Edinburgh Research Explorer

A functional pattern-based language in MLIR

Citation for published version:
Licke, M, Steuwer, M & Smith, A 2020, 'A functional pattern-based language in MLIR', Paper presented at
2nd Workshop on Accelerated Machine Learning @ ISCA 2020, Virtual workshop, 31/05/20 - 31/05/20.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 31. Jul. 2020

https://www.research.ed.ac.uk/portal/en/persons/michel-steuwer(0ed800f5-a3a0-47d7-a8b3-f97a4f2b6931).html
https://www.research.ed.ac.uk/portal/en/persons/aaron-smith(6dc0617d-43af-4c3a-88a6-aadf5bd8f57b).html
https://www.research.ed.ac.uk/portal/en/publications/a-functional-patternbased-language-in-mlir(98d574fc-f471-4738-98a8-87a125db43cc).html
https://www.research.ed.ac.uk/portal/en/publications/a-functional-patternbased-language-in-mlir(98d574fc-f471-4738-98a8-87a125db43cc).html

A functional pattern-based language in MLIR

Martin Liicke!, Michel Steuwer2[0000-0001-5048—-0741] "o1q Aaron Smith!3

! University of Edinburgh
2 University of Glasgow
3 Microsoft

1 Introduction

Machine learning systems are stuck in a rut. Paul Barham and Michael Isard,
two of the original authors of TensorFlow, come to this conclusion in their recent
HotOS paper [2]. They argue that while TensorFlow and similar frameworks have
enabled great advances in machine learning, their current design and implemen-
tations focus on a fixed set of monolithic and inflexible kernels. They continue
to say that “this reliance on high performance but inflexible kernels reinforces
the dominant style of programming model” and argue that “these programming
abstractions lack expressiveness, maintainability, and modularity; all of which
hinders research progress”.

To overcome these problems, we need new intermediate representations that
break up the monolithic and inflexible kernels and represent computations us-
ing more flexible and finer grained primitives. MLIR [4] is a new framework for
implementing custom compiler intermediate representations called dialects that
integrate with one another. Recently proposed by Google, MLIR provides a di-
alect for the XLA HLO graph used as the intermediate representation of the
TensorFlow XLA compiler. Additional dialects exist for example to represent
loop-based polyhedral optimizations and for providing abstractions for linear
algebra routines. MLIR provides a common infrastructure to implement dialects
and transform between them, including lowering computations to a LLvM dialect
that is then compiled with the normal LLVvM compiler infrastructure.

In this paper, we introduce our first steps to implement RISE, a functional
pattern-based language, as a MLIR dialect. RISE is a spiritual successor to LIFT [5l6]
and represents computations as compositions of small generic patterns. Prior
work has shown this pattern-based style efficiently represents complex multi-
dimensional computations from the domains of tensor-algebra and scientific com-
puting [6] along with convolutions and stencils [3]. Crucially, LIFT demonstrated
that optimisation choices can be encoded as rewrite rules and applied automat-
ically to achieve competitive performance.

MLIR provides a common infrastructure that enables deep technical integra-
tion among dialects. Encoding a functional pattern-based language as a MLIR
dialect will enable us to explore the benefits — and drawbacks — of this represen-
tation compared to others, such as polyhedral or graph-based.

B W N =

2 Martin Liicke, Michel Steuwer, and Aaron Smith

2 RISE: a LiFT-like functional pattern-based language

RISE is a functional pattern-based language in the style of LirT [5l6]. RISE
provides a set of data-parallel high-level patterns that are used to describe com-
putations over higher dimensional arrays (aka tensors) in an abstract way. For
example, the map pattern applies a given function to every element of the input
array. The zip pattern combines two input arrays pairwise to produce an output
array of pairs. The reduce pattern is customized with a binary reduction opera-
tor (such as addition), a matching neutral element (such as zero), and an input
array that is reduced to a single value (such as the sum of all elements).

Using these patterns we can express larger computations by composition,
such as matrix-matrix multiplication shown below:

fun(A : N.K.float => fun(B : K.M.float =>
A |> map(fun(arow =>
B |> map(fun(bcol =>
zip(arow, bcol) |> map(*) [|> reduce(+, o)))))))

Using the map pattern twice, once on A and once on B, we perform the dot
product computation to each combination of a row of matrix A and a column of
matrix B. The dot product itself is expressed as a composition of the zip, map and
reduce patterns.

LiFT has shown how this high-level representation is rewritten in an ex-
ploratory process into a lower level representation using a set of low-level pat-
terns that match features from the underlying hardware architecture (such as
sequential and parallel variations of the map pattern). By automatically explor-
ing different implementation and optimization choices LIFT has demonstrated
competitive performance for tensor-algebra [6] and stencils/convolutions [3].

In this paper we present our first steps to represent the high-level language
and patterns of RISE in MLIR. This requires implementing RISE’s type system,
fundamental language constructions such as lambda expressions, and RISE’s
high-level patterns in MLIR. A full implementation of RISE as a MLIR dialect
would also include it’s low-level patterns and rewrite system — which remain as
future work.

