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Abstract 

Manganese mineralization associated with phyllites in and around Joda, Odisha belongs to the Iron 

Ore Group of Noamundi basin and is a part of Jamda-Koira belt of East Indian Shield. The present 

study area comprises low to medium grade tectonites containing economic resources of both iron and 

manganese. Present study is concentrated on Manganese mineralization. Field study and 

petro-mineralogical observations reveal syngenetic character of manganese ores comprising lowT 

higher oxides viz. pyrolusite, cryptomelane, manganite as major Mn-minerals along with highT lower 

oxides viz. jacobsite, bixbyite, braunite and hausmannite as minor Mn-minerals. The Mn-ore bodies 

and associated phyllites have undergone multiple phases of deformation and metamorphism followed 

by hydrothermal and supergene processes. Four deformational phases have been deciphered during 

field study. Geochemical analyses of ores and phyllitic host rocks show high values of Al2O3, TiO2, Ba, 

Co, Ni, Cr, Cu, Sc, V, As, Zn but depletion of Sr, Yb, Sm, Nb. Geochemical data infer ores to be a 

recycling product originally derived from a mafic crustal source of tholeiitic character. Age data 

obtained from Sm-Nd ratio of two rock samples are 3.46 Ga and 2.79 Ga. Present work provides a 

critical assessment on the multiphase mineralization of manganese ores.  
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1. Introduction 

The present study area, in and around Joda, comprises the Precambrian Iron Ore Group (IOG) of the 

Noamundi Basin, Odisha, a part of the Mesoarchean greenstone belt (3.5-3.0 Ga) viz. Jamda-Koira belt 

of the East Indian Shield (EIS). Low to medium grade tectonites containing economic resources of both 

iron and manganese are themajor rock types of the regional Noamundi synclinorium. Manganese ores, 

in this area (lat: 21°46’ - 22°10’N; long: 85°06’ - 85°35’ E) are hosted mainly by tuffaceous phyllites 

of the IOG (3.3-3.1 Ga, Saha et al.1988) in the eastern limb of the Noamundi synclinorium, whereas 

iron ores are associated with mainly quartzites and phyllites in some places. The principal mineralized 

areas of manganese are Bichakundi, Bamebari, Khondband, Guruda and Joribar in and around Joda. 

Archean manganese and iron mineralization in greenstone belts are reported from limited occurrences 

viz. the Rio das Velhas deposit of Brazil (Machado & Carnerio, 1992; Teixeira et al., 1996; Martin et 

al., 1997), the Barberton greenstone belt of South Africa (De Wit et al., 1980; Anhaeusser & Wilson, 

1981), the Yilgarn and Pilbara blocks of Western Australia (Condie, 1981; Hallberg & Glikson, 1981), 

the Sebakwian-Bulawayan-Shamvaian belt of Zimbabwe (Myers & Kröner, 1994; Windly, 1982), the 

Superior and Slave provinces of Abitibi belt, Canada (Goodwin, 1973; Dimroth et al., 1982), the Isua 

Formation of Greenland (Gross, 1986; Schidlowski, 1988), the Bababudan and Chitradurga belt of 

South India (Ramakrishnan et al., 1976; Chadwick et al., 1981a, b) and the Iron Ore Group (IOG) of 

the East Indian Shield (Roy, 1981; Saha, 1994, Ghosh, et al., 2015a, b). The greenstone rocks of the 

present area belong to the IOG, which overlies the Singhbhum Granite Type-A and underlies the 

Singhbhum Granite Type-B (Saha et al., 1988). 

From the field study, it is observed that the manganese ore bodies exhibit their conformable character 

with the host phyllites which are often laminated and compositionally banded. Manganese ore bodies 

are mainly of four different types viz. massive, banded, colloform (pisolitic/botryoidal/reniform) and 

brecciated. From petrographic studies, it is revealed that manganese ore is characterized by minerals of 

low temperature higher oxides such as pyrolusite, cryptomelane, manganite as well as high temperature 

lower oxides such as braunite, bixbyite, jacobsite, hausmannite. The present area bears evidence of 

regional metamorphism from upper green schist facies to lower amphibolite facies with four phases of 

tectonic deformation. Basedupon analytical data of major, minor, trace and rare earth elements, 

enrichment of Al2O3, TiO2, Cr, Sc, V, Ba, Co etc. is observed in both manganese ores and associated 

host rocks along with positive correlation between alumina-titania and alumina-magnesia. 

Manganese and iron mineralization in and around Joda, Kendujhar district, Odisha, have been studied 

by Jones (1934), Dunn and Dey (1942), Roy (1968), Banerji (1977), Chakraborty and Majumdar 

(1986), Ghosh et al. (2015) covering different ore geological aspects. Despite the aforesaid work, there 

is ample scope for the work on Mn-mineralogy, geochemistry, geochronology and ore genesis which 

the present paper tries to incorporate. Manganese mineralization in the Joda-Noamundi sector reveals 

recycling of manganese through different phases of tectonic deformation and metamorphism followed 

by later hydrothermal and supergene processes. 
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2. Regional Geology and Stratigraphy 

The East Indian Shield (EIS) (21°25°N lat. and 85°-88°E long) comprises two Precambrian cratonic 

blocks viz. the northern high grade metamorphic Chhotanagpur Granulite gneiss terrain and the 

southern low grade metamorphic Singhbhum Granite greenstone terrain, which are separated by the 

Singhbhum Orogenic Belt containing Dalma lavas and Singhbhum Group of rocks. Figure 1 shows the 

geological map of the EIS. The Singhbhum granite greenstone terrain is bounded by Singhbhum shear 

zone (200 km long) in the north and separated from the Proterozoic Eastern Ghat Mobile Belt by 

Sukinda thrust in the south. The generalized Stratigraphic succession in this Singhbhum craton after 

Saha et al. (1988) is given in Table 1. 

