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ABSTRACT

Nonparametric star formation histories (SFHs) have long promised to be the “gold standard” for galaxy spectral

energy distribution (SED) modeling as they are flexible enough to describe the full diversity of SFH shapes, whereas

parametric models rule out a significant fraction of these shapes a priori. However, this flexibility is not fully con-

strained even with high-quality observations, making it critical to choose a well-motivated prior. Here, we use the

SED-fitting code Prospector to explore the effect of different nonparametric priors by fitting SFHs to mock UV-IR

photometry generated from a diverse set of input SFHs. First, we confirm that nonparametric SFHs recover input

SFHs with less bias and return more accurate errors than do parametric SFHs. We further find that, while nonpara-

metric SFHs robustly recover the overall shape of the input SFH, the primary determinant of the size and shape of

the posterior star formation rate (SFR) as a function of time is the choice of prior, rather than the photometric noise.

As a practical demonstration, we fit the UV-IR photometry of ∼6000 galaxies from the GAMA survey and measure

inter-prior scatters in mass (0.1 dex), SFR100 Myr (0.8 dex), and mass-weighted ages (0.2 dex), with the bluest star-

forming galaxies showing the most sensitivity. An important distinguishing characteristic for nonparametric models is

the characteristic timescale for changes in SFR(t). This difference controls whether galaxies are assembled in bursts

or in steady-state star formation, corresponding respectively to (feedback-dominated/accretion-dominated) models of

galaxy formation and to (larger/smaller) confidence intervals derived from SED-fitting. High-quality spectroscopy has

the potential to further distinguish between these proposed models of SFR(t).
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1. INTRODUCTION

Observational constraints on galaxy star formation

histories (SFHs) enable us to understand many aspects

of galaxy formation. The SFHs of quiescent galaxies pro-

vide insight into their formation conditions in the early

universe and also into the mechanism by which star for-

mation is quenched (Thomas et al. 2005; Graves & Schi-

avon 2008; Conroy et al. 2014; Choi et al. 2014; Pacifici

et al. 2016; Carnall et al. 2018b; Schreiber et al. 2018).

The SFHs of star-forming galaxies inform us about the

timescales on which star formation rates (SFRs) change

and the rate at which stellar mass is assembled on the

star-forming sequence (Gallazzi et al. 2005; Panter et al.

2007; Leitner 2012). Measuring the histories of low-mass

dwarf galaxies provides insights into physics and timing

of reionization (Tolstoy et al. 2009; Weisz et al. 2014a,b).

Finally, modeling of galaxy SFHs is necessary to ac-

curately measure stellar masses, star formation rates

(SFRs), metallicities, and dust contents from their ob-

served spectral energy distributions (SEDs) (Bell & de

Jong 2001; Wuyts et al. 2011; Conroy 2013; Leja et al.

2017).

Though SFHs in realistic galaxies can be arbitrarily

complex, they are often modeled with simple functional

forms. These forms are computationally fast and con-

ceptually straightforward. The most common is an ex-

ponential form with SFR ∝ tαe−t/τ , with α = 0 known

as an exponentially declining SFH and α = 1 known as

a delayed-exponentially declining SFH. As our picture

of galaxy formation becomes more complex, additional

forms have been adopted to better describe the range of

behaviors for SFR(t). These forms include rising SFHs

(Buat et al. 2008; Maraston et al. 2010; Papovich et al.

2011), lognormals (Gladders et al. 2013; Abramson et al.

2015; Diemer et al. 2017), double power-laws (Carnall

et al. 2018b), and exponentially declining SFHs modi-

fied to decouple late-time and early-time SFRs (Simha

et al. 2014; Ciesla et al. 2016).

These complex new functional forms can describe the

majority of simulated galaxy SFHs quite well (Simha

et al. 2014; Diemer et al. 2017), implying that simulated

SFHs are, on average, relatively smooth. However, even

if a functional form can provide an excellent description

of the SFH when fit directly to SFR(t), it can fail to re-

cover the true SFH when fit to galaxy observations. This

happens because typical observations will only weakly

constrain the SFH; in this scenario, not only must the

functional form be able to describe the true SFH, it must

also downweight the large range of qualitatively different

SFHs which can show similar levels of agreement with

the data. This is challenging for complex parametric

models as parametric formulas are often chosen to max-

imize the range of SFHs that can be described rather

than being chosen for having well-behaved priors. Fur-

thermore, comparisons to simulations also show that a

significant minority of simulated galaxy SFHs have more

complex behavior than can be described with parametric

models. This behavior includes bursts of star formation,

sudden quenching, and rejuvenation events. The inabil-

ity to model this behavior can lead to catastrophic fail-

ures in recovered star formation histories and result in

biases in derived masses and star formation rates (Simha

et al. 2014).

A well-known solution to these problems is so-called

“nonparametric” SFHs, defined as models which explic-

itly do not assume a functional form for SFR(t)1. The

simplest nonparametric models fit directly for the mass

formed in a series of piecewise constant functions (i.e., a

step function) in time (Cid Fernandes et al. 2005; Ocvirk

et al. 2006; Kelson et al. 2014; Leja et al. 2017; Chauke

et al. 2018). Other nonparametric models use adap-

tive time binning (e.g., Tojeiro et al. 2007) or directly

fit libraries of SFHs measured from theoretical models

of galaxy formation (Finlator et al. 2007; Pacifici et al.

2012). Nonparametric models tend to be more com-

putationally expensive than parametric models as they

must generate more SEDs to constrain a wider range

of behavior in SFR(t); in return, nonparametric mod-

els promise the capability to describe the full breadth of

complexity in galaxy star formation histories.

These models have typically been reserved for very

high-quality data as galaxy observations are only typ-

ically only weakly informative about stellar age (e.g.,

Conroy 2013). The seminal work of Ocvirk et al. (2006)

demonstrates that the problem of SFH recovery is ill-

conditioned, i.e. that a small error in the observa-

tions typically results in much larger errors in the re-

covered star formation histories. They solve this prob-

lem by regularizing the inversion from observations to

SFHs, specifically by introducing an additional assump-

tion that the solution is a smooth function of time. Us-

ing this formalism, Ocvirk et al. (2006) show that only

about eight characteristic episodes of star formation his-

tory can be recovered with high-quality optical spectra

of resolution R = 10, 000, signal-to-noise ratio (S/N) =

100, and wavelength coverage 4000− 6800 Å.

In this work, we further explore the ability of nonpara-

metric SFHs to extract information from observations,

with a companion work (Carnall et al. 2018a) perform-

ing an analogous exploration of parametric models. A

key difference from Ocvirk et al. (2006) is that this work

1 In some sense “nonparametric” is a misnomer as there are
indeed parameters in a nonparametric model.
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is performed in a Bayesian framework. The Bayesian

prior probability distribution takes the place of regu-

larization in confining the model to a series of prede-

termined ‘acceptable’ solutions. Here we explore the

effect of the adopted prior on the posterior probability

distribution (hereafter ‘posterior’) which is being sam-

pled. We test a few different priors as there are many

unique ways in which a nonparametric model can be

constructed. The tests cover a range of possible pri-

ors, from a simple uniform prior over log(mass) formed

in each bin to a continuity prior emphasizing smooth

star formation histories. Unlike parametric formulae, it

is easy to tune the prior for nonparametric SFHs tune

to follow expectations from theoretical models of galaxy

formation. In this way, nonparametric SFHs can be use-

ful even with low-quality data such as noisy photometry,

as it is with poor data that having a well-tuned prior is

most important.

The paper is structured as follows. Section 2 contains

an introduction to the different nonparametric priors

that are tested in this work. Section 3 describes how the

mock galaxies are generated and fit. Section 4 presents

results from fitting mock galaxy data with different non-

parametric priors. Section 5 describes the results of

fitting UV-IR photometry from the Galaxy and Mass

Assembly (GAMA) survey with two different nonpara-

metric priors. Section 6 contrasts the performance of

parametric and nonparametric SFH fits, while Section 7

discusses the link between simulations of galaxy forma-

tion and nonparametric SFH priors. Section 8 concludes

the paper.

Where applicable, we use a WMAP9 cosmology (Hin-

shaw et al. 2013) and a Chabrier initial mass function

(Chabrier 2003). We always report the median of the

posterior, and 1σ error bars are the 16th and 84th per-

centiles.

