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ABSTRACT 

 

CHARACTERIZATION OF PHOTOACOUSTIC  

FLOW CYTOMETRY DETECTION SIGNALS 

 

 

 

By 

Craig Benzinger Jr. 

May 2020 

 

Dissertation supervised by Dr. John Viator 

 Photoacoustic flow cytometry has been utilized to clinically determine the 

presence of melanoma circulating tumor cells (CTCs). Further investigation was 

conducted into the morphology of detection signals and how they could be manipulated 

to allow for further classification. Novel features were extracted from waveforms that 

appear to have strong classification ability. Neural networks were also used to determine 

classification potential and the creation of feature mapping for future unsupervised 

classification. Detections were expanded from single waves to a time dependent multi-

wave event. Waveforms were also determined to be of non-parametric distribution, 

allowing for classification by neural network but not allowing for reduction into feature 

maps with techniques used in the study. 
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Introduction 

Objective 

Previously, is has been demonstrated that photoacoustic flow cytometry is an 

effective method for detection of circulating melanoma tumor cells. By exciting the cells 

contained in a patient’s liquid biopsy using laser energy, acoustic signals characteristic to 

melanoma would breech preset thresholds determining cell presence. This would allow 

for detection and subsequent enumeration of tumor cells present in the biopsy. Melanoma 

cells are able to be detected without prior staining due to the inherit pigment contained 

within the cells. It will be demonstrated in this research that the accuracy of this method 

can be improved through more sophisticated data analysis techniques. By expanding the 

amount of data analyzed and employing multiple machine learning techniques, detection 

of melanoma CTCs can be accomplished with higher accuracy than previous methods. To 

summarize the objective of this work, an investigation was devised to determine the 

ability to classify photoacoustic signals from cancel cells. This investigation leveraged 

both neural network and fundamental analysis techniques. 

Circulating Tumor Cells  

Circulating tumor cells (CTCs) are often symptomatic of a stage IV cancer 

diagnosis. Multiple cancers have been tested including colorectal, pancreatic, and lung 

cancer. In all studies it was determined that CTCs were an efficient tool for a stage IV 

cancer prognosis1,2,3. CTCs occur when the cancerous growth has advanced into the 

vascular or lymph system. Often the cancer will degrade when in contact with these fluid 

systems and cell particulates will detach from the main tumor.  
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Fig 1. Figure shows detached tumor 

cells migrating to nearby 

vasculature resulting in CTCs. 

Resulting CTCs migrate through 

fluid systems to develop secondary 

tumors, resulting in metastasis. 

 

 

In this event cancerous cells will spread throughout the body using the vasculature 

resulting in metastasis, the growth of additional tumors (Fig. 1). CTCs are a highly 

studied area and are hypothesized to be a great predictor of relapse from remission4. The 

fact stands that any person who has developed cancer will have CTCs in their fluid 

systems regardless of remission status5,6. During chemotherapy treatments, CTCs will 

also be measured to assess the effectiveness of the treatment7,8,9. At this point there has 

been no significant evidence that switching treatments due to increase or stagnant levels 

of CTCs post treatment has led to an increase in remission10. 
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At this moment there is only one FDA approved CTC detection machine, 

CellSearch. Detection of CTCs has been covered by a wide array of techniques, ranging 

from assays to microfluidics11. Though these techniques are partially effective, 

refinement of detection is still an on ongoing goal. Most importantly these techniques are 

not yet accurate enough to employ without secondary confirmation12. Multiple factors 

interfere with precise isolation, most of which are tied to epithelial‐to‐mesenchymal 

transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET)13. CTCs 

once detached from their tumor of origin can undergo EMT and eventually undergo the 

reverse process of MET when attaching to a new site in the body. During these periods 

CTCs can be missed during detection due to their possible dichotomy. Detection 

techniques that seek to mark or detect only epithelial cells would miss CTCs in their 

mesenchymal stage and vice versa. This dichotomy has resulted in CTC detection 

techniques employing larger nets to collect all possible permutations of CTCs, which can 

also lead to a higher amount of false detections.  

 The current focus of the field is CTC capture and analysis. Succeeding the 

detection of CTCs, the issue that persists is the subsequent analysis. Often the techniques 

used will chemically alter or denature the cells captured. This has detracted from the 

ability to further understand the mechanisms by which CTCs operate and evolve. For 

example, detection and enumeration of CTCs before and after chemotherapy could 

further define the effectiveness of the treatment, but with the ability to isolate and further 

analyze CTCs one could possibly understand the mechanism of resistance to the drug 

14,15. Furthermore, CTCs detected in a relatively health individual, if intact, could lead to 

prognosis of which cancer the patient is suffering. 
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Prominent CTC Methods 

RT-PCR is a method used in the detection of CTCs but not in their isolation. Prior 

to performing RT-PCR CTC enrichment is suggested. RT-PCR seeks to classify cells as 

malignant or normal using a range of gene expression markers. RT-PCR is a highly 

sensitive technique, efficient in CTC detection. RT-PCR can also be used as a post-

detection method to determine cancer type and specific pathology of cancer cells. The 

largest barrier previously was the ability to only assay a single gene. However, through 

multiplexing is was determined that up to 4 genes can be assayed in a single sample16. 

Again, this method is effective in detection and even classification of CTCs, however, 

prior isolation and enrichment is required. 

Magnetic separation, also called immunomagnetic separation, can fall under two 

separate categories: positive and negative enrichment. Immunomagnetic separation is the 

process by which cells are bound by ligands, such as antibodies, which are already 

attached to ferromagnetic beads. These cells, now bound to beads, are passed through a 

magnetic field charging their beads. Downstream the cells are pulled to one side of the 

flow using an oppositely charged magnet and are collected separate to the non-bound 

cells. Negative and positive enrichment refers to the cells which are being bound. 

Positive enrichment are the cells that are being analyzed, in this case CTCs. A common 

binding agent would be the EpCAM antigen. Negative enrichment would be binding the 

non-desired cells, non-cancerous cells, and common the CD45 epithelial antigen is 

utilized. 

When referring to CTCs filtration, it is implied that one means filtration by size. 

CTCs by their nature are larger than normal cells in blood. Therefore, passing blood 
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through a filter, or even microfluidic device, allows for the separation of CTCs from 

normal blood particulates. Naturally, this is a passive process and therefore is less 

selective in cell separation. Also, this is only a form of isolating CTCs and requires 

further detection downstream to determine cell count. Though this method is less 

sensitive, it is a fairly cheap and robust method for CTC isolation. This technique fills the 

need of preceding enrichment in methods such as RT-PCR. 

Acoustophoresis is a separation technique facilitated by acoustic radiation 

pressure. Matter is affected by the force of acoustic radiation when acoustic waves 

interact with an object in non-matched acoustic mediums.  This is to say that when an 

acoustic wave is pushed towards an object that has a separate acoustic impedance than its 

surroundings. This is due to the pressure exerted on the object due to the difference in 

pressures that create the sound wave. This phenomenon has been exploited in filtration 

methods. If two particles exist in a mixture, moving those particles into a medium in 

which the acoustic impedance matches one but not the other allows for the application of 

acoustic wave separation. The particle that is not acoustically matched will be moved, by 

acoustic radiation pressure, separating it from the other particle. This, again, allows for 

positive and negative enrichment dependent on the particles that are acoustically matched 

to the medium. Positive enrichment being the matching of CTCs and negative being the 

matching of other particulates, leaving the CTCs. 
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Photoacoustics 

Photoacoustics rely on the principle of thermal expansion and contraction. When 

a laser interacts with the particles in the fluidic system a specific amount of energy is 

transferred to the particles in the form of heat. As the particles warm, they will expand 

and after being removed from the laser’s light they will cool and contract. This expansion 

and contraction, when done in a fast-enough matter, will produce a pressure wave that 

could eventually be collected by a transducer.  There are many parameters in which 

photoacoustics are sensitive and are key to obtaining viable results. Most important to 

note is the energy transferred to the particle. The energy released by the laser must be 

high enough to elicit thermal expansion from the sample particle. However, it must be 

low enough to allow the particle to cool and contract in a manner that a recognizable 

pressure wave can be produced. This energy transfer is not solely reliant on the laser’s 

produced energy but, also relies on the light absorption qualities of the sample particle. 

This will often lead to tagging or dying particles to allow for easier energy transfer. 

Finally, the pressure wave produced by the particle must be as unimpeded as possible in 

its travel from the sample to the transducer. Matching the acoustic impedance of the 

sample’s solution and the surrounding area connecting the samples to the transducer is 

paramount to collecting viable samples. 

Photoacoustics have been able to utilize the thermoacoustic response in cells to 

produce images. By utilizing the thermoacoustic effect expressed by light absorbing 

particles, researchers have been able to construct images of vasculature and other 

morphologies below skin surface. Molecules that are able to absorb light are used to 

produced sound waves below the skin. These sound waves are collected and 



 xiv 

reconstructed. Algorithms determine placement of pixels within a defined image space 

which is pieced together through acoustic response. This technique has been highly 

effective when utilizing optically active molecules such as hemoglobin or lipids17. 

