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ABSTRACT

We address the problem of partial index tracking, replicating
a benchmark index using a small number of assets. Accurate
tracking with a sparse portfolio is extensively studied as a classic
finance problem. However in practice, a tracking portfolio must
also be diverse in order to minimise risk – a requirement which has
only been dealt with by ad-hoc methods before. We introduce the
first index tracking method that explicitly optimises both diversity
and sparsity in a single joint framework. Diversity is realised by a
regulariser based on pairwise similarity of assets, and we demon-
strate that learning similarity from data can outperform some
existing heuristics. Finally, we show that the way we model diver-
sity leads to an easy solution for sparsity, allowing both constraints
to be optimised easily and efficiently. we run out-of-sample back-
testing for a long interval of 15 years (2003 – 2018), and the
results demonstrate the superiority of the proposed algorithm.

Index Terms— Index tracking, portfolio optimisation

1. INTRODUCTION

The purpose of index tracking is to create an investment portfo-
lio to replicate the performance of a certain market index, e.g.,
S&P500. In general, there are two ways to build such a tracking
portfolio: full replication and partial replication.

Full replication is simply to hold all the assets in the same
proportions as the market index. It is the most intuitive index
tracking approach and provides perfect tracking performance in
a frictionless market. However, in practice, it leads to high trans-
action cost due to large numbers of index constituents, frequently
rebalancing, churn in index members, and illiquid assets [1, 2].

In contrast, partial replication selects a small subset of assets
from the index and rebalances at lower frequency (full replication
usually require daily rebalancing). This significantly reduces
transaction cost, but affects index tracking accuracy. Thus the
optimisation problem of partial replication is to compose a small
portfolio of assets with minimum index tracking error. This can
be seen as involving two sub-problems: asset selection, selecting
which subset of assets to hold; and asset allocation, distributing
capital among the selected assets. However, for an optimal
solution both of these should be tackled jointly [3, 4, 5].

* Corresponding author: yongxin.yang@ed.ac.uk

Finding sparse portfolios that replicate an index is a well
studied problem due to its importance and broad relevance. The
majority of studies look for a sparse portfolio by adding a cardinal-
ity constraint on the portfolio, such as `0 norm or its variants. [6]
provided a nice review on the role of norm constraints. However,
a severe problem for theses approaches is that cardinality-based
constraints or their variants tend to result in risk concentration.
That is, tracking the index by selecting a few assets tends to result
in over-exposure to a single industry sector (e.g., banking), thus
making the portfolio riskier due to vulnerability to a downturn
in that sector. It is well known that a stock portfolio’s risk has
diversifiable and non-diversifiable components [7]. Adding a
stock to a portfolio generally reduces diversifiable risk only if the
portfolio does not yet account for all diversifiable risks. Thus risk
minimisation and sparsity are not completely at odds – construct-
ing a sparse portfolio can be economically rational as not all assets
in the benchmark further reduce diversifiable risk. Nevertheless,
existing methods for partial index tracking generate portfolios with
too much risk as they do not explicitly model portfolio diversity.

In this paper we therefore study whether we can form a sparse
portfolio that accurately tracks the index while simultaneously
being diverse, thus gaining the benefits of diversity [8]. An
imperfect answer is to add an `2 norm constraint. This can
mitigate multicollinearity and thus serve to increase diversity [4],
but does not induce sufficient sparsity to reduce the asset number
significantly and does not account for asset inter-dependence.
Another solution is to impose the constraint that selects assets
(stocks in particular) from different industry sectors. However,
this ad-hoc heuristic does not necessarily produce true diversifi-
cation. For example Apple (consumer electronics) and Corning
(optics) are in different sectors but they are highly correlated, as
Corning supplies Apple. Thus we aim to design an algorithm
that learns the similarity structure from data to achieve diversity.
We introduce a learnable similarity matrixA that helps to enforce
diversity during optimisation. Most interestingly, we show that
the way we introduce diversity uniquely entails an easy way to
achieve sparsity through a reweighed `1 norm.

2. METHODOLOGY

Practical partial index tracking has three key requirements: (i) The
selected portfolio should have minimum error with respect to the
true index. (ii) It should be sparse – composed of a small subset
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of the full index. (iii) The selected portfolio should minimise risk
through diversity. Prior work only addressed the first two of these
requirements, while the methodology proposed here will address
all three. We start by introducing the index tracking problem
in its simplest form, where only tracking accuracy is optimised.
We then present our key contribution – a mechanism to obtain a
diverse portfolio. Finally we show how our diversity mechanism
also entails an easy solution to the sparsity problem.