2. PHYSICAL MODEL AND PRIORS

Here we describe the different priors explored in this

work. As a brief introduction to Bayesian terminology,

Bayes theorem states:

P (M |D) =
P (D|M)P (M)

P (D)
(1)

where D is the data and M is the physical model. In

the Bayesian interpretation, P (M) (the prior) is the esti-

mate of the probability of the model before comparison

with the data. P (M |D) (the posterior) is the probability

of the model after comparison with the data. P (D|M)

(the likelihood) is the probability of the measuring data

given the model. Finally, P (D) (the model evidence) is

a normalizing factor used for comparison between dif-

ferent models.

2.1. A Piecewise Constant Model for SFR(t)

In this work, we explore the effect of different nonpara-

metric SFH priors P(M) on the resulting physical poste-

riors. In practice, each nonparametric prior under inves-

tigation is allotted N = 7 parameters. These parame-

ters simultaneously specify 7 distinct time-resolution el-

ements and the overall normalization of the SED. Most

of the nonparametric priors in this work additionally

require specifying fixed time bins as input. For con-

sistency, we adopt the following time bins in all such

models:

0 < t < 30 Myr

30 < t < 100 Myr

100 < t < 330 Myr

330 Myr < t < 1.1 Gyr

1.1 < t < 3.6 Gyr

3.6 < t < 11.7 Gyr

11.7 < t < 13.7 Gyr

(2)

Aside from the first two bins and the last bin, these are

spaced equally in logarithmic time, following the finding

of Ocvirk et al. (2006) that the distinguishability of sim-

ple stellar populations is roughly proportional to their

separation in logarithmic time. The last bin is deliber-

ately much smaller to permit a maximally old popula-

tion in all models.

In Appendix A, we explore varying the number of time

bins between Nbins = 4 − 14 and show that the results

of the mock analysis are largely insensitive to the num-

ber of bins as long as Nbins & 4. This highlights the fact

that the Bayesian framework is robust to the classic dan-

gers of fitting ‘overly complex’ models, defined loosely

as models which allow too much parameter space. In

contrast to classical approaches where overly complex
models result in ‘overfitting’, i.e. overly tight constraints

on parameters of interest, the outcome of allowing more

parameter space than can be constrained by the data

in a Bayesian framework is a lack of useful constraints

on parameters of interest. Indeed this is often the de-

sired outcome: if the model is not constrainable by the

data, then the posteriors should return a null answer.

Conversely, these tests also show that using N . 4 time

bins are typically insufficient to convey all of the neces-

sary information in the data.

We note that there do exist methods to determine

the appropriate number of bins on-the-fly, such as adap-

tively binning in time (Tojeiro et al. 2007) or using ev-

idence comparison to determine the optimal number of

bins (Dye 2008; Iyer et al. 2019). However, we argue

that fitting many piecewise constant functions is more

scalable in sampling framework for two complementary
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Figure 1. Different choices for a nonparametric SFH prior produce different behavior in SFR(t). Each panel shows the prior
probability distribution function (shaded in blue) for a different nonparametric SFH prior. The black (solid, dashed, dotted)
lines mark the (median, 1σ, 2σ) levels of the distribution. Several individual draws are shown in red to illustrate the behavior
of different priors. While all of these nonparametric priors are flexible enough to describe an arbitrary shape in SFR(t), they
emphasize different behaviors. For example, the log(M) and Dirichlet α = 0.2 priors are weighted so as to produce multiple
sharp quenching and rejuvenation events, while other priors select for star formation histories that are smooth in time.

reasons. First, it is computationally much less expensive

to run a fit with N>10 bins (Appendix A) than it is to

run two fits with any number of bins. Second, instead

of using an always somewhat arbitrary statistical penal-

ization to adjusting the model on the fly to match the

data, it is more straightforward to include “more bins

than the data warrant” and let the sampler fully map

the inter-bin covariances allowed by the prior and the

data. The potential failure mode for this is underfitting,

which is caused by an excess of model flexibility and re-

sults in overestimated uncertainties. This danger can be

mitigated by choosing a prior that weights for physically

plausible forms of SFR(t) and weights against implausi-

ble forms, a complex problem which we spend the rest

of the paper exploring.

2.2. Priors

The prior probability function for each nonparametric

prior is shown in Figure 1, and these priors projected

into mass-weighted age and specific star formation rate

space are shown in Figure 2.

2.2.1. LogM prior

The most straightforward and popular nonparametric

model fits for the mass formed in N fixed time bins

(Walcher et al. 2015; Belli et al. 2019; Morishita et al.

2018). A version of this method has also been used in

STARLIGHT (Cid Fernandes et al. 2005) and in analysis

of the CSI (Kelson et al. 2014) and LEGA-C surveys

(Chauke et al. 2018), though these works report best-fit

rather than marginalized SFHs and fit for linear rather

than logarithmic weights.

The prior on SFR(t) imposed by the logM prior is

shown in Figure 1. The spacing of the time bins in equal

logarithmic bins means the logM prior is not agnostic

about the shape of SFR(t) but instead prefers rising

star formation histories and high instantaneous sSFRs.

Furthermore, the logM prior tends to form the majority

of the mass in one or two time bins: this can be seen

clearly in the top-heavy conditional probability function

for the SFR in any given time bin. This manifests itself

in the mass-weighted age prior (Figure 2) as an overall

preference for young ages and specific preference for ages

corresponding to the center of the fixed time bins.

This formalism explicitly couples the normalization

of the observed SED to the SFH parameterization. In

practice, this can introduce difficulties in choosing the

prior range for the mass formed in each time bin: using a

constant lower limit for the mass formed will effectively

put different “floors” on SFR(t) depending on the mass

of the galaxy in question. For this work, we allow each

mass formed in each bin to vary between 3 < log(M/M�)

< 12, which is comfortably outside of the input mass of

log(M/M�) = 10 used in the mock tests.

Overall, the physical parameters resulting from a logM

prior are sensitive to the choice of time bins and show

clear preferences for rising star formation histories that

are ‘bursty’, showing multiple sharp quenching and re-

juvenation events. This burstiness is a natural conse-

quence of the geometry of the logM prior. This can be

understood intuitively by imagining a series of random

draws from the logM prior which add up to a fixed total

mass by construction (in a typical fit, this total mass is

loosely constrained by the normalization of the SED).

Most of the SFHs thus constructed will have significant

mass in only one or two time bins: this naturally results

in ‘bursty’ SFHs. The logM prior does have a clear ad-

vantage over the other models: it has the widest proba-

bility distribution and thus tends to be the most flexible.

However, it is shown in Section 4 that this flexibility is
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Figure 2. The choice of SFH prior determines the prior on stellar age and specific star formation rate. The top row shows the
prior on sSFR averaged over the most recent 100 Myr while the bottom row shows the mass-weighted age priors. The columns
show different SFH priors. The red dashed line marks the median of the prior. These differences demonstrates that the choice
of prior affect the derived ages and sSFRs. For example, priors which favor “bursty” SFHs (logM, Dirichlet α = 0.2) show
clear discretization effects related to the choice of time bins. Furthermore, the logM prior strongly prefers rising star formation
histories. Averaging over the most recent 100 Myr causes the truncation in the sSFR histogram at log(sSFR) = -8.

not well constrained by typical galaxy observations, even

at very high S/N.

We have also explored several models closely related

to the logM prior which we describe briefly here with

no further analysis. Replacing the logM model with a

logSFR model (i.e. fitting for the SFR instead of the

mass) successfully removes the bias towards rising SFHs

while retaining the other characteristics of the logM

prior. Fitting instead for the linear instead of logarith-

mic mass in fixed time bins exacerbates the downsides

of the logM prior – specifically a strong preference for

young ages and forming the majority of the mass in one

or two bins – while showing no clear upside. This is

consistent with the argument in Simpson et al. (2017)

that flat priors on a parameter spanning several orders of

magnitude are actually strongly informative, and, in this

case, the logarithmic prior is the minimally informative

choice. The linear prior further introduces significant

convergence issues for the sampler (sampler described

in Section 3) as there are very large regions of param-

eter space which have essentially flat probability: for

example, for a 1011 M� galaxy, there is no practical dif-

ference in the photometry between forming 105 and 109

solar masses in the oldest time bin. For these reasons,

the linear model is not discussed further in this work.

2.2.2. Dirichlet prior

The Dirichlet nonparametric prior specifies that the

fractional specific star formation rate for each time

bin follows a Dirichlet distribution (Leja et al. 2017,

2018). A Dirichlet distribution describes N parameters

xn which are bounded between 0 < xn < 1 and obey

the constraint
∑
N

xn = 1. Due to the summation con-

straint, only N − 1 parameters are necessary to specify

a Dirichlet distribution with N bins. The N th model

parameter is the logarithm of the total mass formed,

which effectively controls the normalization of the SED.

