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Abstract
Records of online collaborative mathematical activity provide us with a novel, rich, searchable, accessible and sizeable source 
of data for empirical investigations into mathematical practice. In this paper we discuss how the resources of crowdsourced 
mathematics can be used to help formulate and answer questions about mathematical practice, and what their limitations 
might be. We describe quantitative approaches to studying crowdsourced mathematics, reviewing work from cognitive history 
(comparing individual and collaborative proofs); social psychology (on the prospects for a measure of collective intelligence); 
human–computer interaction (on the factors that led to the success of one such project); network analysis (on the differences 
between collaborations on open research problems and known-but-hard problems); and argumentation theory (on modelling 
the argument structures of online collaborations). We also give an overview of qualitative approaches, reviewing work from 
empirical philosophy (on explanation in crowdsourced mathematics); sociology of scientific knowledge (on conventions 
and conversations in online mathematics); and ethnography (on contrasting conceptions of collaboration). We suggest how 
these diverse methods can be applied to crowdsourced mathematics and when each might be appropriate.

1 Introduction

While mathematicians have collaborated since antiquity, 
online collaborations among large numbers of mathemati-
cians are a novelty in terms of scale, speed, anonymity, and 
transparency. They provide new opportunities for the prac-
tice of mathematics, and thereby for scholars of that prac-
tice in general, and mathematics education researchers in 
particular. Many mathematics educators agree that students 
should be exposed to the practices of working mathemati-
cians, even if they do not always agree what those practices 
are (Stillman et al. 2020). Records of online collaborative 
activity form temptingly accessible, novel, rich, searchable 
and sizeable sources of data. Unsurprisingly, scholars of 
mathematical practice have started to look to such sources 
for insights we should expect to impact mathematics edu-
cation. Specifically, much mathematical practice research 

either lacks access to the knowledge generation process, 
as with historical studies, or is at some level artificial, as 
with laboratory studies of mathematicians. Crowdsourcing 
addresses both limitations.1

In this paper we ask three questions: What can we learn 
from these new socio-technical projects? How does crowd-
sourced mathematics differ from traditional mathematics? 
How can studies of crowdsourcing be used to better under-
stand mathematical practice in general?

Here are three preliminary sets of answers. The strongest 
is that there is no difference in kind between crowdsourced 
mathematics and traditional mathematics, so one can inform 
us about the other. Some mathematicians’ reflections on 
crowdsourcing support this: for instance, in highlighting 
speed, Terry Tao draws a difference of degree rather than 
kind.2 We may also compare crowdsourced proofs to proofs 
constructed traditionally, whether by comparing reviewers’ 

 * Andrew Aberdein 
 aberdein@fit.edu

1 University of Dundee , Dundee, UK
2 University of Edinburgh , Edinburgh, UK
3 Loughborough University , Loughborough, UK
4 Florida Institute of Technology, Melbourne, USA

1 In the study of mathematical practices, there is a substantial diffi-
culty of access: many salient features of those practices are not read-
ily accessible to be studied. As such, even for those not interested 
in crowdsourcing per se, the studies described in this paper are still 
important in allowing a different means of accessing and researching 
mathematical practices.
2 “If mathematicians had been attacking the problem in the standard 
way, with what [Tao] describes as a ‘flood of mini-papers’, it might 
have taken years to get the bound down that far” (Ball 2014, p. 422).

http://orcid.org/0000-0003-1856-9599
http://orcid.org/0000-0002-1908-5927
http://orcid.org/0000-0003-0853-1327
http://orcid.org/0000-0003-2450-541X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11858-020-01181-7&domain=pdf


 A. Pease et al.

1 3

reports, constructing and comparing argument maps, analy-
sis of ‘fruitfulness’—the number of new lemmas, concepts 
and examples involved—or otherwise.

A more speculative answer is that although crowdsourced 
mathematics is a new practice, it is rapidly becoming main-
stream. The internet is now part of traditional mathematical 
practice: essential to core knowledge production, not just 
a fringe novelty or mere facilitator of administrative tasks.

A third, more moderate answer is that although crowd-
sourced mathematics differs from traditional mathematics, 
it is an interesting mathematical practice in its own right. 
Indeed, we might query the existence of “traditional math-
ematics”, arguing that any claim about or investigation into 
mathematical practice must reflect a specific mathematical 
culture and socio-historical context. Mathematical practice 
has changed since ancient times: technological inventions, 
distribution mechanisms, changing applications, geographi-
cal and linguistic variations, social and institutional differ-
ences, historical understanding of the world and our place 
in it, developments in representation and notation and math-
ematical inventions themselves, all change the landscape of 
mathematical research in ways which are rarely tested. The 
job of a mathematician has changed significantly within liv-
ing memory, so some claims about mathematical practice 
made within living memory no longer hold. If “traditional 
mathematics” does not exist, then researchers into crowd-
sourced mathematics cannot say how their work relates to it, 
but can still rightly claim to study an important mathemati-
cal practice (and how it relates to other such practices).

Rather than argue prematurely for any of these three 
approaches, we survey methods, disciplines, and research 
questions drawn from each of them. Hence we will consider 
both studies that explore how crowdsourced mathematics 
differs from traditional mathematics and studies that treat 
it as a representative sample of wider practices. We then 
make recommendations for future scholars of crowdsourced 
mathematics and conclude by considering some limitations 
of such studies.