The Singhbhum cratonic block comprises two Archean greenstone belts viz. Jamda-Koira belt along 

with Noamundi basin on the west and Gorumahisani-Badampahar-Daitari belt on the east. The Joda 

area with Mn-mineralized zones belongs to the Jamda-Koira belt and located in the eastern limb of the 

Noamundi synclinorium. Both manganese and iron ores are closely associated with Banded Iron 

Formation (BIF), metamorphosed volcanic and sedimentary rocks of the IOG. The basement rock of the 

IOG basin is dominantly Singhbhum Granite (Type-A). The Mesoarchaean succession in the 

Singhbhum crustal province begins with the Iron Ore Group (IOG), characterized by Banded Iron 

Formations (BIF), clastic sedimentary rocks and minor carbonates (Chakraborty & Majumder, 1986; 

Saha, 1994; Bhattacharya et al., 2007; Mukhopadhyay et al., 2008). IOG rocks are low grade 

metamorphosed and intruded by younger Singhbhum Granite (Type-B). Bonai-Keonjhar 

iron-manganese belt (Lat: 21°40’ and 22°15’ N and Long: 85°00’ and 85°35’ E) in the IOG forms a 60 

km long & 25 km wide synclinorium (Noamundi synclinorium), referred to as “Iron-Ore horse shoe” 

plunging variously to north and north east. The corresponding anticlinal core in the western part of the 

Noamundi synclinoriumis mainly occupied by the 3.3 Ga Bonai granite (Saha, 1994). BIF, which is an 

important volcano-sedimentary rock formation of the Archean Greenstone belt, broadly defines the 

outline of the synclinorium, are almost continuously exposed along the margin, while manganese ore 

bearing shales occur within the core region of the fold. The entire region displays the effect of 

superposed folding on two near perpendicular axes, the generalised trends being NNE-SSW & 

WNW-ESE to NW-SE (GSI report on manganese ore, 2011). Mn-mineralization in and around Joda 

has taken place in Joda, Bichakundi, Khondband, Guruda, Joribar and Bamebari areas. 

 

3. Previous Work 

Manganese mineralization in the Noamundi-Jamda-Koira belt is a very conspicuous feature in close 

association with iron ores. Spencer (1948) considers manganese ores hydrothermal in origin but Sen 

(1951) regards them to be submarine volcanic origin. Engineer (1956), Prasad Rao and Murty (1956) 

consider the manganese ores products of the replacement of shales and quartzites by manganiferous 

solutions. Basu (1969) considers these ores syngenetic but modified by epigenetic concentration. Basu 

(1969) and Roy (1978) describe bedded manganese orebodies interstratified with shale (often 
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tuffaceous) and sometimes co-folded with it from Kalimati, Phagua, Gurda Block II and the 

Mahulsukha mine-areas in Odisha (cf. Roy, 1981). Murthy and Ghosh (1971) reported 

pyrolusite-cryptomelane-manganite-rhodochrosite bearing Mn-ores in association with chert and 

dolomite beds and regarded the manganese minerals originally disseminated in the shales and later 

mobilized and concentrated at structurally favourable sites. Banerji (1977) concluded that manganese 

ores formed later than the iron ores. Subramanyam and Murty (1975) and Banerji (1977) suggest a 

volcanic source for the manganese deposits. Banerji (1977) stratigraphically characterized 

iron-manganese mineralization in the Jamda-Koira belt as the Noamundi Group of much younger age 

(c.1500-1100 Ma) with the following sequence (ascending order) lower shale (tuffaceous 

shale–phyllite), banded hematite jasper, upper shale (manganiferous shale, tuff and chert), basic 

intrusion, grinitic activity. Sarkar and Saha (1962, 1977) described manganese ore bodies intimately 

associated with unmetamorphosed shales (occasionally tuffaceous) and chert of the Archean IOG. 

According to Roy (1981), Mn-oxide deposits are intimately associated with unmetamorphosed shales 

(occasionally tuffaceous) and cherts of the Precambrian IOG rocks and the manganese ores are of 

dominantly lateritoid type having mainly pyrolusite and cryptomelane with local manganite. There are 

a number of manganese ore bodies within chert and/or shale as layers and lenses (Banerji, 1977; 

Mohapatra et al., 1996; Mishra et al., 2006). Mishra et al. (2006) classified the IOG manganese 

orebodies into stratiform, stratabound, and lateritic types. The stratiform type has distinct lamination or 

banding, and is often co-folded with shale. The stratabound type is structure- and shear zone-controlled 

and is often silicified. These ore bodies occasionally cross-cut the bedding planes of the host shale. 

 

4. Methodology 

Samples of various types of ore and associated host rocks are collected from the open-pit mines and 

surrounding areas for geochemical analyses and isotopic studies. Petro-mineralogical work includes 

study under transmitted and reflected light microscopes, X-Ray Diffraction (XRD) study, Scanning 

Electron Microscopy (SEM), Energy Dispersive X-Ray (EDX) and Electron Probe Micro Analyzer 

(EPMA). SEM–EDX analysis of polished ore thin sections is done using INCA X-SIGHT software under 

accelerating voltage 20 kV and probe diameter 2 μm. EPM analysis is done using PIXITE software with 

an accelerating voltage of 15 kV, current of 12 nA and beam size of 1 μm. Major element, trace element 

and REE analyses of the ores and associated rocks are done by the Australian Laboratory Services, 

Queensland with a combination of XRF and ICP-MS techniques after comminution of the samples to 

-300 mesh in contamination-free pulverizer. For the purpose of Sm/Nd isotopic study, two crushed rock 

samples are analyzed for their Sm and Nd abundances by isotopic dilution, and the isotopic composition 

of Nd by mass spectrometry. The isotopic composition of Nd is determined in static mode by 

Multi-Collector ICP-Mass Spectrometry. All isotope ratios are normalized for variable mass 

fractionation to a value of 146Nd/144Nd=0.7219 using the exponential fractionation law. Sm isotopic 

abundances are measured in static mode by Multi-Collector ICP- Mass Spectrometry, and are normalized 
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for variable mass fractionation to a value of 1.17537 for 152Sm/154Sm also using the exponential law. 

Sm/Nd isotopic studies are done by ICP-SFMS at the Canadian laboratory of the Australian Laboratory 

Services. 

 

5. Mode of Occurrence and Structural Disposition of Manganese Ores 

Manganese ores occur as massive, thinly laminated or lenticular stratabound bodies hosted by differently 

coloured (red, pink, yellow, brown, purple, smoky grey, etc.) phyllites which are kaolinised in many 

parts to different degrees. Large deposits of manganese ores are being mined in Bichakundi (near Joda), 

Khondband, Bamebari, Guruda and Joribar areas in the eastern part of the Noamundi synclinorium. In 

Khondband and Guruda areas manganese ore bodies are very closely associated with iron ores. The 

massive Mn-ore bodies show typical colloform structures (often pisolitic and botryoidal). The ore bodies, 

in places, are co-folded with phyllites forming mesoscopic synforms and antiforms. 