This cleanly separates the normalization and shape of

the SFH.

The Dirichlet parameters xn are related to the frac-

tional mass formed in each bin via:

mn =
xntn∑
N

xntn
(3)

where tn is the width of each bin in time. The width

of each time bin is included to center the prior on a

constant SFR(t) = Mformed/tuniverse, in contrast to the

logM prior which is centered on a constant amount of

mass formed in each bin. The method from Betancourt

(2012) is used to sample efficiently from a Dirichlet dis-

tribution.

The Dirichlet distribution additionally requires a con-

centration parameter, αD, which controls the preference

to put all of the weight in one bin (αD< 1) versus dis-

tributing the weight evenly between all bins (αD≥ 1).

For this work a symmetric Dirichlet distribution is as-

sumed, i.e. the concentration parameter has the same

value for all bins. We test forms with αD= [0.2, 1].

The practical effect of the concentration parameter is

clear in Figure 1: a low concentration weights toward
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bursty SFHs, while a higher concentration weights to-

ward smooth SFHs.

The Dirichlet prior has several useful properties. Un-

like the logM prior, the expectation value for SFR(t) is

constant instead of rising. This results in a symmet-

ric prior on stellar age and specific star formation rate.

However, the Dirichlet prior does not enforce continu-

ity in adjacent bins and thus permits sharp quenching

and rejuvenation events, particularly at low concentra-

tions. Additionally, it is not straightforward to add in

additional physics as the only flexibility in the stan-

dard Dirichlet distribution is in tuning αD. Generalized

Dirichlet functions exist such that SFR continuity can

be enforced within the Dirichlet model, but these are

mathematically challenging to work with and beyond

the scope of this paper.

2.2.3. Continuity

The continuity prior fits directly for ∆log(SFR) be-

tween adjacent time bins. This prior explicitly weights

against sharp transitions in SFR(t) and is similar to the

regularization schemes used in STECMAP (Ocvirk et al.

2006) and VESPA (Tojeiro et al. 2007).

Here the Student’s-t distribution is adopted for the

prior on x = log(SFRn/SFRn+1):

PDF(x, ν) =
Γ(ν+1

2 )
√
νπ Γ( 1

2ν)

(
1 +

(x/σ)2

ν

)− ν+1
2

(4)

where Γ is the Gamma function, σ is a scale factor con-

trolling the width of the distribution, and ν is the de-

grees of freedom controlling the probability in the tails of

the distribution. Here n ranges from 1 to N−1, and the

N th variable is the total mass formed. The Student’s-t

distribution is chosen because it has heavier tails than

the normal distribution, effectively allotting more prob-

ability to sharp transitions in SFR(t) such as quenching;

note that as ν goes to infinity, the Student’s-t distribu-

tion reverts to a normal distribution. We adopt ν = 2

and σ = 0.3. Appendix B compares the chosen prior for

log(SFR(t)/SFR(t+ ∆t)) against a distribution of this

quantity measured from realistic star formation histo-

ries taken from the Illustris hydrodynamical simulation

(Vogelsberger et al. 2014a,b; Torrey et al. 2014). The

choice of ν = 2 is similar to, but slightly wider, than the

simulated distribution across a variety of redshifts and

distributions of ∆t, thus roughly matching the Illustris

simulations while also allowing a reasonable amount of

extra flexibility.

The continuity prior preserves many of the useful

properties of the Dirichlet prior, including a symmetric

prior in age and sSFR and an expectation value of con-

stant SFR(t). The key difference from the Dirichlet prior

is that the continuity prior explicitly weights against

sharp changes in SFR(t). The choice of a Student’s-t dis-

tribution ensures that the continuity prior remains flex-

ible enough to describe maximally old and highly star-

forming galaxies. Furthermore, the parameterization

makes it straightforward to specify additional physics

in the prior: for example, setting the mean of the distri-

bution to mimic the cosmic star formation rate density

as a function of time would weight galaxy SFHs towards

the cosmic mean (e.g., Gladders et al. 2013). 2

2.2.4. Flexible time bins

The priors described in the previous sections control

how mass is distributed in fixed time bins. Here, we

explore a model which instead distributes time for fixed

mass fractions. This approach is similar to one described

in Iyer et al. (2019).

This model splits the total mass formed into N bins of

equal mass m. The variable parameters are the edges of

the time bins. As the first and last bins have two fixed

edges (t = 0 and t = tuniv), there are N − 1 remaining

edges with the N th parameter controlling the total mass

formed. This method approaches a “truly” nonparamet-

ric model in that the only user inputs are N (the number

of time-resolving elements) and the prior, as opposed to

the previous models which must also specify fixed time

bins. The same continuity prior on log(SFRn/SFRn+1)

is used to specify the prior for the distribution of time

bin edges.

The primary downside of this method is that enforces

a minimum sSFRfloor(z) = (Ntuniv)−1. This floor is ap-

proached in the extreme where N−1 time elements have

a infinitesimally small width (typically describing either

a maximally old or maximally young population) and

the final time bin spans the age of the universe. At

z = 0 with N = 7 time elements, this corresponds to

sSFRfloor ≈ 10−11 yr−1. This floor is a practical issue:

sSFR = 10−11 yr−1 is a full order of magnitude higher

than the sSFR of a typical quiescent galaxy at z ∼ 0

(Fumagalli et al. 2014).

Accordingly, for this work we instead adopt a hy-

brid approach where there are two fixed time bins at

0 < t < 50 Myr and 11.7 < t < 13.7 Gyr which form

masses m1 and m2, and the remaining mass M−m1−m2

is split between 5 flexible time bins. This allows arbi-

trarily low instantaneous specific star formation rates.

The minimum allowed sSFR in the remaining flexible

2 Another practical upside to this model is that the run-time
scales well with N : over a range of 4 ≤ N ≤ 13, the run-time is
essentially flat. This is likely due to the ease with which a nested
sampling routine can explore Gaussian-like priors.
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Figure 3. Input star formation histories and resulting photometry for the mock tests. From blue to red wavelengths, the
photometric bands are GALEX FUV/NUV, SDSS ugriz, 2MASS JHKs, and Spitzer/IRAC channels 1-4.

time bins is still present, but lowered by a factor of

(m1 +m2/M).

Overall, this approach retains the advantages of the

continuity prior while also removing the discretization

effects related to the fixed time bins. The tradeoff is

the minimum allowed sSFR in the flexible time bins.

This hinders the ability of the flexible time bins prior to

accurately describe the recent and intermediate star for-

mation history of quiescent galaxies, as shown in Section

4.1.

It is likely that additional modifications to this model

can minimize or at least shift around the downsides.

One potential alteration is to fit fixed bolometric lumi-

nosity fractions rather than fixed mass fractions. Due

to the scaling of M/L with age, this alteration will re-

move the sSFR floor in the youngest time bins at the

likely cost of imposing a new sSFR floor on the oldest

time bins. Another possibility is to use bins with fixed

but uneven mass fractions which can switch temporal

ordering during the sampling phase. In principle, this

can solve the sSFR floor by shifting low-mass bins to

the youngest times when fitting the SEDs of quiescent

galaxies. However, we do not explore such alterations

further in this work.

3. GENERATING AND FITTING MOCK

GALAXIES

We generate and fit mock photometry with different

nonparametric priors in order to explore the effect of

the prior. To generate the mock photometry we use

the Flexible Stellar Population Synthesis (FSPS) code

(Conroy et al. 2009). The mocks are generated with

solar metallicity and a modest dust attenuation of AV =

0.3. The following five star formation histories are used

as inputs for the mocks:

Constant: SFR(t) = Mformed/tuniv for all t.

Declining: SFR(t) = Ae−t/τ , with τ = tuniv/10 = 1.4

Gyr.

Rising: SFR(t) = Aet/τ , with τ = tuniv/4 = 3.4 Gyr.

Burst: A constant SFR forming 80% of the total mass

with a burst at t = 0.5 Gyr forming 20% of the

total mass. The burst is a Gaussian with σ = 200

Myr.

Sudden Quench: A constant SFR until 1 Gyr in the

past, where the SFR drops by a factor of 50.

