
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OpenCL JIT Compilation for Dynamic Programming Languages

Citation for published version:
Fumero, J, Steuwer, M, Stadler, L & Dubach, C 2017, 'OpenCL JIT Compilation for Dynamic Programming
Languages', Paper presented at Workshop on Modern Language Runtimes, Ecosystems, and VMs @
<Programming> 2017, Brussels, Belgium, 3/04/17 - 3/04/17.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/327124538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/michel-steuwer(0ed800f5-a3a0-47d7-a8b3-f97a4f2b6931).html
https://www.research.ed.ac.uk/portal/en/persons/christophe-dubach(754637e1-0756-4d21-9afe-732b294e303f).html
https://www.research.ed.ac.uk/portal/en/publications/opencl-jit-compilation-for-dynamic-programming-languages(1d1e5248-103c-47e4-9bdf-fc5ca4284f98).html
https://www.research.ed.ac.uk/portal/en/publications/opencl-jit-compilation-for-dynamic-programming-languages(1d1e5248-103c-47e4-9bdf-fc5ca4284f98).html
https://www.research.ed.ac.uk/portal/en/publications/opencl-jit-compilation-for-dynamic-programming-languages(1d1e5248-103c-47e4-9bdf-fc5ca4284f98).html


OpenCL JIT Compilation for Dynamic Programming Languages

Juan Fumero† Michel Steuwer† Lukas Stadler∗ Christophe Dubach†
†The University of Edinburgh, ∗Oracle Labs, AT

juan.fumero@ed.ac.uk michel.steuwer@ed.ac.uk lukas.stadler@oracle.com christophe.dubach@ed.ac.uk

Abstract
Graphics Processor Units (GPUs) are powerful hardware to
parallelize and speed-up applications. However, program-
ming these devices is too complex for most users and the
existing standards for GPU programming are available only
for low-level languages such as C.

Dynamic programming languages offer higher abstrac-
tions and functionality for many users. GPU programming
is possible for dynamic languages through external libraries
or via wrappers in which the GPU code is normally written
in C. Either way, programmers have to rely on third-party
libraries with a limited number of operations or program the
GPU kernels themselves.

In this work we present a technique to automatically
offload parts of the input program written in a dynamic
language into OpenCL without any changes in the origi-
nal source code. Our preliminary results show we achieve
speedups of up to 150x when using the GPU.

1. Motivation
Despite their popularity, GPUs remain very hard to pro-
gram. GPUs are normally programmed with low-level lan-
guages similar to C with GPU-specific extensions which
makes the programmability of these devices too complex for
most users. Good understanding of the GPU architecture is a
requirement to achieve high performance. This includes un-
derstanding the GPU memory hierarchy or threads organi-
zation and scheduling. This is a challenging task, especially
for non-expert GPU programmers.

Scientist and non-expert programmers prefer to use higher-
level programming languages such as R, Ruby or Javascript
even if they perform slowly. These programming languages
are simpler and easier to use, enabling faster prototyping
and software development. GPU programming for dynamic
languages is available through external libraries, which nor-
mally contain a set of fixed operations to execute on GPUs,
or via wrappers, in which the programmers write the GPU
kernel in C language and then compiled dynamically.

However, there is no compiler that dynamically offloads
generic input programs written in a high-level dynamic pro-

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

MoreVMs’17 April 3, 2017, Brussels, Belgium
Copyright c© 2017 held by owner/author(s).

gramming language to the GPU. One of the reasons is the
difficulty of implementing a Just-In-Time (JIT) compiler.
This task already requires a lot of engineering effort on tradi-
tional CPUs. But when running on GPUs, this is even more
complicated because of limited high-level programmability
features of the GPUs compared to the CPUs.

GPUs can only execute a subset of C code, with no sup-
port for exceptions, traps, pointers, recursion and dynamic
memory allocation. In dynamic programming languages, a
simple operation such as a + b can perform many runtime
checks such as type checking, null checking (if any of the
operands is null) or checks if extra allocations are needed.
All of these constrains have to be taking into account when
generating GPU programs.

Partial evaluation is a compiler technique to improve the
performance of dynamic and interpreted programming lan-
guages. This technique has been demonstrated for CPUs
(Würthinger et al.). Partial evaluation uses profiling informa-
tion to specialise the input program with the observed types,
resulting in significant reduction of the interpreter overhead.