2  Crowdsourcing

Before we can learn about mathematical practices from 
crowdsourced mathematics, we should understand the term 
‘crowdsourcing’. Crowdsourcing presumes that a crowd can 
solve problems or complete tasks better than an individual 
or group of individuals can, for various meanings of ‘bet-
ter’ such as faster, more efficiently, more creatively, or just 

being able to solve the problem at all. The idea is popularly 
known as the “wisdom of crowds”, after Galton’s (1907) 
observation that the mean of the guesses of the weight of an 
ox at a fair was within one pound of the actual weight (for 
more detail, see Surowiecki 2004). In more general terms, 
the wisdom of crowds effect extends far beyond averaging 
or voting: for example, Galaxy Zoo draws on the crowd to 
classify large numbers of telescope images of distant galax-
ies, and to collectively identify particularly interesting ones 
(Raddick et al. 2010).

Nonetheless, it is easy to find counterexamples, cases 
where crowds are worse in some way than individuals 
would be, such as mob justice, panic buying, or online anti-
science groups. This can be for a range of reasons, such as 
groups compounding their prejudices, echo chamber effects, 
feedback loops, game-theoretic strategies emerging, social 
norms, or intentional sabotage. Therefore, crowdsourcing 
projects must consider what features of a crowd are salient 
in securing crowdsourcing’s benefits and avoiding potential 
drawbacks.

In their systematic review of definitions of crowdsourc-
ing, Estellés-Arolas and González-Ladrón-de-Guevara settle 
on this: “Crowdsourcing is a type of participative online 
activity in which an individual, an institution, a non-profit 
organization, or company proposes to a group of individu-
als of varying knowledge, heterogeneity, and number, via 
a flexible open call, the voluntary undertaking of a task” 
(2012, p. 197). This definition conflates necessary condi-
tions for crowdsourcing, such as having a task and a crowd 
to carry it out, with features that are likely to aid the emer-
gence of “wisdom of crowds” effects, such as heterogeneity 
and varying knowledge. Nonetheless, it suitably frames the 
general kinds of activities and participants that are involved 
in crowdsourcing.

While not a necessary feature of crowdsourcing generally, 
a diverse range of expertise is important in mathematical 
cases. More diverse crowds will likely also have different 
approaches to problems, different ideas, and different kinds 
of expertise. With the potential for insights from different 
specialisms to mix and contribute, this allows for the “wis-
dom of crowds” effect to surpass any individual insights 
mathematicians might have separately. In fact, there is 
research to suggest that diversity and heterogeneity is more 
important to overall problem-solving ability than the indi-
vidual abilities of group members (Hong and Page 2004).

The literature on crowdsourcing spans a huge range 
of cases and applications, but within mathematics there 
are obvious candidates, like the Polymath projects, Mini-
polymaths, MathOverflow, and Math.Stackexchange, all 
discussed in the next section. The broader literature on 
crowdsourcing usually sees numbers of participants in the 
thousands or tens of thousands, but in the mathematics cases 
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the numbers are much smaller: Polymath1, for example, had 
fewer than fifty active participants.

3  The use of crowdsourcing in mathematical 
research

Mathematics researchers communicate and collaborate 
online in many ways. Several online tools are central to 
the practices of research mathematics. Emails are the com-
munication method of choice across academia and widely 
used for communicating written mathematics. Mathemati-
cal content is often written in uncompiled TeX markup: 
for example, Villani’s Birth of a Theorem (2015) presents 
many such emails from work that led to his Fields Medal 
(see also Barany 2010, p. 7). The arXiv is the online pub-
lic repository of choice for many mathematicians, with 
preprints routinely uploaded prior to official publication. 
The arXiv sends out alerts of new papers to interested 
colleagues, keeps track of changes, and can help to set-
tle priority disputes. Neither of these is crowdsourcing in 
itself, although they can provide useful data for research-
ing mathematical practices (for an early study of email use 
in a formal science, see Merz and Knorr Cetina 1997; for 
a recent application of corpus-based methods to the arXiv, 
see Mejía-Ramos et al. 2019).

Solutions to (presumptively) known mathematics prob-
lems can be crowdsourced at question and answer sites. 
Some of these are geared towards research mathemati-
cians, such as MathOverflow and Math.Stackexchange. 
Questions about mathematics can get answers from a user-
base which includes many professional mathematicians. 
Answers are rated by readers, with preferred answers 
displayed more prominently. The format also encour-
ages discussion on the topic and further questions. So the 
questioner employs a crowd of research mathematicians to 
search for a solution to the problem, benefitting from the 
crowd’s expertise and knowledge, and from their collective 
evaluation of the answers.

Other question and answer forums encompass math-
ematics at all levels, including undergraduate and earlier 
mathematics students. Current examples include thestu-
dentroom, reddit’s mathematics section /r/math, and many 
more. Students ask questions, sometimes from curiosity and 
sometimes for help with coursework. It is not uncommon 
for talented students to stumble upon an obscure but known 
insight, and to ask for references to work on the area. These 
forums thus crowdsource feedback, solutions, and knowl-
edge of the mathematical literature, drawing on the range of 
expertise in the crowd, the ability of the crowd to effectively 
find errors in student work, and students can benefit from 
anonymity to crowdsource their homework answers. These 
forums also help socialize students to professional norms 

and values of the community, as described by Dawkins and 
Weber (2017). The content of such forums presents a rich 
and as yet unexplored dataset for mathematics educators.

Crowdsourced mathematics is also more directly applied 
to collaborative problem-solving: for instance, the Polymath 
project, its spin-off Mini-polymath, and the subsequent 
Crowdmath for student work (Gerovitch et al. 2017). The 
Polymath project, initially based at the blog of the well-
known mathematician Tim Gowers, used the wisdom of 
crowds approach to solve high-level, challenging mathemat-
ics problems through open, online, massively collaborative 
work. The first project found an elementary proof of the 
density Hales–Jewett theorem, leading to a published article 
(Polymath 2012), and several of the follow up projects have 
made major headway into open problems. Mini-polymath 
was a way of examining how online mathematics happens, 
by testing similar methods for simpler problems: participants 
collaboratively solved International Mathematics Olym-
piad problems. Polymath benefits from crowdsourcing, as 
the large number of participants and their diverse exper-
tise is vital for some of the leaps of ideas required to solve 
problems and prove theorems and, at least as importantly, 
organizing, explaining, and reinterpreting known ideas. In 
theory, these projects were open to all, but the difficulty of 
the content skewed the demographics towards professional 
mathematicians. So, while crowdsourcing is more accessi-
ble than a mathematics department breakroom, it can still 
include or exclude people, and not necessarily based on their 
mathematical ability (see also Rittberg et al. 2019).