These SFHs are chosen to represent the diversity of ob-

served galaxy SFHs. All of the SFHs start at t = 0 and

extend to tuniv = 13.75 Gyr. These SFHs are identical

to the SFHs used in a companion paper (Carnall et al.

2018a).

The photometric bands cover far-UV (FUV) to mid-IR

and include GALEX FUV/NUV , SDSS ugriz, 2MASS

JHKs, and Spitzer/IRAC channels 1-4. The input

SFHs and resulting SEDs are shown in Figure 3. En-

ergy balance is adopted such that all energy attenuated

by dust is re-emitted in the infrared. The fluxes are

not perturbed so as to avoid introducing random er-

ror into the results. The flux uncertainty used in the

likelihood calculation corresponds to S/N values of 2,

5, 10, 25, and 100, applied uniformly across all bands.

This test assumes homoscedastic noise and unperturbed

fluxes, which simplify the analysis without loss of gen-

erality (discussed further in Section 4.2). The effect of

the prior when fitting real data with realistic noise prop-

erties such as heteroscedasticity and perturbations from

the true measurements are explored later in Section 5.

Prospector (Johnson & Leja 2017; Leja et al. 2017) is

used to fit the mock photometry. For each prior N = 7

parameters are allotted to the star formation histories

described in Section 2. The remaining free parameters

are dust attenuation and stellar metallicity, with flat

priors over 0 < τV < 3 and −2 < log(Z/Z�) < 0.19.
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Figure 4. Posterior SFHs from fitting mock photometry for different input SFHs and priors. Each row shows a different input
SFH while each column shows a different prior. The input SFH is shown as a solid black line. The dashed black line is the input
SFH re-binned to match the fixed time bins of the nonparametric models. The colored lines show the median of the posterior,
while the shaded regions show the 16th-84th percentiles of the posterior. The mock photometry has S/N=25.

The sampling is performed with the nested sampler

dynesty3 (Speagle 2019). The dynesty package is a

nested sampler which allocates live points dynamically,

allowing the user to control the effective resolution as

the fit proceeds. This allows the user to sample prefer-

3 https://github.com/joshspeagle/dynesty

entially near the bulk of the posterior mass: for a fixed

number of samples, this improves the estimate of the

posterior at the cost of a higher relative error on the

evidence. We take advantage of this by tuning the set-

tings to emphasize accurate measurements of the poste-

rior probability distribution: specifically, we require that

the Kullback-Leibler divergence (KLD) between differ-

ent realizations of the posteriors which include both sta-
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Figure 5. Posterior masses, SFRs, and mass-weighted ages from fitting the mock photometry for a variety of input SFHs and
adopted SFH priors. Each column shows the results from a different SFH prior, while each row shows a different parameter.
The input values are shown with a dashed line. The SFR is calculated by averaging over the most recent 100 Myr.

tistical and sampling uncertainties to be less than 1.5%.

More details can be found in the dynesty documenta-

tion linked above.

4. MOCK RESULTS

Here we describe the effect of the SFH prior in fitting

mock photometry.

4.1. SFH recovery

Figure 4 compares the SFH posteriors to the input

SFHs for all five nonparametric priors. This comparison

is shown for mocks with a photometric S/N = 25.

The shapes of the input star formation histories are

fairly well-recovered for all priors. There is clearly suf-

ficient information in the photometry to distinguish be-

tween rising, falling, and constant SFHs, and addition-

ally some of the fits are able to recover the sharp quench-

ing event and the recent burst of star formation. This

demonstrates that nonparametric star formation histo-

ries can recover the zeroth-order behavior (rising, falling,

constant) of the input SFHs regardless of the chosen

SFR(t) prior.

In detail, however, there is significant variation in the

location and size of the posteriors when different priors

are applied. Indeed Figure 4 clearly illustrates one of the

main points of this study: even with high S/N photom-

etry covering the far-UV-IR and no systematic errors,

the posteriors are strongly dependent on the prior. It is

not uncommon for the SFR in fixed time bins to differ

by � 1σ between priors, and the size of the 1σ range

between priors are also quite different. For example, af-

ter fitting the constant input SFH with different priors,

the 1σ range for the posterior SFR in the 30 < t < 100

Myr bin ranges from a factor of ∼100 for the logM prior

to a factor of ∼2 for the continuity prior. This system-

atic difference in the width of the posteriors is consistent

across a variety of input SFHs. These differences exist

even though every nonparametric prior is flexible enough

to accurately describe every input SFH4. This empha-

sizes the necessity of choosing a reasonable prior when

fitting nonparametric SFHs and also the importance of

understanding the influence of the chosen prior on the

recovered parameters.

The priors can broadly be divided into two categories:

priors which concentrate the majority of the mass in 1-

2 bins (logM and Dirichlet α = 0.2) and priors which

disperse the mass more evenly across all bins (continu-

4 Excluding the combination of fitting the flexible time bins
model to model SFHs with very low sSFRs; see discussion of these
limitations in Section 2.2.4.
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Figure 6. The change in SFH posteriors caused by varying the input signal-to-noise ratio for an exponentially rising input
SFH. The input S/N varies across the columns, while the priors vary down the rows. The input is a solid black line and the
dashed black line is re-binned to match the nonparametric time bins. The median of the posterior is a thick colored line while
the 16th-84th percentiles are shown as shaded regions. While the SFH posteriors do shrink as the input S/N is increased, their
shape and 1σ ranges are primarily determined by the chosen prior rather than photometric S/N.

ity and Dirichlet α = 1). This division arises naturally

due to the strong covariance between the SFR in nearby

time bins: the data are often equally well reproduced by,

for example, a fixed fraction of mass in old stars, regard-

less of whether these old stars formed steadily or in a

single burst. The ’concentrated’ priors are more success-

ful at modeling input SFHs with sharp transitions such

as steeply declining SFRs or sudden quenching events,

whereas the ’dispersed’ priors tend to focus the posterior

mass on solutions with smooth SFR(t).

The differences in posterior star formation histories

propagate directly into differences in derived physical

parameters. Figure 5 shows the recovery of mass, star

formation rate, and mass-weighted age for each mock

and prior combination at S/N = 25. Each of these pa-

rameters shows a different sensitivity to the prior. Mass

is the most robust parameter, varying by∼0.1 dex across
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Figure 8. Different priors can reproduce the S/N = 100 photometry to a similar level of accuracy while producing distinct
posteriors. High-resolution spectra will be able to distinguish between these priors. The top row shows the ratio between the
model posterior photometry and the true photometry. The 1σ noise used in the likelihood calculation is shown with a dashed
line. The middle row shows the input SFH in black compared to the posterior median (line) and 16th and 84th percentiles from
fitting the photometry. While the model photometry is indistinguishable within the noise for most priors (excluding the flexible
time bins prior), the star formation history posteriors remain distinct. The bottom row shows the same ratio, but for posterior
model spectra. Absorption lines near the 4000Å break and strong emission lines such as Hα and Hβ can be used to further
constrain the SFH posteriors after information in the photometry has been exhausted.

each prior. Age and SFR are less robust, with the me- dian of the posterior varying by up to 0.3-0.5 dex be-
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tween priors. The prior also determines the size of the

error bars. This is most dramatic for the age determi-

nation of the rising SFR, where the 1σ posterior for the

logM prior spans 8 Gyr while the other 1σ posteriors

range from 1-3 Gyr.

4.2. Trends with S/N

Here we explore how the effect of the prior scales with

the S/N of the mock photometry. Figure 6 shows the

SFH posteriors for the rising SFH mock as a function

of S/N, while Figure 7 shows the same for the mock

parameter recovery. Appendix C shows the same results

for the other four input SFHs.

These figures make it clear that the choice of prior is

at least as important as the S/N in determining the pos-

terior. We run a series of tests to quantify this compar-

ison. We adopt the KLD as a distance metric; roughly

this describes how far one probability distribution func-

tion (PDF) is away from another. For each combination

of (S/N, SFH prior, input SFH), we measure the KLD

between the posterior SFH and the posterior SFH of the

fits with identical (SFH prior, input SFH) combinations

but different values of S/N. We repeat the process while

instead varying SFH prior. The KLD between posterior

SFHs is taken as the sum of the KLDs of the marginal-

ized PDFs in each SFH time bin. For the flexible time

bin prior, we project the SFH posterior into the fixed

time bins of the other SFH priors for this calculation.

