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ABSTRACT 

 

Time for a change? Brain activity and behavioral performance reveal different dynamics 

at short, intermediate, and long delay intervals during a delay discounting task 

 

Conrad Mohr-Eymer 

 

Director: Dr. Lee Baugh, Ph.D. 

 

 

In our day to day lives, the ability to make goal-oriented decisions plays a crucial 

role in both our work and social lives.  Therefore, researchers have examined how factors 

such as a varying reward or delay may affect decision making.  One’s performance when 

making intertemporal choices, decisions made between a smaller and sooner (SS) reward 

and a larger and later (LL) reward, are often examined to study these factors.  Although 

time and reward magnitude are important dimensions when individuals make decisions 

during delay discounting, little is known about the relationship between time perception, 

reward magnitude, and underlying neural mechanisms.  To address this gap in literature, 

participants completed a modified delay discounting task during fMRI with stimuli that 

included fluctuating reward and delay values.  An exploratory factor analysis using 

behavioral data identified three categories of delays and reward values that were used to 

create brain contrasts.  In these comparisons, the middle frontal gyrus and cingulate gyrus 

seemed to be more involved when choosing rewards of greater magnitude while the 

medial frontal gyrus and insula were found to be more active for longer delays.  Our 

results suggest that delay and reward determination are handled by separate neural 

networks.          

KEYWORDS: intertemporal choice, fMRI, time perception, reward magnitude 
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Time for a change? Brain activity and behavioral performance reveal different dynamics 

at short, intermediate, and long delay intervals during a delay discounting task 

 

 

1. Introduction 

Each day, individuals are tasked with making a variety of different decisions.  These 

choices range from low caliber decisions such as what to have for breakfast to more life 

changing ones like buying a house.  To make these selections, humans are constantly 

weighing the pros and cons of each outcome.  Living in a society with rules and 

regulations, the ability to properly make goal-orientated choices is important in forming 

productive relationships with others, holding down a job, and having the money to 

purchase the goods needed to survive.  Since proper decision-making is a key trait in 

one’s life, much research has been done looking at the different factors that affect one’s 

capacity to choose.  Impulsivity is one such factor that asserts its influence on an 

individual’s decision making ability in a number of different areas in their life including: 

financial planning (Banks et al., 1998); (Thompson et al., 1983), choice of diet (Shapiro, 

2005), sexual risk-taking (Clift et al., 1993), and even political policy making (Berns et 

al., 2007).  Properly understanding the hold that impulsivity has over a person’s decision 

making becomes more relevant considering the high level of impulse control deficiencies 

in numerous pathological conditions such as borderline and antisocial personality 

disorders (Stein et al., 1993); (Stein et al., 1995), as well as the general likelihood of 

engaging in criminal behavior (Eysenck & McGurk, 1980).  In these situations, 

impulsivity influences one’s process for making intertemporal choices.  Intertemporal 

choices involve an individual choosing between a smaller and sooner (SS) reward or a 

later and larger (LL) reward (Frederick et al., 2002).  To examine intertemporal choice, a 



 

2 
 

delay discounting paradigm is often utilized.  People are said to display delay discounting 

behavior when they repeatedly show a propensity for an SS reward to an LL reward when 

making an intertemporal choice.  This research will examine intertemporal choice using 

fMRI and a novel delay discounting task to provide a more in-depth map of how 

intertemporal decisions activate the brain.   

1.1. Brain Activation During Intertemporal Choices  

Steep and excessive discounting has been exhibited in many problematic 

behaviors in both healthy populations and populations with self-control deficiencies 

(Ainslie, 1975); (Frederick et al., 2002).  Historically, intertemporal choices have been 

studied in the fields of economics and psychology.  Neuroscience is the most recent 

entrant into this interdisciplinary topic, bringing with it the possibility to see how 

intertemporal choices activate the brain.  To date, research generated by neuroscientists 

has been in the form of functional neuroimaging studies employing region-of-interest 

(ROI) analyses, which have identified different brain regions responsible for future-based 

LL choices and present-focused SS choices.  Specifically, the mesolimbic dopamine 

system has been associated with immediate rewards, while the lateral prefrontal regions 

and the posterior parietal cortex are shown to respond to future rewards (McClure et al., 

2007).  

These findings have been used to support the creation of a two-component model 

of intertemporal choice.  In this model, one system is said to control the weighing of 

rewards offered in an immediate time frame (known as the beta system), while the other 

is said to weigh rewards offered at all delays (the delta system; (Laibson, 1997)).  These 

studies helped to establish a basis for understanding how intertemporal choices occur; 
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however, they were confronted by findings from Kable and Glimcher (2007) that 

exhibited activation of the mesolimbic projection regions (nucleus accumbens and medial 

prefrontal cortex) in correlation to a combination of the magnitude and delay of a reward.  

Their conclusion from these results was that only a single system in the brain is involved 

in making intertemporal choices, and it responds to a combination of magnitude and 

delay information to hyperbolically discount future rewards.  In an effort to make sense 

of these contrasting results, Ballard and Knutson (2009) created a novel delay 

discounting task that they hoped would allow them to determine if independent neuronal 

substrates would activate in response to the magnitude and delay of a reward before a 

final choice was made.  Their results showed that the nucleus accumbens was sensitive to 

magnitude information and the lateral cortical regions were sensitive to delay 

information.  In turn, these findings provided initial evidence pointing to these constructs 

resulting from separate neural pathways.  

 With delay and reward magnitude hypothesized to enlist different neuronal 

pathways when making intertemporal choices, further research has been done to 

determine how one’s perception of time and reward value may factor into these 

differences.  One insight for this line of inquiry comes from previous studies that have 

suggested an altered sense of time as the cause for the steep discounting behavior 

observed in more impulsive individuals (i.e. an altered perception of delay) (Barkley et 

al., 2001); (Barratt, 1983); (Reynolds & Schiffbauer, 2004).  Another insight comes from 

knowledge on how individuals from different socioeconomic backgrounds may perceive 

the value of a monetary reward.  

1.2. Modeling Intertemporal Choices 
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 Looking back on the research done in the fields of psychology and economics, a 

large part of their literature has involved modeling intertemporal choices using a 

functional model.  These value functions often derive from monetary intertemporal 

choice data and are typically expressed in terms of a discounting curve over time.  Two 

generally accepted models predominate the literature and they are the exponential 

discounting model and the hyperbolic discounting model.  Many studies have involved 

trying to fit discounting behavior in a variety of different conditions to one of these 

models (Green & Myerson, 2004); (Kirby & Maraković, 1995); (Loewenstein & Thaler, 

1989); (Mazur, 1987). The exponential model is calculated as  

𝑽 = 𝑨𝒆−𝒌𝑫 

where V signifies the present value of the delayed reward (otherwise known as the 

indifference point), A is the amount of the delayed reward, D is the delay, and k is the 

discounting rate parameter.  However, this model has often seen pushback due to the 

inconsistencies in its ability to represent discounting behavior in animal (Ainslie, 1975) 

and human (Kirby & Herrnstein, 1995) research.  For example, individuals may prefer an 

SS reward when immediately offered the choice; yet, when delaying the outcome of both 

rewards equally, subjects will switch their preference to the LL reward (Kirby & 

Herrnstein, 1995).  To better account for these irregularities, a hyperbolic model, such as 

the following, has been suggested (Mazur, 1987): 

𝑽 = 𝑨/(𝟏 + 𝒌𝑫) 

Hyperbolic functions describe a discounting pattern that is steeper at short delays than 

long delays and in this manner is better able to reflect observed behavioral data in most 

scenarios.  The different curvature seen in this hyperbolic function over time echoes 
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results seen in the fMRI study done by McClure et al. (2004) that demonstrated a more 

impulsive beta system in charge of SS decisions and a more patient delta system that 

handles LL choices.    