Hence we may perhaps distinguish two varieties of math-
ematical crowdsourcing: unstructured crowds, where the 
participants are treated as interchangeable (despite poten-
tially significant variance), and structured crowds, in which 
there are clear divisions of labour and authority. Q&A sites 
such as MathOverflow are comparatively unstructured but, 
as we shall see, the Polymath projects have much greater 
internal structure.

4  Quantitative approaches

Quantitative approaches to studying crowdsourced math-
ematics may be understood in terms of a framework set 
out by Barany (2009). He suggests that researchers who 
use numerical techniques to study the nature of knowledge, 
should follow these steps:

1 Capture knowledge in a form that can be analyzed quan-
titatively,

2 Develop means of quantification to match epistemic 
intuitions, and

3 Use mathematical techniques to study these quantifica-
tions.



 A. Pease et al.

1 3

The first step is uncharacteristically easy, since crowd-
sourced mathematics is usually already in such a form, and, 
by its nature, is openly available. The third step is likewise 
straightforward, though involving more work. The difficult 
step—which can call into question the value of a study—is 
the second: it faces the problem of construct validity, does 
the operationalization of a concept actually correspond to 
that concept? Work in this field can be open to the charge 
that this step has been reversed; i.e., “develop epistemic intu-
itions to match means of quantification”. This is an easy trap 
for the eager scholar hungry for results. Even when sensibly 
done, a convincing justification as to why it is acceptable or 
useful to represent or measure a given intuition in the stated 
quantitative way is often missing.

Barany suggests that “such techniques enable one to sup-
plement intuitive or impressionistic analyses by re-framing 
qualitative problems in quantitative terms” (ibid.). This is an 
important point—the work in itself is not a complete study 
of some intuition in context, but a supplement to qualita-
tive work. Scholars often have the skills to do one type of 
study and not the other, so we suggest either collaborating 
or building on existing work. This is made easier—in both 
the quantitative and the qualitative case—if scholars make 
public as much of their work as possible, including any data 
that they have produced.

There are examples of quantitative work that implicitly 
follow Barany’s guidelines in multiple disciplines, includ-
ing cognitive history, social psychology, human–computer 
interaction (HCI), network analysis, and argumentation.

4.1  Cognitive history

Varshney (2012), working within cognitive history seeks to 
answer the question Are there differences between individual 
and collective intelligence? This speaks to the fundamental 
question of whether crowdsourced mathematics differs from 
traditional mathematics, and thereby whether it should be 
studied as a novel practice or as a proxy for mathematical 
practice in general. In keeping with the cognitive historical 
focus on cultural artefacts, he takes five classic theorems3 in 
geometry from ancient Greek mathematicians as examples 
of individual intelligence and compares these against the 
combinatorial proof of the density Hales–Jewett theorem, 
developed in Polymath1, as his example of collective intel-
ligence. We can understand his project in terms of Barany’s 
framework as follows:

1 Represent the individually and collectively produced 
proofs as argument graphs. In Greek proofs statements 
are nodes and citations of support between statements 
are directed edges. In the Polymath proof nodes are blog 
posts and directed edges references among posts.

2 Identify epistemic intuitions that may be quantified in 
terms of argument graphs. Varshney has three:

3 Collective intelligence might result in more ideas than 
individual intelligence; this would show in the structure 
of the argument graphs, both as multiple ideas support-
ing a single idea (convergent arguments) and as a single 
idea supporting a large number of other ideas (divergent 
arguments).

4 Different inference rules will be preferred in each case.
5 Greeks will use shorter and simpler arguments.
6 Use network science and discrete mathematics to study 

these quantifications:
7 The first intuition can be tested via the degree distri-

butions of the argument graphs. Nodes that are strong 
hubs (with high in-degree) would correspond to intense 
integration of information, whereas nodes that are strong 
authorities (with high out-degree) would correspond to 
intense dissemination of information.

8 The second intuition can be tested by considering the 
subgraph distributions of the argument graphs.

9 The third intuition can also be tested by subgraph analy-
sis, for instance in terms of the number of nodes in a 
graph.

Varshney confirms his first and second intuitions, but not 
the third: subgraph analysis shows that Polymath1 uses short 
and easy-to-follow arguments to an even greater extent than 
ancient Greek mathematics.

This is a position paper, and there are limitations of this 
particular study—some of which are acknowledged by the 
author.4 The methodology and research programme, how-
ever, are extremely interesting. Identifying differences 
between individual and collective intelligence would help 
us to compare crowdsourced and traditionally produced 
mathematics. A concrete method of comparing proofs, as 
represented as argument graphs, within a framework which 
is sufficiently flexible to allow for other representations and 

3 Euclid’s Elements II.5, Archimedes’ The Method I, Archimedes’ 
On Sphere and Cylinder 1.30, Archimedes’ Spiral Lines 9, and Apol-
lonius’ Conics 1.41.