Photoacoustic Flow Cytometry is a system derived from tradition flow cytometry 

set ups. In traditional flow cytometry there are three main components: a light source, 

fluid system, and sensors. The overall process can be condensed down to particulate 

matter in which analysis is desired will be flowed through the fluidic system. The light 

source, often a laser, is focused onto a single section of the fluidics. As the particles pass 

through the fluidic system the photons produced by the laser will interact with optically 

active particles, either passing through or scattering off the particles. The sensor will then 

collect this information and send it for processing. Historic bench samples can be 

compared to the collected samples in the case of identifying unknown particles and or 

comparing known particles18.  

 Photoacoustic flow cytometry can be considered a derivation from this process. 

Tradition flow cytometry would fall under the category of electromagnetic analysis. This 

is because the data collected and analysis conducted is centered around the photons that 

are either scattered, excited, or inhibited by the samples. Photoacoustic flow cytometry is 

considered acoustic analysis, meaning the data collected and analyzed would be on sound 

waves. Photoacoustic flow cytometry is conducted using the same process as traditional 

flow cytometry. However, the sensor used is a transducer rather than light capturing 

sensors. Where photosensors convert light energy to electrical energy, transducers 

convert sound waves to electrical energy19. 
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A photoacoustic flow cytometry system is similarly composed to a traditional 

flow cytometry set up. A laser’s energy is focused into a detection chamber. The 

detection chamber facilitates the interaction of the laser energy and liquid sample. In the 

case of the system used, a syringe pump supplies two phase flow into the detection 

chamber. After excitation of the sample, acoustic signals are collected by a transducer, 

amplified and passed into an oscilloscope for further processing (Fig. 2). Important to 

note is the detection chamber. The detection chamber is built specific to the focus 

distance of the transducer used. It is also filled with an acoustically matching medium to 

facilitate easier signal transfer. The fluidics housed in the chamber must be both 

acoustically and optically inactive to least inhibit energy transfer to and from sample. 

 

Fig 2. Schematic of Photoacoustic Flow Cytometry system composition. 

System depicted is the specific system used in the following experimentation 
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A 

B 

 
Fig 3. Waveforms of both noise and a detection are depicted. The y-axis of both graphs depicts the amplitude of 

the waves (mV) and the x-axis depicts the position (pos) of samples within the recorded signal. Top figure (A) 

depicts an acoustic signal from a clean chamber. Note that a large waveform is detected around position 0. This 

is the trigger used in laser pulsation. The second waveform around position 20000 is the “backwall” waveform. 

This is created from laser photons interacting with the back of the detection chamber. The bottom figure (B) is 

the same system setup but with sample detection. Note that the trigger and backwall signals remain locked in 

position. A third waveform present in the signal shows the possibility of detection. These waveforms are lock in 

positions slightly in front of backwall waveforms. 
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Signals produced by the system are locked to system structure. The initial reading 

in the waveform is the noise produced by the laser’s trigger. The final reading in a signal 

is the laser energy interacting with the backwall of detection chamber (Fig. 3.A). When a 

sample produces a signal the waveform changes directly in front of the backwall reading 

(Fig. 3.B). The position of all these waveform origins are locked due to the distance 

traveled by the laser’s photons. Distance between the sample waveform and chamber 

backwall reading is based on the physical distance between the sample present in the 

detection chamber and the back of the chamber opening.  

Photoacoustic flow cytometry has been manipulated to present the best technique 

for single cell detection and capture of CTCs. Two phase flow has been introduced to the 

system to further separate tested samples. Alternating flow of air and sample create 

“slugs”, which are tested for the presence of cancer cells. The samples that register 

acoustic signals are collected and were individually tested for pretense of melanoma 

cells20. This method was eventually updated to use mineral oil. Using immiscible liquids 

allows for less problematic fluidics set up while maintaining sample separation. 

 Photoacoustic flow cytometry has also been manipulated to allow for cell 

detection outside of melanoma cells. Recent research has been conducted into the 

possibility of detecting bacterial cells. This detection is facilitated by bacteriophage 

labeling. Bacteriophage that have been processed to trade their genetic material for dyes 

are mixed within a sample. Bacteriophage that bind to specific bacteria are given dyes 

unique to another bacteriophage-bacteria pair. When mixed, the presence of bacteria 

would cause bacteriophage to bind, effectively marking the bacteria. When the mixture is 
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processed aggregation of a specific bacteriophage will result in a unique acoustic 

response. This would signal the presence of a specific bacteria within the sample21. 

 

 Speed Capture 
Efficiency 

Labeled Single 

Cell 

Automatic Scalable 

Immunomagnetic 

Positive Enrichment22 
9 

mL/h 

70%-

90% 

Yes 
(EpCAM) 

Yes Yes Yes 

Immunomagnetic 

Negative 

Enrichment23 

4 

mL/h 

79% No No Yes Yes 

Filtration 8-μm 

pores24 
45 

mL/h 

90% No No Yes Yes 

Microstructure 8-μm 

cavities 25 
12 

mL/h 

80%-

97% 

No No Yes Yes 

Photoacoustic 30 

mL/min 

90% No Yes Yes Yes 

 

Artificial Neural Network 

Artificial neural networks (ANNs) are mathematical models that are composed in 

such a structure that they mimic the brain neurons of animal subjects. ANNs are 

composed of multiple interconnected layers composed of units called nodes. Nodes are 

functions traditionally comprised of a weight and activation. Information entering the 

node is affected by the weight, usually through a function inherit to the node type, and 

then applied to an “activation function” that determines the node’s output. This is meant 

to resemble the process by which brain neurons accept, and potentially sum signals, 

before deciding to fire their own action potential. The layers that accept the information 

to be analyzed and output the model’s resultant are known as the input and output layers, 

respectively. In deep learning models multiple layers, known as hidden layers, are placed 

between the input and output layers (Fig. 4). These hidden layers serve as additional 

signals to further the model’s accuracy. 

Table 1. Different attributes of common tests used in CTC experimentation. 
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Once information enters an ANN, the data is summed and manipulated by each 

node in the input layer. Each node’s output is then passed to the subsequent layer’s 

nodes. In “fully connected” networks, each node passes its output onto every node in the 

subsequent layer. When a nodes output curls back to affect the same nodes future outputs, 

the network is known as a “recurrent” network. The weights are manipulated in each  

node to produce the networks output, meaning the training relies on manipulating nodes 

weights to match desired examples. This process is known as “back-propagation”, the 

error between the ground truth and the network’s output is divided among the node’s 

weights mutating the overall model and shifting the output closer to the ground truth. 

This process resembles that of gradient optimization. To prevent oscillation within the 

model’s weights, the concept of momentum is used in the back-propagation optimization 

Fig 4. Traditional display of ANN construction. Input and Output layers interact with the outside while 

hidden layers only interconnect to model components. 
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function. Momentum considers the last change in a model’s nodes as well as the current 

error26.  

The nodes that make up networks determine the processing done on the input 

data. Multiple different versions of network nodes exist to accomplish different tasks 

dependent on the initial information introduced into the model. Within this paper two 

types of nodes are used: dense and convolutional. A dense node is the simplest form of a 

feed-forward network. A dense node’s function multiplies the input data by the node’s 

weight, adds any potential bias, and passes the resultant through the predetermined 

activation function. Convolutional neural networks (CNNs) employ both convolution and 

pooling nodes. Convolution nodes employ the mathematical process of convolution in 

place of the dense nodes weight multiplication. This is used to reduce overfitting in the 

model’s weight calculation. Pooling nodes work to reduce the dimensions of the 

information in the network. Pooling nodes reduce data by pooling the information of 

multiple nodes into a single node in the following network layers (Fig. 5). CNNs have 

been key players in image recognition models due to their ability to reduce the number of 

weights in a model’s schema. Processing a 300x300 pixel in a dense neural network 

(DNN) would require the image be flattened resulting in 90,000 inputs and individual 

weights. By running an image through a CNN, weights can be multiplied to the image 

through convolution resulting in a single weight per node27.   
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Purpose of Thesis 

Photoacoustic flow cytometry has demonstrated success in detecting CTCs28,29. 

However, a more robust methodology can be comprised that allows for greater detection 

descriptions. By compiling a timeseries of acoustic signals, wave propagation can be 

determined. Referring back to the principles of photoacoustic, these waves are produced 

by the accumulation of thermal energy and expansion of the cell wall. Thermodynamics 

would suggest that these waves be determined by the ability of the cell to absorbed 

thermal energy and the elasticity of the cell wall. Characteristically, one would assume 

the walls in different cells are unique based on their composition. Furthermore, the 

contents of the cell would also determine its ability to absorb and disperse the energy 

produced by the laser. On a base level this has already been demonstrated by the lack of 

Fig 5. Traditional display of CNN construction. Convolutional layers reduce 

memory load by applying weights over a kernel. Pooling layers further reduce layer 

dimensions. 
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stain used on the melanoma cells due to their natural pigment. The determining factor of 

the following experiments would be whether or not the cells have distinct enough 

characteristics to appear in acoustic information that can be translated by computational 

methods.  