More recent findings (Figner et al., 2010) suggest that although individuals often 

prefer SS options, LL choices will still get chosen in some cases due to the activation of a 

self-control mechanism that is controlled by the left Lateral Prefrontal Cortex (lLPFC). 

This view states that the lLPFC is not just a part of the more patient delta system that has 

been presented in research; rather, it is an independent neuro-substrate in regulating 

intertemporal choice.  This finding has led us to conduct this research, as we believe that 

in cases of rewards involving exceedingly long delays (e.g. numerous years), the delta 

system may be restricted by reaching its cognitive and computational limit.  As a result, 

the lLPFC (and possibly other brain areas) may play a bigger role for choosing LL 

options.   

The above converging behavioral and neuroimaging findings suggest that a 

unitary discounting function may not be a psychological reality.  In this study, we 

propose a Tri-phasic Delay Discounting hypothesis that suggests delay discounting as a 

function of temporal distance consists of three phases: (1) initial and short delays from 

the present time to hours or days in the future, (2) foreseeable and tractable delays of 

weeks to a few years, and (3) distal long delays of more than multiple years.  The third 

component of this novel hypothesis (diminished sensitivity), which is not included in the 

two system hypothesis proposed by McClure et al. (2004), accounts for the flattened 

portion of delay discounting associated with distant and long delays and is expected to be 

a result of cognitive limitation (see Figure 1).  For example, cognitive limitation is often 
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evident in the average person’s inability to properly compute compound interest.  

Another goal of this research is to use our novel delay discounting task to take what is 

already expressed in the literature about delay and reward magnitude and determine if we 

are able to see different neuronal activation regions using reward and delay magnitude as 

variables.  While it has been found that varying the reward and delay, as well as one’s 

perception of this variation, may result in differential activation, little is still known about 

how these systems work together to form a complete network when making intertemporal 

choices.     

 

 

 

 

 

 

 

Figure 1. Hypothesized delay discounting curve. Our hypothesis predicts a tri-phasic 

delay discounting curve, with a hyperbolic function best representing the initial 

discounting rate, but an exponential function fitting the latter time points.  

 

2. Hypotheses and Predictions 

2.1. Behavioral Hypothesis 

The current study will examine how what has previously been learned about delay 

discounting tasks extends into time scales previously unexplored.  Behaviorally, we 

envision that participants will perform congruently to other studies when it comes to 

intertemporal choices that involve an earlier time base, demonstrating behavior that can 

be best modeled by a hyperbolic discounting curve.  Following our novel tri-phasic 
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discounting hypothesis, we envision that when the temporal delay becomes much later, 

behavior will start to follow more of an exponential form due to individuals reaching 

their computational limits when it comes to judging value.  

2.2 Neuroimaging Hypotheses 

Hypothesis 2a. We propose that different areas of brain activation will be involved when 

choosing LL opposed to SS rewards.  Numerous fMRI delay discounting studies have 

been conducted in the past demonstrating this effect and we can use these studies to 

confirm that similar areas are active for our delay discounting using novel stimuli.  From 

previous studies, LL decisions are expected to be associated with higher activation of the 

medial orbitofrontal cortex (mOFC) (Cohen et al., 2011);(Sellitto et al., 2010);(Sellitto et 

al., 2011) and the dorsolateral prefrontal cortex (dlPFC) (Hutcherson et al., 2012).  

Prefrontal cortex regions play a large role in executive control and delaying gratification, 

which support these findings.  Additionally, it has been predicted that the posterior 

cingulate gyrus is involved with choosing larger rewards throughout all time intervals 

(Wittmann & Paulus, 2008); therefore, this region should be active when contrasting 

between small versus large rewards, but not between different delay periods. Another 

probable area of activation is the insula.  Previous results have shown insular activation 

in decision making studies on risk-taking (Ernst et al., 2002) and anticipation of rewards 

(Critchley et al., 2001). Wittmann and Paulus (2008) recorded findings that suggest 

specific activation in the posterior part of the insula during LL rewards while 

ventroanterior parts of the insula and striatum are more active during SS reward selection.  

For SS decisions, activation is expected in the ventral medial prefrontal cortex (vmPFC) 

(Hare et al., 2009).   
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Hypothesis 2b.  Our novel Tri-Phasic Delay Discounting Hypothesis predicts that 

behavioral results could best be predicted by a three-phase discounting function.  We 

hypothesize that each phase of this Triphasic function will also elicit neuronal activation 

in specific and separate brain areas.  To determine separate activation across different 

time clusters, our delay discounting task involved questions where the delay ranged from 

1 day to 20 years (see methods).  Once participant responses were collected, an 

exploratory factor analysis was used to collapse across reward value and identify any 

delay periods that clustered together (see methods).  Three distinct time periods were 

found and labeled short (days to months), intermediate (1, 2, and 5 years), and long (10 or 

20 years).  We hypothesize that brain activation patterns over the three time periods, 

which would correspond to the three phases in our proposed function, are distinguishable.  

Predicted activation from responses to questions in the short time period should involve 

reward-pleasure related brain areas such as ventral striatum and medial forebrain 

structures, including insula, caudate, putamen, and medial prefrontal cortex (Knutson, 

Fong, et al., 2001); (Knutson et al., 2000).  Intermediate time period activation is likely to 

be observed in the cognitive control areas such as the dorsolateral prefrontal cortex 

(dlPC) (McClure et al., 2007);(Essex et al., 2012).  Activation during long, extended 

delays is more difficult to determine with little previous research; therefore, non-specific 

higher cortical activations (Jaeggi et al., 2007) are predicted during this phase.  

Hypothesis 2c. The magnitude of the delayed reward is also expected to result in specific 

neuronal activation.  We predict that activity in the nucleus accumbens, medial prefrontal 

cortex, and posterior cingulate cortex will increase with the magnitude of reward as seen 

in previous work (Ballard & Knutson, 2009).  Some of these brain areas may be active as 
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a result of a combination of differing delays and magnitudes; however, the nucleus 

accumbens has been found to respond only to fluctuations in future reward magnitude.  