In this work we propose to use partial evaluation for GPU
compilation. Based on our prior work (Fumero et al.) we
show how to generate OpenCL C code for the R language
and we propose an extension to multiple dynamic languages.
We present an overview of how to dynamically compile R
and Ruby programs to OpenCL. We extended the existing
FastR (Stadler et al.) R interpreter and JRuby both built on
top of Truffle framework (Würthinger et al.), a compiler
infrastructure to build languages on top of the JVM, and
Graal (Duboscq et al.), a novel Java JIT Compiler.

2. OpenCL JIT Compilation
This sections gives an overview of how to generate and ex-
ecute OpenCL code from dynamic programming languages
using Truffle and Graal as main compiler infrastructure. We
show how the OpenCL JIT compilation is performed for R
and Ruby programming languages.

2.1 Identify the parallelism
First, we need to identify if an input code is parallel or not.
To do that, we take advantage of the existing functions in the
language that operate on arrays, as skeletons for generating
parallel code. For instance, the R language contains a set

http://creativecommons.org/licenses/by/4.0/


Figure 1. Compiler software stack for R and Ruby language
to generate OpenCL C code from parallel skeletons such as
the R mapply and Ruby map functions.

of functions called apply, which execute an input function
for every input element of an array. In the case of Ruby, the
language contains the map primitive that is equivalent to the
R’s apply function. Both of these functions can be easily
executed in parallel.

Figure 1 shows an overview of our compiler stack for
compiling R and Ruby programs to OpenCL. The top of the
figure shows an example (daxpy) written in R (left side) and
Ruby (right side). The dark squares show our contributions
to the existing compiler infrastructure. We first parse the
input function into an Abstract Syntax Tree (AST). Each
language has each own AST interpreter implemented with
Truffe. We identify the functions such as the apply in R
or the map in Ruby, as potential parallel operations and we
represent them as a new node in the AST.

2.2 AST Interpreter Execution
Once the AST is built, we execute the program in the AST
interpreter. We first execute the AST interpreter on the CPU
sequentially to specialize it to the observed data types and
remove as much interpreter overhead as possible. This allow
us to obtain profiling information such as input/output data
types and perform branch profiling.

We use this information for OpenCL compilation in later
phases through the accelerator API shown in Figure 1. When
the input function is executed multiple times, the AST inter-
preter sends the AST for compilation via partial evaluation
to the Graal compiler.

2.3 OpenCL Compilation
The compilation is performed via Graal. Graal takes the spe-
cialized AST and transforms it to an intermediate represen-
tation (Graal IR) that is used for compiler optimizations.

We apply a set of OpenCL compilation phases over the
Graal IR that basically removes redundant checks in the
interpreted code, such as the type checks of the input data.
Removing these checks when executing on GPUs is totally
safe because we need to marshal and transfer the data from
the CPU to the GPU and, if there is any violation, we fall
back the execution to the default AST interpreter with no
GPU support. Therefore we do not change the semantic
of the original program. Once we apply the input checks
elimination in the Graal IR, we generate the OpenCL C code
and we compile it using the OpenCL runtime to the target
GPU.

3. Preliminary Results
We evaluate our OpenCL JIT compiler for Ruby and R
using an AMD R9 GPU. We compare our compiler approach
against the CRuby and GNU-R, the Truffle versions (JRuby
and FastR) and the native OpenCL C++ version.

Figure 2 shows the speedups we obtain for each version
for the daxpy application. Our compiler approach is 20x
times faster than CRuby and 500x times faster than GNU-R.
Comparing to the Truffle versions, our compiler approach is
10x times faster than JRuby and 150x times faster than FastR
. Comparing to the native version, our compiler approach is
1.8x slower than OpenCL C++ for each language. Prior re-
sults (Fumero et al.) show speedups up to 150x for FastR
over a large set of complex applications. The Ruby imple-
mentation for GPUs is still work in progress and once this
is completed, we expect to obtain similar speedups to FastR
with GPU support.

Figure 2. Speedup of the daxpy application implemented in
Ruby and R normalized to JRuby and FastR. The higher the
better.

References
G. Duboscq, T. Würthinger, L. Stadler, C. Wimmer, D. Simon, and

H. Mössenböck. Graal IR: An Intermediate Representation for
Speculative Optimizations in a Dynamic Compiler. VMIL 2013.

J. Fumero, M. Steuwer, L. Stadler, and C. Dubach. Just-In-Time
GPU Compilation for Interpreted Languages with Partial Evalu-
ation. VEE 2017.

L. Stadler, A. Welc, C. Humer, and M. Jordan. Optimizing R
Language Execution via Aggressive Speculation. DLS 2016.

T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM to
Rule Them All. Onward! 2013.


	Motivation
	OpenCL JIT Compilation
	Identify the parallelism
	AST Interpreter Execution
	OpenCL Compilation

	Preliminary Results

