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NEUROSCIENCE  

Robots with insect brains 
A literal approach to mechanistic explanation provides insight in neuroscience  
By Barbara Webb  

It is an engineer’s dream to build a robot as 

competent as an insect at locomotion, directed 

action, navigation and survival in complex 

conditions. But as well as studying insects to 

improve robotics, in parallel, robot implemen-

tations have played a useful role in evaluating 

mechanistic explanations of insect behavior, 

testing hypotheses by embedding them in real 

world machines. The wealth and depth of data 

coming from insect neuroscience holds the 

tantalizing possibility of building complete in-

sect brain models. Robotics has a role to play 

in maintaining a focus on functional under-

standing – what do the neural circuits need to 

compute to support successful behavior?  

Insect brains have been described as 
“minute structures  controlling complex be-
haviors” (1): compare the number of neu-
rons in the fruit fly brain (~135,000) to the 
mouse (70 million) or human (86 billion). 
Insect brain structures and circuits evolved 
independently to solve many of the same 
problems faced by vertebrate brains (or a 
robot’s control programme). Despite the 
vast range of insect body types, behaviors, 
habitats and lifestyles, there are many sur-
prising consistencies across species in brain 
organization, suggesting these might be ef-
fective, efficient and general-purpose solu-
tions.  

Unravelling these circuits combines 
many disciplines, including painstaking 
neuroanatomical and neurophysiogical 
analysis of the components and connectivi-
ty. An important recent advance is the de-
velopment of neurogenetic methods that 
provide precise control over the activity of 
individual neurons in freely behaving ani-
mals. However, the ultimate test of mecha-
nistic understanding is the ability to build a 
machine that replicates the function. Com-
puter models let us copy the brain’s pro-
cesses, and robots allow these models to be 
tested in real bodies interacting with real 
environments (2). The following examples 
illustrate how this approach is now being 
used to explore more sophisticated control 
problems including predictive tracking, 
body coordination, navigation and learning. 

The visual target tracking of dragonflies 
has been replicated on a (wheeled) robot 
platform performing active pursuit (3),  giv-

ing new insight into the neural mechanisms. 
The starting point was neurophysiological 
characterization of the responses of small 
target motion detector (STMD) neurons in 
the dragonfly brain. These show a distinc-
tive facilitation profile, that is, a slow build 
up of activity to targets that move on con-
sistent trajectories in the visual field. A 
computational neural model incorporating 
such facilitation properties was shown to 
improve - tracking performance in the pres-
ence of clutter and distractors, even out-
performing state-of-the-art computer vision 
algorithms (4).  The implementation on the 
robot included insect-like early visual pro-
cessing, including resolution, spectral sensi-
tivity, and temporal and spatial high-pass fil-
tering such that the receptors respond most 
to rapid changes in the stimulus. - The pas-
sage of fast-moving small objects against the 
background can be detected from a local 
rise followed by a fall (or vice-versa) in in-
tensity of receptor activation. In a retinotop-
ic array of such detectors, centre-surround 
inhibition and a winner-take-all process 
(suppressing all but the strongest signal) se-
lect a single target position, and its direction 
and rate of motion are used to facilitate the 
activation of model STMDs in the predicted 
future location. The facilitation enhances 
pursuit and may explain selective attention 
responses observed in downstream neu-
rons (5). 

When the robot makes a quick move-
ment (a saccade) to visually pursue the tar-
get, this will change the relative position of 
the target in the visual field (e.g., to keep it 
centered). Hence the position in the neural 
map to which the facilitation should be 
propagated depends not only on the target’s 
motion, but on the robot’s (or dragonfly’s) 
own motion. This means the target pursuit 
system must receive some information 
about the motor command. In addition, the 
implementation on a robot demonstrated 
the robustness of the model to challenges 
such as changing illumination and unex-
pected motor disturbance (bumps). It also 
confirmed that the optimal time constant for 
facilitation depends on the specific circum-
stances (target velocity and background 
clutter), suggesting STMD neurons should 
exhibit dynamic modulation of facilitation. 
The neural model on the robot thus allowed 
neural data that had been collected from an 

immobilized insect to be understood in the 
context of continuous behavioral control in 
natural conditions, predicting that further 
experiments should reveal inputs from mo-
tor systems and dynamic modulation of the 
STMD response. 

Insect target tracking behavior has also 
been examined in the praying-mantis in-
spired ‘mantisbot’ (6). Here the focus is on 
how the detected position of a visual target 
can be translated into the complex coordi-
nation of head, body and leg joints in a hex-
apod to make a successful orienting move-
ment. The solution implemented on the 
robot exploits a detailed, distributed leg 
control network based on local reflexes (al-
so used to model walking control for the 
stick insect (7)) that can be modulated by 
relatively simple high-level signals to alter 
the stepping motion towards a given target 
direction. The same network can also, 
through a simple switch, be used to control 
posture changes instead of walking, corre-
sponding to the animal tracking the target 
with its head and body only. The tuning of 
the network in the mantisbot was based on 
(robotic) methods of inverse kinematics, in 
which the geometric relation of joint angles 
to the end-of-limb position is used to derive, 
inversely, for a desired end-of-limb position, 
the required values for joint angles. This 
method allowed a deterministic setting of 
the synaptic values in the model that would 
have been set by evolution in the animal.  

