was 8000 kp. The target tablet weight was 350 mg.  HPLC was performed on the tablets to 

ensure uniformity of blend and tablets. 

During the course of the study (from June 2014 - March 2015), a total of six granulations 

and fourteen tablet batches were manufactured using the target formulation. A large variability 

existed in the in the moisture content of the excipients and granules. These variabilities were 

observed because the environment of the laboratory in which the experiments were performed was 
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not controlled; during the winter the air was dry (20–30% relative humidity (RH)), but during the 

summer months it was typical to observe a RH between 60% and 70%. Based on the seasonal 

differences, samples are categorized as summer, spring and winter samples. Both calibration and 

test sets included all these three seasonal samples.  

3.3.3 Raman Data Collection 

Raman spectra were collected on a TRS 100 (Cobalt Light Systems Ltd., Abington, 

Oxfordshire, UK) for analysis of compacts. The transmission spectrometer is equipped with a 

diode laser operating at 830 nm as the radiation source, a long pass spectral filter and a 

thermoelectrically cooled CCD camera for the detector. All compacts were scanned over the 

wavenumber range of 38-2400 𝑐𝑚−1. The measurements were conducted at room temperature 

(approximately 24ºC). Parameters were tuned according to the tablet scale: exposure time for pilot 

and lab scale tablets were 0.5 seconds and 1.3 seconds, respectively. Five accumulations were 

collected per spectrum with a laser power of 0. 6W.     

The effect of O2 and N2 gasses on the spectra of powdered samples was evaluated with a 

RamanRxn2TM backscattering spectrometer (Kaiser Optical Systems, Inc, Ann Arbor, MI, USA) 

and iCRaman software (version 4. 1, Mettler Toledo, Columbus, OH, USA). A fiber-coupled 

PhAT probe (HoloGRAMS version 4. 0, Kaiser Optical Systems Inc., Ann Arbor, MI, USA) was 

equipped with a 400-mW laser at 785 nm. The diameter of laser spot size was 6 mm. Accumulation 

time was 3 seconds, and the spectral range was 38-2400 cm−1. 
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3.3.4 Model Evaluation 

In order to evaluate class-model for authentication purpose and to determine the potential 

impact of moisture variation, both SVDD (see Section 2.2.1.2) and SIMCA  (see Section 2.2.1.1.) 

was applied [109]. The capability of a model developed at one moisture level to predict the target 

class of compacts stored at other relative humidity levels was tested. The sensitivity (see Section 

2.2.2) was used to evaluate the effect of moisture variability on model performance. Various 

diagnostic plots were employed to understand the underlying causes of model performance.  

3.3.5 Results and Discussions 

3.3.5.1 Effect of Moisture Variability on Raman Spectra using Lab-based Acetaminophen 

Tablets 

Figure 3-1: Raw spectra of calibration tablets at different moisture conditions: 

11% RH (red), 32% RH (blue), 52% RH (green), and 75% RH (magenta). 
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Figure 3-1 shows spectral baseline changes when tablets were exposed to four different 

moisture levels (11% (red), 32% (blue), 52% (green) and 75% (magenta) RH). It can be observed 

that increasing the water content in the tablet leads to a decrease in the fluorescent background.   

Figure 3-2: Raw spectra of a tablet (target formulation) exposed to repeat scans 

over eight weeks to test the photobleaching effect. 

Mechanistically, the decrease in fluorescence intensity was caused by the deactivation of 

the excited-state fluorophores in contact with certain molecules (e.g., water in this study) in the 

sample. These molecules are referred to as quenchers [39]. This spectral change, due to the 

presence of water, was much more significant than the effect of photobleaching (due to successive 

exposure of the sample to the laser). The effect of photobleaching is illustrated in Figure 3-2, where 

a tablet was stored at a relative humidity 52% and scanned repeatedly over eight weeks. With an 

increasing number of scans and storage time, there was a small decrease in the baseline due to 

photobleaching. 
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Figure 3-3: Pure component raw spectra of A) acetaminopen, B) hypromellose, C) lactose, D) magnesium stearate, and 

E) microcrystalline cellulose stored in four different humidity conditions (11% RH, 32% RH, 52% RH and 75% RH in 

red, blue, green and magenta respectively)
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. To understand the source of spectral variation in the presence of moisture, a variety of 

compacts were prepared using pure components; the compacts were then exposed to different 

moisture levels. Figure 3-3 reveals that MCC and HPMC compacts demonstrated a significant 

decrease in the baseline with increasing water adsorption, which may be due to fluorescence 

quenching.  However, APAP, lactose and magnesium stearate spectra demonstrated very small 

changes in the different conditions. This is likely due to the absence of fluorescence with these 

three pure components. The results indicate that the primary source of spectral variation in the 

prepared samples was from MCC and HPMC, with water acting as a quencher. In Figure 3-4, 

fluorescence quenching for MCC and HPMC was demonstrated in the presence of oxygen, a 

known quenching agent in cellulosic materials [42]. Previous studies demonstrated that, due to the 

presence of lignin in the fiber component, a large number of pulp and paper samples exhibit laser 

induced fluorescence (LIF). However, in the presence of molecular oxygen, lignin caused LIF 

contributions to Raman spectra were significantly decreased [182]. Figure 3-4 shows that due to 

the presence of O2, the spectral baseline of MCC changed over time. But, when spectra were 

collected in the presence of N2 or air, quenching was reduced. This result suggests that 

fluorescence decreases dramatically in the presence of the quenching agent O2. A small spectral 

change was observed with MCC in the presence of air due to the continuous laser exposure. This 

provides another demonstration that the effect of photobleaching was less than that of quenching 

associated with moisture. Acetaminophen and lactose spectra demonstrated limited spectral 

change due to the lack of fluorophores.   
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Figure 3-4: Raman spectra collected in the presence of molecular gas A) 

MCC in presence of O2, B) MCC in presence of N2, C) MCC in presence 

of air, D) Acetaminophen in presence of O2. 

The effect of fluorescence quenching on spectral baseline has been shown to vary with the 

content of both fluorophores and moisture. To characterize the impact of these two factors, spectral 

slope and intensity was observed for raw spectra. The slope of the spectra was calculated from a 

simple least-squares regression between Raman shift and Raman intensity. Three Raman shifts 

(276, 750, 1404  cm−1) were chosen from the spectra to calculate this slope. The slope values are 

displayed in Table 3-2, where results from four moisture levels and three excipient ratios (2:1, 1:1 

and 0. 5:1 of MCC: lactose) are presented.   
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First, the amount of fluorescent components affected the baseline intensity, as anticipated.  

Fluorescence intensity decreased with a decreasing amount of MCC (for a given moisture level).  

This change was reflected in the slope. Second, the moisture content had a significant impact on 

the baseline:  the Raman intensity decreased with increasing water content (for a given compact 

composition), causing a dramatically reduced slope with increasing moisture content (Table 3-2).  

These results emphasize the quenching effect of water on Raman spectra. 

Table 3-2: Effect of fluorescent containing material and moisture on Raman spectra 

 

MCC: Lactose 

Ratio 
%RH RS=276 cm-1 RS=750 cm-1 RS= 1404 cm-1 Slope (Calculated from least square) 

  Intensity count Intensity count Intensity count A. U. 

2 

11 85896 47659 14711 35593 

32 59688 33290 10039 24824 

52 34189 19205 5590 14300 

75 22719 12889 3585 9567 

1 

11 81946 45242 13930 34008 

32 56868 31702 9737 23565 

52 33534 18615 5531 14001 

75 24557 13951 3982 10287 

0. 5 

11 61985 34349 11061 25462 

32 42609 23625 7491 17559 

52 27139 15339 4803 11168 

75 22087 12424 3659 9214 

    RS= Raman Shift. 
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3.3.5.2 Effect of Sample Moisture Variability on Qualitative Model Performance using Pilot 

Scale Acetaminophen Tablets 

The observed spectral variations due to the presence of water had a significant impact on 

qualitative model performance using SIMCA and SVDD model. Performance was evaluated by 

developing three models, prepared in winter, summer and spring, where relative humidity was 

varied from 15%-75% RH. These models were then used to predict sensitivity of three test sets 

corresponding to the three seasons. 

A number of preprocessing methods such as baseline weighted least squares, 

normalization, mean centering, derivative, and detrending were evaluated to eliminate the baseline 

changes of the full spectral range described before. Random block cross-validation (five blocks) 

was used to determine the most suitable spectral pre-treatments and model complexity (number of 

principal components for SIMCA and C and σ for SVDD). An optimization was independently 

conducted based on the minimization of cross-validation error.  Savitzky-Golay first derivative 

(window size-31, polynomial order-2) followed by normalization to unit area and mean-centering 

was chosen for all models. Derivative methods were helpful to remove baseline variations and 

normalization decreased the intensity of variations introduced due to the fluorescence quenching 

or any physical differences between calibration and test sets.   

As shown in Table 3-3, both SIMCA and SVDD models offered good sensitivity for 

samples from the same moisture levels, where the preprocessing method was successful at 

removing fluorescent baseline variability. However, poor results were achieved for prediction of 

samples from unique moisture levels; error statistics increased with increasing range between the 
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moisture levels of calibration and test sets. Figure 3-5 presents Hotelling’s 𝑇2 and 𝑄 residual plots 

for spring calibration model. The reconstruction error for summer and winter test sets was higher, 

indicating that the lack of robustness of the calibration model to moisture variability.   

Table 3-3: Effect of sample moisture variability on test set predictions: Lab Scale Tablet 

 

 

Global models include all of the expected variability in the calibration set. In this case, 

calibration sets from three seasons were combined to facilitate the creation of robust model:  

sensitivity for the test set at the different humidity levels are provided in Table 3-3. The global 

model demonstrated a lower prediction error compared to models created at unique humidity 

conditions  

3.4 Dataset 2: Artemether- Lumefantrine Combinations Tablets 

The World Health Organization (WHO) introduced artemisinin-based combination therapy 

(ACT) as first-line therapy to decrease the falciparum malaria, which was adapted by most 

countries [183]. Successful prevention and control of malaria can be achieved by ensuring the 

SIMCA 

  Summer Spring Winter Global 

Test Set Sensitivity  

Summer 0.95 0.75 0 1 

Spring 0 0.84 0.75 1 

Winter 0 0 1 1 

SVDD 

  Summer Spring Winter Global 

Test Set Sensitivity 

 

Summer 0.95 0.7 0 1 

Spring 0 0.93 0.8 1 

Winter 0 0 1 1 
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quality of ACTs and other antimalarials. However, one-third of anti-malaria medicines from 

malaria-endemic countries failed the quality test, which is alarming for the prevention of malaria 

[184]. Different fast screening processes have been proposed to test pharmaceutical tablets at 

different stages of the supply chain. Raman spectroscopy has been used to test the quality of 

artemether-lumefantrine fixed-dose combination products [146].  

Figure 3-5: Hotelling’s 𝑇2 vs. 𝑄 residual plot was generated from different 

seasonal conditions of test tablets (summer (red), spring (green), winter (blue)) , 

which were projected on the calibration set (spring (black)). 

However, as artemether has a high fluorescent background while using Raman 

spectroscopy, model performance may deteriorate due to the fluorescent quenching in the presence 

of moisture [146]. Therefore, it is hypothesized that, for artemether-lumefantrine samples, it is 

essential to consider moisture throughout the method development process. Artemether-

lumefantrine tablets produced by generic manufacturers were used as a model drug to evaluate the 

influence of moisture variation on tablet’s spectra and model performance. 
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3.4.1 Sample Collection 

Anti-malarial drugs were obtained from a government registered pharmacy in Dhaka, 

Bangladesh. A total of 56 artemether-lumefantrine tablets, manufactured by Square 

pharmaceutical Ltd. (Lumetram®) were collected. Packaging was visually inspected to avoid any 

fraudulent activities, and the batch numbers were confirmed with the manufacturer for 

authenticity. Further, to independently verify the active ingredient in the manufacturers' standards, 

pure components of artemether (J&K Scientific San Jose, CA), and lumefantrine (Combi-block, 

San Diego, USA) were used. 