 Regardless, neural network methods can be applied to improve the techniques 

already used in photoacoustics. Currently, the methodology for determining detections 

are thresholds. This allows for false detections in the case of debris and missed detections 

in the case of signals that fall below the magnitude of the back wall. By employing better 

post-processing techniques smaller detections can be captured allowing for finer 

detection accuracy. Employing deep learning techniques can also allowing for detection 

probability. Translating this into clinical benefits, photoacoustic flow cytometry can be 

upgraded into a quasi-analysis method of CTCs. With improved deep learning 

algorithms, photoacoustics could be used in a clinical setting for early detection CTC and 

disease progression analysis. With the ability to quantify CTCs in a higher-level method 

such as photoacoustics, preliminary results could be more descriptive and accurate 

allowing for faster intervention. Photoacoustics, with improved analysis, could move into 

other pathology detection spheres. If cell wave propagation on our current technological 

level is based on cell composition, that would suggest that different cells would produce 

characteristic waves. Allowing for the differentiation of cancer cells and other cell types. 
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Chapter 1 

Materials and Experimental Parameters 

Particles 

Two types of particles were used in the following system analysis. Black dyed 

microspheres 0.20µm (Polybead Polysciences Warrington, PA) and HS936 human 

melanoma cells (American Type Culture Collection CRL-7687 Manassas, VA). Black 

dyed microspheres were chosen due to their use in system calibration. In previous 

experiments, to prepare a chamber for cell testing a strong concentration of microspheres 

were flown prior to data collection. The microspheres were able to induce a large 

response, similar to responses shown by cancer cells, and were definitive enough to 

assume a prepared and cleared chamber. The microspheres were suspended in a neutral 

density solution to create a density matched medium in which the cells would not 

aggregate prior to signal detection. Dilutions of microsphere concentrations were made 

and prior to testing cell counts were confirmed via hemocytometer. 

HS936 melanoma cells were chosen due to prior experimental success in eliciting 

photoacoustic detections30. HS936 were passaged in 3mL fetal bovine serum (American 

Type Culture Collection Dulbecco's Modified Eagle's Medium Manassas, VA) dosed 

with penicillin and streptomycin, to ward off bacterial contamination during passaging. 

Cultures were resuspended in a neutral density solution to create a density matched 

medium in which the cells would not aggregate prior to signal detection. Dilutions of cell 

concentrations were made and prior to testing cell counts were confirmed via 

hemocytometer. 
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Photoacoustic Flow Cytometry Setup 

Nd:YAG laser (Litron Nano, Bozeman, Montana) coupled into a variable beam 

splitter (VA5-PBS252 Thorlabs Newton, New Jersey), reducing output from 4mJ into 

two equal 2mJ beams.  Resulting beam is coupled to a 1000μm, 0.39 numerical aperture, 

optical fiber (Thorlabs, Newton, New Jersey).  Laser beam was composed of 532 nm 

laser light, pulsed at a 5-nanosecond rate. The laser beam energy coupled through the 

optical fiber was maintained and measured from to 2 mJ for experiments. Laser light was 

directed to a quartz tube (Quartz 10 QZ,124Charles Supper, Natick, Massachussetts) with 

10μm thick walls.  The 10μm thick walls allow the propagation of ultrasonic waves, as 

well as providing an optically transparent pathway for the sample to flow through.  

Optical fiber was placed 5 mm from the quartz tube to create a detection volume of 

0.04μL. A 2.25 MHz transducer focused on the quartz sample tube was fitted to the base 

of the flow chamber.  The internal volume of the chamber was filled with Sonotech 

LithoClear acoustic gel (NeXT Medical Products Company, Branchburg, New Jersey) to 

provide a medium for the propagation of acoustic waves.  Syringe pumps were used to 

create an alternating flow of sample and mineral oil equal to 60/min flow rate.  The 

introduction of sample and the immiscible mineral oil induced two-phase flow. Two-

phase flow was employed to allow for future collection of the samples for further 

analysis, while eliminating the possibility of samples becoming stuck or delayed inside 

the tubing.  Signals were amplified with a gain of 50 using a Tegam 4040B amplifier 

(Tegam, Inc., Geneva, Ohio) and sent to a desktop computer running a customize python 

program. The python programed served as the data collection and differencing detection 

method modality. This flow chamber setup served as the excitation and acoustic wave 
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collection device. Signal is collected by the transducer and transferred to an amplifier 

(Tegam 4040b) which multiplies the signal 100 times. A signal sample is collected every 

50 milliseconds. Each sample is composed of 25000 data points that correspond with the 

laser light’s speed from the laser to the back wall of the chamber. Hallmarks of a signal 

are the trigger wave and backwall wave. The backwall is created by the laser light 

interacting with the back of the chamber structure. Detection pulse exists immediately 

prior to the backwall signal. Detection pulses are location based and will remain locked 

in the single position that corresponds with their physical location in reference to the 

photons time of flight.  

Custom Programming 

Custom programming was written to replicate a previously LabView based 

program. The translated program, developed on a Python framework, replicates the 

traditional detection strategy and employs a secondary detection strategy for comparison. 

By using the traditional detection method as a standard, effectiveness of differencing 

detection methodology can be assessed. The tradition detection strategy was a dual 

threshold-based strategy. The signal received from the transducer was based on the 

manipulation of an AC signal. Therefore, acoustic waves could disrupt the base signal in 

both positive and negative directions. This created cause for dual thresholds both based 

on a positive and negative .01 reading. Signal sample was reduced to readings 

immediately preceding the backwall signal and top and bottom thresholds were manually 

adjusted to account for noise strength. Adjustments are insignificant to overall detection 

thresholds.  
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  A secondary detection methodology was developed to improve upon the 

traditional method. A sample signal was again reduced to the sample points immediately 

preceding the backwall signal. The absolute difference between the current and leading 

signal was calculated and any change over .002 was assumed to be a wave change. A 

signal was assumed to be booked ended by two wave changes, initial propagation and 

signal rectification. This assumption was based on empirical observation (Fig. 6). 

Detections were based on the improved detection philosophy. This is due to the 

problem of saturation. In instances of high concentrated microsphere sampling, multiple 

microspheres can be present in a subsample at a single point in time. This saturates the 

transducer and changes the overall sensing environment (Fig. 7). Signals would change 

from manipulating a basic noise signal to a saturated noise signal. Both environments 

display a detection, however, sub detections arise within the saturated noise signal and 

can be further classified. To allow for detections of these sub signals, the improved 

differencing methodology was devised. Both detection methodologies were practiced on 

the sample signals and were later compared.  
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Fig 6. Display of standard deviations of multiple signal samples in time 

series. Marked events are changes in deviation attributed to signal 

propagation and signal rectification. 

Fig 7. Saturated waveform. Similar in visual to a detection, 

saturated waveforms remain in this shape over multiple samples 

due to particles creating a constant base signal. 

Sample in Sequence 

SD 
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Chapter 2 

Experimental Procedure 

Initial particle concentrations were determined prior to all sample runs. Each 

sample produced consisted of a single milliliter of fluid, flowed through the system in 

two phase flow with mineral oil. Each sample syringe was primed with a small amount, 

less than half a milliliter, of mineral oil to produce a complete seal with sample and 

plunger. All samples were suspended in a solution of respective neutral density buffer to 

prevent aggregation prior to testing. Laser energy was tested and confirmed to be 2mJ of 

532 nanometer light. Acoustic gel within chamber was de-bubbled by hand to produce 

the path of least impedance for the acoustic signal and reduce debris noise within 

captured waveforms. All tests were run in the same timeframe and theoretically the same 

acoustic gel composition. This was done to reduce the variation in noise between sample 

runs. Test concentrations of the highest quantity cell count of both HS936 and 

microspheres were run prior to recording. This was done to confirm the efficacy of signal 

production from the sample cells. 