In the Joda area, manganese ore bodies are mainly hosted by phyllitic rocks with minor quartzites. The 

lenticular bands of manganese ore are conformable with the host phyllites. The phyllites are, in places, 

laminated, compositionally banded and often showing brecciated character (Figure 2a). The laminated 

phyllites are light coloured and mainly composed of very fine-grained phyllosilicates with intermittent 

occurrence of ferruginous chert. The geological field work reveals manganese ore bodies to be of four 

different types viz. massive, banded, colloform (pisolitic/botryoidal/reniform) and brecciated. In the 

quarry section, manganese rich ore pockets are overlain by ochre which in turn is capped by lateritic 

horizon (Figure 2b). At places, a high degree of strain has produced folds with rootless intrafolial 

character (Figure 2c). The associated iron ore bands comprise mainly hematite or martite with variable 

amounts of goethite and minor amounts of magnetite and siderite. Hematite-rich iron ores often show 

typical BIF character accompanied by strong deformational events (Figure 2d). The gangue material is 

principally composed of cherty silica (in the form of jasper or quartzite) and kaolinitic clay. 

The manganese ores and associated host rocks bear the evidence of multiphase tectonic deformation. The 

F1 and F2 folds are more or less isoclinal and axial plane dipping towards NW or SE. The F3 fold is 

transverse and superposed over F1 and F2 and is much more open in character with axial plane E-W in 

general. The major Mn-ore bodies are mainly localized in the axial zones of the F2 folds (Figure 2e), thin 

manganese ore bands are concentrated along the S2 axial plane (Figure 2f). The F2 fold axis plunges 7⁰ to 

40⁰ towards the NNE or the SW with local variations towards the NNW, E and ENE. Manganese ore 

bands are also co-folded with the host phyllite forming mesoscopic synformal and antiformal structures 

(Figure 2g & 2h). The F2 fold of the ore bodies can be categorized in Class 2 of Ramsay’s geometrical 

classification of folds (Ramsay, 1967). The third phase of tectonic deformation (D3), having a transverse 

compressive stress direction in comparison with D1 and D2, produced open type of cross folds (F3) 

(Figure2i) which in turn resulted in small dome and basin structures with axial culmination and 

depression. This corresponds to Type-I interference pattern of Ramsay (1967). Rootless intrafolial fold of 

D1/F1 generation is also observed in the field (Figure2c). The axis of F3 plunges 10⁰	 to 62⁰	 towards 
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WNW mainly with variations of W, NW and SE. The D3 phase was further followed by a phase of 

faulting and shearing (D4) (Figure 2j) which formed a number of sets of faults in this region among 

which at least three sets of faults are discernible in the field, the attitudes of which are as follows: 

i) 60⁰ to 85⁰ dipping towards W to NW. 

ii) 8⁰ to 10⁰ dipping towards SE to NE. 

iii) 60⁰ to 65⁰ dipping towards the SW. 

The fault and shear zones are mostly in filled with pyrolusite-cryptomelane-chert association and fault 

breccias (Figure 2k). Although the Mn ores are not uncommon along the S0 and S1 planes, the ores are 

primarily concentrated in the F2 hinge areas. Thinning of the ore bands at the limbs and thickening of the 

same at the hinge are very frequent in the manganese ore mineralized zone. The folded ore bodies have 

two general axial trends NE to ENE and SW to WSW. The axial planes of these folded ore bodies dip 

between 40⁰	and 72⁰	towards NW or SE. In these areas, the ore bodies also plunge along the F2 fold axis 

(Figure2l). 

 

6. Mineralogy and Petrography of Manganese Ores 

Study under microscopes (both reflected and transmitted light) reveals that the predominant manganese 

ore minerals are pyrolusite, cryptomelane and manganite. Braunite, bixbyite, jacobsite and hausmannite 

occur mainly as minor phases. Minor iron ore minerals like hematite/martite and goethite are also present. 

The associated gangue minerals include quartz, muscovite, biotite, kaolinite and glauconite. 

Two generations of axial plane cleavage have been identified in the manganese ore. The first-generation 

cleavage (S1) is conformable with the compositional banding/bedding (S0) whereas the 

second-generation cleavage shows transgressive relation with S0 and S1 planes Manganese ore gets 

mainly concentrated along the F2 hinge area (Figure 3a). The micro-folded veins of pyrolusite forming 

F2 puckers exhibit their syn-kinematic character to D2 phase of tectonic deformation (Figure 3b). 

Bixbyite crystals showing brecciated character are mostly fragmented at the edges with matching 

boundaries. As a secondary mineral, pyrolusite partly replaces bixbyite and the edges of the bixbyite 

crystals are rounded up in a few places (Figure 3c). Jacobsite grain is found as scattered within the 

silicate rich groundmass (Figure 3d). Well-developed braunite crystal is exhibiting its resorbed grain 

boundary replaced by polianite crystals of later generation (Figure 3e). Bands of colloform structure at 

the interstitial spaces of banded ore clasts are also present (Figure 3f) which contains altered braunite 

crystals of earlier generation. Second generation of pyrolusite rich vein is closely associated with 

hematite rich matrix (Figure 3g). Hematite-goethite rich vein was formed at a late stage which is little bit 

folded at places (Figure 3h). The possible weathering reactions deduced from textural studies are as 

follows: 

2 Bixbyite+O2=4 Pyrolusite/Polianite (Figure 3c) 

4 Bixbyite+K++2O2+nH2O=Cryptomelane (Figure 3c)  

Braunite+2O2=7 Pyrolusite+SiO2 (Figure 3e) 
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7. Major Element Geochemistry 

The average silica content in ores and associated phyllites (except 93% in one sample of Bamebari 

quartzite) are 9.07% and 45.68% respectively. The average alumina content in ores and phyllitic rocks 

are 7.49% and 26.65% respectively. The average TiO2 content in phyllitic rocks is 2.96% with a 

maximum value up to 6.96%. The average MgO content is higher in phyllites (1.15%) than its average 

content in ore samples (0.22%). The average concentration of Fe2O3 in associated host rocks, 

manganese-bearing ores and iron ores are 7.4%, 14% and 59.7% respectively whereas the average 

concentration of MnO in host rocks, iron-bearing ores and manganese ores are 1.83%, 6.05% and >39% 

respectively. MnO shows an inverse relationship with almost all the major oxides except P2O5. Strong 

positive correlations among Al2O3, TiO2, CaO are observed. The major element contents of 

manganese-iron ores, associated phyllites and quartzites are presented in Table 2. 