3.4.2 Samples Scan  

Raman data were collected using a RamanRXN2 spectrometer (Kaiser Optical Systems, 

Inc, Ann Arbor, MI, USA) and iC Raman software (version 4.1, Mettler Toledo, Columbus, OH, 

USA). The spectrometer was equipped with a 785 nm laser excitation and a fiber-coupled PhAT 

probe (HoloGRAMS version 4.0, Kaiser Optical Systems, Inc, Ann Arbor, MI, USA) with a 6 mm 

spot size. One accumulation with 5 s integration times were acquired over the range of 150–1,890 

cm−1 at 1 cm−1 increments. A dark scan was subtracted, and the cosmic ray filter and intensity 

calibration options were selected. Tablets were positioned at the end of the probe unit using an in-

house machined copper sample holder with a 10 mm diameter. The sample holder was threaded 

into the end of the PhAT probe tube so as to provide a fixed distance from the laser source to each 

sample. This reduces error related with repositioning and re-focusing. To decrease stray light 

effects while collecting samples spectra, a black cap was kept over the top of the sampling 

interface. The average of spectra from both sides of each tablet was used for calibration 

development and testing, respectively. 



 

111 

 

3.4.3 Samples Preparation to Investigate the Effect of Moisture 

Three chambers were used with target relative humidity (RH) of 15% (saturated solution 

of lithium chloride), 50% (magnesium nitrate) and 70% (sodium chloride). A total of 15 Tablets 

were left to equilibrate in each chamber. The equilibration of the mass over storage time at each 

RH condition was used as an indicator of stability. Tablets were moved from low to high relative 

humidity to simplify the experimental design and reduce the experimental period. Both sides of 

the tablets were scanned 5 times using the same parameters described above.  

3.4.4 Testing the Effect of Moisture on Model Performance  

Individual classification models were constructed from each sample set equilibrated at a 

single relative humidity. Test samples stored at the alternate relative humidity conditions were 

predicted. When the moisture level is different between calibration and test sets, method sensitivity 

should be challenged. Moreover, depending on the performance of sensitivity, the effect of 

moisture variance should be accounted for during method development.   

3.4.5 Results and Discussions 

3.4.5.1 Moisture Effect on Artemether-Lumefantrine Tablets  

Sample spectra of artemether-lumefantrine collected using Raman spectroscopy showed 

high fluorescence background (Figure 3-6). These spectral features were similar to the 

acetaminophen tablet dataset. Raw spectra of two pure components were collected. Here, 

artemether showed strong fluorescent background and peak features were suppressed. However, 

lumefantrine had sharp peak features and fluorescence background was absent.  
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Figure 3-6: Raman spectra of artemther-lumefantrine combination. 

 

Figure 3-7: Pure component spectra of A) artemether and B) lumefantrine. 

Spectral variations were observed due to the presence of water in the tablet. As both 

samples and pure components were placed in different humidity chambers, fluorescence 



 

113 

 

quenching was observed due to the presence of water in the samples (Figure 3-8). It was also 

revealed that this quenching effect was prominent in the artemether (Figure 3-9). 

 

 

Figure 3-8: Spectra of tablets collected from three humidity conditions 

 

Figure 3-9: Moisture variation of artemether and lumefantrine in different humidity conditions. 
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3.4.5.2 Model Performance in Presence of Moisture Variations 

Models developed at individual moisture levels accepted target class samples stored at 

similar moisture levels. However, the models failed to predict test sets collected at other moisture 

levels. This study resembled the previous acetaminophen studies described in this Chapter (using 

Raman) and Chapter 2 (using NIRS). The error statistics became higher in different humidity 

conditions, due to the increment of the difference of moisture level between calibration and test 

sets (Table 3-4). This was largely because of fluorescence quenching and resulted increase of 

baseline change. Therefore, Raman qualitative model performance decreased due to the lack of 

robustness. 

Table 3-4: Model performance of artemether-lumefantrine tablets in different 

moisture conditions 

 

 

 

SIMCA 

  11% 52% 70% Global 

Test Set Sensitivity  

11% 1 0.3 0 0.9 

52% 0 0.95 0.4 1 

75% 0 0 1 1 

SVDD 

  11% 52% 70% Global 

Test Set Sensitivity 

 

11% 1 0.4 0 1 

52% 0 0.925 0.2 1 

75% 0 0 1 1 
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The effect of these spectral variabilities was observed in multivariate space described by 𝑄 

residual and Hotelling’s 𝑇2 (Figure 3-10). The 𝑄 residual values for the low moisture level of 

calibration set and high moisture level for the test set indicated that this test set has different 

spectral shape compared to the calibration set (Figure 3-10A). Global models including moisture 

variability showed improved performance by reducing 𝑄 residual (Figure 3-10B). This global 

model is often considered as a risk-based model. In this case, calibration sets from three relative 

humidity levels were combined to facilitate the creation of a global model. This global model 

demonstrated a lower prediction error compared to the models created at unique humidity 

conditions. Moisture variabilities can cause density changes of tablets which may also have effect 

on the spectra. Baseline correction and derivative methods were conducted to remove this 

interference.   

 

Figure 3-10: Hotelling’s 𝑇2 vs. 𝑄 residuals plots were generated from calibration 

plot (A) 11% RH samples (black), 52% RH samples (red) (B) global RH samples 

(black), 52% RH samples (red). 
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Changes of relative humidity often cause polymorphic changes in API or excipients.  

However, this formulation did not demonstrate such a risk.  Also, as the drug is stable over the 

proposed humidity range, stability was not an issue for the considered formulation. 

3.5 Summary and Conclusion 

It is difficult to preemptively identify all sources of variation that will be encountered 

during the pharmaceutical life-cycle. The experimental approach in this study provides an example 

of how a simple phenomenon like  moisture variability, arising from such phenomena as 

inconsistent environmental conditions, can, through fluorescence, significantly affect spectral 

baseline and model performance. Both SVDD and SIMCA methods were tested in this work using 

a global modeling approach to demonstrate opportunities for the creation of robust models for 

laboratory and production scale tablets.    

In this study, the presence of components containing 1) fluorophores and 2) moisture, 

negatively affected model performance.  Pharmaceutical raw materials, including excipients and 

APIs, often contain fluorescent components. In Dataset-1, lignin in the microcrystalline cellulose 

caused  laser induced fluorescence [182, 185]. In Dataset-2, artemether showed a strong 

fluorescence background. Moreover, variable moisture content also introduced spectral variance 

for these two datasets.  The water content of tablets will often vary between and within different 

tablet batches, depending on the relative humidity conditions during production, packaging, 

storage and analysis.  Water may be sorbed by samples very quickly depending on the relative 

humidity of the environment and material attributes [34]. While it is likely that the relative 

humidity of the laboratory may be controlled, it is very unlikely that the same environmental 

conditions will be observed in the field analysis. Analysts may need to test the suspected samples 
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which have been exposed to a different humidity condition. This is particularly true in situations 

where spectroscopic method development takes place at one geographic and climatic location and 

routine use of the method occurs elsewhere [177].   

It is typically beyond the capacity of an analyst to eliminate sample components or strictly 

control the sources of variability. Understanding the effect of variabilities such as moisture and 

fluorescence during multivariate calibration model development will facilitate the generation of 

models which are robust against these variations. In the present study, the effect of fluorescence 

background was reduced by preprocessing the spectra. However, when calibration and test sets 

contained different moisture content, prediction performance was degraded. These findings 

regarding the effect of moisture on the Raman spectra should be useful information for method 

development. This is true for both SVDD and SIMCA algorithms.  

Though both SVDD and SIMCA algorithms performed satisfactorily after adding moisture 

variations in the calibration model, SVDD showed promising results. This study highlighted the 

usefulness of the SVDD algorithm for Raman spectroscopic techniques as a class model for 

pharmaceutical tablet authentication system. This was the first use of SVDD and Raman 

spectroscopy for tablet authentication.  
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4 Chapter 4: Developing a SVDD Method with Non-Target 

Class Samples to Detect ‘Highly Similar’ Acetaminophen 

Tablets Collected from Global Sources  

4.1 Introduction 

The development and implementation of class modeling typically occurs in two stages, 

including 1) building a target class by generating a decision boundary around the target class 

samples, and 2) evaluating a test samples to determine method sensitivity and specificity, based 

on whether the sample resides inside or outside of the established multivariate decision boundary.  

Typically, development of a decision boundary for a SVDD model does not rely on samples 

from the non-target class. Method development using only target class samples is known as a ‘one-

class SVDD’ approach. In such a case, the model reaches an optimal condition by achieving the 

best sensitivity (ability to accept target class samples). 

However, samples from the non-target class can be used to optimize the model [21]. 

Including non-target class samples during modeling improves the description of the target class by 

defining a tighter boundary around the target class data in the areas where non-target objects are 

present. In contrast with the target class samples residing within the boundary, the non-target class 

samples should be outside of the multivariate boundary. This type of method development is 

feasible when several datasets from extraneous classes are available. These new non-target class 

samples enable the calculation of an additional figure of merit — specificity (the rejection of 
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objects from the non-target class). Understanding model specificity reduces the risk of accepting 

false samples. 

While developing a spectroscopic authentication method using a SVDD algorithm, the 

non-target class samples should be a true representation of falsified drugs. 

The pharmaceutical literature reports pharmaceutical products, including pure components 

and finished dosage forms, could be falsified in various ways. Primary methods of falsification 

involve altered composition of final dosage forms. This includes, but is not limited to, intentional 

adulteration of pharmaceutical ingredients, tablets prepared without active pharmaceutical 

ingredient (e.g., using only excipients), tablets manufactured using the wrong API, and tablets 

generated with the correct API, but unusual compositions of excipients. In practice, the most 

difficult samples to detect using spectroscopic methods could be the last category, which are often 

generated using similar manufacturing techniques. Therefore, during authentication model 

development, analysts should select non-target class samples which have similar compositions and 

have similar spectral features to the target class. Spectral matching algorithms would be one 

appropriate method to evaluate the spectral similarity between target and non-target class samples 

during development of a SVDD method. 

In this chapter, it is proposed that an appropriate non-target class of samples is essential for 

optimizing a SVDD method. To prove this, challenging samples (which are difficult to distinguish 

between non-target class and target class) from various producers containing identical API and 

similar excipient compositions were considered. Highly similar acetaminophen tablets collected 

from China, India, and Bangladesh were used in the study. 
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4.2 Materials and methods 

4.2.1 Sample collection 

Tablet formulations containing acetaminophen were obtained from outlets readily 

available to tourists or visitors in Bangladesh, India, and China (Figure 4-1). The tablets were 

uncoated, intact and blister-packed. All tablets contained 500 mg of APAP according to the label. 

Samples which had similar size and shape were only considered in this study (Figure 4-2). Nine 

different manufacturers’ samples were collected from these three countries. The tablets were 

collected from different batches, 10 tablets per batch. Details are presented in Table 4-1.  

 

Figure 4-1: Samples were collected from India, Bangladesh, and China. 
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Figure 4-2: Image of the tablets from different manufacturers (M1-M9). 

 

Table 4-1: Characteristics of tablets from different manufacturers (M1-M9). 

 

 

 

 

 

 

 

 

 

Manufacturer 

Code 

Tablet 

Weight 

APAP 

amount 

APAP Percentage in the 

tablet 

M1 558.3 500 89.55 

M2 599.7 500 83.37 

M3 582.7 500 85.81 

M4 577.7 500 86.55 

M5 557.3 500 89.71 

M6 582.3 500 85.86 

M7 554.0 500 90.25 

M8 590.7 500 84.65 

M9 545.7 500 91.63 
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4.2.2 Confirming the Chemical Similarity of Samples using Raman Spectroscopy: 

Raman spectra were collected by following the protocol mentioned in section 3.3.3 . 

Figure 4-3: Raman spectra of different manufacturers’ samples and APAP. 

 

The presence of acetaminophen in each product was confirmed using Raman spectroscopy. 