Twelve trails were run in alternating order. Six trails of different dilution HS936 

cells and six trails of different dilution microspheres. Trails were conducted in 

descending particle concentration order, highest concentration of particles to lowest 

concentration. After each run PBS was flushed through the system to determine clean 

tubing and a clean chamber. Chamber cleaning was visually confirmed by signal 

normalization. Samples for HS936 and microspheres began at 375,000 cells per milliliter 

and 300,000 particles per milliliter respectively. Each trail particle concentrations were 

halved. The detections were recorded for the top three concentrations for both particle 
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types. In total 3,350 separate waves were detected, 1,368 HS392 detections and 1,982 

microsphere detections. 
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Chapter 3 

Methodology of Post Analysis Techniques 

Dense Neural Network Classification 

The overall goal of this study was to assess the possibility of classifying CTC 

signals from the signals of other particles. Thus, increasing the accuracy of photoacoustic 

CTC detection by eliminating false positives. Neural networks were leveraged as a 

primary line of attack in this investigation. Neural networks, in a classification 

construction, train themselves to assess every aspect of input signals and best classify 

based on provided information. By giving the networks the raw data and their ground 

truths, any possible differentiation in the signal can be exploited through training. Dense 

neural networks (DNN) are best equipped to handle one dimensional data. The peak 

signals, signals of the highest response, within the recorded events were parsed and 

assumed to be the representative sample. These samples were introduced to a dense 

neural network to assess the possibility of single signal classification. It is important to 

note that in every neural network case there was preprocessing of data before 

introduction into the network, except for the case of DNN classification. Pre-scaling of 

the signals produced no reliable outcome in preliminary exploration. The assumption 

made was that there are no real differences inherit in HS936 and microsphere single 

sample signals other than magnitude (Fig 8). Autoencoder constructions of DNN 

networks were also tested and will be further explained later in the paper. 
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Fig 8. Comparison of HS936 and Microsphere signals before and after scaling. 

Peak raw signals maintain similar morphology while differing in amplitude. After 

scaling signals are indifferentiable. Amplitude is measured in mV; “Samples” 

refers to the data point’s position within the larger signal. 
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Convolutional Neural Network Classification 

Convolutional neural networks (CNN) excel in image processing. The nature of 

the event signals, though time dependent, can be manipulated into an image. The images 

can be viewed as heatmaps but are better displayed in surface plot constructions. To 

eliminate the potential of oscillation within the model training all data points within event 

signals are squared. This removes the potential for oscillation around zero and amplifies 

the acoustic waves while lowering noise. Smoothing is applied over every sample within 

the event. This further removes noise and adjusts the digitized wave to a more natural 

analog formation (Fig. 9 & 10). Initial hypothesis assumes CNNs would have greater 

classification ability than DNNs. Though the peak signal of an event may be 

representative, including the surrounding events allows for consideration of wave 

propagation. 

Autoencoder Construction and Usage 

Both DNN and CNN autoencoders were developed to assess inherit differences in 

wave morphology. Autoencoders efficiently reduce the dimensionally of input data. If 

any difference were to exist within the HS936 and microsphere wave forms, two different 

clusters would form in the resulting graph. Further algorithms could be run on the new 

data, such as centroid nearest neighbor algorithms, to determine further classification. 

This is one of the key points of discovery within the following experiments. Neural 

networks are powerful enough to devise classification by leveraging non-replicable data. 

Also, even if classification is possible, new models would need to be built and trained for 

each new particle that one would desire to classify. Classification models are the more 

robust and realistically the only reliable way, aside from mathematic methodology, to  
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Fig 9. Detection event before and after squaring in heatmap form. 
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Fig 10. Detection event before and after squaring in surface plot form. 
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confirm unsupervised classification in a clinical sense. However, from a research 

standpoint, autoencoders offer much more information about that particles than merely 

classification. By developing an autoencoder model, a potential feature map can be 

devised on which other waveforms can be placed. By running an untrained signal through 

the model, that is neither HS936 nor microsphere, a point would be placed based on some 

inherit waveform characteristic. By determining the characteristics on which the 

waveforms are reduced, a classification map of cell response could be developed. 

Allowing for a future unsupervised classification of particles. 

Neural Network Bootstrapping 

Bootstrapping is a common data mining technique that allows for statistical 

determinations to be derived from smaller amounts of data by random selection with 

replacement. By resampling data from an initial population, a secondary representative 

population can be established and assumed similar enough to the original data to make 

further assumptions. A key problem with this type of inference is the potential of 

representation saturation, there may be some samples that are represented higher in the 

original sampling than in the true population. By bootstrapping, that representation can be 

over assumed, and untrue inferences can be drawn.  

In an attempt to discern overrepresented features within waveforms, 

representation saturation is leveraged by randomly producing multiple machine learning 

models and testing their ability to classify signals. Neural networks are intentionally 

tuned to learn off of specific datasets. However, in the instance of exploratory 

classification, by utilizing randomly generated neural networks one could assess the 

robustness of a dataset’s inherit features. If classification is possible, that suggests a 
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strong inherit difference in tested signals that should be further explored for fundamental 

structural differencing. Restrictions by which the models were developed can be found 

within the supplementary information. 100 randomly generated models for both 

constructions, classification and autoencoding, were developed for both DNNs and 

CNNs. 

Fundamental Analysis 

Parabolic wave reconstruction was done to establish a high-fidelity waveform. 

With a higher fidelity dataset, fundamental analysis was done on waveform morphology. 

By mutating techniques used in mass spectrometry, specifically the concept of peak 

resolution, novel values were obtained and could serve as the underpinning of neural 

network classification. Parabolic extensions were accomplished in both array dimensions 

beginning first with samples points then event samples. This was done to create a stable 

base on which a larger extension assumption was calculated. Each dimension was 

extended by 100 times their original length. Parabolic extension was chosen based on the 

assumption of laminar wave propagation. The final reconstructed wave in the sample 

direction was pooled by a kernel of 2,100. Specifics of the extension algorithm are found 

in the supplemental material. 
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Chapter 4 

Results of Network Classification 

DNN Classification 

Single peak DNN classification was used to determine the possibility of single 

wave classification. Non-scaled max peak signals were chosen from event detections as 

the representative wave form within the event. Base DNNs were constructed to assess the 

most viable structure from which model randomization could occur. DNNs were trained 

to classify representative signals, cancer signals being trained as scoring one and 

microsphere signals trained as scoring zero. Rectified linear units (ReLU) were chosen as 

model activation functions to map results between zero and positive infinity. This 

mapping was chosen to allow the model to express percent chance of classification. 

Outputs from the model would represent the percentage chance of being classified as a 

HS936 cell signal. Overall model performance was calculated by pure success, number of 

samples that represent ground truth divided by total number of samples. The mean 

performance in each trail of all models appeared to score relatively high on with a pure 

success calculation (Fig. 11.A). However, viewing the distribution within model scores 

revealed a wide range of variation. This would suggest instability in model structure or 

data composition (Fig. 11.B). Prior observation suggests a lack of difference between 

scaled signals, creating a need to classify unscaled signals. Peak signal distribution shows 

small variation range with high similarity between trails. This would cause model 

confusion in signal differentiation. 



 16 

 

  

 

  

S
u
ccess S

co
re 

HS936 Trial 

1 

HS936 Trial 

2 
Microsphere 

Trial 1 

Microsphere 

Trial 2 

S
u
ccess S

co
re 

HS936 Trial 1 HS936 Trial 2 Microsphere 

Trial 1 

Microsphere 

Trial 2 

Fig 11. Average success ratings for all randomly generated DNN model for single wave 

classification displayed promising results. (A) However, the distribution of the model 

scores suggests alternation in model success, some highly accurate in cancer 

classification and some highly accurate in microsphere classification. (B) 
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Fig 12. Sorting the models based on cell type classification success and polling the top 20 models 

displays alternating nature of testing success. Near half the models trained to accept all signals 

above differencing threshold of 50%. Showing high success in cancer classification. 
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Fig 13. The microsphere-based model grouping pulled all values below 50%. 
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Further investigation revealed models were almost evenly split between favoring 

cancer or microsphere wave morphology (Fig. 12 & 13). Selecting the top 20 highest 

scoring models sorted by HS936 classification success depicts a model that pulled signal 

score above classification threshold (50%). By pulling all signals above or below the 

signaling threshold, a model with high success in either cancer or microsphere categories 

would be created. This would cause the misrepresentation of success in overall model 

calculations. Polling top 20 microsphere score models shows a similar but opposite 

response.  

 What is of note in the models, though unable to accurately classify based on a 

single wave peak, is the pull of signals during classification. In both cancer and 

microsphere model’s cell types are not completely confused. Though the features 

detected are not strong enough for efficient classification, modeling shows distinctive 

differences within peak waves (Fig 14). However, this difference could be represented by 

the magnitude of each wave type, due to the lack of pre-scaling. Evaluation of single 

wave distribution does not show significant distribution shift in magnitude, but previous 

scaled tests suggests strongest differencing relies on wave magnitude (Fig 15).  
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Fig. 15. Investigation of wave point distributions showed no notable shift in magnitude, suggesting pull 

factor relies in wave morphology. 
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Fig. 14. Though unsuccessful in direct classification model distributions suggest novel differencing within 

peak waveforms. Horizontal line in graph depicts difference threshold 50% (.5). Though cancer models pulled 

all values about detection threshold, microsphere samples are notably spaced from cancer samples. (A) The 

same response is observed in microsphere model with cancer samples pulling closer to classification 

threshold. (B) 
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CNN Classification 

CNN classification was used to assess the potential of event classification. By 

including the surrounding signals of a peak wave, the hypothesis is that wave propagation 

would be including in feature classification. Similar to DNN classification, ReLUs were 

used as the activation function and outputs were tied to positive values to represent 

percentage chance of classification. Unlike DNN classification, input event signals were 

smoothed and scaled. Smoothing the signals reduces digitization of the signals and the 

potential of noise being chosen as a feature for classification. Based off pure success 

calculations of 100 CNN models, model classification is improved with surrounding 

event inclusion. Analysis of variation shows overall calculations are consistent with 

model success distribution (Fig. 16).  