This exercise confirms that choosing a different prior

most often has a larger effect on the posterior than alter-

ing the input S/N. This is a remarkable finding: given

that S/N scales with exposure time as S/N∝
√
t, the

range of S/Ns in this comparison corresponds to a 2500-

fold difference in exposure time. This highlights the crit-

ical importance of choosing a prior. The falling SFH is

the exception, where the information gain when going

from S/N ≤ 5 to S/N=100 is roughly equal to the effect

of changing priors.

We note that adding perturbations to the fluxes and

re-performing the fits would change the median of the

derived posteriors in an unpredictable way. However, in

general it will neither increase or decrease the overall

size of the posteriors. Intuitively, the S/N of the data

can be thought of as “the distance which the model is

allowed to stray from the best-fit solution” which is,

barring the case of extremely noisy likelihood surface,

a weak function of the location of the best-fit solution.

In this way, the posterior shape is fairly robust to the

choice of adding perturbative noise. We note that we

have verified this intuitive argument by comparing mock

fits with and without perturbed noise.

These figures also demonstrate the posteriors do not

converge even at S/N = 100. For example, the exact

contribution of old stars in the 3.6 < t < 11.7 Gyr time

bin remains uncertain for all priors, resulting in a factor-

of-two range in the posterior mass-weighted ages.

4.3. Comparing residuals between priors

The preceding analysis has demonstrated that differ-

ent priors produce significantly different posteriors when

fit to identical data. The last piece of the puzzle is to

show the photometry is equally well reproduced by any

of the adopted priors.

Figure 8 shows the results of fitting S/N= 100 pho-

tometry from the input SFH with a sharp quenching

event. The posterior SFH and photometric residuals

are shown for each prior. While each of these posteriors

show a distinct pattern of behavior in SFR(t), the pho-

tometric residuals are largely within the 1σ error range.

Given that each model has the same number of param-

eters, the fact that each prior reproduces the data to a

similar level of accuracy means that none of these priors

are distinguishable with photometry alone5. The excep-

tion is the flexible time bins model, which is unable to

accurately describe the input SFH because of limitations

described in Section 2.2.4. This is the only such catas-

trophic failure amongst combinations of prior and input

SFH.

The final panel of Figure 8 demonstrates that even af-

ter exhausting the information in the S/N=100 photom-

etry, there is further constraining information available

in high S/N spectroscopy. The predictions for the spec-

tra after fitting the photometry are compared between

different priors. Both the input spectrum and the pos-

terior spectra are smoothed to a velocity resolution of

σ=250 km/s. This suggests high S/N spectra can be fit
simultaneously with photometry to further distinguish

between nonparametric models. While calibration un-

certainties make 2-3% differences in the continuum very

difficult to distinguish, even a simple constraint on the

luminosity of strong nebular emission lines such as Hα

and Hβ or break strengths such as the 4000 Å break can

be helpful in ruling out some models.

5. APPLICATION TO THE GAMA SURVEY

Here we fit broadband photometry from the GAMA

survey with a lightly modified version of the Prospector-α

model from Leja et al. (2017), substituting in two differ-

ent nonparametric SFH priors. The goal is to provide

5 This has been confirmed directly by calculating the Bayesian
model evidence, which suggests only a moderate preference at best
for most combinations of prior and input SFH.
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Figure 9. The difference in derived parameters from SED fits with different SFH priors. The results from fitting the GAMA
survey with both the logM and continuity priors are shown. The scatter between different priors can be thought of as the
sensitivity to the permitted covariances in time between star formation history bins. The SFR is the most sensitive to this
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are in units of M�/yr. The error bars in the lower right represent the median 1σ error for each quantity.

a practical demonstration of the effect of the prior on

the output stellar populations parameters. The fit is

performed with both the logM and the continuity pri-

ors described in Section 2. The same data are fit with

parametric models in a companion paper (Carnall et al.,

submitted).

5.1. Fitting UV-IR galaxy photometry from GAMA

The photometry is taken from DR3 of the Galaxy

and Mass Assembly (GAMA) survey (Driver et al. 2011;

Baldry et al. 2018). The photometry is generated with

the LAMBDAR code (Wright et al. 2016) in three

fields covering 180 degrees on the sky and includes 21

bands spanning the far-UV to the far-IR from GALEX,

the SDSS, VISTA, WISE, and Herschel (Driver et al.

2016). The GAMA spectroscopic redshifts are adopted

as cosmological distance measurements. All galaxies in

the redshift range 0.05 < z < 0.08 with M∗ > 109 M�
are fit, a total of 6134 galaxies. The stellar masses used

for the selection are from Taylor et al. (2011) and the

GAMA survey is mass-complete in this mass and red-

shift range.

The GAMA catalog uses the ‘forced photometry’ tech-

nique where positional priors from high-resolution pho-

tometry are used to perform photometry on lower-
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resolution images. At the time of this writing, objects

with negative flux values in a given passband are re-

ported as zero in the catalog. In order to preserve the

noise properties we manually replace these zeros with

the last value measured in the iterative forced photome-

try algorithm from the GAMA catalogs. This last value

in the iteration is the correct negative flux value. We

also enforce a minimum error of 5% in the photometry

to reflect both underlying systematic errors in the mod-

els for stellar and dust emission and systematic effects

in the measurement of the photometry.

In brief, Prospector-α is a 15-parameter model. The

main differences between this model and the model used

in the mock tests are (a) more complex dust attenuation,

(b) more flexible dust emission, and (c) a free gas-phase

metallicity parameter. In more detail, Prospector-α

has seven parameters for the stellar mass and nonpara-

metric star formation history, two parameters separately

controlling the gas- and stellar-phase metallicity, three

parameters to describe the shape of the IR SED and

three parameters to describe the dust attenuation as a

function of wavelength and stellar age. This model self-

consistently uses the stellar ionizing continuum to power

nebular line and continuum emission (Byler et al. 2017)

and applies energy balance to generate the IR emission.

The stellar mass–stellar metallicity relationship mea-

sured from the SDSS is adopted as a prior (Gallazzi et al.

2005). We take the conservative approach of widening

the confidence intervals from this relationship by a factor

of two to account for potential unknown systematics or

redshift evolution. As before, we use dynesty to sample

the model posteriors.

The photometry is fit with the full Prospector-α

model, once with the logM prior and once with the con-

tinuity prior. Both priors reproduce the photometry to

the same level of accuracy: the median χ2/Nphot val-

ues are 1.73 and 1.69 (mean: 2.42 and 2.36) for the

continuity and logM priors, respectively. The slight im-

provement in χ2 for the logM prior is expected, as it is

overall a more permissive prior for SFR(t). However,

there are significant differences in the derived parame-

ters between the two priors and it is shown below that

the logM prior is most likely producing considerably less

reliable outputs.

5.2. Derived physical parameters

The SFH prior can affect the resulting galaxy physical

parameters in highly nontrivial ways.

Figure 9 shows the difference between the two pri-

ors for the derived stellar masses, mass-weighted ages,

and star formation rates averaged over two different

timescales, 100 Myr and 300 Myr. The scatter in this

comparison can be thought of as the sensitivity of the

derived parameter to the SFH prior, which sets the co-

variance between SFH time bins. The star formation

rate averaged over 100 Myr is the most sensitive to the

prior while stellar mass is the least sensitive. We have

verified separately that the parameters from the continu-

ity prior show less scatter when compared to parametric

fits (though with non-negligible offset); the continuity

prior can thus be thought of as the ’fiducial’ model in

this comparison, in the sense that behaves most like the

standard parametric methods used in SED fitting.

In general, the prior plays a strong role in determining

a parameter when the parameter either has a relatively

small effect on the observable data or has a strong de-

generacy with other parameters. For all of the quantities

in Figure 9, the effect of the prior is maximized specif-

ically for blue star-forming galaxies. This is caused by

two distinct effects.

The first is “outshining” (Papovich et al. 2001; Maras-

ton et al. 2010; Pforr et al. 2012; Conroy 2013), whereby

it is difficult to distinguish the presence of old, dim stars

behind luminous young blue stars. In this regime, the

prior outweighs the minimal information available in the

photometry about the older stars. Outshining is respon-

sible for much of the difference in derived ages: the logM

prior prefers relatively young ages for blue star-forming

galaxies while the continuity prior assumes a much more

extended history of star formation. This bifurcation in

ages changes the mass-to-light ratio, causing a secondary

sequence below the 1:1 line in the stellar mass compar-

ison where the continuity prior assigns relatively larger

masses to these blue star-forming galaxies.