 

8. Trace Element Geochemistry 

41 trace elements are determined using ICP-MS techniques in some manganese ore samples and 

associated rocks of Joda. The data are presented in Table 3. It is observed that the average 

concentration of trace elements Cr, Co, Ni, Cu, Zn, As, Ba are 219ppm, 52.7ppm, 100.5ppm, 40.5ppm, 

94.6ppm, 19.62ppm, 689.95ppm which are relatively higher in comparison to their average crustal 

abundances. It is also observed that there are strong positive correlations between Sc and Al2O3 (Figure 

4a), V and Al2O3 (Figure 4b), Cr and Al2O3 (Figure 4c), Th and Al2O3 (Figure 4d), Ga and Al2O3 

(Figure 4e), Nb and Al2O3 (Figure 4f). The average concentrations of Sc, V are found to be 11.6 ppm, 

101.1 ppm respectively; there is a relative enrichment of Sc, V, Cr in comparison with average Zr & Th. 

The average Ba content varies from 205.6 ppm in host rocks to 1012.85 ppm in ores (maximum up to 

2960 ppm) respectively. The average Pb content varies from 10 ppm in host rocks and 26.8 ppm in ores 

respectively. The average Cs content is 2.18 ppm and Cs is probably derived from psilomelane-rich ore. 

The average Rb content is 65 ppm, Rb generally replaces K and is always associated with potash 

bearing minerals. Chondrite normalized (after McDonough & Sun, 1995) Trace element pattern of 

manganese ores and associated rocks shows positive Co, As, Rb, Ba anomaly (Figure 7). 

 

9. Rare Earth Element (REE) Geochemistry 

The manganese ores and associated rocks of the Joda area are analyzed using Inductively Coupled Mass 

Spectrometry (ICP-MS) to determine the dispersion pattern of REE and their genetic implications. The 

REE concentration values are presented in Table 4. The La content ranges from 2 to 44.2 ppm. The 

average concentration of Ce is 25.71 ppm. The average contents of Pr (3.358 ppm), Sm (3.042 ppm), Eu 

(0.874 ppm) are low in comparison to other LREE. The average concentration of Nd is 13.2 ppm and it is 

observed that in all the samples under consideration, the concentration level of Nd is higher with respect 

to that of Pr, Gd and Dy are showing maximum concentration in comparison to other elements of HREE. 

The highest concentration of Gd is 5.9 ppm and highest concentration of Dy is 7.83 ppm. The total 
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content of HREE (146.67 ppm) is very low in comparison to the total LREE content (609.34 ppm). The 

average concentration of ΣHREE in all the samples is found to be 14.667 ppm in comparison to that of 

ΣLREE which is found to be 60.934 ppm. 

All REE results have been normalized with North American Shale Composite (NASC, Haskin et al., 

1968; Figure 8a) and also with average upper continental crust (Taylor & McLennan, 1981; Figure 8b). 

Both standard-normalized REE patterns exhibit similar trends. The diagrams depict an overall depletion 

of LREE and relative enrichment of HREE, an exception for an ore sample with diminished HREE value 

that can be attributed to preferential leaching of HREE by meteoric water in oxidized ores. The most 

significant feature of the REE pattern is the positive Eu anomaly of the ores and associated rocks. The 

average Eu/Eu* and Ce/Ce* values are 1.16 and 0.8 respectively. 

In TiO2-Zr/(P2O5 *104) discrimination diagram (Figure 9), there is a complete separation between the 

fields of tholeiitic and alkali basalts with alkali basalts plotting in the field of low Zr/ P2O5 and high TiO2. 

 

10. Sm-Nd Isotopic Studies and Age 

Two rock samples are analyzed for Sm and Nd by isotope dilution. The details of the analytical results 

are given in Table 5. Model age for the Sm-Nd system is chosen for the purpose of present study as it can 

be calculated for an individual rock from a single pair of parent-daughter isotopic ratios. During model 

age calculations, one assumption is made about the isotopic composition of the reservoir from which the 

rock samples are ultimately derived. The age calculation of the two rock samples are carried out based on 

TDM (T-Depleted Mantle) model age as the initial 143Nd/144Nd ratios from Precambrian terrains suggest 

that the mantle which supplied the continental crust has evolved since earliest times with an Sm/Nd ratio 

greater than that of CHUR (Chondritic Uniform Reservoir). Moreover, fractionation of the rock samples 

is considered negligible after its separation from the mantle source. 
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Table 1. The Generalized Chrono Stratigraphic Succession of the Singbhum-Orissa Iron Ore 

Craton (after Saha et al., 1988) 

Newer Dolerite dykes and sills  c. 1600-950 Ma  

Mayurbhanj Granite  c. 2100 Ma  

Gabbro-anorthosite ultramafics  c. 2100-2200 Ma  

Kolhan Group    

Unconformity 

Jagannathpur Lava Dhanjori-Simlipal 

lavas 

(c. 2300 Ma)  

Malangtoli Lava Quartzite-conglomer

ate 

 Dhanjori 

Group 

Pelitic and arenaceous metasediments with mafic sills (c. 2300-2400 

Ma) 

Singhbhum 

Group 

Unconformity 

Singhbhum Granite (Type B) (Phase III) c. 3.1 Ga  

Mafic Lava, tuff, acid volcanics, tuffaceous shale   

Manganiferous shale and Mn-ores (Noamundi Group of Banerji, 1977), Iron Ore 

Group 

Banded hematite jasper, banded hematite quartzite with iron ores,  

Ferruginous chert, local dolomite and quartzite sandstone   

   Nilgiri Granite

Singhbhum Granite (Type A) (Phase I and II)  c. 3.3 Ga  

Folding and metamorphism of OMG and OMTG  Bonai Granite 

Older Metamorphic Tonalitic Gneiss (OMTG) c. 3.775 Ga  

Older Metamorphic Group (OMG): Pelitic schist, quartzite, c. 4.0 Ga  

para-amphibolite, ortho-amphibolite   
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Table 2. Major Element Oxide Contents of Manganese Ores and Associated Rocks in Joda Area, 