These regions align with current predictions that the mesolimbic circuits are responsible 

for encoding the magnitude of anticipated future rewards (Knutson, Adams, et al., 2001); 

(Knutson & Cooper, 2005).  By using a factor analysis, we are able to collapse across 

time delays to identify monetary amounts that cluster together based upon the 

participant’s perception.  These groups were labeled as small ($50), medium ($500, 

$5,000), and large ($500,000) monetary reward groups (see methods).  Identifying our 

groupings in this manner allows us to determine the assignment of each monetary reward 

amounts based upon participant responses rather than our perception of what qualifies as 

a small versus medium/large money reward. 

3. Method 

3.1 Participants 

Forty-three right-handed native English-speaking adults (28 females; mean age 

21.91 ± 5.16 age range 18 – 37 years of age) participated in this study.  Exclusion criteria 

included: (a) current pregnancy or lactation; (b) history of head injury or neurologic 

disorders; and (c) any contraindications to MRI based on a safety screening.  Participants 

provided written informed consent for a protocol approved by the Institutional Review 

Board of the University of South Dakota. 

3.2 Assessment Instruments and Tasks 

Participant interviews, scale administration, and delay discounting tasks first took 

place at an initial meeting, which was on a separate day from the fMRI study.  This 

allowed for a complete description of the fMRI study procedures, screening for 
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contraindications to MRI, and the collection of scale and delay discount task responses to 

establish stability in delay discount rate and scale responses over time; participants 

completed the same scales and delay discounting tasks during the fMRI study.  

Participants were administered a demographic questionnaire to assess age, gender, and 

handedness.  The Domain Specific Risk Taking Scale (DOSPERT-7); (Wang et al., 2016) 

was used to assess individual differences in both evolutionarily typical and modern risk 

taking propensity across seven domains, including cooperation/competition, safety, 

reproduction, natural/physical risk, financial risk, and gambling.  The Barratt 

Impulsiveness Scale version 11 (BIS-11); (Patton et al., 1995), was used to assess the 

personality/behavioral construct of impulsiveness.  Participants also completed two 

versions of a delay discounting task.  

To encourage accurate realistic responses, delay discounting tasks were presented 

as a (simulated) sealed auction, a task adapted from Kirby and Maraković (1995) and 

Kirby and Santiesteban (2003).  In one version, participants were asked to bid the least 

amount of money they would be willing to accept today in exchange for receiving a 

delayed larger reward, without knowledge of the bids of the other participants.  In a 

second version of the sealed auction, participants were told to bid the most they would be 

willing to pay today in order to receive a larger reward after a delay.  These accept-today 

and pay-today procedural variations have been found to lead to no differences in discount 

rates generated (Kirby & Santiesteban, 2003).  Participants completed a total of 52 pay-

today and 51 accept-today trials, using four monetary rewards: $50; $500; $5,000; 

$500,000 and 13 time delays: 1 day, 2 days, 3 days, 1 week, 2 weeks, 1 month, 2 months, 

6 months, 1 year, 2 years, 5 years, 10 years, 20 years.  Participants were instructed that 
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there would be one winner for each of the two delay discounting auction games, and that 

the winner would be the person who bid the true value of the delayed reward as 

determined by a formula.  For the delay discounting tasks, we used real monetary 

rewards—as opposed to hypothetical rewards—to encourage realistic responses and 

increase the generalizability of results (e.g. (Kirby & Maraković, 1995); (Xu et al., 

2016)).  To increase the external validity of the auction game, participants were asked to 

write their preferred mailing address on a blank envelope, which would be used to send 

their monetary reward should they win the auction.  Participants were not informed when 

the study would be complete, nor the value of the monetary reward in order to reduce 

bias associated with subjective costs associated with the delay or reward value.  Upon 

completion of the study, two participants were randomly selected as “winners” of the 

auction game and mailed a $25 money order.  Altogether, using a real monetary reward, a 

sealed bid auction, and two types of delay discounting trials discouraged underbidding or 

overbidding, minimized bias and the subjective cost associated with the delayed reward 

for winning, and encouraged realistic responses. 

3.2.1 Accept-Today Delay Discounting Task. The accept-today delay discounting 

task was structured so that the participant decided the amount of money they would need 

to forgo a smaller amount of money to be received today in order to receive a larger 

monetary reward in the future.  Instructions were presented on the screen as follows:  

“For the next series of questions, you will play an auction game against other participants 

of this study.  In the next task, you will be able to win a small amount of real money, 

based upon the auction results.  There will be approximately 32 participants in this study.  

All of you will participate in a sealed auction.  The winner of the auction will receive a 
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money reward sent by mail after the study is finished.  Therefore, you should choose your 

bids carefully.  The easiest way to decide how much to bid is to ask yourself what is the 

LEAST you would be willing to accept. In each choice task, you will indicate the LEAST 

amount of money that you would accept for a larger future reward by giving up the 

smaller present reward.” 

In exchange for $500 today, the LEAST return I would be willing to accept in 2 months 

is $_____________. 

3.2.2 Pay-Today Delay Discounting Task.  In contrast, the pay-today task asked 

participants to forego a larger monetary reward to be received after a delay in order to 

receive a smaller reward today.  These questions were also structured as an auction, with 

the following instructions: 

“For the next series of questions, you will play an auction game against other 

participants of this study.  In the next task, you will be able to win a small amount of real 

money, based upon the auction results.  There will be approximately 32 participants in 

this study.  All of you will participate in a sealed auction.  The winner of the auction will 

receive a money reward sent by mail after the study is finished.  Therefore, you should 

choose your bids carefully.  The best strategy is to bid exactly what the future reward is 

worth to you.   The easiest way to decide how much to bid is to ask yourself what is the 

MOST you would be willing to pay for the guaranteed future reward.  In each choice 

task, you will indicate the MOST amount of money that you would pay today in order to 

receive a larger future reward.” 

An example of a pay-today trial was:   
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In exchange for $500 in 2 months, the MOST I would be willing to pay is 

$____________ today. 

3.3 Procedure 

3.3.1 Initial Meeting. Following informed consent, participants completed a 

demographic questionnaire, MRI screening form, DOSPERT-7 scale, BIS-11 scale, and 

the 52 pay-today and 51 accept-today delay discounting trials administered with an online 

survey software tool, PsychData, and presented in counterbalanced order to control for 

order effects. Participants were reimbursed with either university course credit or $20 in 

cash on the day of the study.  The initial meeting took approximately 60 minutes.   

Participants who were interested in the fMRI study, and who were not excluded 

(see exclusion criteria), participated in the fMRI study.  This resulted in 33 (19 females; 

mean age 22.91 ± 5.51; age range 18 – 37 years of age) of the original 43 participants 

undergoing fMRI on average 16.39 ± 12.93 days (range 0 – 45 days) from the initial 

meeting. 

3.3.2 fMRI Testing Session. On the day of the fMRI study, participants again 

provided written informed consent, and were reimbursed $40 for their time and travel to 

the scanning location.  Participants completed the DOSPERT-7, BIS-11, and 51 pay-

today and 52 accept-today delay discounting trials while fMRI was performed.  Tasks 

were presented on a 30-inch LCD screen (Invivo, Gainesville, FL) that participants could 

view using a single reflection mirror box affixed to the head-coil.  Behavioral responses 

were collected with an MR-compatible button response box (Lumina LP-400, 

Corporation, San Pedro, CA), which was affixed to the participant’s wrist via a Velcro 

strap to ensure minimal movement during the study.  A graphic representing this set-up is 
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shown in Figure 2.  Stimulus presentation and data recording were accomplished using a 

dedicated PC running custom software (LabVIEW 2015; National Instruments, Austin, 

TX, USA). 