4 For instance, in order to focus on differences between individual 
and collective intelligence, other variables should be eliminated as 
far as possible. Here, ground-breaking work is compared with eve-
ryday work, geometry with combinatorics, a final proof (frontstage) 
with the discovery of a proof (backstage), modern work with work 
so ancient we cannot even be sure it was the product of an individual. 
No justification is given for choosing these particular proofs. Further-
more, the extremely small sample size (one versus five proofs) suf-
fices for a proof of concept at best, not general conclusions (as Varsh-
ney sometimes incautiously attempts). It is also, perhaps, unclear how 
the historical context has been taken into account.
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other methodologies used to compare them is a powerful 
approach.

4.2  Social psychology

Woolley, Chabris, Pentland, Hashmi, and Malone (2010) 
demonstrate how well-established methods and results in 
the psychology of individual intelligence can usefully be 
employed to study collective intelligence. They start from 
what is “arguably, the most replicated result in all of psy-
chology” (ibid. p. 687, see also Deary 2000), that there exists 
a general cognitive ability: people who are good at one cog-
nitive task are likely to also be good at other, unrelated, cog-
nitive tasks. From here, it is relatively straightforward to use 
the same experimental setup to test whether there exists an 
analogue general cognitive ability as a feature of a group’s 
collective intelligence. Via a series of experiments on a total 
of 192 groups ranging from two to five members, Woolley 
et al. test their research question: Do groups, like individu-
als, have characteristic levels of intelligence, which can be 
measured and used to predict the groups’ performance on 
a wide variety of tasks? They find that group performance 
over a variety of tasks is a good predictor of performance 
on a criterion task; while average and maximum intelligence 
scores of individual group members were not significantly 
correlated with a general collective intelligence factor c and 
not predictive of the criterion task performance. They fur-
ther tested other factors which might be expected to predict 
group performance, including group cohesion, motivation, 
satisfaction, social sensitivity, conversational turn-taking 
and the gender balance in the groups; finding that only the 
latter three correlate with c.

We can see parallels and differences between this 
study and our domain of interest. This methodology could 
be extended to include tests on much larger groups, on 
“crowds” and on people working together remotely. Both 
criterion tasks and the initial variety of tasks could be in the 
mathematics domain. Individual experience in mathematics 
could be recorded alongside individual intelligence, and so 
on. Of particular interest is Woolley et al.’s conclusion that 
“….it would seem to be much easier to raise the intelligence 
of a group than an individual. Could a group’s collective 
intelligence be increased by, for example, better electronic 
collaboration tools?” (Woolley et al. 2010, p. 688). If so, this 
would present an innovative and cost-effective approach to 
tough mathematical problems, with important implications 
for mathematics education, suggesting greater emphasis on 
group work.

4.3  Human–computer interaction (HCI)

Working in HCI, Cranshaw and Kittur (2011) combine social 
science theory with in-depth descriptive analysis of data 

gathered from Polymath1. They use a similar framework to 
that in Barany (2009) and similar mathematical methods to 
Varshney (2012) to answer very different research questions: 
(1) What factors contributed to the success of Polymath1? 
and (2) How can we design for large scale scientific collabo-
rations? Since Polymath1 was a conspicuous success, we 
should hope to learn from it in the design of future projects.

They get a general feeling of the landscape from sim-
ple metrics such as numbers of participants and blog posts 
per participant, seniority of participants as estimated from 
Google Scholar citation counts, and participants’ gender. 
They then consider the role of leadership, coordination, 
and threading, and the burden to newcomers. This involved 
defining what these terms mean. In the leadership case, lead-
ers were seen as those who summarised progress, made pub-
lic judgments as to what was relevant in a previous thread 
and where they thought the discussion should go next, and 
made significant contributions to the proof—both in terms 
of volume and of importance (measured by the quantity of 
subsequent comments).

In the case of coordination and threading, they considered 
what worked and did not work about multiple threads and 
parallel discussions. Parallelism worked on a global level, 
with work computing exact bounds on Hales–Jewett num-
bers for small dimensions, led by Tao, going on in parallel 
with proof attempts of the general theorem, led by Gowers. 
However, attempts to parallelise work locally on these two 
projects were largely unsuccessful, with the exception of 
the interactive “reading group” to discuss background mate-
rial, which Tao set up. Cranshaw and Kittur further analysed 
dependencies in the comments, and meta-comments on this 
aspect, finding that the discussion was largely localized.

On newcomers, they hypothesised that once the project 
started, the technical nature of the generated content made it 
difficult for newcomers to join in. They calculated cumula-
tive number of contributors to Polymath1 over time, finding 
that the core set started contributing to the project very early. 
In order to understand the nature of participation and contri-
bution in Polymath1, they used the official Polymath1 time-
line, created on the project’s wiki to highlight the comments 
that were milestones to the proof. Important comments were 
defined as comments which were milestones or contributed 
towards a milestone, which triggered lots of other comments, 
or which linked other contributions in a useful way. They 
applied a series of graph centrality measures on each node 
of the comment reference graph. This showed the leadership 
of Gowers, Tao, and a third potential leader; the existence of 
participants who made few, but very important comments; 
and—interestingly—that level of seniority did not correlate 
to volume or importance of contribution. They conclude 
with design recommendations for encouraging newcom-
ers, focusing on three challenges: identifying what to read, 
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identifying tasks to work on, and learning required back-
ground material.

This work is a good example of how a framework such as 
Barany’s can be applied sensibly. However, more justifica-
tion for why the measures for concepts such as leadership 
are appropriate would strengthen this study, as would adding 
other perspectives on leadership, as one of the authors does 
in later work. Tausczik, Kittur and Kraut (2014) use three 
methods to investigate types of collaborative acts, asking 
How does collaborative problem solving occur on MathOv-
erflow? and What strategies are most successful? Firstly, 
they use quantitative analysis, relating collaborative acts to 
solution quality. Secondly, they apply grounded theory to 
150 problems from MathOverflow to provide a taxonomy of 
collaborative acts, coded by whether a contribution provided 
information, clarified the question, critiqued, revised, or 
extended an answer. Finally, they conducted semi-structured 
interviews with 16 active MathOverflow contributors to bet-
ter understand the collaborative acts, the role they played in 
the collaborations, and how they contributed to the develop-
ment of solutions. This work shows how combining quanti-
tative and qualitative methods can build up a rich picture of 
a concept in crowdsourced mathematics.