3 RISE as a dialect in MLIR

MLIR is a framework for implementing custom intermediate representations. It
uses SSA as the base representation which means that values are always defined
before they are used. Operations may produce multiple results which are all
themselves distinct SSA values. Each value in MLIR has a type and MLIR provides
a set of standard types. Refer to the MLIR specification for a good technical
overview [I]. MLIR allows dialects to add custom operations together with custom
type systems. We will now discuss both for the RISE dialect, starting with the

types.

A functional pattern-based language in MLIR 3

3.1 RISE types

The types for the RISE dialect are shown as a class hierarchy diagram in Fig-

ure 311

mlir::Type

A

’ DataType ‘ ’ Nat ‘ ’ RiseType ‘
\R
Array Tuple FunType Data
length : Nat left : DataType in : RiseType data : DataType
elemType : DataType right : DataType out : RiseType

Fig. 1. Types of the Risk dialect

RISE types are divided into three categories that all inherit from mtir::Type:

— Data types: include 1Int, Float, Array and Tuple types.

— Natural numbers: this is used for tracking the length of the array in the type.

— Rise types: every RISE value has this type which is either a FunType, repre-
senting a RISE function, or a pata, wrapping a DataType.

These types follow the type system of the RISE language, but exclude — for now —
type variables modelled as dependent function types. This type system prevents
function types (which are a sub-type of RiseType) to be treated like data types
and, for example, be stored in an array.

In the dialect implementation, we follow the notation of MLIR and prefix
types by !rise.. For example, to express the type of a function from Int to Int
we write: !rise.fun<data<int> -> data<int>>. To represent the function type of the
RISE map pattern, written map : (T — U) — [T]ny — [U]n in the functional nota-
tion, we write in MLIR:

'rise.fun<fun<data<7> -> data<U>> -> fun<data<array<N,7>> -> data<array<N,U>>>>.

3.2 RISE functional language constructs

RISE is a functional language based on lambda calculus. To express these lan-
guage fundamentals, we added two operations to the RISE dialect: 1ambda and
apply — for function abstraction and application.
Figure [2 shows the implementation sketches of the classes implementing the
lambda and apply RISE operations. These are subclasses of the mlir::0p superclass.
The 1ambda operation models a lambda expression in RISE. It wraps a MLIR
region of a single MLIR block. The arguments of the region are the arguments of

4 Martin Liicke, Michel Steuwer, and Aaron Smith

lambda apply

region : mlir::;region | | fun : mlir::Value
funType : FunType argo : mlir::Value

argN : mlir::Value

type: () — funType type: (arge.type,..., argN.type) — fun.type.out

Fig. 2. Implementation sketches of 1ambda and apply classes.

the lambda. In addition to the region we store the RISE FunType. Essentially, a
RISE 1ambda gives a MLIR region the meaning of a functional lambda expression.

The apply operation models the call of a RISE function. The function and
its arguments are mlir::values and the operation type is the appropriate MLIR
function type. The function in the apply operation can either be a RISE lambda or
any other value with a RISE function type, such as a RISE pattern or a partially
applied function.

The Listing below shows the representation of the identity lambda and its
application. It is the representation of the RISE expression: fun(x => x)(y)

I 1
‘%id = rise.lambda (%x) : !rise.fun<data<int> -> data<int>> { ‘

rise.return %x : !rise.data<int>

‘%res = rise.apply %id %y ‘

3.3 RISE high-level patterns

RISE is a pattern-based language with a number of data-parallel patterns used to
describe computations. Each pattern is represented as an operation in the RISE
dialect. Figure [3| shows the implementation sketches of the map, zip, and reduce
patterns. The types are written in a shortened notation where — represents a
RISE FunType and arrays are written as [T]y.

The map, zip, and reduce patterns are all customized with information that
appear in their type: N, dt, dt1, or dt2. When constructing a pattern operation in
MLIR these are passed as MLIR attributes.

map zip
n : Nat n : Nat
dt1: DataType dt1 : DataType
dt2 : DataType dt2 : DataType
type: () — ((dt1 — dt2) — ([dt1]p — [dt2]p)) type: () — ([dt1]p — ([dt2]p — [(dt1,dt2)]n))
reduce
n : Nat

dt : DataType

type: () — ((dt — (dt > dt)) = (dt — ([dt]n — dt)))

Fig. 3. Implementation sketches of classes representing RISE high-level patterns

A functional pattern-based language in MLIR 5
3.4 Matrix-matrix multiplication example
Figure [4 below shows how to represent matrix-matrix multiplication in the RISE

MLIR dialect. This directly corresponds to the functional RISE program seen
earlier.