 

 

 

 

 

 

 

Figure 2. How participants were positioned in the scanner for our delay discounting task 

 

For the delay discounting tasks, the response box was programmed so that a 

button press corresponding to the right-hand index-finger (left button) decreased the 

amount displayed, while a button press with the right-hand middle finger (right button) 

increased the amount displayed.  The amount decreased and increased by a single button 

press was scaled at 1% of the value used in the trial.  For example, for delay discounting 

trials with $50, each button press increased or decreased the value by 50 cents; for trials 

with $500 a button press increased or decreased the value by $5; for trials with $5,000 a 

button press increased or decreased the value by $50; and for $500,000 trials a button 

press increased or decreased the value by $5,000.  Changes in response values were 

updated on the display with each button press.  Participants were given 14 seconds to 

respond, with the value at the end of this period serving as their trial response (Figure 3). 
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3.3.3 Image Acquisition and Pre-Processing. Conventional Blood Oxygen Level 

Dependent (BOLD) imaging techniques were used on a 3-Tesla whole-body Siemens 

Skyra scanner (Erlangen, Germany) and integrated 20–channel birdcage radio frequency 

coil.  Functional MRI volumes were collected using a T2*-weighted, single-shot, 

gradient-echo, echo-planar imaging acquisition sequence [TR: 2000 ms; TE: 30 ms; slice 

thickness: 4 mm; gap thickness: 0 mm; in-plane resolution: 3.4375 mm × 3.4375 mm; 

matrix size: 64 × 64 mm; FOV: 220 × 220 mm; flip angle: 90°].  Acquisition was angled 

along the plane of the anterior and posterior commissures.  We collected a total of 520 

volumes across three functional runs (180, 169, and 171 volumes) for the accept-today 

and the pay-today delay discounting tasks.  After functional imaging, a high resolution 

T1-weighted Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) was 

collected for each participant [TR: 1900 ms; TE: 2.13 ms; slice thickness: 0.9 mm; gap 

thickness: 0 mm; in-plane resolution: 0.9375 × 0.9375 mm; matrix size: 256 × 256 mm;  

FOV: 240 × 240 mm; flip angle: 9°].  
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Figure 3.  Timeline of one trial of the delay discounting tasks, which utilized an event-

related fMRI design with trial-onset asynchrony.  A. Accept-today delay discounting 

task.  B. Pay-today delay discounting task. Written instructions for the auction game were 

presented at the start of each functional run.  Responses were made with a button 

response device.  Each button press would increase or decrease the displayed underlined 

value by 1%. In this case, a left button press would decrease the underlined value by $5, 

while a right button press would increase the underlined value by $5 ($500 x .01 = $5). 

Participants completed 51 pay-today and 52 accept-today trials across 6 functional runs.  

Tasks were counterbalanced to control for order effects. T1-weighted images were taken 

at the completion of the delay discounting tasks.  N = 33 

 

BrainVoyager (Brainvoyager 20.6, Brain Innovations, Maastricht, the 

Netherlands) was used for all imaging analyses.  Functional data preprocessing steps 

included slice scan time correction, 3D motion correction, and temporal high pass 

filtering.  Slice scan time correction was performed using cubic spline interpolation based 

on information about the TR (2000 ms) and the order of the slice scanning (interleaved 

slice order).  3D motion correction (trilinear estimation and sinc resampling) was carried 

out to detect and correct small head movements by spatially aligning all volumes within a 

functional run to the first recorded volume (rigid body transformation).  A temporal high 

pass filter was used to remove frequencies lower than two cycles per time course.   
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Anatomical data underwent brain extraction and inhomogeneity correction.  Anatomical 

and functional data were spatially normalized to the Talairach coordinate system 

(Tournoux, 1988) with an intensity alignment using a multi-scale approach.  After 

registering the functional and anatomical data, spatial smoothing using a Gaussian kernel 

with a full-width at half maximum (FWHM) of 8 mm was also performed.  

Functional runs with head motion greater than 1˚ or 1 mm of rotation or 

translation, respectively, were removed from further analyses.  This resulted in the 

removal of nine (out of 99) functional runs for the pay-today task, and eight (out of 99) 

functional runs for the accept-today task.   

3.3 Behavioral Data Analysis  

Participant responses to the pre-scan survey questions as well as their responses in 

the scanner were collected using IBM SPSS Statistics Version 20 software.  This 

software was then used to carry out the statistical analyses done with the data, which 

included a factor analysis to determine both our time and magnitude clusters.  By making 

use of factor analysis and collapsing across reward amounts, we were able to find the 

delays that naturally clustered together based upon how participants responded to the 

questions rather than by our own intuition.  This meant that from one clustered group of 

delays to another, there were observable differences in participant responses regarding 

how much money they would be willing to accept in the future or pay today.  The delay 

clusters found were (days to months); (1, 2, and 5 years); and (10 or 20 years).  We 

labeled these clusters as short, medium, and long respectively.  An almost identical 

procedure was used to find the monetary rewards that group together based upon 

responses regardless of the delay period.  Three clusters were found for monetary rewards 
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which were ($5), ($500 to $5,000), and ($500,000).  These clusters of rewards were 

labeled as small, medium, and large.      

3.4 Functional Imaging Data Analysis 

Data were analyzed using a random-effects model, implemented with a two-level 

procedure.  Following preprocessing, single-subject fMRI data were modeled in a general 

linear model (GLM) by a design-matrix comprised of onsets and durations for each event 

for each functional run of the pay-today and accept-today tasks.  A total of nine 

predictors were defined, based on the results of a factor analysis (see Table 1); each 

predictor was convolved with a two-gamma hemodynamic response function (HRF); 

(Boynton et al., 1996).  An uncorrected p-value of 0.001 was first used, followed by 

cluster-level statistical thresholding to p = 0.05 to control for multiple comparisons.  This 

cluster thresholding approach (Forman et al., 1995) is recommended as a method to 

reduce false positives, increase localization, and aide in the accurate interpretation of 

fMRI results (Woo et al., 2014).  