4.4  Network analysis

Kloumann, Chenhao, Kleinberg and Lee (2016) made a 
comparative study of the differences between crowdsourced 
collaboration on open research problems (the Polymath pro-
jects) and on hard problems with known solutions (the IMO 
questions on the four Mini-polymath projects). These are 
compared on three axes: the roles and relationships of the 
authors, the temporal dynamics of how the projects evolved, 
and the linguistic properties of the discussions. The authors 
ask the following research questions: What are the differ-
ences between online collaborations on research and on 
hard problem-solving?, and How (and when) can we find 
whether a comment is a general contribution or a research 
highlight? The authors develop a computational model to 
predict whether a given comment is from an open or dif-
ficult but known research problem. It is based on comment 
length, roles, temporal, and linguistic features, and achieved 
90% accuracy. Finally, they consider whether breakthrough 
comments could be automatically recognised, and if so, how 
that could be used in real-time to improve the process. One 
attraction of this approach is its scalability: a computational 
model could be applied to much larger datasets where hand 
coding, on which some other approaches depend, would 
be prohibitively labour-intensive. Real-time identification 
of breakthrough comments would be of immense value, as 

an educational tool and as a facilitator of human–computer 
collaboration.

4.5  Argumentation

In earlier work (Corneli et al. 2019), we5 explored the appli-
cation of recent argumentation research to crowdsourced 
mathematics. We asked: How can we represent mathemati-
cal argument using Inference Anchoring Theory (IAT)?; 
How can we extend IAT to give a more complete picture of 
the linguistic, dialectical, and inferential structure of the 
arguments?; and To what extent can our extended theory 
(IATC) represent real-world examples of mathematical prac-
tice in a way that can make them accessible to computational 
reasoning? IAT is designed to model both the inferential 
structure and the dialogical structure of arguments and how 
they interact (Budzynska and Reed 2011). We represented 
a Q&A example from MathOverflow and an excerpt from 
Mini-polymath1 in IAT, which allowed us to represent dia-
logue moves, speech acts, and inferences, and gave us a way 
of connecting arguments to dialogue. However, IAT treats 
propositions as black boxes, which prevented computational 
reasoning on mathematical propositions. Hence we extended 
IAT to IATC, C for content, which allowed us to unpack the 
propositions, making the relationships between the content 
of propositions explicit. This yields a more complete picture 
of the conversation than IAT.

This was a useful exercise to explore the relevance and 
utility of theories in argumentation which were not devel-
oped with mathematical discussion in mind. Although the 
dataset was small and hand-selected, it felt sufficient to 
develop and illustrate our new theory, at least as a starting 
point to answer our research questions.

We also explored the questions Can we represent Laka-
tos’s informal logic of mathematical discovery as a theoreti-
cal dialogue game and then at an abstract level?; Can we 
build a computational model of the theoretical and abstract 
model?, and Does Lakatos’s theory apply to crowdsourced 
mathematics? (Pease et al. 2017). Our data was the con-
versation in Lakatos’s Proofs and Refutations (1976), and 
hand-picked excerpts from Mini-polymath3 (2011). We took 
a practical approach to the first research question, by rep-
resenting Lakatos’s theory as a dialogue and then reason-
ing over directed graphs. The second research question was 
largely an engineering problem. In this context it is the third 
research question that is of the most interest: in some ways 
the theoretical and computational models developed earlier 
become tools used for exploring this question. For this ques-
tion, we hand-coded excerpts from Mini-polymath3 using 

5 That is, at least one of us; in this case the first two authors, with 
other collaborators.
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the formalism we developed, to show explicitly how Laka-
tosian reasoning contributes to the core steps in the devel-
opment of the proof. This demonstrated that Lakatos-style 
reasoning can be used to describe at least some real-world 
examples of crowdsourced mathematical conversations.

Much of our work is motivated by incorporating crowd-
sourced mathematics into work on social machines, shed-
ding light on how computers can support the process and 
providing a forum for them to do so; with the ultimate goal 
of developing new software for human–machine hybrid 
research teams (Martin and Pease 2013).

5  Qualitative approaches

Crowdsourced mathematics leaves a trail of data which has 
proved rich enough to warrant qualitative approaches from 
a number of disciplines, including empirical philosophy, 
sociology, ethnography, and reflections from mathemati-
cians themselves.

5.1  Empirical philosophy

In Pease et al. (2019) we used close content analysis (Krip-
pendorff 2004) over the comments on the research threads 
of Mini-polymath1–4 (2009, 2010, 2011, 2012) to study 
explanation in mathematics. We started with four research 
questions (or conjectures), gleaned from the literature on 
explanation in mathematics: Is there such a thing as expla-
nation in mathematics?; Are all explanations answers to 
why-questions?; Does explanation occur primarily as an 
appeal to a higher level of generality?; and Can explana-
tions be categorized as either trace explanations, strategic 
explanations or deep explanations? We supplemented these 
with two further conjectures which emerged via a pilot anal-
ysis of a subset of the data: Do explanations in mathematics 
contain purposive elements? and Can explanations occur in 
many mathematical contexts?