The spectra are observed in Figure 4-3.  Here, the spectra were stacked to demonstrate the presence 

of API. Tablet spectra were compared in the fingerprint region (1850–400  cm−1), to verify the 

presence of API. The spectral correlation was calculated by comparing each of the sample spectra, 

with the acetaminophen spectrum. All products showed correlation coefficient values greater than 

0.95, confirming the presence of acetaminophen (see section 1.3.3.1.2).  
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4.2.3 NIR Measurement 

NIR spectra were acquired in the range of 1550–1950 nm with a 10 nm wavelength 

increment using a portable NIR ONE Sensor (Spectral Engine, VTT, Finland). Measurements were 

carried out in diffuse reflectance mode. For analysis, the entire spectral region (1550-1950 nm) is 

utilized because it is difficult to foresee at which wavelength alien objects will manifest deviations 

from the genuine sample. Each time, both sides of the tablets were scanned to increase the sample 

representation. Replicas were averaged before the analysis. 

4.3 Figures of Merit 

The following formula (Equation 1)  calculate sensitivity of the method (accepting genuine 

samples): 

Sensitivity=TP/(TP+FN)                                                                                    1                                  

where TP and FN are true positive and false negative, respectively.  If the model accepts 

falsified samples, the model needs further optimizations.   

The Specificity of the method (rejecting falsified samples) is used as validation parameter. 

The following formula (Equation 2) calculates this parameter: 

Specificity=TN/(TN+FP)                                                                                 2                       

where TN and FP are true negative and false positive, respectively.   
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4.4 Theory  

4.4.1 Unsupervised analysis (PCA) 

The Principal Component Analysis (PCA) method projects multivariate spectra into low-

dimensional space, which emphasizes the variabilities present in the collected spectral data 

although they do not precisely aim to identify them [81, 82]. PCA decomposes the multivariate 

response arranged in an 𝑋 matrix into a product of two new matrices as indicated in the following 

equation 3: 

𝑋 = 𝑇𝑘𝑃𝑘
𝑇 + 𝐸 3 

  
 

Where 𝑇𝑘 is the matrix of scores which represent how samples relate to each other, 𝑃𝑘  is 

the matrix of loadings which contain information about how variables relate to each other, k is the 

number of factors included in the model and E is the matrix of residuals, which contains the 

information not retained by the model. The reader is referred to the works of Wold et al. [81] and 

Martens & Naes [82] for a more detailed discussion of PCA. 

4.4.2 SVDD 

See Section 2.2.1.2. 

4.4.3 Spectral correlation method 

The spectral correlation method compares two spectra under study. This algorithm 

considers the two spectra as two vectors, and then calculates correlation between these vectors 
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(Equation 4) [67]. This spectral correlation (𝑆𝐶) method is often mentioned as a similarity and is 

the equivalent of measuring the cosine of the angle between two spectra.   

𝑆𝐶 = 100 ∗ √[(𝑆𝑎𝑚𝑙𝑒1𝑚 ∙ 𝑆𝑎𝑚𝑝𝑙𝑒2𝑚)2]/[(𝑆𝑎𝑚𝑝𝑙𝑒1𝑚 ∙ 1)(𝑆𝑎𝑚𝑝𝑙𝑒2𝑚 ∙ 𝑆𝑎𝑚𝑝𝑙𝑒2𝑚)]  4 

Here 𝑆𝑎𝑚𝑝𝑙𝑒1𝑚 and 𝑆𝑎𝑚𝑝𝑙𝑒2𝑚  is the 𝑚𝑡ℎ absorption value in the spectra.  𝑆𝐶 measures the 

similarity between the spectra, and 𝑆𝐶 values range from 0 (poorest match possible) to 1 (perfect 

match).  
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4.5 Experimental Strategy 

Acetaminophen tablets manufactured by nine generic manufacturers produced in three 

countries were used to demonstrate the proposed model development approach. In this study, the 

calibration model was first developed using M1. After that, the model was optimized and validated 

with both target and non-target classes (using M2-M9). Figure 4-4 displays a flow diagram of the 

protocol. 

Figure 4-4: Method development flow path. Relative to the contemporary process 

analytical method development cycle which typically includes target class samples, 

proposed SVDD method will be optimized using both target class and non-target class 

samples 
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4.6 Result 

4.6.1 Spectral Investigations and PCA Analysis 

Raw spectra failed to reveal significantly unique features of different sample sets. Baseline 

shifting in the raw spectra was caused due to sample positioning variability. A standard normal 

variate (SNV) method removed the baseline shifting associated with sample positioning 

variability. Figure 4-5 shows the preliminary differences where primary variations were observed 

in 1650-1850 nm and 1900-1950 nm.   

Figure 4-5: SNV treated spectra from nine different manufacturers. 

While using the PCA algorithm, different preprocessing methods and their combinations 

were tested. To distinguish product from different manufacturers, the most efficient preprocessing 

methods were SNV following the second order Savitzky Golay derivative, using a second-order 

polynomial with a 5-point window and mean-centering. These combination of different 
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preprocessing methods further removed baseline shifts and sharpened the spectral peaks. Principal 

component analysis (PCA) was applied to different manufacturers’ samples (M1-M9). The results 

show that 4 PCs describe 97.46% of data variation. The score plots presented in Figure 4-6 

demonstrated that M9, M2, M4, and M5 were well separated from M1 (target class). However, 

other groups showed substantial overlapping, in the plot of PC1 vs. PC2 scores. When considering 

the plots generated using subsequent PCs, it is possible to separate other classes from the target 

class. However, the close location of different groups indicated the high similarity of samples from 

different manufacturers. In this case, PCA alone would not be adequate to consistently discriminate 

all tablets from the target class.

Figure 4-6: A combined PCA model including all the calibration 

and test manufactures. 
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4.6.2 SVDD Model Performance: 

The spectra of 30 samples from M1 manufacturer were used for the calibration model 

development.  Then, 20 more samples from M1 were used for sensitivity calculation. Additionally, 

20 samples from each of the other eight manufacturers (M2-M9) were considered as non-target 

class samples for optimization and for use as the validation sets. These non-target class samples 

were used for the assessment of specificity. Among these eight manufacturers (M2-M9), one was 

used to optimize the model and the other seven  were used for validation purposes. Therefore, a 

total of eight models were developed using optimization sets to calculate specificity. For each non-

target class, a total specificity is computed along with seven partial specificities, one for each non-

target class. The total specificity is the average of the seven partial specificities (Table 4-2). 

Column one contains the non-target class names used for optimization. The second and third 

columns show the number of support vectors and selected σ, respectively. The other eight columns 

present the partial specificities, calculated separately for each non-target class. Mismatches (total 

specificity less than 90%) are bold marked in column 9.  

Table 4-2: Performance of SVDD using NIR spectroscopy 

  

 Validation specificity  

 D= 0.01 Partial specificity  

Non-target 

class 

No o 

of 

SV(s)  

σ  M2 M3 M4 M5 M6 M7 M8 M9 
Total  

specificity 

M2 2 0.3  0.65 0.15 0.45 0.91 0 1 1 0.59 

M3 2 0.23 1  1 1 1 0.63 1 1 0.95 

M4 2 0.23 1 1  1 1 0.63 1 1 0.95 

M5 2 0.245 1 0.9 0.55  1 0.54 1 1 0.86 

M6 2 0.27 1 0.7 0.25 0.8  0.5 1 1 0.75 

M7 3 0.21 1 1 1 1 1  1 1 1.00 

M8 2 0.3 1 0.65 0.15 0.45 0.91 0 1 1 0.74 

M9 2 0.3 1 0.65 0.15 0.45 0.91 0 1  0.59 
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It can be seen that values of total specificity obtained for the models which used M2, M5, 

M6, M8 and M9 as optimization sets are unsatisfactory. This result means that if these samples are 

used as the non-target class to optimize the SVDD, the model could run the risk of having higher 

false positives. This was observed in the Table 4-2. Such models failed to reject the rest of the 

classes (M3, M4, M7). However, three models which used  M3, M4 and M7 to optimize the model 

reliably distinguished between target and the non-target class samples. Among these, M7 worked 

best as that model rejected all non-target class samples. Figure 4-7 shows that M2 is spectrally 

different than the calibration spectra, whereas M7 is highly similar. 

 

Figure 4-7: Spectral comparison of calibration set (M1), and non-target classes 

(M2 and M7) 

Therefore, it can be concluded that the selection of a pertinent non-target class set for the 

SVDD can significantly influence the results of classification. This experiment suggests that to 
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reject “highly similar” samples using the SVDD method, it is essential to use highly similar non-

target class samples for model optimization. This creates a model that is sensitive to non-target 

class test samples that are “highly similar” to target class samples. 

4.7 Non-Target Class Sample Selection: 

A correlation coefficient was calculated to automatically select a suitable non-target class 

set for model optimization of falsified drug detection. This effort defined a method for setting 

quantitative criteria for selection of ideal non-target class samples which would help to optimize 

the model. Figure 4-8 showed the correlation coefficient values between the calibration set and 

different non-target class sets. All of the samples exhibited a correlation of more than 0.95. 

However, among these, non-target class, M7, showed the highest correlation with the target class, 

M1. This correlation value between M1 and M7 was similar to the correlation values of different 

batches of  M1 (as different batches of M1 were used as calibration  and test sets). Because of this, 

it was difficult to separate M7 from M1, when other sample sets (M2-M6, M8 and M9) were used 

to optimize the model. Therefore, M7 was the ideal non-target class candidate to be used for 

optimizing the SVDD model.  
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Figure 4-8: Spectral correlation coefficient values between the calibration set 

and different manufacturers’ samples sets (M2-M9) including a unique batch of 

a calibration set (M1). 

 

Figure 4-9: Workflow of a method development for  a spectroscopic 

authentication system. 
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The final workflow for falsified detection is proposed in Figure 4-9. To obtain better 

performance, a SVDD model will be optimized using a non-target class sample. Before applying 

the SVDD algorithm, these non-target class samples can be selected using a simple mathematical 

treatment, such as correlation coefficient, for testing similarity between the target class and non-

target class. 

4.8 Discussion and Conclusion: 

It is understood that a spectroscopic system for authentication of pharmaceutical products 

will require modern chemometric tools. The SVDD method was used with both target and non-

target class samples to demonstrate an approach for development of an authentication method. The 

proposed SVDD method differs from a conventional two-class classification method because the 

SVDD defines a closed boundary around target-class samples, whereas traditional two-class 

support vector machine methods develop a boundary between these two classes. Furthermore, the 

method does not require a strict representative sample of the target distribution; a calibration set 

with extreme objects is acceptable, even desirable. However, it is also important to understand that 

an effort to reduce false positives (accepting falsified samples) can result in an increase in false 

negatives (rejecting authentic samples). With the presence of non-target class samples used for 

model optimization, the boundary is developed rationally.  

In this chapter, it was observed that exploiting non-target class samples during model 

development is useful for optimization of SVDD models. Adding non-target class samples in the 

method development process enabled the investigators to optimize the boundary of the SVDD 
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model based on both sensitivity and specificity parameters. Selecting appropriate non-target class 

samples to optimize the model requires a quantitative approach such as spectral correlation 

calculation.   

 Figure 4-10 demonstrates the importance of careful non-target class sample selection. In 

Figure 4-10A, when green samples are used as the non-target class, the spherical boundary around 

the banana shaped target class data (blue) is appropriate to reject these green samples. However, 

if yellow samples (which are closer to the target class blue samples than the non-target class green 

samples) are used as non-target class samples, the spherical boundary is inadequate to reject these 

non-target class yellow samples (Figure 4-10B). Therefore, model optimization using ideal non-

target class samples is required. After model optimization, an appropriate non-linear boundary 

could be developed.  This tighter boundary is seen in Fig 4-10C, around the target-class data, which 

allows the model to distinguish non-target class (yellow objects), seen outside the boundary.  

The finding from this study emphasized that to develop a spectroscopic method with the 

help of chemometric methods, analysts should consider a pertinent test set and validation. Without 

utilization of appropriate samples to optimize the model, the method will not perform adequately. 

This proved the hypothesis mentioned in section 1.2.  

Figure 4-10: Modeling of a banana-shaped data set (blue) using non-target 

classes: green (A) and yellow (B, C). 
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5 Chapter 5: Application of Experimental Design to 

Generate Synthetic Non-Target Class Samples and the 

Effect of Raw Material Variability of the Target Class on 

the Class- Model Performance 

5.1 Introduction 

Development of class-modeling methods typically involves two stages. Initially, the model 

should be developed using a calibration data set containing representative variations of target-class 

samples; ideally, these samples should contain all possible sources of product variation. In 

Chapters 2 and 3, the effect of moisture variation on NIR and Raman spectroscopy was discussed. 