 To assess the possibility of selectivity, top 20 models for both HS936 and 

microsphere success were checked. Selectivity was again observed, present assumption is 

that models chose a signal to act as a base by which difference was calculated. Selectivity 

in this case was not detrimental in overall classification (Fig. 17). Models based on 

microsphere classification, assumed to be models with higher microsphere classification 

scores, scored much lower on HS936 classification than the opposite case. This suggests 

models in which HS936 are interpreted as the base signal are superior for classification. 
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Fig 16. 100 randomized CNN classification model success calculation. Average result and 

distribution. 
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Pull during classification was again present suggesting similarity in wave 

morphology (Fig. 18). The possibility of wave magnitude, though inputs were scaled, 

could present as the pull factor. The difference in pull factors between DNN and CNN 

classification could be the overall points observed. With the larger array of data, overall 

event magnitude could be diluted and therefore model pull lessened.  

 

 

 

 

 

 

  

Fig 17. Left graphs depict top 20 cancer models and right graphs depict top 20 microsphere 

models. Success distribution shows selectivity but model success is much less effected. 
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Fig 18. Pull is still present in classified samples, just to a lesser degree. Assumption is the 

amount of data used in CNN classification diluted pull factors when training. 
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Chapter 5 

Results of Autoencoder Networks 

DNN Autoencoder 

Autoencoders were chosen to assess the potential to create feature maps on which 

unclassified events could be placed to depict insight in unknown cell thermoacustic 

response. DNN acutoencoders were used to determine the vaibility of single signal 

dimensional reducution to feature map. As with DNN classification peak signal was chosen 

within an event to be the representative waveform. By the nature of autoencoders the singal 

strength of raw singals were not larger enough to adequatly map features, because of this 

signals were scaled before input into the autoencoder. Signals were reduced to coorinates 

by ReLU activation. Coordinates were plotted and centriods of trails were determined. 

Classification success was determiend by euclidean distance calculation from centriods. 

DNN autoencoder classification was poor, barely succeeding over half the samples 

(Fig. 19). Varition within models is consistent with overall scoring. Tukey Post Hoc 

analysis was conducted on the difference in trail coodinate interaction to determine 

significance during direct popluation comparison. ANOVA analysis was discarded in favor 

of Post Hoc confidence intervals. Intervals displayed show the mean difference within 

populations. Trail conparisons in which population mean difference hovers around zero  

suggests significantly similar populations.  
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Fig 19. Overall model scoring for 100 DNN autoencoder. No trail scored over 60% success in 

classification. Model sore distribution validates average score calculation.  
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All model Post Hoc analysis for DNN autoencoders display populations with 

confidence internals including zero (Fig. 20). This suggests high similarity within all 

populations and no statistical significance. Without significance in population means, 

feature mapping would not be robust enough to discern any valuable information. 

Selectivity was tested within models to discern whether any significant differencing within 

population was obscured. 

Top 20 models based on HS936 performed much better than the overall model 

success calculations. Distribution analysis of model success confirms overall calculation. 

It is important to note that variation analysis depicts models that were completely 

successful in classifying signals (Fig. 21). Deeper investigation showed these models to be 

overfit, all points were reduced to a coordinate pair of (0,0), producing no valuable feature 

data. 

Excluding these overfit models, Post Hoc analysis of top 20 non-overfit models 

depicted populations centered highly around zero population mean difference (Fig 21). 

This would suggest no valuable information can be gained from feature mapping. Plotting 

the most successful autoencoder with centroids included shows that the model was unable 

to distinguish any difference between trails (Fig. 22). This suggests an insufficient amount 

of data within training population or insufficient feature differencing within signals 

themselves. 
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Fig 21. Variation reaching 100% success on all classification suggests overtraining 

within the randomized models. Excluding these models in Post Hoc analysis 

suggests significantly similar populations. 
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Evaluation of top 20 models based on microsphere classification were consistent 

with the observation of insufficient difference in training data population. Variation 

analysis within models again showed presence of overfitting. Post Hoc analysis of non-

overfit models displayed similar populations that would create statistically insignificant 

feature maps. In the case of the highest performing autoencoder, the dimensionally was 

reduce to a single point rather than a pair (Fig. 23). This can occur in overfit models or 

models trained on data with insignificance feature differencing, causing one of the outputs 

in the coordinate pair to be pulled to zero. 

CNN Autoencoder 

CNN autoencoders were chosen to assess the possibility of a feature map produced 

from an entire event signal. Similar to the DNN autoencoder, CNN autoencoders 

dimensionally reduced their inputs to a ReLU activated coordinate pair. Inputs of the 

autoencoder were smoothed and scaled for the same reasoning behind CNN classification. 

Overall, success scores out of 100 randomized models were more successful than DNN 

autoencoders but not as successful compared to strict classification. Variation of success 

scores verifies overall model scoring (Fig. 24). Post Hoc analysis of autoencoder 

populations depicts populations based around zero. This causes the assumption that 

autoencoder populations were insignificantly different and would be unable to produced 

valid feature maps. To account for selectivity the top 20 scoring models were analyzed.  

The 20 highest scoring models for HS936 display great selectivity for the HS936 

signal. Less than 20% of the time, microsphere signals were correctly classified. Post Hoc 

analysis of autoencoder populations displays difference means including zero. However, 

the variance within the means suggests the possibility of significant population difference  
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Fig 24. Success scores for 100 randomized CNN autoencoders. Distribution of the 

scores validates average success calculation. 
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on some of the models (Fig. 24). As expected, differencing in HS936 and 

microsphere trials appears to be unchanged. This suggests that features are relevant to 

particle and not particle concentration, which differs from evidence found in classification 

models. 

Graphing the most successful HS936 autoencoder with centroids depicts a 

somewhat crude feature map (Fig. 25). HS936 and microsphere centroids are grouped 

closer together suggesting similarity in signal interpretation. Distinct groupings can be 

discerned suggesting prevalence of a fairly strong feature within event signals. Overlap 

within the populations points towards something obscuring the full weight of the featuring 

being leveraged. As the pull was reduced by an abundance of data in classification; it is 

possible that a feature exists within the event signals but is clouded by an excess of 

featureless data.  

Top 20 highest scoring microsphere autoencoder again displayed selectivity for 

HS936 signal. Success scores for these models were dramatically lower in all categories. 

Variation within model scores supports overall scoring. Post Hoc analysis depicts 

populations focused around zero suggesting highly similar populations. Though variation 

is evident it is much lower than variation observed in HS936 based models. Coordinate 

cloud of most successful model shows almost completely overlapping populations. Again, 

microsphere-based models performed poorly when compared to HS936 based models. 
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Though classification tests showed high success in classifying event-based signals 

and suggest prominent features within event signals the autoencoders were unable to 

produce robust feature maps. The reasoning for this lies within the neural networks ability 

to perform non-parametric classification. CNN autoencoders focused on HS936 signal 

bases were able to produce weak feature maps. However, strength for these maps were 

determined by parametric differencing. Euclidean distancing is a linear approximation of 

class, meaning the feature produced by the autoencoder were parametrically weak. Non-

linear classification of the same points could produce a much more efficient classification. 

This, however, is unhelpful when trying to produce a feature map due to its parametric 

nature. 
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Chapter 6 

Results of Fundamental Analysis 

Parabolic Extension 

The data gained from neural network training, specifically autoencoder 

constructions, suggest waveforms contain fundamental components. These components 

separate signals of different particle compositions but maintain similarity between differing 

sample concentration of different cells. Parabolic extension was leveraged to increase 

signal fidelity while maintaining realistic acoustic prorogation. Prior to extension all 

samples are minimally smoothed and squared. This is to reduced digitization and base AC 

signal oscillation. Event signals are then parabolically extended in both the sample and 

signal direction (Fig. 26). Complete parabolic extension explanation is located in the 

supplemental materials. 

Signals are then reduced in the opposite dimension in which extension occurred. 

This is done to obtain a profile image of the event peak signal. Again, this signal is assumed 

to be representative of the event. During mass spectrometry analysis, a mass peak 

resolution is obtained. This is to differentiate signals of different mass charge ratios, 

allowing for finer classification of data. Similarly, acoustic signals can be seen as related 

to mass spectrometry peak readings. However, acoustic readings are subject to much more 

noise and signal crowding due to their time dimension dependence. This allows us to 

assume a perfect propagation wave. Without noise and surrounding signals, a perfect wave 

could be a single parabola at the midpoint of its wave propagation. This would mean on a 

flattened profile of the wave two parabolas can be ascertained and classified (Fig. 27). 
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Assuming thermoacoustic response is dependent on more than just wave strength, a peak 

resolution could be used as a classification marker similar to mass spectrometry. 