2.1. Problem Setting

Index tracking, in its simplest form, is a linear regression problem,

min
w
‖Xw−Y ‖22 (1)

whereX∈RD×N are the log-return of assets and Y ∈RD is the
target index. D is the number of timesteps (e.g.,D=750 trading
days in three consecutive years), and N is the number of assets
(e.g.,N=500 stocks). w∈RN is the weight of each asset to hold
in order to approximate the index Y .

In practice, there are two constraints on w: (i) long only,
which means wi≥0,∀i (ii) utilise all of the capital, which means∑N

i=1wi=1. Therefore, the objective function becomes,

min
w≥0,

∑
iwi=1

‖Xw−Y ‖22 (2)

Eq. 2 is known as a non-negative regression problem with
sum-to-one constraint, which can easily be solved by quadratic
programming (QP).

2.2. Diversity

Diversity is a key property for risk minimisation that has been
studied extensively for general portfolio construction problems
[9]. However, it is underused in index tracking. One widely used
measure for diversity is `2 norm,

∑N
i=1w

2
i , Under the constraints

that wi’s are non-negative and sum-to-one, this is called Simpson
diversity index [10] in ecology, while it is more commonly known
as Herfindahl index in economics. While simple, the key draw-
back of `2 norm is that it does not consider asset inter-dependence.
To alleviate this problem, we propose to use,

wTAw (3)

whereAij is a similarity measure between assets i and j, where 0
means most dissimilar and 1 means most similar. We haveAii=1
since they are exactly the same asset, and we also assumeAij=
Aji. We will discuss the choice ofA in the following section.

To better understand the role of this term, we can extend
wTAw as,

wTAw=‖w‖22+2

N−1∑
i=1

N∑
j=i+1

wiAijwj (4)

The first term is still the Herfindahl index, but the second term
complements diversity, as it discourages buying two assets if they
are similar to each other.

One may also build a connection between matrixA in Eq. 3
and the covariance matrix Σ in modern portfolio theory [11].
In modern portfolio theory, the term wTΣw represents the risk
(variance) of portfolio, and in our work, wTAw serves the similar
purpose of reducing the risk of several highly correlated assets
plummeting simultaneously.

From another perspective, wTAw is called generalized
Tikhonov regularisation [12]. Recall that common Tikhonov
regularisation is simply `2 regularisation. Based on the Bayesian
interpretation of Tikhonov regularisation, A can be seen as the
inverse covariance matrix of w.

2.2.1. Choice ofA

A straightforward choice for A is to use asset meta-data. E.g.,
define Aij = 1 if asset i (HSBC) and asset j (Citi) are in the
same industry sector (Financial services industry), and Aij = 0
otherwise. In this way,A can be further decomposed as,

A=ZTZ (5)

where Z∈{0,1}K×N and 1TZ=1. K is the number of unique
industry sectors, and the jth column of Z, denoted as Z·,j, is the
one-hot encoding of the jth asset’s sector.

Going beyond such heuristics, we ask can we learn Z from
data? This turns into a clustering problem where Z·,j is the
one-hot encoding of the jth asset’s cluster ID. Arbitrary clustering
methods are unsuitable, however, because X is log-return time
series data, which tend to be ‘white noise’. Common clustering
choices, e.g., k-means [13], are therefore unlikely to work. To
this end, we use spectral clustering [14] because it provides us the
flexibility to define an appropriate similarity measure for this data.

Note that, it is possible to construct matrix A without the
decomposable assumption in Eq. 5, but this assumption is helpful
in terms of optimisation because it guarantees thatA is symmetric
positive definite. Furthermore, Z is not necessarily an assignment
matrix (asset to cluster). It can be any kind of representations of
X, but a cluster-assignment representation makes the model easier
to interpret. More importantly, building an explicit clustering
model is crucial to efficiently realise sparsity as we will see later.
However, we do leave the topic of constructing A, esp. using a
parametrised model likeA=fθ(X), for future investigations.

2.2.2. Spectral clustering

The first step of spectral clustering is to construct an affinity matrix:
Sij=exp(

−d2(xi,xj)
σ2 ) if i 6=j and Sii=0. d(xi,xj) is a distance

measure for the ith and jt column of matrix X. The common
distance measure is Euclidean distance d(xi,xj) = ‖xi−xj‖2.
However since xi’s are log-returns, Spearman’s [15] or Kendall’s
[16] rank correlation coefficient is a much better choice be-
cause of the robustness. Thus, the distance measure is defined
as d(xi, xj) =

√
2(1−ρ(xi,xj)) where ρ(xi, xj) is the rank

correlation coefficient.



Then we construct the Laplacian matrix L = Λ−
1
2SΛ−

1
2

where Λ to be the diagonal matrix of which Λii =
∑
j Sij.