Odisha (in wt%) 

Oxides D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 

Fig Tree 

Shalesa 

Moodies 

Shalesb 

NASCc ACPSd

SiO2 60.05 53.07 55.35 30.07 92.8 3.63 5.7 0.71 7.7 3.55 57.96 27.44 20.24 12.16 60.49 59.32 64.82 66.9 

Al2O3 17.64 13.72 17.3 12.7 0.27 0.64 3.42 1.14 6.12 2 22.02 43.72 45.51 26.44 11.86 13.93 17.5 16.67 

Fe2O3 9.89 8.88 15.46 47.22 4.74 83 47.43 17.67 78.87 10.36 4.78 2.98 5.08 41.82 0.51 0.44 0.8 0.78 

MgO 1.15 1.12 1.01 0.8 0.03 0.08 0.18 <0.01 0.05 0.26 1.12 2.19 0.31 0.22 8.56 7.36 5.7 5.87 

CaO 0.07 0.1 0.06 0.04 0.03 0.04 0.18 0.09 0.02 0.31 6.06 8.36 8.28 6.07 0.11 0.13 0.25 0.06 

Na2O <0.01 0.03 <0.01 0.01 <0.01 <0.01 0.02 0.01 <0.01 0.05 0.76 2.45 0.51 0.09 2.4 1.35 3.51 0.53 

K2O 3.72 3.84 3.59 3.78 0.06 0.02 1.11 0.35 0.08 2.13 0.43 1.89 0.38 0.68 5.82 5.1 2.83 2.59 

MnO 0.16 11.1 0.03 0.21 1.06 1.36 27.2 >39 0.21 >39 0.03 0.04 0.43 1.27 2.45 4.87 3.97 4.97 

TiO2 1.48 1.35 1.4 1.82 0.02 0.03 0.22 0.03 0.53 0.05 1.79 4.81 6.96 4.09 1.04 1.76 1.13 1.5 

P2O5 0.11 0.02 0.04 0.05 0.05 0.64 1.04 0.06 0.17 0.07 0.008 0.007 0.003 0.042 - - 0.15 0.14 

H2O - - - - - - - - - - 4.63 5.22 10.07 6.67 - - - - 

LOI 5.11 5.24 5.07 2.92 0.35 10.75 12.08 11.04 6.62 12.53 4.84 5.76 12.2 6.96 6.69 5.75 - - 

Note. *D1-D quarry phyllite; D2-Bamebari phyllite; D3-H quarry phyllite, D4-Khondband iron ore; 

D5-Bamebari jasper quartzite; D6-H quarry manganese bearing iron ore; D7-Bamebari iron-manganese 

ore; D8-Khondband iron bearing manganese ore; D9-H quarry iron ore; D10-Khondband manganese 

ore; D11-Bamebari kaolinized phyllite; D12-H quarry kaolinized phyllite; D13-Guruda phyllite; 

D14-Khondband iron ore. 
aFigtree Group (3.4 Ga) and bMoodies Group (3.3 Ga) of Swaziland Supergroup, S. Africa (McLennan 

& Taylor, 1983). 
cNorth American Shale Composite (Gromet et al., 1984). 
dAverage Canadian Proterozoic (Aphebian) Shale (Cameron & Garrels, 1980). 
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Table 3. Trace Element Contents of Mn-Ores and Associated Rocks of Joda Area (in ppm) 

Elements D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Li 10 30 10 <10 10 <10 60 <10 <10 10 

Sc 24 18 25 17 <1 4 9 2 10 6 

V 254 121 291 93 6 28 52 12 122 32 

Cr 430 200 600 300 10 140 60 10 420 20 

Co 8 42 3 11 5 10 98 60 <1 289 

Ni 64 160 55 14 19 183 294 27 39 150 

Cu 28 57 45 5 10 16 132 14 19 79 

Zn 18 93 21 15 13 163 289 56 39 239 

Ga 22.5 11.7 23.7 21.2 1.6 3.9 8 6 8 7.5 

Ge 5 <5 7 5 <5 <5 <5 <5 5 <5 

As 5.3 5.1 3.6 4 8 5.2 133 6 18.4 7.6 

Se 0.3 1 0.3 0.4 <0.2 0.6 1.9 0.6 0.5 1.7 

Rb 142.5 88.8 138.5 163.5 2.2 0.8 32 7.4 3.2 71.9 

Sr 7.4 39.8 10.4 7 5.3 2.9 112.5 206 1.5 384 

Y 24.7 28 23.4 46 3.1 28.1 65 10.4 17.7 111.5 

Zr 186 131 169 318 3 6 32 8 84 12 

Nb 12.5 7.3 11.5 17.8 <0.2 0.4 1.9 0.5 5.1 0.5 

Mo <1 <1 <1 <1 1 <1 <1 <1 <1 <1 

Pd 0.003 0.004 0.004 0.003 <0.001 <0.001 0.001 0.002 0.002 0.002 

Ag <0.5 0.5 <0.5 <0.5 <0.5 <0.5 1.7 2.7 <0.5 2.5 

Cd <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1 <0.5 <0.5 2 

In 0.028 0.04 0.032 0.043 <0.005 0.012 0.028 0.007 0.03 0.022 

Sn 4 2 4 5 <1 <1 1 <1 1 <1 

Sb 0.17 0.05 0.18 0.63 0.05 0.34 0.12 0.21 0.18 0.18 

Te 0.02 0.03 0.03 0.08 <0.01 0.04 0.06 0.06 0.05 0.02 

Cs 3.75 3.47 3.81 2.48 0.08 <0.01 1.79 0.27 0.05 6.11 

Ba 206 438 154.5 979 23.9 42.6 301 1670 124.5 2960 

Hf 4.9 3.5 4.4 8.4 <0.2 0.2 0.8 0.2 2.3 0.3 

Ta 1 0.6 1 1.6 <0.1 <0.1 0.1 <0.1 0.5 <0.1 

W 1 <1 1 2 1 <1 <1 <1 1 2 

Re <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001 0.002 0.001 0.002 

Pt 0.0024 0.0038 0.003 0.0059 <0.0005 <0.0005 0.001 <0.0005 0.0017 <0.0005

Au 0.001 0.001 0.003 0.001 <0.001 0.001 0.001 0.004 0.001 0.005 

Hg 0.005 0.044 0.017 0.059 <0.005 0.013 0.042 0.4 0.137 0.816 
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Tl 0.1 0.13 0.04 0.08 <0.02 <0.02 0.09 0.56 <0.02 0.58 