4. Results 

4.1 Behavioral Results 

The delay discounting questions that were presented to participants in the scanner 

were identical to those they saw in the pre-scan questionnaire.  Having participants 

respond twice to these questions gave us the opportunity to assess whether any 

irregularities would result from a change in environment.  Upon comparing participant 

answers in SPSS, no significant changes were found in responses between the pre-scan 

and in-scan questions.  
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Table 1. The nine different predictors found from our fMRI data using factor analysis   

Reward Delay Predictors 

$50 (Small) Short (Days to Months) SmallShort 

$50 (Small) Intermediate (1,2,5 years) SmallIntermediate 

$50 (Small) Long (10 to 20 years) SmallLong 

$500 to $5000 (Medium) Short (Days to Months) MediumShort 

$500 to $5000 (Medium) Intermediate (1,2,5 years) MediumIntermediate 

$500 to $5000 (Medium) Long (10 to 20 years) MediumLong 

$500,000 (Large) Short (Days to Months) LargeShort 

$500,000 (Large) Intermediate (1,2,5 years) LargeIntermediate 

$500,000 (Large) Long (10 to 20 years) LargeLong 

 

4.2 Neuroimaging Results 

The purpose of our neuroimaging data was to look at brain activity differences 

that occur when participants make intertemporal choices under different time frames and 

with varying reward values.  All fMRI scans were analyzed using Brain Voyager 

software.  To investigate brain activation, the questions that statistically clustered 

together based upon the delay period were used to make contrasts in Brain Voyager that 

compared brain activity occurring during answers to short questions vs long questions, 

short vs intermediate, and intermediate vs long.  As an example of these contrasts, the 

long vs short grouping would display areas of the brain that were active across all 

participants whenever they were presented with a question when the delay was long (10 

to 20 years) compared to when the delay was short (days to months).  Also, this contrast 

displays areas of the brain more active when the delay is short compared to when the 

delay is long, but uses a different identifier (color, negative value).  Significant areas of 
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activation found in these contrasts are displayed in Table 2 and Figure 4.  In the long vs 

short delay contrast, activation was seen in the fusiform gyrus, culmen, medial frontal 

gyrus, precentral gyrus, insula, and superior temporal gyrus during answers to long delay 

questions, while activity in the cuneus was observed during short delay questions.  The 

intermediate vs short delay contrast showed activity in the middle occipital gyrus, 

culmen, medial frontal gyrus, precentral gyrus, insula, and inferior occipital gyrus during 

intermediate periods, while short delay questions only showed cuneus activation.  A 

contrast was also attempted for the long vs intermediate time periods; however, no 

significant differences in activation were found between these delays.   

In a similar fashion, activation contrasts were also created for varying reward 

magnitudes.  These contrasts included the pairings large vs small, medium vs small, and 

large vs medium reward values (corresponding to the statistical groupings determined 

previously).  The large vs small contrast showed activation in the precuneus, middle 

frontal gyrus, cingulate gyrus, and middle frontal gyrus in response to large rewards.  

Small rewards caused activation in the inferior parietal lobule, precentral gyrus, and 

inferior parietal lobule.  The medium vs small contrast displayed medium sized rewards 

eliciting activation in the cuneus and middle frontal gyrus, whereas small rewards 

resulted in activation in the inferior parietal lobule, postcentral gyrus, and insula.  The 

last contrast created between reward values was large vs medium, and it showed 

activation in the angular gyrus when large reward questions were asked.  These results 

are summarized in Table 3 and Figure 5. 
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Table 2. Brain contrasts created for differing delay periods. Positive t-values are more 

active during + conditions. Negative t-values were more active during – conditions. Note. 

Abbreviations R = Right; L = left; BA = Brodmann area; NOV = number of voxels. Peak 

voxel, Brodmann area, and Talairach coordinates are for the peak voxel. All activation 

sites reached p < .001 after cluster thresholding corrections. One voxel is equal to 3 mm3.  

N = 25. 

 

 

 

 

 

 

 

 

Peak Voxel Side BA 
Talairach Coordinate 

NOV t 
x y z 

Long+ Short- 

Cuneus R 17 3 -82 13 10210 -4.977944 

Fusiform Gyrus R 19 42 -67 -5 4877 6.339715 

Culmen R - 15 -46 -17 6599 8.782126 

Medial Frontal 

Gyrus 
L 6 -6 -13 55 1994 5.087734 

Precentral Gyrus L 4 -30 -28 52 12510 6.900496 

Insula L 13 -42 -4 13 2423 5.833056 

Superior Temporal 

Gyrus 
L 41 -42 -34 16 2952 4.729481 

 

Peak Voxel Side BA 
Talairach Coordinate 

NOV t 
x y z 

Intermediate+ Short- 

Cuneus R 17 3 -79 10 3948 -4.944561 

Middle Occipital 

Gyrus 
R 37 49 -64 -8 8781 8.169078 

Culmen R - 12 -49 -17 10071 7.213074 

Medial Frontal 

Gyrus 
L 6 -3 -10 52 3207 6.141321 

Precentral Gyrus L 4 -30 -25 49 16885 7.928279 

Insula L 13 -42 -7 13 1437 5.544353 

Inferior Occipital 

Gyrus 
L 18 -45 -79 -8 2052 5.74411 
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Table 3. Brain contrasts created for differing reward magnitudes. Positive t-values are 

more active during + conditions. Negative t-values were more active during – conditions. 

Note. Abbreviations R = Right; L = left; BA = Brodmann area; NOV = number of voxels. 

Peak voxel, Brodmann area, and Talairach coordinates are for the peak voxel. All 

activation sites reached p < .001 after cluster thresholding corrections. One voxel is equal 

to 3 mm3.  N = 25. 

 

 

 

 

Peak Voxel Side BA 
Talairach Coordinate 

NOV t 
x y z 

Medium+ Small- 

Inferior Parietal 

Lobule 
R 40 54 -28 25 2350 -4.968945 

Postcentral 
Gyrus 

L 3 -43 -25 61 2328 -4.989397 

Insula L 13 -45 -7 13 2755 -6.183497 

Postcentral 

Gyrus 
L 40 -51 -25 22 7996 -6.08046 

Cuneus L 18 -24 -91 -2 69011 9.050596 

Middle Frontal 

Gyrus 
R 6 27 -7 49 1364 5.579226 

 

Peak Voxel Side BA 
Talairach Coordinate 

NOV t 
x y z 

Large+ Small- 

Inferior Parietal 

Lobule 
R 40 51 -28 25 1485 -4.456243 

Precentral Gyrus L 6 -48 -4 10 2508 -5.742199 

Inferior Parietal 
Lobule 

L 40 -66 -31 29 7073 -6.400276 

Precuneus L 7 -24 -67 28 104500 10.28237 

Middle Frontal 

Gyrus 
R 6 27 -4 52 3631 6.607982 

Cingulate Gyrus L 32 -6 14 43 2362 5.784618 

Middle Frontal 

Gyrus 
L 9 -42 14 31 1728 5.4002 

 

Peak Voxel Side BA 
Talairach Coordinate 

NOV t 
x y z 

Large+ Medium- 

Angular Gyrus R 39 48 -61 34 2382 5.089946 

Angular Gyrus L 39 -39 -55 34 717 4.511892 
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5. Discussion and Conclusion 

With these contrasts created for both varying rewards and delays, we can address 

our earlier hypotheses.  First, using both the reward and delay contrasts, we must 

determine if some of the activation we observe matches areas of the brain commonly 

thought to be involved when making intertemporal choices.  This will help us to validate 

that even with novel stimuli, we are still seeing similar network activity as previous 

studies.  Next, we will switch our focus to the contrasts looking at changes in the delay 

period.  In these contrasts, we will be looking for activation that either supports or 

opposes our novel tri-phasic delay discounting hypothesis.  Last, the contrasts made on 

the basis of differing monetary rewards will be used to evaluate if different neural 

activation is elicited by changes in reward value. 