Close content analysis is a qualitative methodology in 
which presence and meanings of concepts in rich textual 
data and relationships between them are systematically 
transformed into a series of results. The method proceeds by 
analysis design, application, and narration of results. Analy-
ses may be text-driven, content-driven, or method-driven, 
depending on whether the primary motivation of the analyst 
is the availability of rich data, known research questions or 
known analytical procedures. We used keyword indicators to 
highlight parts of the data to analyse: these were drawn from 
pre-existing lists of premise, conclusion, and explanation 
indicators. We performed a complete search of indicators to 
highlight excerpts which may involve explanation. For each 
instance with an indicator we used close content analysis, 

taking the surrounding context into consideration, to con-
sider each of our six research questions. We then repeated 
this process on randomly selected parts of the conversation 
which did not contain indicator terms.

This approach was useful as a way of testing claims made 
in the mathematical practice literature. It relied on the exist-
ence and acceptance of indicator terms; although comple-
menting this with randomly selected examples made the 
results much stronger. We found evidence for explanation 
being widespread in mathematical practice, and not just in 
proofs. This is in apparent tension with the result of (Mejía-
Ramos et al. 2019) that explanation is rarer in mathemat-
ics than natural science; this may be because they studied 
a corpus of preprints, whereas our data exhibited crowd-
sourced mathematics in progress. We also found reasons to 
doubt some of the most influential philosophical theories of 
mathematical explanation (and some support for less popular 
theories).

5.2  Sociology

Barany (2010) asks In what sense Gowers was really free 
to make up conventions as he went along? Looking at the 
Polymath1 discussion in depth, Barany considered the nar-
rative of the conversation, the aims of the participants and 
their goals in re-creating in person mathematical discussion, 
in the light of the technical constraints and functionalities of 
the blog medium. In particular, he found that the technol-
ogy constrained the freedom to make up conventions, but 
explored the adaptability of the blog platform to the pur-
poses of crowdsourced mathematics.

In Pease and Martin (2012) we used a grounded theory 
approach to explore the questions What do mathematicians 
talk about? And How do mathematicians use examples? 
Using Mini-Polymath3 (2011) as data, we found that the 
mathematical content could be divided into concepts, exam-
ples, conjectures, proof, or “other”, with examples forming 
the biggest single category. A follow-up study used data 
from Mini-Polymath1 (2009) to explore how mathematicians 
use examples. Grounded theory is useful when the research 
question is very general, open and exploratory, and when 
the starting point is data, rather than a hypothesis or theory.

5.3  Ethnography

In Lane et al. (2019) and Martin and Pease (2015) we con-
ducted ethnographic studies of crowdsourced mathemat-
ics. Ethnographic methods involve close, often immersive, 
observation of people in their cultural settings. This includes 
looking at what people say or do not say, how they say it and 
to whom, what is implicit, how they interact socially and 
culturally, how meaning is constructed and understood, etc. 
The outcome of an ethnographic study is a narrative account 
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of a particular culture within a theoretical context. Given the 
in-depth nature of ethnographic studies, ethnographers tend 
not to attempt universal truths, rather focusing on a small 
number of studies, which they aim to analyse in a detailed 
and complex way, and in the context of wider cultural and 
historical factors. Researchers are often immersed in a cul-
ture, for an extended period of time, thus participating in the 
culture themselves. They use observation, interviews and 
other (usually qualitative) methods to conduct their work.

Ethnographic studies of crowdsourced mathematics are 
rare. In Lane et al. (2019) we asked How can we reconcile 
the contrasting notions of romanticised self-presentations 
of the isolated genius, with ethnographic studies of math-
ematicians at work? As data, we used accounts of Andrew 
Wiles’s proof of Fermat’s Last Theorem (Wiles 2000), the 
Polymath projects (the discussion threads, and papers about 
the project), and placed our observations in a broader lit-
erature on landscape, social space, craft and wayfaring, 
viewing the mathematician in both contexts as crafting a 
journey through a mathematical landscape. We explored the 
notion of mathematicians’ metaphors of journeys in space 
and indicated how these might be framed in terms of literary 
studies, social science, and philosophy, suggesting that ideas 
of explorations of a fixed landscape might be broadened to 
consider how mathematicians themselves create that land-
scape. Theories of craft, in particular Ingold’s (2011) notion 
of crafting as wayfaring, opened up new possibilities for 
framing the practice of mathematics, shedding further light 
on the educational role of Polymath collaborations.

In Martin and Pease (2015) we asked How does collabo-
ration enable mathematical advance?, and How does crowd-
sourced collaboration compare to other collaborations in 
mathematics? We contrasted Polymath with the famous 
early twentieth-century collaboration between Cambridge 
mathematicians G. H. Hardy and J. E. Littlewood. As source 
material we used Hardy’s published reflections on his prac-
tice (Hardy 1929, 1940), and Littlewood’s Mathematician’s 
Miscellany (Bollobas 1986), along with personal letters, 
Hardy’s collaborations with Littlewood and Ramanujan 
(Rice 2015), papers analysing their collaboration (Cart-
wright 1981; 1985), and research notes between Hardy and 
Littlewood6; and reflective pieces by both Polymath par-
ticipants and “spectators” on the experience of such large 
collaboration in a public arena, looking at the collabora-
tions, and the institutions and structures that enabled them. 
Similar themes emerged, such as tolerance of errors, dead 
ends, and lack of understanding. We argued that the goals 
of collaborative scholars—emerging in the time of Hardy 
and Littlewood; established in the time of Polymath—are 

still a mixture of intellectual satisfaction and professional 
recognition. Then as now, mathematicians count success as 
proving significant results and publishing them in significant 
journals, or the additional recognition of well-known prizes.

Ethnographic studies enable a deep look at a research 
topic, taking context such as historical and cultural factors 
into consideration. As with cognitive history, results found 
using this approach cannot be assumed to generalise but 
offer an in-depth look at one or two studies.