The mantisbot controller demonstrated 
that descending information from the insect 
brain to motor circuits can be in the simple 
form of a desired vector of motion. Addi-
tionally, it showed that it is crucial even for 
simple saccades that the brain maintains a 
short-term memory of the position of the 
prey. Other insect behaviors require more 
sophisticated directional memory, such as 
the ability of ants, bees and wasps to main-
tain an estimate of their home location dur-
ing long and convoluted foraging excur-
sions, by continuous integration of their 
velocity (path integration). The underlying 
neural circuitry for this advanced spatial ca-
pacity has been unraveled (8). The insect 
central complex (CX) receives celestial com-
pass inputs (9) and encodes heading direc-
tion relative to visual targets and self-
motion (10). Identified neurons that have 
the required connectivity to combine this in-
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formation with the speed (estimated from 
the motion of the visual surrounding) could 
form the basis of a distributed vector 
memory, constantly updated to reflect the 
geocentric location of the animal relative to 
its starting point (8). Moreover, the precise 
and highly regular connectivity pattern be-
tween these neurons and specific output 
neurons of the CX provides a mechanism for 
steering the animal home, essentially by 
evaluating (before acting) whether turning 
left or right would most improve alignment 
to the target. A neural model that copies CX 
neuroanatomy at the single neuron level 
can thus explain the path integration capa-
bility of insects (8).  

This model has recently been extended 
with a proposal for how insects could re-
turn to a discovered food source and take 
efficient routes between multiple sources 
(11). This would require that a snapshot of 
the state of the vector memory could be 
stored for salient locations in the world, and 
then reactivated – to interact with the same 
steering circuitry – when the animal wants 
to revisit the location. As yet, the neural ba-
sis for such a memory is unknown.  

The CX model has been demonstrated to 
work for path integration on both wheeled 
and flying robots. However, the key ‘robotic’ 
contribution to understanding this circuit 
was mostly conceptual. Taking a robotic 
perspective meant that, rather than focus-
ing on how the CX neurons ‘represent’ ex-
ternal stimuli, the question became -  - how 
do the neurons transform the stimuli into 
the control of action?. For example, accumu-
lating speed in 8 directions, following the 8-
fold columnar structure in each half of the 
CX, is a redundant Cartesian encoding (us-
ing more axes than required) of the home 
vector. However, it greatly simplifies the 
subsequent calculation of the desired turn-
ing direction, allowing a simple column shift 
to the right or left to ‘rotate’ the vector by 90 
degrees. 

Where next? Another prominent subcir-
cuit, found in the brains of all insects, that is 
coming under increasing scrutiny is the 
mushroom body (MB). This region is known 
to be involved in associative learning of the 
value of olfactory stimuli. Its distinctive ar-
chitecture, which has been compared to the 
vertebrate cerebellum (12), has been shown 
in multiple modelling studies, and some ro-
bot applications (13, , to support pattern 
learning by encoding inputs as sparse acti-
vation of a small subset of a larger neural 
population and correlating with a reward 
signal. A recent study directly evaluated the 
effectiveness of an augmented MB model on 

robot benchmark data sets for real world 
place recognition  (14). This work suggests a 
key function of the MB is to p roduce an effi-
cient and compact re-encoding of stimuli (in 
this case, outdoor images from a moving 
platform over a long route) which can be 
exploited for recognition, even in changing 
conditions. The results show that the insect-
inspired network produces comparable per-
formance to state-of-the-art deep-learning 
approaches for autonomous navigation, 
with a much smaller and faster computa-
tional footprint (14). 

However, currently modellers have not 
converged in their accounts of the key MB 
learning mechanisms. Most (but not all) fo-
cus on a change in synaptic weight between 
the parallel fibres of the Kenyon cells (KCs), 
encoding the stimulus, and the output neu-
rons. The output neurons are sometimes in-
terpreted as encoding the response, and 
sometimes the predicted stimulus value. In 
some models, the synaptic change depends 
on coincident firing of KCs and output neu-
rons, in other models on delivery of a re-
ward signal (or alternatively, a prediction 
error signal) by dopaminergic neurons that 
target the synapse, and some models com-
bine both mechanisms. Moreover, there is a 
cornucopia of new information emerging 
about the precise anatomy and individual 
neural function of the MB, particularly for 
neurogenetic model systems such as the 
fruitfly (Drosophila melanogaster), which 
has yet to be incorporated in computational 
or robot models. For example, the MB is di-
vided into multiple compartments in which 
specific reward inputs target specific output 
neurons, and the KCs, output and dopamin-
ergic neurons form distinct tripartite synap-
ses, suggesting a more complex flow of in-
formation between them.  

What about modelling the whole insect 
brain? Several groups, inspired by detailed 
D. melanogaster brain wiring diagrams, are 
now pursuing this target (15). But just in-
cluding more detail in brain models for its 
own sake is unlikely to lead to insights un-
less it is grounded in understanding behav-
ior. For example, the MB seems over-
engineered for forming simple odor-value 
associations – indeed, it evolved to deal with 
the dynamic complexity of actively respond-
ing to fluctuating stimuli streams in real en-
vironments. Posing such a problem for a ro-
bot should be an effective way to illuminate 
the key computations involved, and to rig-
orously evaluate new models. It could also 
result in smarter robots. 
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