The second effect is a degeneracy between young- and

intermediate-age stars. This is typically the cause of dis-

crepancies for galaxies that show a & 0.5 dex difference

in SFR(100 Myr) in Figure 9. Star formation in the

younger time bins can instead be mimicked by star for-

mation in the 100-300 Myr time bin followed by sharp

cessation of star formation between 0-100 Myr. Star

formation rates averaged over a 100 Myr timescale are

thus more sensitive to the adopted SFH prior than SFRs

averaged over a 300 Myr timescale. This effect also ex-

plains the bias between different priors in SFR(100 Myr)

which disappears in SFR(300 Myr): while it is possible

to reproduce the colors of blue star-forming galaxies by

invoking a peculiar SFH with an excess of stars aged

100 − 300 Myr and no star formation between 0 − 100

Myr, stars older than ∼ 300 Myr are too red to perform

the same trick.

Stellar ages show relatively lower scatter (0.25 dex)

than star formation rates but are similar in that they can

change significantly when very bursty SFHs are allowed.



15

There is also clear artificial structure in the age scatter.

This clustering is caused by the logM prior’s preference

to stack the majority of the mass in 1-2 bins (Section

2.2.1) which naturally results in strong quantization of

ages.

5.3. Derived star formation histories

It is further instructive to directly examine the differ-

ence in SFR(t) posteriors between the two priors.

In Figure 10 the posterior star formation histories are

stacked as a function of position on the star-forming se-

quence. The upper panels show the SFR measured in

the most recent 100 Myr as a function of stellar mass for

both priors. Colored lines divide the sample into four

categories based on the location of the star-forming se-

quence. The locus of the star-forming sequence is taken

from Salim et al. (2007) and the width is taken to be

+/−0.3 dex (Speagle et al. 2014). This 0.3 dex width is

used to distinguish between galaxies in four categories:

quiescent, below the star-forming sequence, on the star-

forming sequence, and above the star-forming sequence.

The SFH posteriors of all galaxies in each category are

stacked. The lower panels show the median SFR(t) and

the +/- 1σ posterior ranges for each stack. This can es-

sentially be thought of as the range of SFHs displayed by

galaxies inside of the specified mass and SFR selection.

The posterior ranges include both measurement uncer-

tainty and intrinsic scatter in galaxy SFHs. The two

youngest SFH time bins (0-30 Myr, 30-100 Myr) have

been combined in this plot as SFR(100 Myr) is used to

select galaxies relative to the star-forming sequence.

The first result to note in Fig. 10 is that there appears

to be no star-forming sequence at all when fitting the

data with the logM prior. This is quite striking as the

star-forming sequence is found in many studies which fit

broadband SEDs (Speagle et al. 2014). Here not only

does assuming a logM prior fail to reproduce the star-

forming sequence, but indeed it does so while providing

a better fit to the photometry than the model which does

reproduce the star-forming sequence. This means that

the star-forming sequence is not a model-independent

result when fitting photometry. Instead, it is contingent

on assumption of smooth star formation histories which

are typically built into SFH models.

Proving or disproving this assumption of smoothness

in SFR(t) in the real universe is beyond the scope of

this paper, though the preponderance of independent

evidence does suggest smoother SFR(t) solutions than

preferred by the logM prior. The current smoothness of

SFR(t) implied by simulations and future prospects for

testing this with observations are discussed in Section 7.

Fits that assume a logM prior also infer a consider-

ably in a considerably more chaotic process of galaxy

formation than the continuity prior. For example, from

Figure 10, the characteristic time a galaxy spends above

or below the star-forming sequence is much shorter for

the logM prior (∼ 100 Myr) than the continuity prior

(∼500 Myr). Fits using the logM prior imply that the

typical galaxy above the star-forming sequence had an

sSFR ∼ 10−12 yr−1 approximately 200 Myr in the past.

This suggests a rapid rejuvenation-quenching cycle for

star-forming galaxies which is inconsistent with most

numerical models of galaxy formation. The quenching

timescales for quiescent galaxies are also sensitive to the

prior: the logM prior quenches most galaxies much ear-

lier than the continuity prior, but then also implies that

∼ 20% of the quenched population was above the star-

forming sequence just 200 Myr earlier. To be clear, this

behavior is caused by the choice of prior: whether or not

this behavior actually occurs in these galaxies is contin-

gent on the accuracy of the prior.

Another dimension of this systematic prior difference

is shown in Figure 11. This shows the median of the

stacked PDF for mass-weighted age for individual galax-

ies across the SFR-mass plane. The fits with the logM

prior show a range of ages between 1 − 12 Gyr with

a strong correlation with mass and moderate correla-

tion with SFR. The fits with the continuity prior show a

range of ages from 3−12 Gyr with weaker but smoother

correlations with mass and SFR. The logM results sug-

gest that galaxy evolution proceeds in leaps and bounds,

with some galaxies of 1010 solar masses assembling half

of their mass over as short as ∼ 1 Gyr, whereas the con-

tinuity prior suggests a more steady and gradual process

of mass assembly and longer minimum half-mass assem-

bly times of ∼ 3− 4 Gyr.

In summary, the sensitivity of the SFR(t) posterior to

the adopted prior means that the GAMA photometry

is consistent with strikingly different assembly histories

for both star-forming and quiescent galaxies. While it is

not clear from these results alone which prior (if either)

is “correct”, it is clear the prior is a key determinant of

the result.

6. COMPARING PARAMETRIC TO

NONPARAMETRIC SFHS

The results of this work suggest that in many cases,

nonparametric SFHs cannot be fully constrained by typ-

ical galaxy observations. In spite of this – indeed, in part

because of this – they offer several critical advantages

over parametric models.

6.1. Nonparametric SFHs Are More Flexible
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Figure 10. Stacked SFHs across the star-forming sequence taken from fits to the GAMA photometry using two different SFH
priors. The upper panels show the GAMA galaxies on the star-forming sequence with the locus of the star-forming sequence
is taken from Salim et al. (2007). The SFH posteriors for each ”slice” of the star-forming sequence (on, above, below, and
quiescent) are summed and shown in the bottom panels. The median SFH is a solid line and the 16th − 84th percentiles are
shaded regions. The two priors imply strikingly different galaxy assembly histories: for example, galaxies above the star-forming
sequence have been above the star-forming sequence for ∼ 1 Gyr with the continuity prior or ∼ 30 Myr (a lower limit imposed
by the size of the youngest time bin) with the logM prior.

Nonparametric SFHs are flexible enough to describe

the diversity of SFH shapes seen in galaxy formation

simulations (Simha et al. 2014; Diemer et al. 2017),

though the accuracy is limited by the resolution of the

adopted time bins. This is in contrast to simple para-

metric models. For example, exponentially declining τ -

models are unable to produce the rising star formation

histories seen in high-redshift galaxies (Maraston et al.

2010; Papovich et al. 2011). A delayed-exponentially

declining model avoids this complication but still di-

rectly couples the shape of the short- and long-term

SFH (Simha et al. 2014). More flexible parametric mod-

els such as double power-law or lognormal SFHs allow

both rising and falling components but remain unable

to model bursts and other sharp transitions in SFR(t).

More generally, as the number of parameters in para-

metric fit becomes large, the lines between parametric 6

and so-called “nonparametric” fits will blur. In this sce-

nario it remains true that a nonparametric approaches

are superior because for such an approach the prior can

be specified to arbitrary precision, as opposed to using

a functional form in which the exact nature of the equa-

tion will influence the prior at some level. In this way,

nonparametric models are the best family of solutions

in which to fit arbitrarily complex behavior with time.

This effect is illustrated in Figure 12, which contrasts

parametric and nonparametric fits to the mock galaxies

6 Parametric being defined here as belonging to a particular
parametric family of probability distributions. For example, under
this definition a spline would be nonparametric.
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Figure 11. The median of the stacked PDF over individual galaxies for mass-weighted age across the sSFR-mass plane. The left
panel shows the results from the continuity prior while the right panel shows the results from the logM prior. The star-forming
sequence from Salim et al. (2007) is marked in black. Uncolored cubes indicate that no galaxies fall into this region. The logM
prior results in a larger range of ages and a more extreme trend between both age–mass and age–SFR. The logM prior also
shows more scatter in these trends.

from Section 3 with S/N = 25. The parametric SFH is

a delayed-tau model,

SFR(t) = Ate−t/τ

an SFH parameterization commonly used in the litera-

ture. The nonparametric model uses the continuity prior

described in previous sections.