Pb 6 18 14 17 <2 <2 21 56 10 55 

Bi 0.13 0.08 0.07 1.48 0.01 0.02 0.05 0.04 0.06 0.08 

Th 6.58 5.02 5.53 13.4 0.09 0.24 1.26 0.6 3.65 0.63 

U 2.06 1.77 1.75 2.95 0.13 2.84 1.43 0.34 4.2 0.91 

 

Table 4. ICP-MS Analytical Data for REEs in Mn-Ores and Associated Rocks of Joda Area (in 

ppm) 

Elements D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

La 17.2 18.2 19.4 12 2 5.2 44.2 13.1 5.8 10.4 

Ce 27.4 38.7 18.4 32.9 2.8 7.1 57 55.4 7.8 9.6 

Pr 3.37 4.14 3.63 2.34 0.47 1.64 9.79 4.29 1.68 2.23 

Nd 12.6 15.4 14.2 8.5 1.7 7.3 37.6 16.3 7.5 10.9 

Sm 2.8 3.4 3.21 2.12 0.36 1.97 7.95 3.72 1.76 3.13 

Eu 0.7 0.95 0.92 0.61 0.09 0.64 2.27 0.84 0.64 1.08 

Gd 2.71 3.74 3.54 2.78 0.4 2.98 9 2.59 2.45 5.9 

Tb 0.49 0.59 0.56 0.59 0.06 0.5 1.36 0.42 0.37 0.98 

Dy 3.28 3.65 3.71 4.66 0.34 2.93 7.83 2.18 2.44 7.11 

Ho 0.75 0.78 0.76 1.16 0.07 0.61 1.6 0.35 0.55 1.81 

Er 2.43 2.29 2.33 4.17 0.19 1.68 4.33 0.84 1.75 5.99 

Tm 0.37 0.35 0.35 0.71 0.03 0.23 0.56 0.11 0.29 0.79 

Yb 2.47 2.22 2.34 5.35 0.17 1.44 3.38 0.7 1.87 4.46 

Lu 0.38 0.36 0.37 0.85 0.02 0.24 0.54 0.09 0.29 0.76 

ΣLREE 64.07 80.79 59.76 58.47 7.42 23.85 158.81 93.65 25.18 37.34 

ΣHREE 12.88 13.98 13.96 20.27 1.28 10.61 28.6 7.28 10.01 27.8 

ΣREE 76.95 94.77 73.72 78.74 8.7 34.46 187.41 100.93 35.19 65.14 
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Table 5. Sm-Nd Isotopic Data of the Host Rocks Associated with Mn-Ores in Joda Area 

Sample Description 
Sm 

(ppm) 

Nd 

(ppm) 
147Sm/144Nd 143Nd/144Nd ± 2 SE 

TDM 

age (Ga)
ɛNd

0 

1. (Laminated phyllite, 

Bichakundi H-quarry) 
2.944 12.73 0.1399 0.511805 0.000012 2.79 -16.3 

2. (Associated BIF, 

Khondband mine) 
1.913 7.951 0.1455 0.511603 0.000012 3.46 -20.2 

Note. 1) Uncertainty in Nd isotopic composition is 2 Standard Errors; 2) TDM is the Depleted Mantle 

Model Age in Ga calculated using the linear model of Goldstein et al. (1984); 3) εNd
0 is the epsilon 

143Nd value calculated present day. 

 

 

Figure 1. Geological Map of Noamundi Basin Showing Major Manganese Deposits In and 

Around Joda, Associated with BIF 
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Figure 2. a) Compositionally banded manganiferous phyllite shows brecciated character. b) Mn 

ore body (hosted by phyllite) is exposed in a quarry section. c) Rootless intrafolial fold reveals 

strong deformational events. d) Banded Hematite Jasper (BHJ) exhibits its upright folded 

character. e) Concentration of Mn ore along the F2 hinge area of a reclined fold. f) Thin 

manganese ore band follows the S2 axial plane. g) Quarry section shows folded lithologic units of 

manganiferous phyllite, Mn ore, ferruginous phyllite and hematitic ore. h) Folded Mn-ore body 

(hosted by phyllite) is exposed in a quarry section perpendicular to the F2 axis. Thickness and 

Mn-ore concentration are maximum at the hinge. i) Open type F3 folds in Mn ore bodies. Patches 

of Kaolinite and ochres of variegated colours are also present. j) Normal fault in finely laminated 

manganiferous phyllite. Manganiferous chert formed along the fault surface. k) Manganiferous 

chert (black) is infilling a fault zone in the laminated kaolinized phyllite. l) Schematic diagrams 

showing effects of successive deformational stages of a manganese-ore band in phyllite. 
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Figure 3. a) Primary compositional banding (S0) shows sub-parallel character with first 

generation cleavage (S1) whereas S2 plane showing transgressive relationship with them; Mn ore 

gets concentrated in the hinge area of F2 fold. b) Syn-kinematic character to D2 is exhibited by 

micro-folded pyrolusite veins. c) Coarse grained bixbyite (Bxb) crystals with matching and 

resorbed boundaries disseminated in cryptomelane-rich groundmass where pyrolusite and 

cryptomelane both replacing bixbyite crystals d) Idioblastic jacobsite grain is disseminated 

within silicate rich groundmass. e) Braunite crystal of earlier generation is being replaced by 

polianite crystals of later generation. f) Colloform banding of cryptomelane and goethite of later 

generation at the interstitial spaces of fragmented earlier BHQ and also enclosing altered 

braunite crystals of earlier generation. g) Pyrolusite and Hematite are closely associated at the 

contact of silicate and iron rich matrix. h) Hematite-goethite veins are present within the 

hematite-goethite matrix. 
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Figure 4. Correlation of Trace Elements Sc, V, Cr, Th, Ga, Nb with Al2O3 in Mn-Ores and Host 

Rocks of Joda Area (Blue Triangles Indicate Ores and Green Stars Indicate Associated Host 