1 | func amm(%A: !rise.data<array<s, array<s4, int>>>,

2 %B: !rise.data<array<s, array<s, int>>>) ->

3 (1rise.data<array<s, array<s, int>>>) { map(fun(arow =>
4 %f1 = rise.lambda (%arow) : (fun(bcol =
5 !rise.fun<data<array<s, int>> -> data<array<s, int>>> { map(fun{bcol =>
6 %f2 = rise.lambda (%bcol) :

7 'rise.fun<data<array<s, int>> -> data<array<s, int>>> {

8 %zip = rise.zip #rise.nat<s> #irise.int #rise.int

9 %zipped = rise.apply %zip, %arow, %bcol zip(arow, bcol)
10

11 %f = rise.lambda (%t) : !rise.fun<data<tuple<int, int>> -> data<int>> {

12 %fst = rise.fst #rise.int #rise.int v

13 %snd = rise.snd #rise.int #rise.int

14 %t1 = rise.apply %fst, %t

15 %t2 = rise.apply %snd, %t

16 %mul = rise.mult #rise.int map(*)

17 %res = rise.apply %mul, %ti, %t2

18 rise.return %res : !rise.data<int>

19 }

20 %map = rise.map #rise.nat<s> f#irise.tuple<int, int> #rise.int —

21 %mapped = rise.apply %map, %f, %zipped v

22

23 %add = rise.add #rise.int

24 %init = rise.literal #rise.lit<int<o>>

25 %reduce = rise.reduce #rise.nat<s> #rise.int #rise.int reduce(+, o)
26 %res = rise.apply %reduce, %add, %init, %mapped

27 rise.return %res : !rise.data<int>

28

29

30 %map = rise.map #rise.nat<s> #irise.array<s, int> #rise.array<s, int>

31 %res = rise.apply %map, %f2, %B

32 rise.return %res : !rise.data<array<s, array<s, int>>>

33)

34

35 %map = rise.map #rise.nat<s> #rise.array<s,!rise.int> #rise.array<s,!rise.int>

36 || %res = rise.apply %map, %f1, %A

37 || return %res

38)

Fig. 4. 4x4 matrix-matrix multiplication represented in the RISE MLIR dialect

The dot product computation is defined in lines 7-26 by the zip (line 7), map
(line 19) and reduce (line 24) patterns. The lambda function passed to the map
pattern (defined in lines 10 — 18) is interesting as it first unpacks the tuple (in
lines 11 — 14) that was created by zip before it multiplies the components in line
16 using the rise.mult operation.

The dot product is then applied to each combination of row and column by
the nesting of the two map patterns (in line 29 and 34) and their corresponding
lambda expressions (in line 3 and 5).

It is worth noting that for each RISE pattern we first create a mlir::value by
providing the type information as attributes (prefixed with #), such as the zip in
line 7. A value can only be applied after it is created, such as for zip in line 8.

6 Martin Liicke, Michel Steuwer, and Aaron Smith

4 Conclusions and future work

In this paper, we presented an initial implementation of the RISE functional
pattern-based language in MLIR. We described the implementation of the type
system and how lambda expressions are encoded by wrapping MLIR regions. Pat-
terns are represented as MLIR operations that are instantiated with information
customizing the types before being used in function applications. Finally, we
showed an example of how matrix-matrix multiplication is represented in this
dialect.

In the future, we will complete the implementation of the dialect along with
low-level patterns and an implementation of symbolic computations of natural
numbers to track array sizes in types. We will also explore the implementation
of dependent function types to write computations abstracting over data types
and array sizes.

The implementation of a functional pattern-based representation opens many
interesting possibilities for interactions with other MLIR dialects including higher-
level dialects such as XLA as well as lower-level dialects such as the affine dialect.
We are interested in exploring transforming between and mixing dialects for
finding the best trade off to combine the different strengths of the dialects. We are
also interested in compiling the functional pattern-based representation directly
to specialized hardware exploiting the higher level semantics of the patterns and
bypassing lower-level representations.

References

1. Mlir specification. https://github.com/tensorflow/mlir/blob/master/
g3doc/LangRef.md| (2019 (accessed December 2, 2019))

2. Barham, P., Isard, M.: Machine Learning Systems are Stuck in a Rut. In: HotOS
(2019)

3. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High perfor-
mance stencil code generation with Lift. In: CGO (2018)

4. Lattner, C., Pienaar, J.: MLIR Primer: A Compiler Infrastructure for the End of
Moore’s Law. In: Compilers for Machine Learning workshop at CGO (2019)

5. Steuwer, M., Fensch, C., Lindley, S., Dubach, C.: Generating performance portable
code using rewrite rules: from high-level functional expressions to high-performance
OpenCL code. In: ICFP (2015)

6. Steuwer, M., Remmelg, T., Dubach, C.: Lift: a functional data-parallel IR for high-
performance GPU code generation. In: CGO (2017)

https://github.com/tensorflow/mlir/blob/master/g3doc/LangRef.md
https://github.com/tensorflow/mlir/blob/master/g3doc/LangRef.md

	 A functional pattern-based language in mlir