The ratio of the Bayesian evidence in Figure 12 mea-

sures the relative evidence between two models. The ev-

idence is conceptually similar to reduced χ2 in frequen-

tist statistics: the evidence increases when the model

can accurately reproduce the photometry, but is penal-

ized for model complexity. Here, the Bayesian evidence

doesn’t strongly or consistently favor parametric or non-

parametric fits to the input SFHs. The largest difference

in evidence occurs for the falling input SFH, with ∼97%

odds (slightly more than 2σ) that the parametric fit is

a better model – not surprising, as the delayed τ -model

used to fit is very similar to the input τ -model. Overall,

if the goal is to simply reproduce the photometry from

a diverse range of SFHs with a minimalist model, there

is no clear preference between parametric and nonpara-

metric models.

However, while the quality of fit to the photometry

is largely similar, the accuracy of the recovered SFHs

differ substantially. This is largely due to the relative

rigidity of the parametric model. For example, while the

parametric fit to the sudden burst mock galaxy does

include a recent burst of star formation, the burst is

older than expected by a factor of ∼3 and there are no

stars older than ∼1.5 Gyr in the posterior. This happens

because the structure of parametric SFH constrains it to

either have a recent burst of star formation or have old

stars. The compromise solution is to include a burst

but one that is considerably older than the input. In

contrast, the nonparametric model accurately describes

the age of the burst and also predicts the correct mass

in old stars. The fits to the other mock SFHs tell a

similar story: the nonparametric model is flexible and

can reasonably emulate any input shape whereas the

parametric model must often be twisted or distorted to

describe the input SFHs which necessarily inserts bias

in the resulting SFH posterior.

In summary, the flexibility of nonparametric SFHs

allows them to more accurately describe an arbitrary

input SFH. This is important because any bias in the

posterior SFH will be propagated into biases in derived

galaxy parameters (see Figure 5). This means nonpara-

metric SFH fits should recover galaxy parameters such

as mass, age, and sSFR with less bias than parametric

fits.

6.2. Nonparametric SFHs allow explicit control over

the prior density

In addition to flexibility, nonparametric fits offer ex-

plicit control over the allowed density of SFR(t) models,

i.e. the prior. Parametric fits typically impose highly

informative priors on the shape of the galaxy star for-

mation history. Such informative priors are not always

intended but are necessary consequences of the chosen

parametric form. These translate directly into infor-
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Figure 12. Comparing photometric residuals and derived star formation histories from parametric and nonparametric fits to
mock photometry. The parametric fit uses a delayed-tau model while the nonparametric fit uses the continuity prior. The upper
row of panels show the posterior photometric residuals as a function of wavelength for each mock galaxy; the colored lines are
the median while the shaded region is the 16th-84th percentile. The dashed lines indicate the 1σ photometric noise. The lower
row of panels shows the posterior SFHs for each mock galaxy with the same color coding. The nonparametric fit both shows
less bias and also returns more accurate error estimates than the parametric fit even though the Bayesian evidence doesn’t
consistently prefer either model.

mative priors on stellar age, stellar mass-to-light ratio,

and specific star formation rate. The priors imposed by

parametric models are shown directly in Carnall et al.

(submitted). These informative priors rule out entire

classes of SFR(t) solutions before the data are fit and

can result in unrealistically tight posteriors.

Conversely, in nonparametric models the priors can

be directly tuned in order to capture the distribution

of galaxy behaviors (see Figures 1, 2). This tuning is

especially important when an SFH model is not well-

constrained by the available data. This is a strong ar-

gument for the use of nonparametric models even when

fitting data with little constraining power. In such cases

it is important to marginalize over a full range of realistic

SFR(t) behaviors in order to get realistic answers, rather

than marginalizing over the (typically much smaller)

SFR(t) solutions allowed by parametric models.

This contrasting behavior can be seen in Figure 12

where the parametric fits have much tighter posteriors

than the nonparametric fits for all input SFHs. This

is due to the (often unintentional) informative priors

imposed by parametric models. These priors result in

overly tight posteriors even when the input SFH is a

good match to the parametric form, as is the case for

the fit to the exponentially declining input SFH. This

effect is explored in more detail in the companion paper

by Carnall et al (submitted).

Another example is in Figure 13, which shows cosmic

star formation rate density (CSFRD) measured directly

from the SFHs fit to the GAMA photometry (Section 5).

In principle, the CSFRD observed at higher redshifts

should be reproducible by the SFHs of a low-redshift

galaxy sample (e.g. Heavens et al. 2004). Here we

show the CSFRD for both parametric and nonparamet-

ric models, with the parametric fits taken from the com-

panion paper by Carnall et al. (submitted). We com-

pare to the cosmic star formation rate density from the

Universe Machine (Behroozi et al. 2018). The empirical

measurements from the Universe Machine include only

galaxies with M∗(z = 0) . 109 M� in order to match

the selection function used in Section 5. Measurement

error from the observed star formation histories is very

low except for large lookback times in the parametric

models. The Universe Machine error contours are from

the systematic offset between observed and true stellar

mass within the Universe Machine model.

Here it can be seen that parametric models system-

atically underestimate galaxy ages: indeed, parametric

models underestimate thalf , the time at which half of

the cosmic mass budget had assembled, by ∼50%, while

nonparametric models overestimate thalf by a more mod-

est ∼25%. Since the oldest stars have the most subtle

observational signature, the SFH at the oldest lookback-

times is the most prior-dominated. The simplest ex-

planation for this difference is that the time at which
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star formation begins is typically a free parameter in

parametric models, while in these nonparametric mod-

els star formation always begins at t = 0. This causes

galaxy ages from parametric models to be systemati-

cally lower than nonparametric models, consistent with

findings in the literature that parametric models signif-

icantly underestimate galaxy ages (Wuyts et al. 2011).

Accurate galaxy ages are important as the optical mass-

to-light (M/L) ratio varies as M/L ∝ (age)0.6−0.7 (e.g.,

Elmegreen et al. 2012), implying that parametric models

underestimate galaxy masses by ∼40% while nonpara-

metric models overestimate it by a smaller ∼ 15%. It is

simple to adjust this in nonparametric models by tuning

the mean SFR(t) directly, but the prior for SFR(t) in

parametric models is difficult to tune as it is coupled to

the assumed parametric form.

Ultimately the SFH prior will be important in almost

all applications of SED modeling to galaxy photometry,

as even at S/N = 100 the mock tests in this work show

that nonparametric models produce distinct posteriors

in derived parameters and in SFR(t) (Figures 7, 6, and

Appendix C). In practice, 1% accuracy is very difficult

to achieve due to systematic effects in measuring galaxy

photometry such as background subtraction, light pro-

file modeling, and contamination from nearby objects

(e.g., Bernardi et al. 2013; Skelton et al. 2014). This

suggests that studies which attempt to recover galaxy

SFHs from photometry will almost never be tightly con-

strained by the available data, re-emphasizing the im-

portance of having SFH models with easily customizable

priors.

7. CHOOSING THE RIGHT PRIOR: COMPARISON

TO SIMULATIONS

The previous sections have made the case that non-

parametric models will never be fully constrained by

typical galaxy photometry. Therefore, the prior will al-

ways have at least a moderate role in determining the

answer. In light of this fact, it is critical to choose a

well-motivated prior.

A well-motivated prior will be one which best mimics

the breadth and relative distribution of SFR(t) in galax-

ies. One key question is therefore on what timescales

SFR(t) changes in real galaxies. Theoretical models of

galaxy formation suggest two potential answers: either

this timescale is primarily set by processes related to

the halo dynamical time (e.g., the gas accretion rate)

as in the equilibrium bathtub model (e.g. Davé et al.

2011; Forbes et al. 2014) and cosmological hydrodynam-

ical simulations (Crain et al. 2015; Schaye et al. 2015;

Pillepich et al. 2018) or it is set by the timescales of star

formation feedback as in the high-resolution Feedback

In Realistic Environments (FIRE) simulations (Hopkins

et al. 2014).

Torrey et al. (2018) explore star formation timescales

in the IllustrisTNG simulation. They find that these

timescales scale with the halo dynamical time. They fit

exponential decay curves of the form exp(−δt/τ), effec-

tively identifying the shortest timescales on which there

is significant variation in SFR. Over a range of 0 < z < 4

and 9 < log(M/M�) < 11, they find values ranging from

0.2 . τ . 3 Gyr. Averaged over the galaxy population

this timescale changes from 0.25 Gyr at z = 4 to 1.5

Gyr at z = 0, and also decreases with decreasing stellar

mass.