Next, we find the K largest eigenvectors of L (corresponding
to the K largest eigenvalues) denoted as v1,v2,...,vK. Finally,
we form matrix H by stacking the eigenvectors in rows, i.e.,
H=[vT1 ;vT2 ;...;vTK]. For post-processing, we renormalise each of
H’s columns to have unit length, i.e., Hij← Hij

(
∑

iH
2
ij)

1
2

. Finally,

we run k-means onH (note that each column is an instance).

2.3. Sparsity

Sparsity is the crucial propriety of partial index tracking that
lowers transaction costs compared to the full index. Thus far we
have defined a diversity promoting regulariser, but we have not yet
introduced a sparsity constraint. While Eq. 3 pushes elements of
w towards zero, it does not make them sparse. The most common
sparsity regulariser is `1 norm, however, it is meaningless in
combination with the non-negativity and sum-to-one constraints
intrinsic to index tracking. These two constraints mean that `1
norm is always 1 because |w|1=

∑N
i=1|wi|=

∑N
i=1wi=1.

Our cluster structure introduced earlier provides an elegant
solution to this issue. Based on the cluster structure, we can
construct a reweighted `1 norm [17],

`1(w)=

K∑
i=k

1

|Ci|
∑
j∈Ci

|wj| (6)

where Ci is the set of asset indices in the ith cluster, and |Ci|
denotes its size. Eq. 6 will yield sparsity within each cluster at
approximately the same ratio. The vectorized form of Eq. 6 is,

`1(w)=1T (ZZT )−1Zw (7)

With Eq. 2, Eq. 3, Eq. 5 and Eq. 7 together, our full objective
function can be written as,

min
w
‖Xw−Y ‖22+λ1‖Zw‖22+λ21

T (ZZT )−1Zw

Subject to: w≥0 and
∑
i

wi=1
(8)

2.4. Optimisation

Eq. 8 can be written as a quadratic programming (QP) problem
with both equality and inequality constraint, for which we employ
a primal-dual interior-point method [18] to solve. The quadratic
form of Eq. 8 is,

min
w

1

2
wTPw+qTw

Subject to:Gw≤h andAw=b
(9)

where P =2(XTX+λ1Z
TZ), q=λ21

T (ZZT )−1Z−2XTY ,
G=−I, h= 0, A= 1T , and b= 1. Thanks to the design of
A = ZTZ (Eq. 5), we can easily verify that P is symmetric
positive definite, which indicates it is also a convex optimisation
problem that can be handled by most off-the-shelf QP solvers.

2.5. Further analysis

We discuss the role of the second and third term in Eq. 8. First, we
narrow down to: ‖Zw‖22. We can rewrite it as pTp s.t.

∑
pi=1

where pi=Zi,·w. The physical meaning of pi is the money that
we allocate in the ith cluster. By Lagrange multiplier, we can
easily tell that ‖Zw‖22 is minimised when pi = 1

K ,∀i. This is
very intuitive, because this corresponds to the strategy that we
equally allocate the money into every cluster. Second, we anal-
yse the reweighted `1 norm term. Similarly, we can rewrite it as∑
i
pi
|Ci| s.t.

∑
pi=1, where pi is again the money that we allocate

in the ith cluster and |Ci| is the size of the ith cluster. This suggests
that, to minimise this term, we need to allocate all money for the
largest cluster (recall that |Ci| is a fixed value becauseZ is given by
spectral clustering beforehand). Thus, the second and third term
will not agree unless all clusters have exactly the same number of
members, which is unlikely in the real world. Therefore, the ratio
of λ1 and λ2 reflects the trade-off between diversity and sparsity.

3. EXPERIMENTS

3.1. Implementation Details

Our method has four hyper-parameters: (i) for spectral clustering,
there are two: σ and K; (ii) for the objective function in Eq. 8,
there are: λ1 and λ2. Given the scale of experiments, we want to
avoid the use of grid search if possible.

Thus, we set hyper-parameters for spectral clustering by stan-
dard heuristic methods. Specifically, σ is set by “median heuristic”
[19]: we first calculate all pairwise distances (excluding self-to-
self) and take their median, i.e., σ=median([d(xi,xj), ∀ i 6=j]).
K is set by “ eigengap heuristic” [20]: K is given by the value of
K which maximises the “eigengap” (difference between consec-
utive eigenvalues), i.e., if we sort all eigenvalues of the Laplacian
matrix in an ascending order and the firstK eigenvalues are very
small, but theK+1 one is relatively large.

λ1 and λ2 are set by grid search: (i) λ1 ∈ [1,10] and we
sample 20 evenly spaced numbers; (ii) λ2 ∈ [800,1000] and we
sample 200 evenly spaced numbers. Note that we can not do cross
validation here: as the data are real time series, cross validation
may result in invalid situations current values are predicted using
both previous and future data. Thus, the training-validation split
has to strictly follow time.