After an initial calibration model development, the model is then optimized using various complex 

test sets, an approach that is highlighted in Chapter 4. Therefore, for proper model performance, 

the optimization set (or test set) should include both authentic target class and non-target class 

samples originating from alternative classes (see Figure 4-4).  

One of the challenges of model development that has not been adequately addressed in the 

literature is to find appropriate falsified samples to consider as an alternate class. Notably, it is 

crucial to test the ability of the model to recognize samples which have a highly similar 

composition to the target class. These falsified samples are often referred to as “high quality” 

falsified products [15]. It is often difficult to find these alternate classes to be used in model 

development.   
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Researchers have proposed several strategies to collect alternate classes of samples. 

Products manufactured by competitors can be a potential source of the non-target class sample. 

Rodionova et al. used competitors’ products as a non-target class to optimize the decision boundary 

for the SIMCA-DD method and successfully improved model performance by adjusting the 

boundary area [186]. In the previous chapter of this dissertation, the SVDD method was optimized 

using legitimate analogs of the target class; this approach demonstrated good performance. 

However, samples from different manufacturers may not always be available, especially for brand 

products (which have a high risk of falsification). Another group of researchers proposed the use 

of samples stored in higher humidity conditions [13]. However, a high-water content may change 

physico-chemical structures of the samples significantly, which may not be appropriate to be 

considered as “high quality” falsified products. 

One potential strategy to overcome this challenge is to generate synthetic samples in the 

lab using statistical experimental design, or design of experiments (DOE), which can be a useful 

statistical tool to explore the capability of spectroscopic identification of falsified products 

containing unique chemical compositions. DOE is useful to gain understanding about which non-

target class samples are spectrally similar to the target class samples. 

Synthetic samples, generated in the lab, can provide progress in resolving another 

challenge of method development; namely to collect a fully representative calibration set 

accounting for possible future variations in the target class. Using a material sparing approach, 

potential sources of product variation such as moisture deviations, variabilities from raw material 

sources, etc., can be added into the calibration model. In Chapters 3 and 4, laboratory generated 
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samples with significant moisture variation were used to improve model performance. Likewise, 

the effect of raw material variabilities can be addressed. 

It is understood that the change in chemical composition or physical variations due to raw 

material variability may exhibit a unique inherent response with different analytical techniques. 

For example, NIR spectra involve a combination of absorbance and scattering properties of light 

and exhibit response to both chemical and physical changes in pharmaceutical products. Raman 

spectroscopy, on the other hand, is very sensitive to fluorescence; this is a major source of spectral 

variability causing interference with the Raman spectra. Fluorescence is produced by the emission 

of photons from low-lying excited electronic states, and often masks the vibrational shift of Raman 

spectra [59]. Different pharmaceutical samples exhibit fluorescence arising from various active 

pharmaceutical ingredients [146] , excipients [173, 174], dyes [175], capsule shells [180], etc. As 

anticipated, samples generated using different excipient compositions should have a different 

response for Raman and NIR spectroscopy. Therefore, non-target class samples will be different 

based on the anticipated chemical response of the analytical method used to detect falsified 

samples. Likewise, the impact of physical variability will also typically be different for NIR and 

Raman spectroscopy. This chapter will evaluate such phenomena. 

The objectives of this chapter include: 

1. To demonstrate the usefulness of DOE during spectroscopic model development with 

class-modeling techniques such as SIMCA and SVDD.  

2. To use raw material variability to demonstrate the importance of creating representative 

training sets in development of robust models.  



 

138 

 

3. To explore the effect of DOE and raw material variability on NIR and Raman models 

for false-sample identification. 

5.2 Materials and Methods 

5.2.1 Target Class Samples 

The model drug product is a 350 mg tablet containing Acetaminophen (APAP; 

Mallinckrodt Inc.,Raleigh, NC, USA) at 50% w/w active pharmaceutical ingredient (API), 

microcrystalline cellulose (MCC; Avicel PH 200, FMC Biopolymer, Mechanicsburg, PA, USA) 

at 15% w/w lactose (modified spray-dried; Foremost Farms USA, Rothschild, WI, USA),  Starch 

at 15% w/w (Pharmacoat 606, Shin-Etsu Chemical Co. LTD, Tokyo, Japan), cross carmellose 

sodium (Pharmacoat 606, Shin-Etsu Chemical Co. LTD, Tokyo, Japan) at 4% w/w and magnesium 

stearate (Fisher Scientific, Waltham, MA, USA) at 0.50% w/w as excipients. Colloidal silicon 

dioxide, at 0.50% w/w, is used to improve APAP flow before combining with the excipients.  

Materials were dispensed by weight (Data Range, model no AX504DR, Mettler Toledo, 

Columbus, OH) and were transferred to a bin blender. In total, 1kg of material was weighed and 

the nominal weights for all constituents were adjusted to the observed mass data to calculate actual 

concentration. Blending was performed at the Duquesne University Center for Pharmaceutical 

Technology with a 5.5-L bin blender (L.B. Bohle LLC, Warminster, PA, USA) with DeltaV 

(Emerson Process Management, Equipment & Controls, Inc., Lawrence, PA, USA) controls.  

Blend Monitoring: Lab scale blends with a total mass of approximately 1 kg were created 

for NIR data collection. The fill ratio of these blends in the 5.5-L bin blender was less than 60%. 
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The top sensor was set to collect spectra when inverted to assure that each scan had powder directly 

in front of the sensor. At 15 rpm, the scans were collected at 4 s intervals. Pure component and 

granule scans were collected by filling the blender for 45 mins.  Diffuse reflectance NIR spectral 

data was collected using the MicroNIR-W spectrometer (Viavi Inc., USA). It uses a linear variable 

filter (LVF) technology, with an InGaAs detector (900–1,700 nm), a pair of integrated vacuum 

tungsten lamps, and provides wireless capability. This spectrometer was attached to the lid of the 

blender and rotated with the blender while running the process. Spectra were collected with 16 co-

additions averaged for a single scan with an integration time of 0.033 s. The dark and light 

reference scans are internal for the top sensor and were collected once daily. Different blend end 

point criteria were tested using moving block standard deviations. Mixtures were assumed to be 

homogeneous when standard deviation reached a minimum value.  

5.2.2 Sample Considerations for Non-Target Class using Design of Experiment (DOE): 

The goal of this effort was to create non-target class products containing identical API 

concentration but different excipient composition to the target class. As three diluents (lactose, 

starch and MCC) are the primary excipient compositions, the ratio of these three components was 

varied. A fully balanced, three-constituent mixture design composed of MCC, lactose and starch 

were used to generate the appropriate formulation (excipient ratio) for tablets (Figure 5-1). Total 

composition of these three excipients were kept at 45% w/w of the target formulation because the 

target tablet contains 45% w/w diluent. Simplex centroid design was used to change the 

composition of these three excipients in the formulation. Table 5-1 summarizes the design. Figure 

5-1 represents different types of alternate class products [187]. The tablets were generated using 
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Presster (Model 5869, Norwood, MA) by a 10 mm die and flat-faced punches. The target tablet 

weight was 350 mg. Thirty replicate tablets per level were created to test the performance. 

 

Figure 5-1: Samples generated using different excipients compositions. 

 

Table 5-1: Seven different formulations were generated using a mixture experimental 

design  

  APAP Lactose MCC 

200 

Starch Croscarmellose 

sodium 

Colloidal 

Sillicon 

Dioxide 

(Aerosil 200) 

Magnesium 

Stearate 

 Formulation 1 50 0 0 45 4 0.5 0.5 

Formulation 2 50 0 22.5 22.5 4 0.5 0.5 

Formulation 3 50 22.5 0 22.5 4 0.5 0.5 

Formulation 4 50 0 45 0 4 0.5 0.5 

Formulation 5 50 15 15 15 4 0.5 0.5 

Formulation 6 50 22.5 22.5 0 4 0.5 0.5 

Formulation 7 50 45 0 0 4 0.5 0.5 

Grey color row: Target class formulation which was used for calibration model development and 

unique batches of Formulation 5 was used as test set. 

5.2.3 Target Class Samples Containing Raw Material Variabilities  

Raw material variations were simulated by changing the vendors of starch (Table 5-2).  The 

particle size of these starches was the same according to the vendors’ information. Other 

MCC 200

La
ct
os
e

Starch
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components of the target formulation remained unchanged.  In total, two batches were prepared.  

These batches will be further referred as R1 and R2.   

Table 5-2: Raw material variations 

 

 

 

 

5.2.4 NIR Spectral Collections 

NIR reflectance measurements for both sides of each tablet were acquired over the 

wavelength range of 925 to 1700 nm at a 6.38 nm increment averaging 5000 scans (JDSU 

MicroNIR). Prior to scanning, the tablets were precisely centered using the positioning iris 

standard on this instrument.  

All spectral data were analyzed in the Matlab environment (version 8.6, MathWorks, 

Natick, MA) using the PLS_Toolbox (version 8.8, Eigenvector Research, Inc, Manson, WA) and 

software developed by the Duquesne University Center for Pharmaceutical Technology. 

5.2.5 Raman Spectral Collection  

Raman spectra were collected by following the protocol mentioned in section 3.3.3 . 

 

Design Name 
Starch 

vendor 

R 1 EM Solution 

R 2 Colorcon 
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5.2.6 Theory 

5.2.7 Spectral Investigations 

Spectral investigations were conducted using below mentioned methods: 

1. Spectral matching: See Section 4.4.3 

2. Principal component analysis: See Section 4.4.1 

5.2.8 Class-Model 

The chemometric model for this study was developed using SIMCA and SVDD. Details  

of the methods are reported in earlier section of this document. 

1. SIMCA: See section 2.2.1.1 

2. SVDD: See section 2.2.1.2. 
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5.2.9 Experimental Strategy 

 

Figure 5-2: Flow chart of experimental plan. 

The goal of authentication is to reject non-target class samples and accept target class 

samples. This study generated sample formulations using DOE to identify suitable compositions 

for meeting the goals of the experiment. Raw materials from two different vendors were used to 

generate variations in the target class samples. Both NIR and Raman spectroscopy data were 

collected, and multivariate models were developed (Figure 5-2).  
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5.3 Results 

5.3.1 Near-Infrared Spectroscopy 

Figure 5-3: Preprocessed NIR spectra of A) samples of different formulation 

generated using DOE, B) pure component spectra of different components of 

tablets, and C) samples of target class using two different raw material vendors. 
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5.3.1.1  Spectral investigations 

NIR spectra from the unique formulation design points are shown in Figure 5-3A.  To 

understand the source of variation, the spectra of pure components are shown in Figure 5-3B. As 

lactose, MCC, and starch are cellulosic excipients, spectral similarity is expected for these 

components; dissimilarity from APAP is noticeable in Figure 5-3B. Moreover, the excipients’ 

peaks dominate the longer wavelength regions. Therefore, spectral variation for the various DOE 

samples are observed primarily in the excipient dominated regions. Figure 5-3C shows the raw 

spectra of two different sample sets (R1 and R2, correlating with the formulations created from 

two unique sources of starch). 

Figure 5-4: Spectral correlation of target class (F-5) with samples containing 

different chemical and physical variations.  

Spectral correlation: Spectral correlations between the calibration set (target class (F5)) 

and different design points are shown in Figure 5-4. The highest correlation values were observed 
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for test sets of F5 (different batch), R1, and R2; because there were no chemical differences of 

these formulations with the target class. However, different chemical design points showed lesser 

correlations. Other design points, F3 and F4 showed the highest correlation values with the target 

class, F5.   

As described in Chapter 2, spectral correlation is useful for distinguishing different classes 

of samples. If the spectral correlation value from testing meets a specific threshold value, then the 

sample is declared as the target class to verify the product empirically. Several studies have 

suggested using 0.95 as a threshold value to distinguish different classes of samples (see Section 

1.3.3.1.2). That means if the matching threshold value is 0.95 between two sample sets, these 

samples are considered equivalent. However, it is obvious that the threshold may change if samples 

are highly similar. For example, in this study, the threshold should be higher than 99.98, as the 

closest non-target class samples have this correlation value. 