5.4  Reflections from mathematicians

Many of the crowdsourced mathematics websites contain 
areas in which the ‘crowd’ can reflect on the process. Often, 
in particular in the early days, this was simultaneous with 
the mathematical collaboration, so that processes could be 
adapted on the fly, as people explored the new way of work-
ing. One key feature of Polymath was that it was created 
by and for mathematicians using a pre-existing technology 
with which they were already familiar, both in producing and 
consuming content. The fact that senior figures in the field 
are prepared to try such a bold experiment, to think through 
clearly for themselves what the requirements are, and to take 
a “user centred” view of the design, is striking. For example, 
Tao’s response to the suggestion that participants might use 
a platform such as github (which some argued would sim-
plify the final stage, collaborating on a paper): “One thing I 
worry about is that if we use any form of technology more 
complicated than a blog comment box, we might lose some 
of the participants who might be turned off by the learning 
curve required.”

On the whole they have been successful in solving prob-
lems amenable to the approach, with the added benefit of 
presenting to the public a new way of doing mathematics. 
The failures have been failures to find the necessary math-
ematical breakthrough, rather than failures of the Polymath 
format.7

The discussion threads of the Polymath projects display 
a record of these discussions, providing a useful resource 
for those interested in participants’ own reflections. These 
informal discussions are supplemented by published written 
accounts of the participatory experience (see, for instance, 
Gowers and Nielsen 2009; Nielsen 2011; Polymath 2014).

6 Although their rooms at Trinity College were only minutes apart, 
they would often communicate through notes delivered by a servant.

7 Not every crowdsourced mathematics project has been so success-
ful: for example, Gowers’s Tricki, intended as a collaborative data-
base of mathematical techniques, was outcompeted by MathOverflow, 
contributors being insufficiently motivated without the Q&A format 
(Gowers 2010).
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6  Recommendations

Based on our review of work on crowdsourced mathemat-
ics, and our own experiences of studying it, we make the 
following recommendations (some of broader application):

1 Demonstrate that what is being measured quantita-
tively is the desired phenomenon. Scholars should be 
careful to provide evidence for Step 2 of Barany (2009). 
Numerical methods are tempting, given their observ-
ability, objectivity and so on. However, it is essential to 
link what these methods measure to what is claimed to 
be measured.

2 Use multiple approaches to investigate the same phe-
nomenon. Multiple perspectives on the same research 
question will yield a deeper, multi-faceted understand-
ing (sometimes called “methodological triangulation”: 
see Löwe and Van Kerkhove 2019). For instance, the 
research question addressed in Cranshaw and Kittur 
(2011): How does leadership work in mathematical 
research? in which leadership is defined and measured 
in numerical terms, could be supplemented by:

3 Ethnographic studies: for instance, leadership could be 
seen in the context of metaphors used to describe math-
ematical activity: journeying, exploring, mountaineering 
etc., and how leadership works in those domains, with 
advantages and pitfalls etc.

4 Experiments in social psychology: this could be a com-
parative study, comparing the leadership functions in 
crowdsourced and traditional mathematics. It might 
consider what qualities a leader should have in crowd-
sourced mathematics, and whether the same people are 
leaders in traditional as in crowdsourced mathematics. It 
might also look at whether the concept of leader is stable 
across a conversation, or whether there are local lead-
ers; varying, for instance, depending on who happens 
to be online at a particular point, or the current topic of 
discussion.

5 Interviews: conducting interviews with participants of 
a crowdsourced conversation, to see how they perceive 
leadership in that conversation, who the leaders were at 
various points, looking at whether there is agreement 
between participants, and so on.

6 A comparative study in which non-crowdsourced col-
laboration is compared with crowdsourced collabora-
tion; applying the same notions of leadership to both and 
contrasting how it works in each case.

7 Experimental studies: setting up experiments in crowd-
sourced collaborations to see, for instance, whether 
leaders naturally emerge, whether leadership has to be 
associated with status, knowledge, and so on.

8 Business: identifying different styles of leadership, 
such as leading from behind, and looking for evidence 
of those styles in crowdsourced collaborations, testing 
to see which style is most effective, etc.

9 Build on other people’s work and make it easy for 
them to build on yours. Approaches such as that in (2) 
will naturally involve experts in different disciplines, so 
collaboration or building on others’ work is essential. 
This leads to…

10 Follow good practices for research into crowdsourc-
ing:

11  Make data publicly available where possible. Providing 
annotated data, argument maps, etc. both helps a reader 
understand prior work and facilitates future work. This 
must be done with sensitivity: although crowdsourced 
mathematics conversations are publicly available, there 
may be information in aggregate which was not apparent 
from following a conversation. For instance, in a study 
on errors in crowdsourced mathematics, if it emerged 
that one participant in particular made many errors, then 
it may not be politic to publish that study in a way which 
makes that apparent.

12  Present data in an anonymous form where possible. The 
public nature of the conversations makes this difficult, 
but there may be ways to publish a full dataset without 
it being possible to trace individual participants.

13  As a reviewer, be sympathetic to interdisciplinary 
approaches. There are well-known difficulties in pub-
lishing interdisciplinary work. Of course, there may be 
valid problems, but reviewers should endeavour to be 
sympathetic to the goals of the authors.

14 Minimise confounding variables in comparisons. To 
ensure that it is (only) the desired phenomenon that is 
being compared, minimise variables such as how, why, 
when, by whom the work was produced.

15 Justify your selection of data. There are many instances 
of crowdsourced mathematics: researchers should state 
why they selected one dataset and not another (in both 
comparative and non-comparative approaches).

16 Look for analogous studies that you can use. If there 
are established ways of testing a phenomenon then 
researchers might find it helpful to adapt these in the 
case of crowdsourced mathematics, rather than inventing 
new experimental setups, etc.