 

 

 

 

 

 

 

Figure 4. a) Long(o) Short(b) Crosshairs on medial frontal gyrus activation.  b) Large(o) 

Small(b) Crosshairs on middle frontal gyrus activation (c) Long(o) Short(b) Crosshairs 

on insular activation d) Medium(o) Short(b) Crosshairs on insular activation Note: o – 

orange b – blue    

 

a) 

c) 

b) 

d) 
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To examine differences between LL and SS choices, we contrasted both medium 

and large rewards to small rewards.  In addition, we also contrasted both intermediate and 

long delays to short delays.  Similar to previous studies, we observed dorsolateral 

prefrontal cortex activation for longer delays and larger rewards.  This activation is seen 

in the middle frontal gyrus for larger rewards and the medial frontal gyrus for longer 

delays (See Figure 4).  This activity, while in different regions depending on the variable, 

further supports the role of prefrontal regions in the brain being responsible for delaying 

gratification.  Additionally, insular activation was found in the long and intermediate 

delay periods that were contrasted with short delays.  Insular regions are considered to be 

important components of the decision making network as they integrate sensation to 

emotional states, which eventually leads to action selection (Craig, 2002).  Previous 

models have hypothesized that different parts of the insula are activated in short-term and 

long-term reward prediction (Tanaka et al., 2016).  Supporting this finding, insular 

activation was also found in our study when participants were making small reward 

decisions vs large ones.  Other delay discounting studies have observed ventral medial 

prefrontal activation in response to choosing SS rewards; however, no significant 

activation in this region was observed in our contrasts.  The lack of this activity could be 

a result of slight variations in our delay discounting task compared to other studies or 

could be caused by participants not receiving immediate reinforcing stimuli while making 

these decisions.  Instead, participants only obtained compensation at the completion of 

the study.  Research has been conducted to evaluate if hypothetical delay discounting 

tasks generate different results from the real world and their findings suggest that only 
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slight (Lane et al., 2003) differences are detectable, if any (Madden et al., 2003; Madden 

et al., 2004).  While this factor may have a slight impact on brain activation in delay 

discounting tasks, the present study would be unable to be conducted without using a 

slightly hypothetical framework.  Also, our study can be compared with other works that 

have similarly found little activation for SS choices in hypothetical discounting tasks 

(Wittmann et al., 2007).  

 

 

 

 

 

 

Figure 5. a) Long(o) Short(b) Crosshairs on medial frontal gyrus activation.  b) 

Intermediate(o) Short(b) Crosshairs on medial frontal gyrus activation (c) Long(o) 

Short(b) Crosshairs on insular activation d) Medium(o) Short(b) Crosshairs on insular 

activation Note: o – orange b – blue    

 

Taking a closer look at our contrasts involving different delays, we observe 

common activation for the long and intermediate delay periods in the medial frontal 

gyrus of the left hemisphere (See Figure 5).  This area stands out as significant due to 

reports of the medial frontal gyrus being involved with delayed choices (MacKillop et al., 

2012). This finding, common to both long and intermediate delay periods, suggests that 

a) b) 

c) d) 
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the medial frontal gyrus is involved in some way in delaying gratification.  A different 

area of the prefrontal cortex is active in our contrasts involving changing reward 

magnitudes; therefore, this region may also be specific to differentiating between 

immediate and long-term delays (See Figures 5 and 6).  Insular activation is also 

observed in both the intermediate and long delay periods (See Figure 5).  As mentioned 

previously, the insula is often associated to play a part in delaying gratification and 

seeing that area active in both of the longer delay periods supports this fact.  Common to 

both of the longer delays was activation in the culmen and precentral gyrus.  It is possible 

that these areas are a part of the neuronal circuit that differentiates between delay periods 

when it comes to making intertemporal choices, but it is difficult to make any concrete 

conclusions here with a lack of previous research.  These areas are just as likely to be 

active as a result of visual, auditory, or motor stimuli involved with the task.  The neural 

congruence in activation observed during both the intermediate and long delay periods 

suggests that our tri-phasic hypothesis of brain activation is likely incorrect.  While there 

are slight differences in activation between the two time periods in the occipital gyrus, 

temporal gyrus, and fusiform gyrus, these are areas that lack convincing evidence when it 

comes to playing a part in intertemporal choices.  Activation in separate areas of the 

prefrontal cortex or orbitofrontal cortex would be more likely if a different mechanism 

was involved in differentiating between intermediate and long time periods.  The cuneus 

is the only area of activation observed for immediate rewards.  The areas of the cuneus 

that were shown to be active lead us to believe that this activation is a result of stimulus 

saliency.  This activation could mean that rewards in the short-term stand out to 

participants.  
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Figure 6. a) Medium(o) Small(b) Crosshairs on middle frontal gyrus activation.  b) 

Large(o) Small(b) Crosshairs on cingulate gyrus activation (c) Large(o) Small(b) 

Crosshairs on right middle frontal gyrus activation d) Large(o) Medium(b) Two clusters 

seen are left and right angular gyrus activation Note: o – orange b – blue    

 

The middle frontal gyrus was a common area of activation for both medium and 

large rewards and increasing the magnitude of the reward also increased activation in this 

region (See Figure 6).  With prefrontal regions being commonly found in delay 

discounting studies, this area likely plays a key role in choosing larger rewards.  Specific 

middle frontal gyrus activation has also been seen in similar discounting studies dealing 

with monetary rewards (Xu et al., 2009).  During presentation of medium rewards, only 

the left middle frontal gyrus was active (See Figure 6).  When the magnitude of the 

reward grew, this activation also included the recruitment of the right middle frontal 

gyrus.  Bilateral recruitment has been discussed as a way for the prefrontal cortex to cope 

with more cognitive challenges (Höller-Wallscheid et al., 2017).  It would make sense 

that a larger monetary reward would be perceived by the brain to be a more difficult 

a) b) 

c) 

 

d) 
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decision and result in the bilateral activation observed as the value of the reward 

increases.  Large reward magnitudes also elicited activation in the cingulate gyrus.  As 

hypothesized from previous studies, the cingulate gyrus has shown its influence when 

choosing larger rewards no matter the time period (Wittmann et al., 2007).  With the 

absence of cingulate gyrus activation when varying the delay period, these results support 

the assumption that the cingulate gyrus is involved in decisions and expectancies for 

larger rewards across all time periods.  Precuneus and cuneus activation was seen for 

larger reward values and the area of activation in this region increased with increasing 

reward value.  While these results may seem contradictory to our assumption of stimulus 

saliency made in response to cuneus activation during short delay periods, the way our 

contrasts are created would still support this theory.  As an immediate reward may draw 

more attention to itself, so might a reward that is higher in magnitude, thus eliciting such 

a large group of activation that increased with reward value.  The direct contrast between 

intermediate and large reward values showed only bilateral activation of the angular 

gyrus (See Figure 6).  Neuroimaging studies have provided evidence that the angular 

gyrus is commonly active when individuals are making mathematical calculations.  With 

the rewards of our study being monetary in nature and the difference in value between 

large and medium rewards being upwards of 495,000, angular gyrus activity is likely a 

result of increased mental math when participants answer questions involving large 

rewards.    