Figure 5-5: The scores plot of a combined PCA model of different design 

points. 
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Principal component analysis (PCA): Preliminary PCA was performed on the entire data 

set. It reveals both similarities and differences in tablets produced by various formulations of DOE 

and raw material variations. The PCA model with two PCs explains 95.54% of the total variance. 

The PCA model showed minimal variation for sample spectra derived from R1 and R2 

formulations (containing different sources of starch). The preprocessing method removed the 

spectral deviation arising from variation in physical factors. In the scores plot (Figure 5-5), it was 

observed that F3 and F5 samples sets were overlapped despite the chemical variations being 

significantly different between these two sets. 

5.3.1.2 Class-Model Performance of NIRS: 

SIMCA model performance: As noted, Formulation 5 was considered to be the target 

class. A total of three batches of this formulation were included into the calibration model to 

incorporate the batch to batch variabilities. Model performance was observed using DOE and 

samples having raw material variations.  

At first, SIMCA was developed using one PC and a 95% confidence interval threshold of 

Hotelling’s 𝑇2 and 𝑄 residual (Figure 5-6A). The model successfully rejected F1, F2, F4, F6, and 

F7, but failed to reject F3. Hotelling’s 𝑇2 and 𝑄 residual plots explained the failure of rejecting 

F3. Low 𝑄 residual values showed that this formulation overlapped with the calibration sample 

set, whereas other formulation design points were located far from the calibration set. The model 

developed using PC1 successfully accepted test sets R1 and R2, except for two samples from R1. 

Hotelling’s 𝑇2 and 𝑄 residual plots showed that genuine samples manufactured using different 

vendors resided inside the target-class boundary (Figure 5-6(A-B)). After increasing the 
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confidence interval to 99%, the model accepted only one of these samples (Figure 5-6 (C-D)). 

However, with the new boundary, the model also started to accept the F4 design point, as F4 is the 

second nearest design point after F3. 

To reject all non-target class design points, a SIMCA model with one PC was not sufficient, 

even though it accepted samples containing raw material variability. Next, two PCs (explaining 

95.54% of total variance) were used to develop a SIMCA model. After adding PC2, the model 

became more specific and rejected all formulations. Figure 5-7(A-B) revealed that F3 now had 

higher Hotelling’s 𝑇2 and 𝑄 residuals compared to the previous PCA model. However, after 

adding two PCs, the model started to reject samples with raw material variabilities, which were 

four R1 and seven R2 samples. Nevertheless, increasing the confidence interval from 95% to 99% 

improved the sensitivity of the model (Figure 5-7 (C-D)). The SIMCA model with 99% CI 

accepted all samples with raw material variability.  

Using cross-validation to select the number of PCs can be another option.  Here, cross-

validation suggested three PCs for the SIMCA model. However, a SIMCA model developed using 

three PCs is unnecessary, as the model already rejected all formulations using fewer PCs. 

Therefore, a model with two PCs showed the best performance (Table 5-3). 
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Figure 5-6: Model diagnostics plots of SIMCA model, which was developed using the first PC, (A) Threshold was 

developed using 95% CI. B) Magnified version of plot A, C) Threshold was developed using 99% CI, D) Magnified 

version of plot C. 
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Figure 5-7: Model diagnostics plots of SIMCA model, which was developed using first two PCs, (A) Threshold was 

developed using 95% CI, (B) Magnified version of plot A, (C)Threshold was developed using 99% CI, D) Magnified 

version of plot C. 
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Table 5-3: Performance of SIMCA model using NIRS 

Different Models with 

predefined threshold 

Calibration approaches 

1 PC 2 PCs 

 Sensitivity Specificity Average Sensitivity Specificity Average 

SIMCA (𝑻𝟐& Q=0.95) 0.96 0.84 0.9 0.81 1 0.905 

SIMCA (𝑻𝟐 & Q =0.99) 0.98 0.78 0.88 0.97 1 0.985 

SVDD model performance: In this study, the SVDD algorithm was applied to the 

preprocessed spectral data, including Savitzkay-Golay derivative and normalization. Here, two D 

values, 0.05 and 0.01, were considered. A series of σ values were applied with incremental steps 

of 0.1. The best performance was obtained from a σ value of 0.9. The performance of the different 

approaches is summarized in Table 5-4. Both threshold values of D rejected all of the non-target 

class samples. Support vectors were visualized in Figure 5-8. Formulation 4 was plotted to show 

the similarity with target class samples.  

Table 5-4: Performance of SVDD model using NIRS. 

 

 

 σ =0.9 

Different models with 

predefined threshold 
Sensitivity Specificity Average No. of SVs 

Spectral SVDD (D=0.01) 0.89 1 0.945 6 

Spectral SVDD (D=0.05) 0.867 1 0.9335 3 
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Figure 5-8: A) Depiction of selected support vectors of the calibration set where the blue spectra are support vectors 

and red spectra are calibration samples B) Calibration set (red), R1 and R2 sample sets (cyan). C) Calibration set 

(red) and F4 design point (green) 

A B

C
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5.4 Raman Spectroscopic Methods 

5.4.1 Spectral Investigations 

Figure 5-9: A) Spectra of different design points of pharmaceutical formulations, 

B) Raman spectra of pure components, (C) Spectra of two batches of samples. 

In this experiment, the API showed a Raman signature in tested samples. Figure 5-9 shows 

that Raman spectra of different formulation design points were dominated by the API 

(acetaminophen or APAP) because the aromatic ring of APAP is a strong Raman scatterer 

compared to the polar excipients. Therefore, Raman is very useful to identify the API, in this case, 

B A 
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since it exhibits several characteristic bands that are directly correlated with the molecular structure 

of the substance of interest.  

The other dominating spectral source is the fluorescence background of MCC. While this 

formulation has a high drug load, the APAP is detectable. For products with a low drug load, the 

Raman spectra of the API may be masked by the fluorescence of the excipients.   

Spectral correlation: The spectral correlation value of F5 is displayed in Figure 5-10. It 

was observed that F2 and F6 showed the highest correlation with the target F5 formulation. Due 

to the strong fluorescence signal, MCC was the main reason for this similarity. In Figure 5-10, F6 

showed the nearest correlation value. The second nearest formulation was F2. 

Figure 5-10: Spectral correlation of target class (F-5) with different design 

points. 
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Figure 5-11: The scores plot of a PCA model which was developed combining 

all formulations.  

Principal component analysis (PCA): The total spectral range was used to analyze the 

data. Data were preprocessed using SNV and mean-centering. The PCA plot (Figure 5-11) shows 

that the first two PCs explained 89.4% of the total variance. Similar to the spectral correlation 

value, F2 and F6 resided near the target formulation, F5. From Figure 5-9, it is observed that F2 

and F6 have similar spectral features to F5 (target class, F5) due to the presence of fluorescence 

background. Samples containing raw material variabilities (R1 and R2) overlapped with F5. This 

indicates that Raman was insensitive to the raw material variability in the present study.  

5.4.2 Class-Model Performance 

SIMCA: Similar to the NIR model, Formulation 5 was used as the target class. Two batches 

of Formulation 5 were included in to the calibration model. Sensitivity and specificity were 
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observed using samples containing raw material variabilities (R1 and R2) and DOE samples (F1, 

F2, F3, F4, F6 and F7).  

Using Raman spectra, the first SIMCA model was generated from one PC and a 95% 

confidence interval threshold of Hotelling’s 𝑇2 and 𝑄 residual. In this case, the model 

appropriately rejected all non-target class formulation design points, except 7 samples from F6.  

Hotelling’s 𝑇2
 and  𝑄 residual plots explained the failure of rejecting these samples. As 

Formulation 6 had low 𝑄 residual values, these samples resided inside the boundary (Figure 5-12 

(A-B)).  

While F6 contained MCC which had similar fluorescence background compared to F5 

(target class samples), it was observed that the model developed using PC1 successfully accepted 

the test sets R1 and R2, except 11 samples. After increasing the confidence interval to 99%, the 

model accepted nine of these eleven samples, improving the sensitivity of the model (Figure 5-12 

(C-D)). However, increasing this boundary also influenced the model to begin accepting more 

samples from the F6 design point, meaning specificity was decreased.   

Next, a SIMCA model using two PCs (which explains 89.4% of total variances) was used 

to develop the SIMCA model. After adding PC2, the model became more specific and rejected all 

formulations (Figure 5-13 (A-B)). However, after adding two PCs, the model rejected more 

samples of R1 and R2; as a result, sensitivity decreased significantly. Increasing the confidence 

interval from 95% to 99% improved the sensitivity of the model. However, the SIMCA model 

with 99% CI also started to accept non-target class samples of F6 (Figure 5-13 (C-D)). 
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Figure 5-12: Diagnostics plots of SIMCA model, developed using the first PC, (A) Threshold was developed 

using a 95% CI, (B) Magnified version of plot A,  C) Threshold was developed using 99% CI, D) Magnified 

version of plot D. 
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Figure 5-13: Model diagnostics plots of SIMCA model which was developed using first two PCs, (A) Threshold 

was developed using 95% CI, (B) Magnified version of plot A, C) Threshold was developed using 99% CI, D) 

Magnified version of plot C. 
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Raman showed satisfactory performance with the use of  one PC. This indicates that Raman 

spectroscopy does not rely on an extra direction of variations to identify non-target class samples 

compared to the NIRS. Therefore, Raman model was less complex, and sharp spectral features of 

Raman may help to identify different non-target class samples. But, this observation may vary 

depending on the API and excipient signals of different formulations.   

Table 5-5: Performance of SIMCA model using Raman spectroscopy. 

SVDD: In this study, the SVDD algorithm was applied to the preprocessed spectral data. 

A Savitzky-Golay derivative and normalization was applied to the data. Here, two D values, 0.05 

and 0.01, were considered. A series of σ values were applied with incremental steps of 0.1.   

Performance of the different approaches is described in Table 5-6. Both threshold values 

of D rejected all non-target class samples. Support vectors were visualized in Figure 5-14A. Raw 

material did not show variations with the target class samples (Figure 5-14B). Therefore, model 

was successfully accepted these samples. Formulation 6 was plotted to show the similarity with 

target class samples (Figure 5-14C). There are slight variations observed between target class and 

F6 in the lower wavelength regions (around 200  cm−1), which enabled the rejection of this 

formulation. Therefore, the SVDD model performance was comparable to the SIMCA model. 

Different Models 

with predefined 

threshold 

Calibration Approaches 

1 PC 2 PC 

  Sensitivity Specificity Average Sensitivity Specificity Average 

SIMCA 

(𝑻𝟐 & Q=0.95) 
0.972 0.84 0.906 0.4 1 0.7 

SIMCA 

(𝑻𝟐 & Q =0.99) 
0.961 0.905 0.933 0.6 0.95 0.775 
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Figure 5-14: A) Depiction of selected support vectors of the calibration set where the blue spectra are support vectors 

and red spectra are calibration samples, B) Calibration set (red), R1 and R2 samples (cyan), C) Calibration set (red) 

and F6 design point (green). 
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Table 5-6: Performance of SVDD model using Raman spectroscopy. 

 σ =0.25 

Different Models with 

predefined threshold 
Sensitivity Specificity Average SV 

Spectral SVDD (D=0.01) 0.9333 0.9167 0.925 3 

Spectral SVDD (D=0.05) 0.8667 0.9778 0.922 4 

5.5 Discussion and Conclusion 

The proposed DOE approach allows an analyst to test the developed method against 

various non-target class samples. Given the flexibility of designing samples, analysts should be 

able to create samples containing the identical API but different excipient composition, as this may 

be the most challenging condition to detect. Rationally designed samples, defined by DOE, are 

helpful for identifying which non-target class samples are spectrally similar to the target class 

samples, and which samples pose a risk in terms of potential method failure. 