7  Issues and limitations of studying 
crowdsourced mathematics

We should be wary of making generalisations from online 
to other types of mathematical research.
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7.1  Selection bias

To the best of our knowledge no comprehensive, compara-
tive demographic research has been conducted to contrast 
the mathematicians who take part in crowdsourced math-
ematics with the larger mathematical population. None-
theless, we may draw some preliminary observations that 
suggest these mathematicians may be unrepresentative in 
several ways.

Firstly, if there is one thing we do know about the math-
ematicians who collaborate online, it is that they have the 
time to do so! This may bias the sample towards mathe-
maticians in the early or late stages of their careers: either 
graduate students and postdocs or full and emeritus pro-
fessors. Early and mid-career tenure-track professors might 
be strongly advised to concentrate their efforts on research 
in which individual contributions are more unambiguously 
attributable to be sure that they meet criteria for tenure and 
promotion. While mechanisms may yet evolve to ensure an 
equitable distribution of credit for the results of massively 
collaborative research, promotion and tenure criteria notori-
ously lag behind such innovations.

Secondly, it is reasonable to suppose that not all person-
ality types are equally attracted to online collaborations, 
especially when such collaborations are essentially public 
(and, of course, those are the collaborations most accessi-
ble to the researcher). In particular, mathematicians who 
are uncomfortable sharing incomplete ideas may make less 
effective collaborators: once they have developed an idea 
sufficiently to be prepared to share it, the opportunity for it 
to be of use to other collaborators may have passed. If such 
reticence correlates with other interesting features of math-
ematical practice, then such features may be absent from 
studies based upon crowdsourced mathematics. More wor-
ryingly, demographic groups that are underrepresented in 
online spaces or mathematics in general are also likely to be 
underrepresented in crowdsourced mathematics.

A broader concern with samples of mathematical work 
drawn from online collaborations is that the participants 
may be unrepresentative simply by virtue of their ready 
access to the internet. Researchers in psychology have long 
complained that the typical samples used in psychological 
research are drawn exclusively from Western, Educated, 
Industrialized, Rich, and Democratic (WEIRD) societies 
(Arnett 2008). In some respects, internet-based research 
offers a partial remedy to this problem: online participants 
recruited through services such as MTurk may well be less 
WEIRD than undergraduate psychology students, the tra-
ditional source of participants for psychological studies 
(Gosling et al. 2010). Nonetheless, the mathematicians who 
self-select into online collaboration necessarily have internet 
access, and presumably fairly frictionless internet access. 
This may reduce the likelihood of participation in poorer, 

less industrialized countries where internet access may be 
prohibitively expensive and less democratic countries where 
internet access may be subject to government restriction or 
international contacts attract official censure.

7.2  Online personalities

One of the earliest and best-known results of research into 
internet behaviour is the so-called “online disinhibition effect” 
(Suler 2004). Some people behave in markedly different ways 
online and offline. Suler, who named the effect, proposed six 
factors that underpin it: “dissociative anonymity, invisibility, 
asynchronicity, solipsistic introjection, dissociative imagina-
tion, and minimization of authority”. Not all of these factors 
may be expected to apply to online mathematical collabora-
tion to the same degree as they apply in, for example, social 
media. Notably, anonymity may have less effect: some collabo-
rations could insist on individuals using names by which they 
are known professionally (presumably this would be essential 
if any academic credit is to be assigned) and even where pseu-
donyms are permitted, they may be expected to be enduring 
pseudonyms, whose owners have a stake in preserving the 
reputation associated with the name. Perhaps more importantly 
still, the best-known mathematical collaborations have mini-
mized status and authority far less than the internet at large. 
The Polymath project, for example, is led by two extremely 
high-status mathematicians, the Fields Medallists Gowers and 
Tao, who may be reasonably supposed to carry at least some 
of their offline authority into their online endeavours. It may 
be premature to say that the presence of such authority figures 
is necessary for the success of crowdsourced mathematics, but 
we know of no examples of such collaborations succeeding 
without it.

7.3  Limitations

We hope we have shown that crowdsourced mathematics is 
valuable in the study of multiple aspects of mathematical prac-
tice. Nonetheless, there are other aspects where crowdsourced 
mathematics necessarily provides insufficient data. In particu-
lar, we cannot use it to study:

• gestures, intonation, or body language;
• the use of physical materials in mathematical thinking, 

such as whiteboards, blackboards, and notebooks;
• the use of diagrams, scribbles, or doodles in mathematical 

thinking.

All of these are important objects of research—and they 
may all occur offline in crowdsourced mathematics too, 
although not as a means of communication between par-
ticipants. But crowdsourced mathematics is an increasingly 
important area of mathematical practice in its own right, with 
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some notable results to its credit. So, if nothing else, its suc-
cess demonstrates that not all of these aspects need be shared 
between participants for mathematics to be done well.

8  Conclusions and further work

Crowdsourced mathematics has been used as an educational 
resource, as an example of research in action, giving students 
a chance to look behind the curtains of research—or “see 
how the sausage is made”, as Tao puts it (quoted in Martin 
and Pease 2015). At its height, for instance, Polymath8 was 
getting three thousand hits a day.8 As such, it may affect how 
mathematics is practiced in future. These experiments may 
change what comprises mathematics (or indeed, cause it to 
come full circle, since ancient mathematics was much more 
like a conversation than mathematics since the invention of 
the printing press).

The question Is there any difference between crowd-
sourced mathematics and traditional mathematics? is not 
static and cannot be answered in a binary way. The best we 
can say is, “in this regard, at this time, given this context, 
crowdsourced mathematics and traditional mathematics are 
alike or different”. We hope that this paper provides useful 
thoughts on how such an answer may be given.
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