Rocks) 
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Figure 5. Geochemical Plots of Mn-Ores and Host Rocks in Joda Area (a: diagram from Bonatti 

et al., 1972, b: diagram from Choi and Hariya, 1992, c: diagram from Toth, 1980) (Blue triangles 

indicate ores and green stars indicate associated host rocks) 
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Figure 6. Trace Element Plots for the Immobile Elements Ta, Hf, Nb against Zr in the Mn-Ores 

of Joda Area (Blue Triangles Indicate Ores and Green Stars Indicate Associated Host Rocks) 
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Figure 7. Chondrite Normalized (after McDonough and Sun, 1995) Trace Element Distribution 

Pattern of Manganese Ores and Associated Rocks of Joda Area 
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Figure 8. (a) NASC Normalized (after Haskin et al. 1968) and (b) Average Upper Continental 

Crust Normalized (after Taylor and McLennan, 1981) Rare Earth Abundances of Manganese 

Ores and Associated Rocks of Joda Area 
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Figure 9. The TiO2-Zr/(P2O5 *104) Discrimination Diagram (after Winchester and Floyd, 1976) 

Manganese Ores and Associated Rocks of Joda Area (Blue Triangles Indicate Ores and Green 

Stars Indicate Associated Host Rocks) 

 

11. Discussion 

The Joda–Noamundi sector in the eastern limb of the Noamundi synclinorium contains significant 

manganese mineralization. Different tectono-metamorphic events are characterized by distinguished ore 

mineral assemblages belonging to that particular event. 

11.1 Deformation & Metamorphic Events 

The earliest deformation and metamorphism event (D1/M1) are characterized by the ore mineral 

assemblage of braunite-bixbyite-jacobsite-hausmannite. The D2/M2 event is characterized by the ore 

mineral assemblage of pyrolusite-psilomelane-hollandite. D3 stage bears no significant manganese 

mineralization whereas the post D3 event is characterized by the hydrothermal 

pyrolusite-psilomelane-chert association occurring along the faults and shear planes. At the final stage 

of manganese mineralization, supergene activity/lateritization has formed the ore mineral assemblage 

of polianite-pyrolusite-psilomelane-manganite-goethite precipitated from colloidal solution replacing 

earlier manganese minerals. The presence of jacobsite-hausmannite assemblage along with triple 

junction shown by recrystallized bixbyite grains infer that the peak metamorphic condition during 

D1/M1 attained upper green schist to amphibolite facies, if not higher. 
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11.2 Major & Trace Element Analysis 

Strong positive correlations between Sc and Al2O3 (Figure 4a), V and Al2O3 (Figure 4b), Cr and 

Al2O3 (Figure 4c), Th and Al2O3 (Figure 4d), Ga and Al2O3 (Figure 4e), Nb and Al2O3 (Figure 4f) 

indicate their clastic/detrital origin along with Al2O3. The relative enrichment of Sc, V, Cr in 

comparison with average Zr & Th contents indicates the source of clastic materials to be of basic 

magmatic affinity. On the other hand, Co, Ni, Cu, Zn do not show any appreciable variation with SiO2 

and Al2O3 contents of ores and associated rocks signifying that these elements are not directly linked to 

terrigenous clastic inputs. On ternary diagrams like Fe-Mn-10 (Ni+Co+Cu) (Figure 5a) (after Bonatti 

et al., 1972) and Zn-Ni-Co (Figure 5b) (after Choi & Hariya, 1992) and binary diagram Co/Zn versus 

Co+Ni+Cu (Figure 5c) (after Toth, 1980) and the geochemical data of the ores and host rocks plot in 

the field of hydrothermal part which depicts a significant role of hydrothermal activities for the 

enrichment of these highly compatible elements in ore formation process. In the case of chemically 

incompatible elements, the correlation coefficients for regression lines that pass through the bulk 

composition and origin can be used to select the most immobile element pair (MacLean & Kranidiotis, 

1987). High field strength elements like Nb, Ta, Zr, and Hf, which are widely considered to be 

immobile, correlate highly with each other in manganese ores of the Joda area. Sedimentary 

environment and alteration can shift the immobile element concentrations but have little effect on 

inter-element ratios, which are controlled largely by the source of detritus in the rocks. Within the 

analytical errors, the chemically incompatible elements Nb, Ta, Hf against Zr plot on regression lines 

through the origin (Figure 6 a, b, c). This means that these elements are geochemically coherent and 

remain immobile during the ore-forming secondary processes. Pb is assumed to be derived from 

cryptomelane. Both Ba and Pb do not vary systematically with Al2O3 and SiO2 contents inferring their 

source to be hydrothermal activities at later stages. Samples of Algoma-type BIF of early Archean age 

(3.8Ga) from Isua, west Greenland, have Ni values as high as∼58ppm (Dymek & Klein, 1988). High 

abundances of Ni and Cr are also reported from several Archean clastic sedimentary rocks, and are 

generally explained by the presence of an ultramafic source (e.g., McLennan et al., 1983; Fedo et al., 

1996). In the Joda area, average Ni and Cr contents are 100.5 ppm & 219 ppm respectively. This is 

more akin to the Algoma type character. The relative enrichment of Ti, Zr, Sc in comparison with Th 

possibly infers a recycling product of earlier volcanogenic metabasic rocks. 

11.3 REE Analysis 

Manganese ores and associated host phyllites comprise a low overall abundance of LREEs and a flat 

pattern of HREEs. The lack of marked differentiation between LREE and HREE hints for a basic 

affinity as mafic or ultramafic end-members are characterized by small degrees of light-heavy REE 

fractionation. It is observed that there is a small positive Eu anomaly (1.16) and negative Ce anomaly 

(0.88). Attenuated Eu anomalies account for a more dominating mafic source. Manganese ores of the 

present area show HREE enrichment, negative Ce anomaly and positive Eu anomaly which are similar 

to modern ferromanganese sediments near mid-oceanic ridges (Barrett & Jarvis, 1988). In oxic 
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seawater Ce is removed as CeO2 or Ce (OH)4 by oxidation reaction. Modern seawater has LREE 

depletion and negative Ce anomaly (Douville et al., 1999). A positive Eu anomaly is also a typical 

characteristic of modern manganese hydrothermal deposits in the ocean (Hodkinson et al., 1994). As 

with the increase of terrigenous components the Ce/La ratio increases, the average value of Ce/La ratio 