In this study, CM model using NIRS struggled to separate F3 as non-target class samples, 

whereas CM model using Raman failed to separate F6 as non-target class samples. NIR 

spectroscopy is sensitive to the C-OH bond, causing starch, lactose, and MCC to have similar 

spectral features. F3 showed the highest similarity to F5, and therefore, F3 has a higher risk of 

increasing the false positives (reduced model specificity).  However, for Raman spectroscopy, F6 

was a challenging formulation. Both F2 and F6 contained a higher amount of MCC, similar to the 

target class, F5. Because F6 had lactose in its formulation, it had a more significant peak intensity 

than the starch. This caused F6 to be the closest non-target class sample. Therefore, using F6 

formulation was critical for the development of a successful model.  
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Moreover, these lab generated non-target class samples have similar solid fraction, size, 

shape, etc., compared to the target class.  Therefore, physical factors demonstrated minimum effect 

on the spectra in this case. 

Although the implementation of DOE requires more samples, this approach offers 

significant benefit in that it will help to minimize the risk of model failure.  Using small scale lab-

based samples reduces the burden of sample preparation and makes the model development more 

efficient.   

In this study, changing excipient vendors did not have a significant impact on model 

performance. However, in general, switching to a different vendor can result in several physico-

chemical changes, including moisture variation, particle size variability, etc.   

Another source of variation, lot-to-lot variability of excipients,  can also be a factor to be 

modeled.  It is expected that the inter-manufacturer variabilities will be more significant than the 

batch to batch variability of an individual manufacturer (intra-manufacturer variability). However, 

it is difficult to preemptively identify all sources of variability that might be introduced by different 

manufacturers during the pharmaceutical life-cycle. The experimental approach of this study 

provided an example of the effect of manufacturer and lot-to-lot variabilities on sample spectra 

and model performance. 

Having appropriate non-target class samples is critical for model development. These non-

target class samples challenged both SIMCA and SVDD. Typically, a model developed using more 

PCs in the SIMCA model can separate challenging samples which resided near to the target class. 

However, using samples containing more PCs unnecessarily separates samples containing raw 
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material variability  from different vendors. Nevertheless, the model that is developed using a 

fewer number of PCs may appropriately accept the samples with variability in raw material 

supplier. Careful model development will prevent unnecessary rejection of target class samples 

(false negatives) or incorrect authentication of falsified products (false positives). This model 

optimization becomes logical in the presence of statistically representative non-target class 

samples and target class samples containing foreseeable variations in the model.   
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6 Chapter 6: Onsite Implementation of Portable 

Spectrometers to Analyze Commercially Available 

Pharmaceutical Products  

6.1 Introduction 

This chapter discusses the use of portable spectrometers to analyze pharmaceutical 

products in health care settings. Researchers have been using two portable spectrometers to collect 

data in two different pharmacies over a span of a few months. Theses pharmacies are located in 

the city of Pittsburgh. Various brand and generic products were selected based on a previous 

history of falsification. Results from the testing of two products are reported here.  

To accomplish this project, a comprehensive data collection protocol was developed. This 

protocol was used during the feasibility studies to verify the spectral collection methodology and 

for the collection of data to improve the understanding of  factors that influence the product spectra. 

The effect of sample positioning, lot-to-lot variability, variations from manufacturing site change, 

and the impact of wavelength range on the performance of two different spectrometers are reported 

in this chapter.  

Different multivariate methods, including, principal component analysis (PCA), 

Hotelling’s 𝑇2 and 𝑄 residual statistics were used to develop understanding of the source of 

spectral variations.  Finally, the collected data were used to develop and validate qualitative 

authentication methods using chemometric models. The model will be included in a cloud-based 
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data management system to implement a real-time authentication technique. This study will 

provide direction for the detection of falsified medicines in different locations worldwide. 

The objectives of this chapter include: 

(1) Evaluate the effect of sample positioning.  

(2) Evaluate the possible sources of spectral variation while collecting data from 

commercial samples. 

(3) Compare the effect of spectral wavelength ranges on method performance using two 

different spectrometers.  

(4) Develop NIRS models for the analysis of tablet authenticity. 

6.2 Materials and Methods  

6.2.1 NIR Instrumentation 

Currently, a variety of portable NIR spectrometers are available from different 

manufacturers. Whereas each technology has its own strengths and weaknesses, micro electro- 

mechanical systems (MEMS) technology was chosen for this work because of the advantages of 

fast data acquisition rate, affordability, and lack of moving parts. 

The NIR ONE Sensor (Spectral Engine, VTT, Finland) uses the patented Micro Electro 

Mechanical System (MEMS) Fabry-Perot Interferometer, which is a fully programmable optical 
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filter with a single-element InGaAs detector. This compact spectrometer has a window made by 

quartz for a sample surface system.  

Two spectral ranges were utilized with two different devices (Figure 6-1).  

1) Diffuse reflection spectra were recorded in the wavelength range of 1550–1950 nm. This 

will be mentioned as SWL-NIR (Short Wavelength NIR) in the rest of the chapter. 

2) Diffuse reflection spectra were recorded in the wavelength range of 2000–2450 nm. This 

will be mentioned as LWL-NIR (Long Wavelength NIR) in the rest of the chapter.   

The spectrometers were connected to a laptop through a USB communication cable and 

controlled using  sensor control software  developed by Spectral Engines Oy.  

Figure 6-1: Two NIR spectrometers were used to analyze two products, 

including apixaban and atorvastatin. 
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6.2.2 Sample Positioning Study 

Sample orientation is critical; the instrument has a detector (red circles in Figure 6-2) at 

the center of the sampling window and two lamps, one located on each side of the detector (yellow 

circles in Figure 6-2). The spectrometers were marked using a straight line to facilitate sample 

positioning.  The marking is simulated in Figure 6-2. This line was drawn two ways:  

A) Passes through the detector but perpendicular to the lamps ( Figure 6-2A) and  

B) Passes through the detector and lamps (Figure 6-2B).  

 

Figure 6-2: Two orientations of the sample based on the drawn line which is, A) 

Passes through the detector but perpendicular to the lamps,  B) Passes through 

the detector and lamps. 

An oval shaped tablet was scanned six times with repositioning. Standard deviation was 

calculated for these repeated measurements for both the SWL-NIR and LWL-NIR data. 
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6.2.3 Sample Collection in Pharmacy 

Two commercial tablets: apixaban (Eliquis, by Bristol-Myers Squibb) and atorvastatin 

(Atorvastatin, by Apotex) were scanned at the pharmacies in Pittsburgh. A transportable station 

was set up containing portable spectrometers and reference standards (Figure 6-3A-B)). Tablets 

were collected from bottles stored in the pharmacy. From each bottle, 30 tablets were collected 

and both sides of each tablet were scanned. All tablets were replaced in the bottle after completing 

the analysis.  

All of the calculations were performed using Matlab 8.6  (The Mathworks Inc, Natick, 

MA), along with the PLS_Toolbox 8.8 (Eigenvector Research Inc, Wenatchee, WA) and other 

analysis tools written at the Duquesne University Center for Pharmaceutical Technology for this 

study.  

 

Figure 6-3: Portable stations, A) A briefcase sized transportable system to carry spectrometers 

and reference standards, B) Spectrometers and laptop controller in use at a pharmacy. 
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6.2.3.1 Apixaban: Considered Samples 

The label claim of apixaban was 5 mg. A total of nine lots of product were analyzed. 

Among these lots, seven were manufactured in Switzerland and two were manufactured in the 

USA.  Table 6-1 summarizes the lot number, manufacturing site and expected dose of the analyzed 

tablets. 

Table 6-1: Detail of apixaban tablets 

Molecule Product Name and Dose Lot No 
Manufactured 

Location* 

Apixaban ELIQUIS 5MG AAY3155 Switzerland 

Apixaban ELIQUIS 5MG AAY4017 Switzerland 

Apixaban ELIQUIS 5MG AAK9028 USA 

Apixaban ELIQUIS 5MG AAT0949 USA 

Apixaban ELIQUIS 5MG AA22725 Switzerland 

Apixaban ELIQUIS 5MG AA28472 Switzerland 

Apixaban ELIQUIS 5MG AA28448 Switzerland 

Apixaban ELIQUIS 5MG KK2981 Switzerland 

Apixaban ELIQUIS 5MG KL2418 Switzerland 

*It was mentioned in the label that the respective products were from USA and Switzerland. 

 

 

6.2.3.2 Atorvastatin: Considered Samples 

The label claim for atorvastatin tablets tested in the project was 40 mg. A total of fourteen 

lots of products were scanned. All of these lots were manufactured in Canada. Table 6-2  

summarizes the lot number, manufacturing site and expected dose of the analyzed tablets. 
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Table 6-2: Details of the atorvastatin tablet 

Molecule Product Name and Dose Lot No Manufactured Location 

Atorvastatin ATORVASTATIN 40MG NW6364 Canada 

Atorvastatin ATORVASTATIN 40MG PJ2815 Canada 

Atorvastatin ATORVASTATIN 40MG PJ9375 Canada 

Atorvastatin ATORVASTATIN 40MG NK2915 Canada 

Atorvastatin ATORVASTATIN 40MG NT7727 Canada 

Atorvastatin ATORVASTATIN 40MG NT7700 Canada 

Atorvastatin ATORVASTATIN 40MG 3088695 Canada 

Atorvastatin ATORVASTATIN 40MG 3070915 Canada 

Atorvastatin ATORVASTATIN 40MG PC4481 Canada 

Atorvastatin ATORVASTATIN 40MG C805309 Canada 

Atorvastatin ATORVASTATIN 40MG 18230211 Canada 

Atorvastatin ATORVASTATIN 40MG PK0500 Canada 

Atorvastatin ATORVASTATIN 40MG PT5469 Canada 

Atorvastatin ATORVASTATIN 40MG PK1767 Canada 

 

6.3 Results and Discussion 

6.3.1 Sample Repositioning Study 

Spectral variation was observed among different rescans of oval-shaped tablets in both “A” 

and “B” orientations, whereas round-shaped tablets showed minimum variation, with repositioning 

as expected. Therefore, the spectral behavior of oval shaped tablets is reported. The bulk of the 

spectral variations, due to repositioning, took the form of a change in spectral baseline.  

For the oval-shaped tablet, the average standard deviation of SWL-NIR absorbance intensity for 

the orientation “B” was 0.15, whereas for the orientation “A”, it was 0.05. For the LWL-NIR 

spectrometer, average standard deviations were 0.07 and 0.02 for “B” and “A” orientations 

respectively. From this study, it was found that orientation “A” produces higher spectral variations 
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compared to the orientation “B” for oval-shaped tablets. This was true for both SWL-NIR and 

LWL-NIR spectrometers.  Therefore, orientation B was used to analyze all oval shaped tablets in 

the further research. However, from the data, it was also observed that the SWL-NIR spectrometer 

was more sensitive for repositioning of tablets relative to the LWL-NIR spectrometer. A number 

of data preprocessing techniques such as the standard normal variate (SNV) transformation, 

multiplicative scatter correction (MSC), Savitzky–Golay (SG), etc., can be applied to mitigate this 

variation.  

Exploratory sample analysis 

6.3.1.1 Apixaban 

Spectral behavior of various batches of apixaban tablets were observed for SWL-NIR and 

LWL-NIR spectrometers in Figure 6-4A and Figure 6-5A respectively. These spectra were SNV 

and second derivative Savitzky–Golay treated. From preprocessed spectra, significant spectral 

variances was observed among different batches. Primarily, the two batches prepared in the USA 

(blue and green spectra) were different from the batches prepared in Switzerland. Spectral 

differences were pronounced in SWL-NIR spectra compared to the LWL-NIR spectra. These 

variations may evolve from different factors such as raw material variabilities, manufacturing 

variabilities, moisture variabilities, etc. However, a detailed history of sample preparation or 

manufacturing conditions was not available.  

Based on the spectral features of the pure component spectra, it is assumed that the site-to-

site variation is likely due to some difference in the excipients (Figure 6-4B, Figure 6-5B).  The 

spectral features were varied around ~1670 nm (Figure 6-4A). Excipients such as lactose 
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anhydrous, microcrystalline cellulose and sodium lauryl sulfate (SLS) all exhibit peaks in that 

same region. It is assumed that the contribution from these three components may change between 

the manufacturing sites. Further analysis might reveal the true source(s) of variation. 

  

Figure 6-4: A) Preprocessed SWL-NIR spectra of different batches of apixaban, 

B) SWL-NIR spectra of major components of apixaban tablets. 
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Figure 6-5: A) Preprocessed LWL-NIR spectra of apixaban, B) LWL-NIR 

spectra of major components of apixaban tablets. 