Fig 26. Parabolic extension in both sample and signal direction. Extension seeks to increase data points 

for analysis while maintaining laminar wave nature. 
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 Fitting parabolas to the highest peak in each profile, by averaging the surrounding 

parabolic slopes using the peak as the vertex, we can assume an undisturbed acoustic wave 

mid propagation. We can obtain our peak resolution by calculating distance between the 

wave at selected fractions of the total wave power. Resolution power can be calculated by 

dividing the difference distancing by total wave amplitude. For sake of investigation three 

power fractions were tested (25%, 50%, 75%) and area calculated above the fraction lines 

was calculated. Area was included in the investigation to capture the potential of a 

significant integral in wave propagation in the absence of other significant wave 

characteristics.  

Using analysis of variance (AOV) statistical analysis on the interaction of all novel 

statistics, many were found to be highly significant in discerning particle type from 

waveform. Full AOV tables are found in the supplemental materials. Some of the statistics  

Fig 27. Image of wave profiles from both sample and signal dimensions. These profiles have been 

extended and fit with parabolas to mimic “perfect” wave propagation. Ideal waveforms resemble 

mass spectrometry readings, imaged above. 
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Fig 28. Some feature interaction scored highly in classification of waveforms. Depicted below are 

interaction plots for 50% wave difference and 50% signal AUC vs 75% sample difference 

distance. 
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were highly selective in their classification (Fig. 28). Feature isolation can further 

improve neural network success. DNN classification models were again run in the same 

randomized schema. Inputs were scaled within their own feature populations and outputs 

were tied again to one and zero respectively. Overall model scores were much higher than 

original single wave classification. Variation analysis confirmed overall scoring. 

Inspection of selectivity displayed minimal pull on classified signals. 

When running autoencoder trials, many of the models were prone to overfitting. As 

a result, no meaningful data could be derived from autoencoder exploration. Manual 

development and tuning of autoencoders revealed unique morphology within the resulting 

plots. Specifically, all of the plots lacked exploded traces of the original microsphere trial. 

Training data was consistent with methodology suggesting models consistently chose 

microspheres as comparison base other samples. Morphology of the resulting plots appears 

non-linear suggesting deeper set features within the computed novel features. 
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Fig 29. Success distribution for 100 DNN classification models using novel features as inputs. 
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  Fig 30. Autoencoders produced by novel feature training 
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Shark Fins 

During fundamental analysis and morphology exploration it was found that after 

parabolic extension in the samples direction and multiple smoothing and squaring cycles, 

event signals take on a specific morphology. Peak signals and surrounding waves appear 

as “shark fins” (Fig. 31). This novel characteristic appears specific to wave morphology. 

Under the same processing HS936 events appear to take on a sharper fin tips than 

microsphere signals (Fig. 32). Whether this speaks to the power behind the acoustic wave 

or the amplification afforded by particle composition is undetermined. Another 

phenomenon that arises is the idea of “schooling”. The construction of the flow system 

does not allow for intended single cell testing. Testing is not designed currently for 

characterizing single cell response but rather clinical diagnosis. This means that multiple 

particles can be present within the laser’s beam and multiple acoustic waves are created. 

 Focus specifically on the following figure of a microsphere detection event. The y-

axis represents the signals of a sample while the x-axis represents multiple samples of the 

event. The peak sample is present in the middle of the event. However, there are 

surrounding waveforms. Detection rates are dramatically lower than ground truth cell 

counts. Again, this speaks to the purpose of the system. The system is for clinical diagnosis 

not particle characterization. Multiple cells are allowed within the detection volume at a 

given time. The schooling observed are the surrounding particles releasing energy.  
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Fig 31. Microsphere event signal shark fin morphology. 

HS936 Microsphere 

Fig 32. Difference in tip shape between HS936 and 

Microsphere detections 
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Blocking 

Fig 33. Blocking present in sample and visualized 

through recreation 

Saturation 

Fig 34. Saturation present in sample and visualized 

through recreation 
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Multiple assumption must be made to explain schooling behavior. Blocking, for 

example, must occur within detection events. The probability of a single particle blocking 

another particle is extremely low, however, when picturing a saturated detection volume 

energy is rationed to the particles closest to the beam side of the quartz tube. Which would 

mean waveforms along the signal axis, y-axis, would block later signals. This can be seen 

in the small wave behind the event peak wave. Energy is more readily consumed by closer 

particles resulting in a smaller wave emitted from blocked particles (Fig. 33). 

However, there is a secondary wave in front of the peak wave, slightly obscured 

from view. Blocking would assume this wave receives the most energy and should have 

the stronger response. This gives evidence that wave energy is determined by a factor 

stronger than blocking, saturation. Though it is possible for a single cell to be detected in 

the system, when multiple particles are present multiple signals must be lost to saturation 

of transducer, only the strongest waves would be observed. Assuming every particles 

response is similar to thermal input, every waveform would be similar and lost due to 

saturation. Therefore, energy from multiple waves must combine and would be represented 

in a single detection waveform (Fig. 34). This phenomenon can be compared to a pixel in 

an image. A pixel is a summation of the light accepted by the sensor. Multiple photons are 

accepted by a single sensor, the higher the photon count the brighter the pixel in the final 

image. Multiple acoustic waves are combined within waveforms present in a detection 

event due to summation by the transducer.  

Using the saturation assumption, it is possible to reconstruct the particle count from 

the number of waveforms observed. Without knowing the specific response of a single 

particle, the smallest waveform within the detection event must be assumed to be a single 
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particle. Peaks are captured in both signal and sample event directions. Heights of the peaks 

are recorded and cataloged in a data frame. Both data frames are merged by their heights 

with 2 decimal precision. Unmerged columns are discarded, and remaining heights are 

assumed to be peaks. All heights are divided by the minimal height detected in the event 

and summed. The reconstructed detection counts highly correlate with original sample 

concentration (Fig. 35).  
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Chapter 7 

Post Analysis Summary 

Classification Investigation Summary 

Both DNN and CNN network structures were leveraged to assess the possibility of 

wave classification. DNN networks focus on peak wave classification and were 

unsuccessful in producing a robust solution. Selectivity was observed within model 

training and suggested choosing of a base signal for differencing. Pull was observed in 

DNN models suggesting features exist within waves by are not found strongly enough in 

the peak wave for robust classification. 

CNN models were used to assess the possibility of classification of event signals. Event 

signals are composing of 7 samples surrounding a peak wave which was the basis of 

original detection. The assumption was wave propagation is better observed when 

including a time dimensions to the detection event. CNN classification was highly 

successful and able to perform robust classification. Selectivity was again viewed in model 

training and signals were chosen as a base for differencing. Pull was again observed but to 

a lesser extent in CNN models. Pull is possibly lessened by the amount of overall data 

points used in the model’s input. Due to CNN success, evidence suggests wave features 

more highly present in event data than peak wave data. 

Autoencoder Investigation Summary  

Autoencoders were utilized to access the possibility of the creation of feature maps 

based on particle thermoacoustic response. Success of autoencoders was limited and 

markedly less than that of pure classification. DNN autoencoders were again trained on 

single peak waves which were assumed representative of the signal. Success was scored 
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by classification of particles using centroid distancing. Resulting point clouds were 

unhelpful in creating any form of feature map, data was too correlated. Tukey post hoc 

analysis confirmed visual assumption of populations which were too similar for feature 

mapping.  

CNN autoencoders again performed markedly better than DNN autoencoders but were still 

unsuccessful in feature map creation. CNN autoencoders scored much lower than CNN 

classification networks. Resulting point clouds were much stronger candidates for feature 

mapping but post hoc analysis revealed populations too similar for robust feature mapping. 

Differing success between classification and autoencoding structures was attributed to non-

paramedic classification. Feature maps and centroid distancing are parametric tools which 

would serve poorly in classifying populations without parametric distributions. Network 

abilities to mutate to task allow for greater ability for non-parametric separation. 

Waveform Reconstruction Summary 

Exploratory inspection of event wave forms was conducted to deduce the presences 

of underlying features that could determine classification. Fidelity of waveforms were 

increased through parabolic extension. Parabolic extension was chosen to best represent 

the natural form of a laminar acoustic wave propagation. Extension was conducted 

separately on both dimension and resulting profiles were compiled from extended 

waveforms. Profiles were reminiscent of mass spectrometry readings high in noise and low 

in signal strength. This prompted the methodology to treat the acoustic wave similar to 

mass spectrometry readings.  