(1.79) in the manganese ores indicates inclusion of volcaniclastic components, suggesting that the REE 

pattern and the Eu anomalies of the manganese-iron ores in the area are influenced by the mixing of Mn 

rich sea water and volcaniclastics (Mishra et al., 2007). The process of lateritization can also promote 

the loss of REE to some extent (Moriyama et al., 2008). The REE patterns shown by the ores and 

associated rocks represent the end product of a complex series of events that record the properties of 

the Mn rich solutions subsequently precipitated with volcaniclastic sediments. The TiO2-Zr/(P2O5 *104) 

discrimination diagram reveals the tholeiitic character of the basic rocks which acted as the major 

source for derivation of the ore-forming elements. Alkali basalts have higher P2O5 than tholeiitic 

basalts for a given Zr content. Thus, it can be postulated that the ultimate origin of the ore and 

associated host rocks is clearly linked to magma of basic composition with prevailing tholeiitic 

character. 

11.4 Basinal Set-Up for Ore Generation 

Roy (1968) proposed the Mn-ores to be of lateritoid type only. Banerji (1977) stratigraphically 

characterized iron-manganese mineralization in the Jamda-Koira belt as the Noamundi Group of much 

younger age (c. 1500-1100 Ma) with the following sequence (ascending order): lower shale (tuffaceous 

shale-phyllite), banded hematite jasper, upper shale (manganiferous shale, tuff and chert), basic 

intrusion, granitic activity. Sarkar and Saha (1962, 1977) described manganese ore bodies intimately 

associated with unmetamorphosed shales (occasionally tuffaceous) and chert of the Archean IOG. 

Banerji (2002) considered a major part of the materials of the IOG rocks was deposited in the 

miogeosyncline derived from the offshore zone of fracture and volcanism. Evidence of earlier crust is 

also recorded in detrital zircons from supracrustal rocks of these Archaean Cratons, e.g., ~3.62 Ga from 

Singhbhum Craton (Goswami et al., 1995; Misra et al., 1999). According to Dunn (1940), Dunn and 

Dey (1942) and Sarkar and Saha (1977) all the iron formations of Bihar and Orissa belong to one group. 

Iyengar and Murthy (1982), Banerjee (1982) and Acharya (1984) advocated that the BIFs belong to 

different age groups. However, the available two age data reported by Mukhopadhyay et al. (2008a) 

from the dacitic lava from the southern IOG of Daitari area (3506.8±2.3 Ma precision U-Pb SHRIMP 

zircon age) and Basu et al. (2008) from the volcanic rocks of the western IOG in the Noamundi-Koira 

Valley (3.4 Ga U-Pb zircon age) strongly raises the doubt about the fact that the previously different 

age-wise classified three IOG belts surrounding SBG, belong to one stratigraphic sequence. It is 

noteworthy that no Mn-mineralization is evident from the Gorumahisani-Badampahar and 

Tomka-Daitari iron ore belts. Moreover, Jamda-Koira belt (including Joda) and the Tomka-Daiteri belt 

comprise only hematitic iron ores, while in the Gorumahisani-Badampahar belt the iron ore is 

magnetite-rich. So, the same sedimentary environment in these three belts is difficult to establish at the 
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present stage. Banerji (1974), Mukhopadhyay (1976), Sarkar (1982), Iyenger and Murthy (1982) have 

opined that Singhbhum granite is the oldest cratonic block on which the IOG rocks were deposited. 

According to Saha et al. (1988), around 3.2 Ga there was a development of a tensional regime on either 

side of Singhbhum Granite (3.3 Ga) following which the BIF were deposited in these basins where 

SBG acts as the basement of IOG rocks. On the other hand, Baidya (2015) suggests 3500-3200 Ma age 

of the Iron Ore Group when the greenstone belt was formed with concomitant volcanism, 

sedimentation and ultramafic-mafic magmatism. The oldest granitoid is referred to as the Older 

Metamorphic Tonalite Gneiss (OMTG, ~3.4 Ga; Saha, 1994; Goswami et al., 1995; Acharyya et al., 

2010) that includes enclaves of meta-sediments and meta-volcanics designated as the Older 

Metamorphic Group (OMG). Sm-Nd isotopic data from the present work indicates the possible 

maximum age of the rocks (BIF) in Joda area is 3.46 Ga definitely older than the SBG-type A (c. 3.3 

Ga) which acts as the basement of IOG rocks. Supergene alteration and hydrothermal activity at later 

stages may have been attributed for relatively younger age (2.79 Ga) of banded cherty phyllite. The 

limited age data of the present study possibly infers that manganese ores and associated rocks are likely 

to be recycled from still earlier greenstone belts. 

 

12. Conclusion 

In addition to megascopic and petrographic analyses, the major, trace and rare earth element 

geochemistry of the manganese ore and associated phyllitic host rocks of the present area confirm the 

chemistry of the samples as well as the composition of the source material indicative towards a parent 

magma of basic affinity. The presence of high temperature mineral assemblages (Jacobsite-hausmannite) 

in pyrolusite-cryptomelane rich groundmass indicates an earlier high-grade peak metamorphic condition. 

Manganese, iron and some silica were deposited initially as chemical precipitates in the basin. Major 

oxides Al2O3, SiO2, K2O, MgO, Na2O and TiO2 appear to be contributed from volcaniclastics and 

terrigenous detritus. Trace elements appear to be controlled by adsorption on the precipitating Mn and Fe 

oxides or hydroxides. The manganese ore bearing BIF deposits in a greenstone belt with evidence of 

volcaniclastic association postulate that BIF hosted manganese-iron ores in and around Joda are akin to 

Algoma character rather than Lake Superior type. REE distribution pattern, positive Eu anomaly, 

negative Ce anomaly, Ce/La ratio all indicating a mixing of basic volcaniclastic material with the 

chemically precipitated ores. Hence, it can be concluded that a basic magma generated in an extensional 

tectonic set up in Archean time acted as the initial source of present-day ore and associated host rocks of 

Joda area. These rocks were later subjected to several stages of deformation and metamorphism with 

subsequent hydrothermal activities and supergene alteration/lateritization leading to further recycling 

and enrichment of manganese in younger ore formation. 
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