The last choice is ρ(·,·) which measures the correlation of
xi and xj. As we have discussed, compared to linear correlation,
e.g., Pearson’s r, rank-based correct is a better choice due to
robustness. Here we choose to use Spearman’s ρ [15].

3.2. S&P500 Index tracking

To evaluate our proposed method in the real world, we track the
S&P500 index using its exact members.
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Fig. 1. Index tracking performance: Top plots are the index and trackers. Bottom is the percentage tracking error ŷ−yy .

3.2.1. Dataset and settings

The dataset consists of daily closing prices adjusted for dividends
and splits for 852 stocks from 31 January 2000 to 30 July 2018,
a total of 18 years, provided by The Center for Research in
Security Prices (CRSP), which has the most accurate data for
security analysis. To avoid the survivorship bias, at each rebalance
day, we form the exact constituents of S&P500 index instead of
considering all the 852 stocks. Furthermore, we also take into
account the transaction cost to ensure that our backtesting matches
industry practice. We choose the flat-fee pricing model, $5.00 per
trade, used by TradeStation, a popular US online stock brokerage
firm, to incorporate transaction cost in the backtesting. As the
transaction cost is applied on each trade separately, the sparse
portfolio will incur less cost compared with the portfolio of a large
number of stocks. To enforce the sparsity, we only consider the
stocks with weights larger than 10−6 [21]. As the transaction cost
is related to budget, we assume the initial capital is $1 million in
our experiments. Although frequent rebalancing of the portfolio
will reduce tracking error, it also entails high transaction cost. To
achieve a good balance, we adopt monthly portfolio rebalancing.

3.2.2. Candidate methods

We evaluate four methods for the experiment above. Baseline:
The objective in Eq. 2. This is a non-negative regression problem
with sum-to-one constraint. This model was proposed in [22].
Ridge: In addition to Eq. 2, we add an `2 norm of w. This
is known as ridge regression [23] and its application to index
tracking was studied by [24]. This can also be seen as a reduced
version of the proposed method in Eq. 8 by setting Z = I and
λ2 = 0. Sector: The proposed method in Eq. 8 where Z is
constructed by industry sectors. Z·,j is the one-hot encoding
vector that indicates the industry sector of the jth stock. Cluster:
The proposed method in Eq. 8 where Z is constructed by the
output of spectral clustering. Z·,j is the one-hot encoding vector
that indicates the cluster ID of the jth stock.

Baseline is hyper-parameter free. Ridge has one hyper-
parameter which controls the weight of `2 norm. Sector has two
hyper-parameters: λ1 and λ2. Cluster has four hyper-parameters:
σ,K, λ1 and λ2 but we have set σ andK heuristically. For those
methods that have hyper-parameters, we run extensive grid search
to find the best hyper-parameter(s) on the training data.

Method Negative Positive Sum Mean
Baseline 145.35 5.36 150.71 3.86%
Ridge 131.56 5.28 136.84 3.51%
Sector 397.22 16.69 413.91 10.61%
Cluster 21.42 237.17 258.59 6.63%

Table 1. Absolute percentage errors for different methods

3.2.3. Tracking performance

To evaluate tacking performance, we plot the out-of-sample
predictions in Fig. 1. There are two issues to study in tracking
performance. First is tracking accuracy, as all methods are aspir-
ing to track the index with low error. Baseline, Ridge, and Cluster
have similar accuracy, while Sector is slightly worse. Second is
the sign of the error: trackers aim to match or exceed the index,
and avoid underperforming it. This is affected by sparsity and
diversity, where balancing these two is the key challenge. The
Ridge approach is low-risk/high-diversity, but underperforms due
to incurring high transaction cost for holding the full index. Sector
maintains good sparsity, but is insufficiently diverse. Our Cluster
approach, comes closest to matching the index due to effective
joint optimisation of diversity and data-driven sparsity. To quan-
titatively evaluate these methods, we calculate the statistics of
absolute percentage errors for different methods in Tab. 1, which
is corresponding to the integral of green bars in Fig. 1. While the
sum/mean directly reflects the tracking accuracy, for which Ridge
has the smallest error, we are also interested in which contribute
to the sum: the positive error (area above zero) is more tolerable
since it means better returns compared to market. Taking this into
account, Cluster has the best overall performance.

4. CONCLUSION

We presented an elegant model for the index tracking problem
that jointly optimises both diversity and sparsity. It is very easy
to solve as a standard QP problem, yet achieves excellent perfor-
mance for both tracking accuracy and the number of stocks traded.
It can be seen as a general solution that brings `1 norm back
into the game for regression problems with non-negativity and
sum-to-one constraints when a sparse solution is desired. In future
work, we will investigate if it is possible to integrate the “offline”
clustering step into the optimisation problem by exploring options
for constructingA or Z matrix end-to-end.
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