Still looking at our contrasts involving differing reward value, but switching gears 

to look at the smaller rewards, common activation is seen in the inferior parietal lobule 

(See Figure 7).  The inferior parietal lobule has been reported to take part in executive 
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function, inhibitory control, (Hedden & Gabrieli, 2010) and has been found active when 

subjects make more difficult delay discounting choices (McClure et al., 2004; 

Monterosso et al., 2007).  Our findings do not seem to fit well with these conclusions; 

however, the inferior parietal lobule is also involved in the attention network (Ptak, 

2012).  Decisions in the short term may make individuals feel like they must be more 

attentive, which may explain the observed activation in this region.  Precentral and 

postcentral gyrus activation was also found for small rewards values.  Further research 

that specifically looks at how the magnitude of a reward may alter brain activation is 

required to say anything conclusive in regard to these areas.  

 

 

 

 

 

Figure 7. a) Large(o) Small(b) Two activation clusters represent bilateral activation of 

the inferior parietal lobule.  b) Medium(o) Small(b) Crosshairs on right inferior parietal 

lobule activation Note: o – orange b – blue    

 

To expand this study, future research could look at how brain activation patterns 

may change for individuals considered to be impulsive.  Impulsive individuals have been 

observed to have altered brain activity when it comes to making intertemporal choices 

(Stoeckel et al., 2013).  These changes are often observed as insufficient functioning of 

executive control regions such as the prefrontal cortex.  If clear evidence was found that 

one such brain region elicited significantly different activation only seen in impulsive 

participants, fMRI could be used to determine one’s propensity to forming addictions.  

a) b) 
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In summary, this article aimed to clarify the differences in brain activation that 

may result from participant perceptions of a delay period or reward value.  Additionally, 

we proposed that a tri-phasic delay discounting hypothesis would better explain 

behavioral responses to typical delay discounting questions involving exceedingly long 

delays, and that these excessive delays would call on separate neuronal networks.  Our 

findings did not provide any evidence to support this tri-phasic hypothesis.  When the 

delay to a reward was increased, common activation in the medial frontal gyrus, 

precentral gyrus, and insula was found.  Varying the value of a reward did result in slight 

variations in brain activation, with the cingulate gyrus notably being active when 

choosing the largest of rewards.  Additionally, the middle frontal gyrus increased in 

activation and even displayed bilateral recruitment with increasing reward value.  

Showing that similar networks in the brain seem to be responsible for all delays, even 

those into the far future, may aid researchers in determining the best function to properly 

model behavioral responses to intertemporal choices.  Moreover, when these results are 

combined, they provide strong evidence that the value and delay of a reward are handled 

by dissociable neural networks when making intertemporal choices.  

    

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

REFERENCES 

 

 

Ainslie, G. (1975). Specious reward: a behavioral theory of impulsiveness and impulse 

control. Psychological bulletin, 82(4), 463.  

Ballard, K., & Knutson, B. (2009). Dissociable neural representations of future reward 

magnitude and delay during temporal discounting. Neuroimage, 45(1), 143-150.  

Banks, J., Blundell, R., & Tanner, S. (1998). Is there a retirement-savings puzzle? 

American Economic Review, 769-788.  

Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001). Executive 

functioning, temporal discounting, and sense of time in adolescents with attention 

deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). 

Journal of abnormal child psychology, 29(6), 541-556.  

Barratt, E. S. (1983). The biological basis of impulsiveness: The significance of timing 

and rhythm disorders. Personality and Individual Differences, 4(4), 387-391.  

Berns, G. S., Laibson, D., & Loewenstein, G. (2007). Intertemporal choice–toward an 

integrative framework. Trends in cognitive sciences, 11(11), 482-488.  

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems 

analysis of functional magnetic resonance imaging in human V1. Journal of 

Neuroscience, 16(13), 4207-4221.  

Clift, S. M., Wilkins, J. C., & Davidson, E. (1993). Impulsiveness, venturesomeness and 

sexual risk-taking among heterosexual GUM clinic attenders. Personality and 

Individual Differences, 15(4), 403-410.  

Cohen, J. I., Yates, K. F., Duong, M., & Convit, A. (2011). Obesity, orbitofrontal 

structure and function are associated with food choice: a cross-sectional study. 

BMJ open, 1(2), e000175.  

Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological 

condition of the body. Nature reviews neuroscience, 3(8), 655-666.  

Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain 

relating to uncertainty and arousal during anticipation. Neuron, 29(2), 537-545.  

Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., Cadet, 

J.-L., Kimes, A. S., & London, E. D. (2002). Decision-making in a risk-taking 

task: a PET study. Neuropsychopharmacology, 26(5), 682-691.  

Essex, B. G., Clinton, S. A., Wonderley, L. R., & Zald, D. H. (2012). The impact of the 

posterior parietal and dorsolateral prefrontal cortices on the optimization of long-

term versus immediate value. Journal of Neuroscience, 32(44), 15403-15413.  



 

32 
 

Eysenck, S. B., & McGurk, B. J. (1980). Impulsiveness and venturesomeness in a 

detention center population. Psychological Reports, 47(3_suppl), 1299-1306.  

Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, 

E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice. 

Nature neuroscience, 13(5), 538-539.  

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. 

(1995). Improved assessment of significant activation in functional magnetic 

resonance imaging (fMRI): use of a cluster‐size threshold. Magnetic resonance in 

medicine, 33(5), 636-647.  

Frederick, S., Loewenstein, G., & O'donoghue, T. (2002). Time discounting and time 

preference: A critical review. Journal of economic literature, 40(2), 351-401.  

Green, L., & Myerson, J. (2004). A discounting framework for choice with delayed and 

probabilistic rewards. Psychological bulletin, 130(5), 769.  

Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making 

involves modulation of the vmPFC valuation system. Science, 324(5927), 646-

648.  

Hedden, T., & Gabrieli, J. D. (2010). Shared and selective neural correlates of inhibition, 

facilitation, and shifting processes during executive control. Neuroimage, 51(1), 

421-431.  

Höller-Wallscheid, M. S., Thier, P., Pomper, J. K., & Lindner, A. (2017). Bilateral 

recruitment of prefrontal cortex in working memory is associated with task 

demand but not with age. Proceedings of the National Academy of Sciences, 

114(5), E830-E839. https://doi.org/10.1073/pnas.1601983114  

Hutcherson, C. A., Plassmann, H., Gross, J. J., & Rangel, A. (2012). Cognitive regulation 

during decision making shifts behavioral control between ventromedial and 

dorsolateral prefrontal value systems. Journal of Neuroscience, 32(39), 13543-

13554.  

Jaeggi, S. M., Buschkuehl, M., Etienne, A., Ozdoba, C., Perrig, W. J., & Nirkko, A. C. 

(2007). On how high performers keep cool brains in situations of cognitive 

overload. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 75-89.  