Surrounding data was assumed to obscure pure acoustic waveforms. A parabola 

was fit to the highest peak in both profiles with the maximum point as the vertex. Slopes 
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extended limited distance beyond the maximum point and were averaged to reconstruct the 

assumed pure waveform. Novel features were extracted from the pure waveform and 

included peak resolution difference, power, and summed area. 

Novel Feature Classification Summary 

Novel features were analyzed using AOV statistical testing. Interactions of many 

of the features proved to be highly determinate in the classification of their parent wave. 

Whether this is representative of other particle types or higher volume of test data should 

be determined in a later study. By creating novel features, confounding factors would be 

removed from detection data and further neural network exploration could be conducted. 

DNN classification structures were highly successful when trained on novel feature 

set. Selectivity of features was not performed, and it is unknown whether some of the 

resulting features or their interactions were confounding to overall success, this should be 

further investigated. DNN autoencoders were prone to overfitting and produced no 

valuable feature map data. Whether this is due to confounding features is unknown and 

should be investigated. Present assumption is that wave features are inherently non-

parametric and cannot be reduced into a feature map. Some point clouds show promise for 

feature mapping based off linear or curved line fitting. Whether these grouping are based 

on an underlying thermoacoustic characteristic should be investigated. Separation of 

similar particle types suggests whatever resulting characteristic is also scaled with cell 

concentration in some manner.  

Shark Fin Investigation Summary 

“Shark fin” structures were noted during morphology investigation. Under repeated 

cycles of event smoothing and squaring, detections appear as structures resembling shark 
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fins protruding from water. Shark fin size appears to correlate with detection strength and 

represent particle positioning within detection volume during events. Multiple phenomena 

arose when studying shark fin morphology termed “blocking” and “saturation”. Blocking 

occurs when particles closer to beam side of the detection volume receive and decrease 

overall energy as it passes through detection volume. This can be seen in smaller waves 

that appear to be overshadowed by larger waveforms. Saturation is the phenomena that 

explains greater wave strength when overall particle response should be uniform. HS936 

thermoacoustic response should vary with the amount of produced pigment. However, 

microsphere shark fins vary in the same way suggesting a different explanation. The 

transducer used is focused and lower waveforms surrounding peak detections could be 

explained as signals outside of focus. However, transducer focus would be static and peak 

detections move throughout detection events. Smaller signals also surround peak signals 

in a pattern termed “schooling”. Saturation explains this variation in wave strength by 

attributing it to the combination of multiple more uniform particle responses. Due to 

saturation of samples the transducer is not capable of differentiating overlapping 

waveforms and therefore sums them. 

Using the saturation phenomenon assumption, a recalculation of total cell detection 

can be conducted on peaks that were not representative of the detection. Overall, signal 

detection is a poor representation of overall sample concentration, several orders of 

magnitude less than ground truth. By detecting the peaks within a event, and assuming any 

variation in height is the summation of smaller peaks, one can back calculate total particle 

concentration within a sample’s detection set. 
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Chapter 9 

Conclusions 

Photoacoustic flow cytometry is a technique founded off the principles of inherit 

particle thermoacoustic characteristics. The system used in this experimentation was 

designed for clinical diagnosis of circulating tumor cells. By exciting pigmented cells, such 

as melanoma, an acoustic waveform can be produced, collected, and serve as evidence for 

cell existence. Great promise has been shown in clinical applications of this technology. 

The experimentation explained in this paper sought to analyze detection signals for the 

ability to further classify detections, increasing clinical viability. Detections were expanded 

from a single waveform to a time dependent event. Events were reconstructed for visual 

analysis and allowed for creation of multiple morphological phenomena. Neural networks 

were leveraged as the primary mode of morphology exploration and assessment of 

potential feature mapping. Resulting fundamental investigation confirmed neural network 

evidence. Waveform morphology is of non-parametric distribution. Neural networks, 

specifically Convolutional Neural Networks, are equipped for robust signal classification, 

but feature mapping was not viable for the techniques used in this research. 
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Supplemental Materials 

 
Unfit models were discarded and randomized again. Overfit models were protected 

against with early stopping. No significant change in training loss caused model to be 

discarded and randomized again 

 
DNN Classification Model Structure 

Input Layer 

Dense Layer Node Length Range 1-4000 

Dense Layer Node Length Range 1-500 20% Chance of Occurrence (CO) 

Dense Layer Node Length Range 1-500 40% CO 

Dense Layer Node Length Range 1-500 20% CO 

Dropout Layer 0-50% Rate 40% CO 

Dense Layer Node Length Range 1-500 20% CO 

Dropout Layer 0-50% Rate 40% CO 

Dense Layer Node Length Range 1-500 20% CO 

Dense Layer Node Length Range 1-500 40% CO 

Dense Layer Node Length 1 

Epoch Range 20-50  

Batch Size 26-56 

Model Trained on HS936 375000 cells/mL/ Microspheres 300000 cells/mL 

 

 

DNN Autoencoder Model Structure 

Input Layer 

Dense Layer Node Length Range 1-512 

Dense Layer Node Length Range 1-512 20% Chance of Occurrence (CO) 

Dense Layer Node Length Range 1-512 40% CO 

Dropout Layer 0-50% Rate 40% CO 

Dense Layer Node Length Range 1-126 20% CO 

Dense Layer Node Length 2 Encoder Layer 

Dense Layer Node Length Range 1-126 20% CO 

Dropout Layer 0-50% Rate 40% CO 

Dense Layer Node Length Range 1-512 20% CO 

Dense Layer Node Length Range 1-512 40% CO 

Dense Layer Node Length Input Length 

Epoch Range 20-50  

Batch Size 26-256 

Model Trained on HS936 375000 cells/mL/ Microspheres 300000 cells/mL 
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CNN Autoencoder Model Structure 

Input Layer 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32  

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Pooling Layer Kernel [1,2-4] 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Pooling Layer Kernel [1,2-4] 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Pooling Layer Kernel [1,2-4] 40% CO 

 

Flatten Layer 

Dense Layer Node Length Range 250-500 

Dense Layer Node Length Range 1 

Epoch Range 20-50  

Batch Size 26-256 

Model Trained on HS936 375000 cells/mL/ Microspheres 300000 cells/mL 

 

CNN Autoencoder Model Structure 

Input Layer 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32  

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Pooling Layer Kernel [1,2-4] 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Convolution Layer Kernel [1-2,100-250] Node Length Range 1-32 40% CO 

Pooling Layer Kernel [1,2-4] 40% CO 

Flatten Layer 

Dense Layer Node Length Range 250-500 

Dense Layer Node Length Range 2 Encoder 

Dense Layer Node Length Range Prior Layer Length 

Reshape Layer Tensor Shape Before Flattening 

Convolution Layer Kernel [1-2,10-25] Node Length Range 1-32 40% CO 

Convolution Layer Kernel [1-2,10-25] Node Length Range 1-32 40% CO 

Up Sampling Layer Kernel Prior Pooling Kernel 

Convolution Layer Kernel [1-2,10-25] Node Length Range 1-32 40% CO 

Convolution Layer Kernel [1-2,10-25] Node Length Range 1-32 40% CO 

Up Sampling Layer Kernel Prior Pooling Kernel 

Convolution Layer Kernel Change in Current vs Input Shape Node Length Range 1-32  

Epoch Range 20-50  

Batch Size 26-256 

Model Trained on HS936 375000 cells/mL/ Microspheres 300000 cells/mL 

 

 

 



 57 

Parabolic Extension 

Extensions was run on signals and samples dimensions separately to avoid inaccuracy in 

wave restructuring.  

1. Preliminary smoothing is done on raw signals. Windowed moving average 

a. 2 point window for samples/100 point window for signals 

b. Smoothed samples are squared 

2. Each line is dissected separately and reconstructed.  

a. 3 data point arrays are selected, parabolas are fit. 

b. Maximum values are considered vertex’s, slopes are averaged 

c. Parabolas are resampled at 100x original data length 

3. Samples are overlapped starting at the 100th data point of the previous sample 

a. Points are divided by the number of overlapping samples 

4. Reconstructed matrices are smoothed after extension 

a. 200 point windowed moving average 
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Novel Feature AOV 