 



 

174 

 

  

Figure 6-6: A) Scores plot of different batches of apixaban, B) Loadings plot of 

PCA analysis of apixaban using SWL-NIR spectrometer. 

A two component PCA model captured nearly 95.99% of the spectral variation (Figure 6-

6).  The first PC explained nearly 74.87% of the variance. For SWL-NIR, the PCA analysis 

revealed cluster formation of PC 1 and PC 2 plot (Figure 6-6A). Though subtle differences were 

observed in the spectra due to the site differences, the PCA plot highlights the manufacturing site 
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variation, as displayed in Figure 6-6.  As different batches were produced in the USA and 

Switzerland, the clusters were primarily due to the manufacturing site variations. 

Further analysis was conducted by developing a PCA calibration model using only samples 

manufactured in Switzerland (Figure 6-7). When the USA samples were projected on the PCA 

model, the nature of the clusters in the manufacture sites were apparent (Figure 6-7B). Also, the 

diagnostics plots showed the high Hotelling’s 𝑇2 and 𝑄 residuals.  (Figure 6-7C).  The 𝑄 

contribution plot emphasizes the important variables generated by the unmodeled variation in the 

model.  It was apparent from the 𝑄 contribution plot that  high 𝑄 residual was observed around 

~1670 nm, which confirmed the previous findings of excipient variations (Figure 6-7D). 
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Figure 6-7: SNV treated spectra of product from two manufacturing sites. Using 

these data, a PCA model was developed where Switzerland lots were used for 

calibration, and USA manufactured samples were projected. B) Scores plot of 

PC1-PC2,  C) Plots of Hotelling’s 𝑇2and 𝑄 residuals, D) Plots of  Q contribution. 

Data were collected using the SWL-NIR instrument. 

A two component PCA model explained 81.48% of the LWL-NIR spectral variance. The 

first PC explained 57.89% of the spectral variance (Figure 6-8). Unlike the SWL-NIR PCA model, 

the PC scores of the LWL-NIR model appeared to be less related to site differences as the data 

from two sites were overlapped (Figure 6-8A). However, when the PCA model was developed 

using samples generated in the Switzerland site, projected USA samples resided outside the 

calibration space (Figure 6-9). This difference between the two manufacturing sites was also 

observable using LWL-NIR spectra. 
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Both the SWL-NIR and LWL-NIR PCA models demonstrated the potential effect of 

manufacturing site on the prediction model.  Samples from two different manufacturing sites 

should be included in future calibration models as controlled variation. This strategy would cause 

little effect on the sensitivity (ability to accept target class samples) of the model performance.  

In summary, both repositioning studies using the standard deviation data and the 

exploratory analysis using PCA models suggested that LWL-NIR measurements are less sensitive 

to sample positioning error and manufacturing site change relative to the SWL-NIR measurements. 

However, careful data preprocessing method and sample considerations are required while 

developing model. 
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Figure 6-8: A) Scores plot of different lots of apixaban,  B) Loadings plot of 

PCA analysis of apixaban using LWL-NIR spectrometer. 
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Figure 6-9: A) SNV treated spectra of products from two manufacturing sites. 

Using these data, a PCA model was developed where Switzerland lots were used 

for calibration, and USA manufactured samples were projected on PCA model,  

B) Scores plot of PC1-PC2, C) Plot of Hotelling’s 𝑇2 and 𝑄 residuals, D) Q 

contribution plots. Data were collected using the LWL-NIR instrument.  
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6.3.1.2 Atorvastatin  

Different lots of atorvastatin tablets (SNV transformed and second derivative SavGol 

treated) are shown in Figure 6-10 and 6-11. Unlike apixaban, minimum spectral variations of 

Figure 6-10: A) Preprocessed SWL-NIR spectra of atorvastatin, B) SWL-NIR 

spectra of major components of atorvastatin tablets. 



 

181 

 

different wavelength regions were observed. Major components of these tablets were plotted, as 

seen in Figure 6-10B and 6-11B. 

 

 

Figure 6-11: A) Preprocessed LWL-NIR spectra of atorvastatin B) LWL-NIR spectra 

of major components of atorvastatin tablets. 
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The PCA scores (Figure 6-12A) and loadings (Figure 6-12B) of the SWL-NIR spectra 

confirmed the minimum variations among different batches, as different groups overlapped. Two 

PCs explained 92.6% of the spectral variation.  

Figure 6-12: A) Scores plot of different lots of atorvastatin, B) Loadings plot of 

PCA analysis of atorvastatin using SWL  
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 The PCA loadings and scores for the LWL-NIR spectra are shown in Figure 6-13 . The 

first PC explained nearly 66.85% of the spectral variance, and the second PC explained an 

additional 19.04% of the spectral variance.  

 Figure 6-13: A) Scores plot of different lots of atorvastatin, B) Loadings plot of 

PCA analysis of atorvastatin using LWL spectrometer. 

The two-axis plot of the PC scores does not show any significant clustering in the data. 

The model can be developed using any lots, as no particular attention is required for this product. 
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6.3.2 Multivariate Model Development: Calibration Set Considerations 

Including appropriate samples into the calibration set is an essential element of a 

multivariate method development process. Section 6.3.3. in this chapter evaluated several 

important elements of method development while collecting spectra of commercial products. It 

was observed that spectral variation due to manufacturing site change was prominent. Lot-to-lot 

variability within sites was less than the spectral variability associated with site differences. 

Spectral range was also important to consider, as the degree of variation changed based on the 

wavelength regions. Regardless of the spectrometers used in this study, samples collected from 

multiple batches and multiple manufacturing sites (if available) were used in the calibration set to 

provide a sufficiently broad range of variation to develop a robust target class. Also, tablets were 

scanned with a consistent orientation, as discussed in Section 6.3.2.  

The next section focuses on the model performance of the NIRS authentication method. 

 

6.3.3 Method Development and Performance 

6.3.3.1 Apixaban   

Sample considerations and model development:  The calibration model developed for the 

authentication of apixaban tablets used 150 samples drawn from five production batches including 

data from both production sites. The calibration datasets are summarized in Table 6-3 and Table 6-

4.  
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Table 6-3: Summary of apixaban calibration and validation sets 

 

 

 

 

 

Table 6-4: Summary of apixaban calibration and validation 

 

 

 

 

 

To optimize the model, independent target (samples from unique batches) and non-target 

class samples were used to test the model. One new lot of 5 mg apixaban product was used as 

target class test samples. These tablets were used to ensure the highest specificity of the model. A 

new batch of samples containing a lower concentration of API (2.5 mg) was used as non-target 

class samples to ensure the highest sensitivity of the model.  The SVDD model parameters, both D 

and  were optimized accordingly (Table 6-3 and Table 6-4).  

SWL-NIR  
Calibration Test Val-1 Val-2 Val-3 

Samples (n) 150  60 90 30 30 

Batches (n) 5 2 3 1 1 

Model Type SVDD, SIMCA on Spectra 

Preprocessing SNV + Second derivative + Normalize 

Spectral range (nm) 1550-1950 

D 0.01 

 0.2 

SV numbers 3 

LWL-NIR  
Calibration Test Val-1 Val-2 Val-3 

Samples (n) 150 60 90 30 30 

Batches (n) 5 2 3 1 1 

Model Type SVDD, SIMCA on Spectra 

Preprocessing SNV + Second derivative + Normalize 

Spectral range (nm) 2000-2450 

D 0.2 

 0.2 

SV numbers 3 



 

186 

 

A combination of SNV, second derivative and normalization was chosen based on 

maximum average performance of sensitivity and specificity.  The preprocessed calibration spectra 

are shown in Figure 6-14A. The calibration model used three samples as support vectors (depicted 

in Figure 6-14A as blue spectra). 

The validation data consisted of three sets of samples.  

The first validation set was target-class samples. This validation set (Val-1) consisted of 

90 samples of target class samples from three batches containing apixaban (5mg). These batches 

were manufactured at two different facilities (one in the USA and two in Switzerland).  

The second and third validation sets were non-target class samples.  The second validation 

set (Val-2) consisted of 30 commercial samples containing a low dose of apixaban (2.5 mg). The 

third validation (Val-3) set consisted of 30 laboratory scale samples manufactured at the Duquesne 

University Center for Pharmaceutical Technology (DCPT) using MCC and apixaban. The purpose 

of the third validation set is to provide an additional test of the specificity using samples including 

a similar amount of apixaban (5mg) but different excipient composition.  

Validation Method Performance: Method validation (with a validation set) was 

conducted after the optimization of the model (using a test set). The validation performance was 

evaluated based on the following two key performance criteria: sensitivity and specificity. The 

specificity was tested using different batches of target class samples (Val-1), and the sensitivity 

(ability to reject non-target class samples) was tested using two sets of samples: 1) low dose 

apixaban tablets (Val-2) and 2) lab based simulated falsified products (Val-3). 
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Table 6-5: Validation performance of apixaban calibration model 
 

 
 

Sensitivity 

Val-1 

Specificity 

Val-2 

Specificity 

Val-3 

SVDD 
SWL- Apixaban 0.9111 0.8667 1 

LWL- Apixaban 0.8667 0.7812 1 

SIMCA 
SWL- Apixaban 0.76 0.81 1 

LWL- Apixaban 0.8 0.6 1 

 

 

 

 

During validation, it was observed that this method successfully rejected all samples from 

Val-3 set, while rejection of Val-2 was less obvious. The reason for the difference in performance 

was explained in Figure 6-14 (C and D). It was observed that the Val-3 set (Figure 6-14C) was 

spectrally significantly different from the target class samples. However, Val-2 is highly similar 

to the target class which means that the model failed to reject all samples (Figure 6-14D). It is 

Figure 6-14: SWL-NIR spectra of calibration set with A) support vectors, B) validation set 

1, C) validation set 2, and D) validation set 3. 
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important to mention that while the Val-2 set was from the same manufacturer, and contained 

similar compositions, it was challenging for the model to reject all samples from Val-2. This result 

was confirmed using a diagnostic plot of Hotelling’s 𝑇2 and 𝑄 residuals. All of the Val-3 (cyan 

dots) have high 𝑄 residuals and Hotelling’s 𝑇2 compared to the Val-2 (blue dots) (Figure 6-15). 

The higher values of these two statistical parameters indicated the successful rejection of Val-3 

compared to Val-2. 

 

It was observed that SVDD performed better than SIMCA for authentication of 

pharmaceutical samples. As, adding different manufacturing sites into the calibration set generated 

clusters in the calibration space, SIMCA model suffered to provide optimum performance. 

However, SVDD showed better sensitivity by accepting Val-1 samples, though they were 

generated in two manufacturing sites. Appropriate preprocessing methods helped to improve 

Figure 6-15: A PCA diagnostics plot of validation sets with the 

calibration set. Spectra were collected using SWL-NIRS. 
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performance. It was observed that combination of SNV, second derivative and normalization 

showed the best performance compared to other combination of routines. This preprocessing 

decreased the impact of sources of variability such as sampling variability and correcting for 

pathlength variation. These overall improved model performances.   

Similar performance was observed for LWL-NIR. The results showed comparable patterns 

because spectral behavior and diagnostic statistics were similar, as shown in Figure 6-16 and 

Figure 6-17. 

  

 

 

 

 

 

 

 

Figure 6-16: LWL spectra of calibration set with A) Support vectors, B) 

Validation set 1, C) Validation set 2, and D) Validation set 3 
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6.3.3.2 Atorvastatin 

Sample considerations and model development: For atorvastatin, SNV, 2nd Derivative 

and normalization preprocessing methods were chosen based on the performance. An independent 

test set (defined below) was used to optimize the model performance. Spectra of the preprocessed 

calibration set are shown in Figure 6-18A, along with samples which were selected as support 

vectors (blue spectra). 

Model development for authentication of atorvastatin used 150 target class samples drawn 

from production batches (40 mg). The test set was samples from different batches of product to 

provide independence. Samples manufactured by three other generic manufacturers were used as 

the non-target class product to optimize the model. The calibration datasets are summarized in 

Figure 6-17: A PCA diagnostics plot of validation sets with the calibration 

set. Spectra were collected using LWL-NIR spectrometer. 
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Table 6-6 and Table 6-7. The validation samples consisted of three subsets of samples selected 

from production scale and lab scale samples.  