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during 

intertemporal choice. Nature neuroscience, 10(12), 1625-1633.  

Kirby, K. N., & Herrnstein, R. J. (1995). Preference reversals due to myopic discounting 

of delayed reward. Psychological science, 6(2), 83-89.  

https://doi.org/10.1073/pnas.1601983114


 

33 
 

Kirby, K. N., & Maraković, N. N. (1995). Modeling myopic decisions: Evidence for 

hyperbolic delay-discounting within subjects and amounts. Organizational 

Behavior and Human decision processes, 64(1), 22-30.  

Kirby, K. N., & Santiesteban, M. (2003). Concave utility, transaction costs, and risk in 

measuring discounting of delayed rewards. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 29(1), 66.  

Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of 

increasing monetary reward selectively recruits nucleus accumbens. Journal of 

Neuroscience, 21(16), RC159-RC159.  

Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward 

prediction. Current opinion in neurology, 18(4), 411-417.  

Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., & Hommer, D. (2001). 

Dissociation of reward anticipation and outcome with event-related fMRI. 

Neuroreport, 12(17), 3683-3687.  

Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of 

brain activity during a monetary incentive delay task. Neuroimage, 12(1), 20-27.  

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of 

Economics, 112(2), 443-478.  

Lane, S. D., Cherek, D. R., Pietras, C. J., & Tcheremissine, O. V. (2003). Measurement 

of delay discounting using trial-by-trial consequences. Behavioural processes, 

64(3), 287-303.  

Loewenstein, G., & Thaler, R. H. (1989). Anomalies: intertemporal choice. Journal of 

Economic perspectives, 3(4), 181-193.  

MacKillop, J., Amlung, M. T., Wier, L. M., David, S. P., Ray, L. A., Bickel, W. K., & 

Sweet, L. H. (2012). The neuroeconomics of nicotine dependence: a preliminary 

functional magnetic resonance imaging study of delay discounting of monetary 

and cigarette rewards in smokers. Psychiatry research, 202(1), 20-29. 

https://doi.org/10.1016/j.pscychresns.2011.10.003  

Madden, G. J., Begotka, A. M., Raiff, B. R., & Kastern, L. L. (2003). Delay discounting 

of real and hypothetical rewards. Experimental and clinical psychopharmacology, 

11(2), 139.  

Madden, G. J., Raiff, B. R., Lagorio, C. H., Begotka, A. M., Mueller, A. M., Hehli, D. J., 

& Wegener, A. A. (2004). Delay discounting of potentially real and hypothetical 

rewards: II. Between-and within-subject comparisons. Experimental and clinical 

psychopharmacology, 12(4), 251.  

https://doi.org/10.1016/j.pscychresns.2011.10.003


 

34 
 

Mazur, J. E. (1987). An adjusting procedure for studying delayed reinforcement. 

Commons, ML.; Mazur, JE.; Nevin, JA, 55-73.  

McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). 

Time discounting for primary rewards. Journal of Neuroscience, 27(21), 5796-

5804.  

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural 

systems value immediate and delayed monetary rewards. Science, 306(5695), 

503-507.  

Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., & London, E. D. 

(2007). Frontoparietal cortical activity of methamphetamine‐dependent and 

comparison subjects performing a delay discounting task. Human brain mapping, 

28(5), 383-393.  

Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt 

impulsiveness scale. Journal of clinical psychology, 51(6), 768-774.  

Ptak, R. (2012). The frontoparietal attention network of the human brain: action, saliency, 

and a priority map of the environment. The Neuroscientist, 18(5), 502-515.  

Reynolds, B., & Schiffbauer, R. (2004). Measuring state changes in human delay 

discounting: an experiential discounting task. Behavioural processes, 67(3), 343-

356.  

Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2010). Myopic discounting of future 

rewards after medial orbitofrontal damage in humans. Journal of Neuroscience, 

30(49), 16429-16436.  

Sellitto, M., Ciaramelli, E., & di Pellegrino, G. (2011). The neurobiology of 

intertemporal choice: insight from imaging and lesion studies. Reviews in the 

Neurosciences, 22(5), 565-574.  

Shapiro, J. M. (2005). Is there a daily discount rate? Evidence from the food stamp 

nutrition cycle. Journal of public Economics, 89(2-3), 303-325.  

Stein, D., Towey, J., & Hollander, E. (1995). The neuropsychiatry of impulsive 

aggression. Impulsivity and aggression, 91-105.  

Stein, D. J., Hollander, E., & Liebowitz, M. R. (1993). Neurobiology of impulsivity and 

the impulse control disorders. Journal of Neuropsychiatry and Clinical 

Neurosciences, 5, 9-9.  

Stoeckel, L. E., Murdaugh, D. L., Cox, J. E., Cook, E. W., 3rd, & Weller, R. E. (2013). 

Greater impulsivity is associated with decreased brain activation in obese women 

during a delay discounting task. Brain imaging and behavior, 7(2), 116-128. 

https://doi.org/10.1007/s11682-012-9201-4  

https://doi.org/10.1007/s11682-012-9201-4


 

35 
 

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2016). 

Prediction of immediate and future rewards differentially recruits cortico-basal 

ganglia loops. In Behavioral economics of preferences, choices, and happiness 

(pp. 593-616). Springer.  

Thompson, R. W., Teare, J. F., & Elliott, S. N. (1983). Impulsivity: from theoretical 

constructs to applied interventions. The Journal of Special Education, 17(2), 157-

169.  

Tournoux, J. T. E. P. (1988). Co–Planar Stereotaxic Atlas of the Human Brain. 3-

Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme 

Medical Publishers, Inc., Georg Thieme Verlag, Stuttgart, New York.  

Wang, X., Zheng, R., Xuan, Y.-H., Chen, J., & Li, S. (2016). Not all risks are created 

equal: A twin study and meta-analyses of risk taking across seven domains. 

Journal of experimental psychology: general, 145(11), 1548.  

Wittmann, M., Leland, D. S., & Paulus, M. P. (2007). Time and decision making: 

differential contribution of the posterior insular cortex and the striatum during a 

delay discounting task. Experimental Brain Research, 179(4), 643-653.  

Wittmann, M., & Paulus, M. P. (2008). Decision making, impulsivity and time 

perception. Trends in cognitive sciences, 12(1), 7-12.  

Woo, C.-W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in 

fMRI analyses: pitfalls and recommendations. Neuroimage, 91, 412-419.  

Xu, L., Liang, Z.-Y., Wang, K., Li, S., & Jiang, T. (2009). Neural mechanism of 

intertemporal choice: from discounting future gains to future losses. Brain 

research, 1261, 65-74.  

Xu, S., Pan, Y., Wang, Y., Spaeth, A. M., Qu, Z., & Rao, H. (2016). Real and 

hypothetical monetary rewards modulate risk taking in the brain. Scientific 

reports, 6, 29520.  

 


	Time for a change? Brain activity and behavioral performance reveal different dynamics at short, intermediate, and long delay intervals during a delay discounting task
	Recommended Citation

	tmp.1591210297.pdf.wJbu7