Feature sum_sq df F PR 

resolution_1_2_auc_signals:resolution_1_2_diff_signals 4.65E-10 1 8004.963 0 

resolution_1_2_auc_signals:resolution_1_2_power_sign
als 1.45E-10 1 2505.71 0 

resolution_1_2_auc_signals:resolution_1_4_auc_signals 4.14E-09 1 71397.07 0 

resolution_1_2_auc_signals:resolution_1_4_power_sign
als 4.48E-08 1 771325.8 0 

resolution_1_2_auc_signals:resolution_3_4_auc_signals 1.39E-10 1 2387.035 0 

resolution_1_2_auc_signals:resolution_3_4_power_sign
als 3.10E-09 1 53355 0 

resolution_1_2_diff_signals:resolution_1_2_power_sam
ples 7.67E-09 1 132238.9 0 

resolution_1_2_diff_signals:resolution_1_2_power_sign
als 1.70E-08 1 293675.2 0 

resolution_1_2_diff_signals:resolution_1_4_auc_signals 8.10E-10 1 13963.02 0 

resolution_1_2_diff_signals:resolution_1_4_diff_signals 1.78E-09 1 30716.34 0 

resolution_1_2_diff_signals:resolution_1_4_power_sam
ples 7.19E-08 1 1238460 0 

resolution_1_2_diff_signals:resolution_1_4_power_sign
als 5.39E-08 1 928527.6 0 

resolution_1_2_diff_signals:resolution_3_4_auc_signals 3.05E-09 1 52499.75 0 

resolution_1_2_diff_signals:resolution_3_4_diff_signals 3.01E-09 1 51938.48 0 

resolution_1_2_diff_signals:resolution_3_4_power_sam
ples 2.85E-08 1 491143.1 0 

resolution_1_2_diff_signals:resolution_3_4_power_sign
als 4.94E-07 1 8513252 0 

resolution_1_2_power_samples:resolution_1_2_power_
signals 2.45E-09 1 42257.89 0 

resolution_1_2_power_samples:resolution_1_4_diff_sig
nals 3.18E-09 1 54814.94 0 

resolution_1_2_power_samples:resolution_1_4_power_
signals 7.19E-09 1 123847.4 0 

resolution_1_2_power_samples:resolution_3_4_auc_sig
nals 2.13E-09 1 36764.61 0 

resolution_1_2_power_samples:resolution_3_4_diff_sig
nals 1.83E-10 1 3146.751 0 

resolution_1_2_power_samples:resolution_3_4_power_
signals 3.24E-09 1 55865.94 0 

resolution_1_2_power_signals:resolution_1_4_auc_sign
als 2.05E-10 1 3527.075 0 

resolution_1_2_power_signals:resolution_1_4_diff_sign
als 2.20E-07 1 3788220 0 

resolution_1_2_power_signals:resolution_1_4_power_s
amples 1.49E-07 1 2574397 0 
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resolution_1_2_power_signals:resolution_1_4_power_si
gnals 1.75E-08 1 302237.1 0 

resolution_1_2_power_signals:resolution_3_4_auc_sign
als 1.93E-09 1 33338.41 0 

resolution_1_2_power_signals:resolution_3_4_diff_sign
als 1.02E-08 1 174936.4 0 

resolution_1_2_power_signals:resolution_3_4_power_s
amples 5.60E-09 1 96451.33 0 

resolution_1_2_power_signals:resolution_3_4_power_si
gnals 3.59E-08 1 617972 0 

resolution_1_4_auc_signals:resolution_1_4_diff_signals 4.63E-10 1 7980.007 0 

resolution_1_4_auc_signals:resolution_1_4_power_sign
als 4.95E-08 1 853722.3 0 

resolution_1_4_auc_signals:resolution_3_4_diff_signals 4.29E-09 1 73850.32 0 

resolution_1_4_auc_signals:resolution_3_4_power_sign
als 1.16E-09 1 20041.25 0 

resolution_1_4_diff_signals:resolution_1_4_power_sam
ples 7.65E-09 1 131908.5 0 

resolution_1_4_diff_signals:resolution_1_4_power_sign
als 1.11E-08 1 190928.7 0 

resolution_1_4_diff_signals:resolution_3_4_auc_signals 1.62E-10 1 2784.796 0 

resolution_1_4_diff_signals:resolution_3_4_diff_signals 1.78E-08 1 306445.6 0 

resolution_1_4_diff_signals:resolution_3_4_power_sam
ples 9.83E-09 1 169431.1 0 

resolution_1_4_diff_signals:resolution_3_4_power_sign
als 5.72E-08 1 986053.7 0 

resolution_1_4_power_samples:resolution_1_4_power_
signals 6.17E-09 1 106363.5 0 

resolution_1_4_power_samples:resolution_3_4_auc_sig
nals 4.87E-09 1 83980.53 0 

resolution_1_4_power_samples:resolution_3_4_diff_sig
nals 1.70E-10 1 2925.623 0 

resolution_1_4_power_samples:resolution_3_4_power_
signals 1.67E-09 1 28740.33 0 

resolution_1_4_power_signals:resolution_3_4_auc_sign
als 1.51E-09 1 26031.48 0 

resolution_1_4_power_signals:resolution_3_4_diff_sign
als 1.19E-07 1 2051975 0 

resolution_1_4_power_signals:resolution_3_4_power_s
amples 1.58E-09 1 27163.18 0 

resolution_1_4_power_signals:resolution_3_4_power_si
gnals 1.28E-08 1 220467.3 0 

resolution_3_4_auc_signals:resolution_3_4_power_sam
ples 4.51E-09 1 77668.61 0 

resolution_3_4_auc_signals:resolution_3_4_power_sign
als 1.07E-09 1 18361.21 0 
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resolution_3_4_diff_signals:resolution_3_4_power_sam
ples 1.37E-10 1 2361.528 0 

resolution_3_4_diff_signals:resolution_3_4_power_sign
als 3.07E-08 1 528784.8 0 

resolution_3_4_power_samples:resolution_3_4_power_
signals 2.08E-09 1 35758.98 0 

resolution_1_4_auc_signals:resolution_1_4_power_sam
ples 8.40E-11 1 1448.319 

4.2
2E-
247 

resolution_1_4_auc_signals:resolution_3_4_power_sam
ples 7.67E-11 1 1321.705 

8.1
5E-
230 

resolution_1_2_auc_signals:resolution_1_4_diff_sample
s 6.50E-11 1 1120.005 

5.3
0E-
201 

resolution_1_2_auc_signals:resolution_3_4_diff_signals 4.72E-11 1 813.216 

8.9
5E-
154 

resolution_1_2_diff_signals:resolution_1_4_diff_sample
s 4.41E-11 1 759.9213 

4.2
1E-
145 

resolution_1_2_auc_signals:resolution_1_2_diff_sample
s 3.95E-11 1 679.8489 

8.7
2E-
132 

resolution_1_4_diff_samples:resolution_1_4_diff_signal
s 3.54E-11 1 610.1981 

6.5
4E-
120 

resolution_1_2_auc_signals:resolution_3_4_diff_sample
s 3.04E-11 1 524.0231 

8.0
4E-
105 

resolution_1_2_auc_signals:resolution_1_4_diff_signals 2.92E-11 1 503.2258 

4.1
3E-
101 

resolution_1_2_auc_signals:resolution_1_2_power_sam
ples 2.64E-11 1 455.386 

1.8
0E-
92 

resolution_1_4_diff_samples:resolution_3_4_diff_signal
s 2.51E-11 1 432.1531 

3.2
1E-
88 

resolution_1_2_auc_signals:resolution_3_4_power_sam
ples 2.38E-11 1 409.4922 

4.8
6E-
84 

resolution_1_2_diff_samples:resolution_1_2_diff_signal
s 2.37E-11 1 407.6002 

1.0
9E-
83 
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resolution_1_4_diff_samples:resolution_3_4_auc_signal
s 2.14E-11 1 368.102 

2.5
9E-
76 

resolution_1_2_auc_signals:resolution_1_4_power_sam
ples 2.05E-11 1 353.4106 

1.5
3E-
73 

resolution_1_4_auc_signals:resolution_3_4_auc_signals 1.90E-11 1 327.0844 

1.5
5E-
68 

resolution_1_2_diff_samples:resolution_1_4_diff_signal
s 1.85E-11 1 319.1012 

5.2
4E-
67 

resolution_1_2_diff_samples:resolution_3_4_diff_signal
s 1.29E-11 1 221.6497 

5.7
7E-
48 

resolution_1_2_diff_signals:resolution_3_4_diff_sample
s 8.31E-12 1 143.1973 

4.5
0E-
32 

resolution_1_2_diff_samples:resolution_3_4_auc_signal
s 7.38E-12 1 127.2132 

9.0
9E-
29 

resolution_1_4_diff_signals:resolution_3_4_diff_sample
s 6.84E-12 1 117.8289 

8.1
4E-
27 

resolution_3_4_diff_samples:resolution_3_4_diff_signal
s 4.96E-12 1 85.4361 

5.2
2E-
20 

resolution_3_4_auc_signals:resolution_3_4_diff_sample
s 4.47E-12 1 76.94107 

3.3
2E-
18 

resolution_1_4_auc_signals:resolution_1_4_diff_sample
s 1.97E-12 1 33.87186 

6.6
9E-
09 

resolution_3_4_auc_signals:resolution_3_4_diff_signals 1.37E-12 1 23.56005 

1.2
9E-
06 

resolution_1_2_diff_samples:resolution_1_4_auc_signal
s 6.65E-13 1 11.46153 

0.0
007

22 

resolution_1_2_power_signals:resolution_1_4_diff_sam
ples 4.41E-13 1 7.591034 

0.0
059

11 
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