Table 6-6: Summary of atorvastatin calibration and validation sets.  

SWL-NIR 
 Calibration Test Val-1 Val-2 Val-3 

Samples (n) 150 30 90 90 30 

Manufacturers (n) 1 2 1 3 1 

Batches (n) 5 1 3 3 1 

Model Type SVDD, SIMCA on Spectra 

Preprocessing SNV + Second  derivative + Normalization 

Spectral range (nm) 1550-1950 

D 0.01 

 0.15 

SV numbers 8 

 

 

 

Table 6-7: Summary of atorvastatin calibration and validation sets.  

LWL-NIR 
 Calibration Test Val-1 Val-2 Val-3 

Samples (n) 150 30 90 90 30 

Manufacturers (n) 1 2 1 3 1 

Batches (n) 5 1 3 3 1 

Model Type SVDD, SIMCA on Spectra 

Preprocessing SNV+ Second derivative + Normalize 

Spectral range (nm) 2000-2450 nm 

D 0.01 

 0.2 

SV number 6 
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The first validation set (Val-1) consisted of 30 samples, including one batch of target class 

samples.  As atorvastatin is a generic product, samples available from other manufacturers were 

used as the validation set. Three different manufacturers products (M1-Atorvastatin 40 mg from 

Mylan Pharmaceutical, M2-Atorvastatin 40 mg from Lannett Company Inc., M3- Atorvastatin 40 

mg from Dr Reddy’s Laboratories) were included in the second validation sets (Val-2). The third 

validation (Val-3) set consisted of one batch of laboratory scale samples manufactured using MCC 

with atorvastatin. Validation datasets are summarized in Table 6-6 and Table 6-7. 

Validation Method Performance: Performance of the atorvastatin model was observed 

using three validation sets. The SVDD model successfully accepted all samples in the target class 

Figure 6-18: SWL-NIR spectra of calibration set with A) support vectors, B) validation set 1, C) 

Validation set 2, and D) validation set 3. 
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validation set (Val-1). Although Val-3 was significantly different than the Val-2 samples (Figure 

18C-D) the model successfully rejected other non-target class validation sets (Val-2 and Val-3). 

Among the three manufacturers of Val-2, Man-2 was close to the target class samples whereas 

other alternative class samples (M1 and M3) were demonstrated to reside far from the target class 

samples (Figure 19). Similar spectral behavior (LWL-NIR) of these samples was observed in 

Figure 6-20 and Figure 6-21. Samples collected using different spectrometer  showed good 

performance.  

Table 6-8: Validation performance of atorvastatin calibration models 

  Sensitivity- 

Val-1 

Specificity 

Val-2 

Specificity 

Val-3 

SVDD 
SWL- Atorvastatin 1 1 1 

LWL- Atorvastatin 1 1 1 

SIMCA 
SWL- Atorvastatin 1 1 1 

LWL- Atorvastatin 1 1 1 

 

Figure 6-19: SWL-NIR spectra of calibration sets with three 

manufacturers samples of validation set 2. 
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Figure 6-20: LWL-NIR spectra of calibration set with A) support vectors, B) validation set 1, 

C) validation set 2, and D) validation set 3. 

 

Figure 6-21: LWL-NIR spectra of calibration sets with 

three manufacturers samples of validation set 2. 
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6.4 Summary 

The goal of an authentication technique is to predict target class samples accurately and to 

reject non-target class samples. However, many challenges exist in the development of an NIR 

based classification technique, including the broad spectral features of NIR spectrometers in 

general, and the unwanted sensitivity to physical variability. In Chapters 2 and 3, it was observed 

that moisture is a critical factor to consider during multivariate method development. In the current 

chapter, it was observed that sample manufacturing site change created spectral variation. Spectra 

acquired from multiple manufacturing sites were pooled for qualitative model development. 

Including samples from unique manufacturing sites in the calibration sample set created bimodal/ 

multimodal distribution in the calibration space, violating the assumptions of the traditional 

parametric distribution-based SIMCA method. Hence, these studies used a non-parametric 

distribution-based method, the support vector data description (SVDD) algorithm, provided a more 

robust class. The SVDD method proved to be a useful class-modeling technique for portable NIRS 

to monitor tablet quality in pharmacies. Additionally, including non-target class samples was 

critical to the development of robust multivariate models.  

This study also explored the impact of positioning error. This was effectively mitigated 

using a specific sample orientation system and spectral preprocessing techniques. It was also 

observed that a longer wavelength range spectrum was less sensitive to sample positioning and 

manufacturing site than a shorter wavelength range spectrum. 

This chapter reemphasized the value of using a pertinent calibration model and the SVDD 

algorithm to develop a robust spectroscopic authentication system, as proposed in the hypothesis.   
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7 Chapter 7: Summary 

As the spread of falsified drugs is increasing worldwide, it is often difficult for regulatory 

authorities to surveil falsified products at various locations in the pharmaceutical supply chain. 

Using portable spectrometers (i.e., Near-Infrared (NIR) and Raman spectrometers) may help to 

remove this barrier.  Rapid screening of pharmaceutical products by these analytical tools is an 

effective way to enhance consumer safety. However, the use of such techniques is not 

straightforward due to the multivariate nature of the collected data and the significant variety of 

potential factors influencing the analytical measurements. To overcome the challenge of current 

multivariate methods using spectroscopic data, this dissertation compiled three critical elements 

(see Figure 7-1).  

 

 

 
Figure 7-1: Different elements of this dissertation involved with development of a 

spectroscopic authentication system and accomplished steps (✓). Combination of these three 

areas enabled development of a successful authentication system. (FN: False Negative, FP: 

False Positive) 
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Three elements regarding the project include: 

1) While developing a spectroscopic authentication method, the specific advantages and 

disadvantages of each spectroscopic techniques should be considered by the analyst.  

A variety of NIR and Raman spectroscopic equipment was explored to understand the 

sensitivity of these spectrometers to different physico-chemical variations such as 

moisture and chemical composition.  

2) To achieve consistent performance during routine analysis of pharmaceutical samples, 

calibration and validation sets should include the spectral variation which may arise 

during routine analysis. Moreover, during model development, the analyst should use 

highly similar samples to reduce false positives. If these highly similar falsified samples 

are not readily available, using DOE to generate simulated falsified samples should 

serve the purpose.  

3) Using a support vector machine based calibration method avoids the typical 

assumptions required with more traditional methods regarding data distributions. 

Moreover, the SVDD method was demonstrated to offer improved capability for 

detecting highly similar non-target class samples.  

These elements combinedly explored in different experiments of this dissertation.  

In Chapter 2, a NIR spectroscopic-based class-modeling calibration technique was 

described. While developing a spectroscopic method for detecting false-samples, several 

challenges associated with the method development were addressed.  One of those challenges is 

the sensitivity of spectrometers toward unwanted variabilities such as moisture, manufacturing 

site, instrument parts change, etc. Tablets containing Acetaminophen, MCC, lactose, HPMC, and 



 

198 

 

magnesium stearate were generated using a pilot-scale manufacturing system over different 

seasons of the year. Since the lab did not have controlled humidity conditions, samples generated 

during different seasons were exposed to different humidity levels. Initially, the calibration model 

was developed in the winter season; the model used to predict validation sets was developed in the 

summer season. As the season was different between calibration and validation sets, the model 

failed to accept the target-class samples, indicating a degradation of the model performance when 

moisture variance was unaccounted for. To resolve this, the model was updated to include summer 

samples in the calibration set. However, moisture variance in the newly added samples led to 

significant extrapolation compared to the original experimental domain, defined by the previously 

collected samples (during the winter). Therefore, adding summer samples to the calibration set 

created a binomial/multimodal distribution, violating the assumptions of traditional parametric 

distribution-based SIMCA modeling techniques.  Hence, this chapter suggested using a non-

parametric distribution-based method, support vector data description (SVDD), to develop a robust 

NIR class-modeling technique for the detection of falsified samples. Performance of SVDD was 

evaluated and compared with the traditional SIMCA approach. The SVDD method demonstrated 

superior performance relative to the SIMCA method for detection of falsified samples. Hence, 

when a binomial/multimodal distribution exists in the calibration model, SVDD is a useful class-

modeling technique for monitoring tablet quality. 

In Chapter 3, the influence of moisture variation on the performance of Raman 

spectroscopy for class modeling was evaluated. Although water is a weak Raman scatterer, 

moisture variability has an indirect effect on analytical model performance because many 

pharmaceutical components have artifacts in the form of baseline variation associated with 

fluorescence quenching. This chapter investigated the deleterious effects of water quenching on 
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the prediction accuracy of a multivariate calibration algorithm developed using Raman 

spectroscopy. To demonstrate this phenomenon two sets of tablets were used, 1) lab based 

acetaminophen tablets containing lactose, MCC, HPMC, and magnesium stearate, and 2) 

commercially produced artesunate tablets, which is an anti-malarial agent often falsified by 

fraudulent manufacturers. Tablet moisture variation was introduced by placing samples in a variety 

of humidity chambers. Significant spectral effects arising from fluorescence were identified in the 

Raman spectra due to moisture variation and fluorescence related spectral variability. This caused 

substantial degradation of the prediction performance for target class samples. Thus, the work 

demonstrated that accounting for moisture variation during method development reduced the 

prediction error of the SVDD and SIMCA based class-models.    

Requirement of appropriate non-target class samples during multivariate authentication 

system development was highlighted in Chapters 4 and 5. In Chapter 4, it was shown that to 

enhance spectroscopic performance using the SVDD algorithm, non-target class spectral data are 

critical for model optimization. This is important for the model which is developed to identify 

challenging falsified drugs. It was demonstrated that using non-target class data can further tighten 

the decision boundary around the target class samples, thereby improving model performance. 

Moreover, if the non-target class samples are highly similar to the target class, the model exhibited 

the desired performance. For this study, acetaminophen tablets were collected from different parts 

of the world, which were manufactured by various producers. Tablet size, shape, and weight were 

analogous, and the products demonstrated similar spectral features. Among the nine 

manufacturers’ tablets, samples from one manufacturer were used to develop a target class, and 

the eight other data sets were used for model optimization and validation. The model was 

optimized using one product as a non-target class and demonstrated successful prediction of the 



 

200 

 

other non-target class samples. Furthermore, optimization of the decision boundary minimizes the 

false positives.  

In Chapter 5, predictions models for highly similar non-target class products were 

developed using DOE.  Both NIR and Raman spectrometers were used to scan the samples. It was 

demonstrated that the critical non-target class samples were unique for the two different analytical 

techniques. These DOE based samples were useful to improve the model performance, and they 

resolved the critical issue of limited accessibility to actual falsified drug products. 

The insight gained from Chapters 2 through 5 was used to develop a spectroscopic 

authentication method for use in the health care setting or other remote testing sites.  In Chapter 6, 

portable spectrometers were used to scan different commercial products in two local pharmacies. 

A protocol was developed to collect data from available products. This study also highlighted the 

requirement of careful considerations of calibration samples and the use of  an advanced algorithm 

for the actual modeling. The developed model performed successfully by accepting target class 

samples and rejecting non-target class samples at the local pharmacies in Pittsburgh. 

This dissertation emphasizes the importance of 1) applying critical prior knowledge 

regarding pharmaceutical products, pharmaceutical manufacturing/processing, analytical 

methodology, and chemometric techniques, and 2) the application of a specific modern approach 

to develop a successful spectroscopic authentication system. Combining all these pieces gives a 

unique insight to direct the analyst during development of an authentication method. 
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Future applications of this project will include developing a cloud-based platform. The 

developed model will be stored in a cloud-based server, facilitating effective management of 

models and data for the analyst in the field.  It will enable a global product tracking system, from 

manufacturers to the rural clinics which will address the scourge of falsified drugs. Moreover, a 

combination of an enhanced modeling approach, utilizing critical prior knowledge, will provide 

the prescription for the solution to the current crisis of falsified drugs in the developing countries. 

Also, this can be a potential application for IoT based testing of pharmaceutical products and 

enhanced supply chain integrity in developed countries.  

  

Figure 7-2: A schematic diagram of a possible cloud-based 

data management and model application of spectroscopic 

techniques. 
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