In contrast, strong stellar feedback in the FIRE sim-

ulations produces globally-bursty star formation histo-

ries. In FIRE, the shortest bursts occur on timescales of

5-50 Myr, a factor of ∼ 5− 10 shorter than the Illustris

simulations (see Figure 9 in Sparre et al. 2017). This is

a strong function of mass: at 0 < z < 0.4, galaxies with

M∗ < 1010 M� change their SFR by orders of magni-

tude over 200 Myr, while galaxies with M∗ > 1010 M�
change their SFR by a factor of two or less. At z = 2,

even massive galaxies have short bursts in which their

SFR changes by an order of magnitude in a 200 Myr

timespan.

The dichotomy between timescales regulation by evo-

lution of the halo (Torrey et al. 2018) versus timescale

regulation by feedback maps roughly onto the behavior

of ‘concentrated’ priors (logM, Dirichlet αD= 0.2) and

‘dispersive’ priors (Dirichlet αD= 1, continuity) respec-

tively. This comparison is important for nonparametric

time bins which are smaller than a few characteristic

timescales (∼ 1 Gyr for Illustris and ∼ 50− 100 Myr for

FIRE) so as to not average over short-term fluctuations.

It is well-established that in both models the timescales

scale strongly with galaxy mass and with redshift. Thus

a more concentrated prior is more appropriate for high

redshift and/or low-mass (M∗ . 1010 M�) galaxies while

a more dispersive prior is more suitable for low redshift

and/or high-mass galaxies. This is interesting in light

of the fact that concentrated priors return much larger

errors on ages, masses, and SFRs. This suggests that

given a low- and high-mass galaxy with identical colors,

the ideal SED fit should return substantially larger error

bars for the low-mass galaxy.

In principle these timescales can be discriminated

via observational signatures that trace SFR over differ-

ent timescales, such as the Hα/UV ratio (Weisz et al.

2012; Kauffmann 2014; Shivaei et al. 2015; Smit et al.

2016). However, this comparison is complicated by nat-

ural galactic variation in dust geometry and composi-

tion, initial mass function, and the uncertainty in ioniz-
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Figure 13. The cosmic star formation rate density measured by fitting the GAMA sample with different SFH models. The left
panel shows the nonparametric SFH models described in Section 5 while the right panel shows parametric SFH models fit to the
same data in a companion paper (Carnall et al., submitted). Empirical predictions from the Universe Machine are shown as a
black line (Behroozi et al. 2018). Both the empirical predictions and the SFHs from GAMA include only galaxies with measured
stellar mass > 109 M�. The SFHs from GAMA are normalized such that they have the same average value over the most recent
100 Myr as the Universe Machine; this is done to highlight differences in the shape of the derived CSFRD. Overall, parametric
models underestimate thalf , the time at which half of the cosmic mass budget had assembled, by ∼50%, while nonparametric
models overestimate thalf by a more modest ∼25%.

ing photon production efficiency, all of which affect the

Hα/UV ratio (Shivaei et al. 2015; Sparre et al. 2017).

Another possible discriminator is the existence of the

much-debated fundamental mass–metallicity–SFR rela-

tionship, which can only form if SFRs are regulated over

longer timescales (Torrey et al. 2018). Finally, Figure 8

suggests that combined modeling of high S/N photom-

etry and high S/N, high-resolution spectroscopy can be
used to constrain the typical timescale over which galaxy

SFRs change.

Ultimately, the ideal star formation history prior

would likely be a function of galaxy stellar mass and

the age of the universe and, for models with fixed time

bins, the widths of the time bins. To keep the results

general we deliberately do not adopt such scaling in this

work. On a practical note, using time bins which change

based on the age of the universe does create an implicit

dependence of the prior on cosmological time.

Regardless of the prior used, it is advised that this

prior is clearly stated when describing galaxy SFHs re-

covered from data. Comparisons of recovered SFHs be-

tween studies need to take into account different as-

sumed priors. Comparisons between observations and

simulations should be aware of the priors adopted in the

observational analysis as this will strongly affect this

comparison when the data are good, and will dominate

the comparison when the data are poor.

8. CONCLUSION

In this work we explore the effect of adopting differ-

ent Bayesian priors when fitting nonparametric SFHs

to photometry. A variety of nonparametric priors are

tested, ranging from the most straightforward logM

prior which fits for the mass formed in fixed time bins

to a continuity prior which emphasizes smooth behavior

in SFR(t).

To test the different influences of these priors, we gen-

erate mock UV-IR photometry with simple input SFHs

and attempt to recover them with the SED-fitting code

Prospector. The key results of the mock tests are:

• All of the priors recover the shape of the input

SFHs with reasonable accuracy.

• However, priors impose different shapes on the

posteriors. The priors can roughly be divided into

‘dispersive’ priors which prefer to spread the mass

evenly across time bins and ‘concentrated’ priors

which prefer to concentrate mass in 1-2 time bins.
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• The primary determinant of the size of the poste-

riors – and therefore the size of the error bars – is

not the photometric noise, but instead the chosen

prior. This is true for a range of signal-to-noise

from 2 to 100, roughly equivalent to 2500-fold dif-

ference in exposure time.

• Aside from a few combinations of prior and input

SFHs, the photometry is equally well reproduced

by any of the adopted priors.

In order to demonstrate these effects in practice, we

fit UV-IR photometry for ∼6000 massive galaxies at

0.05 < z < 0.08 from the GAMA survey using a lightly

modified version of the Prospector-α model from Leja

et al. (2017). This is done for both the logM and the

continuity priors. We find:

• Stellar masses are relatively stable between priors,

while ages and star formation rates show more sig-

nificant dependence on the prior.

• This dependence is maximized for blue star-

forming galaxies, because of outshining effects

and a degeneracy between young (0-100 Myr) and

intermediate-age (100-300 Myr) stars.

• The two priors result in significantly different star

formation history posteriors. The logM prior sug-

gests that galaxy formation proceeds in a chaotic

fashion and over short timescales, whereas the

continuity prior suggests smoother evolution over

longer periods of time.

It is tempting to conclude that the dependence of non-

parametric SFHs on the prior is a weakness of the ap-

proach. This is misleading, however; due to their lack of

flexibility, parametric models impose stronger priors on

SFR(t) than nonparametric models. Parametric mod-

els achieve tight posteriors by a priori ruling out many

different forms of solutions, resulting in unrealistically

precise answers even when fitting low S/N data. Per-

haps surprisingly, this means it is better to use a well-

tuned nonparametric model – even when it cannot be

constrained by the data – as it will produce more mean-

ingful error bars.

The quality of the error bars from a nonparametric

analysis is dependent on choosing a reasonable prior.

Here, we have contrasted the performance of several dif-

ferent priors in accurately recovering mock input SFHs.

Ultimately the ideal prior is one which best mirrors the

distribution of galaxy star formation histories in the

real universe. This distribution has yet to be defini-

tively measured in observations and or converged upon

in galaxy formation simulations.

Hα luminosities, UV and FIR photometry, and high-

resolution, high S/N spectroscopy covering a statisti-

cal sample of galaxies across cosmic time can help to

constrain the timescales on which galaxies change their

SFRs. These data can then be used to construct a more

ideal prior for SFHs. We leave a detailed exploration of

these issues to future work.
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APPENDIX

A. TESTING THE SENSITIVITY TO NUMBER AND LOCATION OF TIME BINS

Here we examine the sensitivity of the results to the number of time bins and their relative spacing. We show the

results from the continuity prior for these tests, though the results are independent of the adopted prior. We fit the

same mock data described in the main text, varying the number of bins between 4 − 14. The data are assigned a

signal-to-noise of 25 and the fluxes are not perturbed as per the fits in the main text.

The new bin spacing in time must be specified when changing the number of bins. In these tests the two youngest

bins remain fixed at 0 − 30 and 30 − 100 Myr to minimize the allowed SFH variability on short timescales, which in

turn avoids the instabilities in SFR estimates described in Sections 5.2 and 5.3. Similarly, the oldest bin remains fixed

at 11.7 < t < 13.7 Gyr for the purpose of modeling a maximally old population. The remaining time between 0.1-11.7

Gyr is split into are split into equal logarithmic chunks and divided among the remaining bins.

Figure 14 shows the recovered SFHs as a function of Nbins while Figure 15 shows the change in derived stellar mass,

star formation rate, and mass-weighted age as a function of Nbins. For Nbins & 5, there are no clear trends with Nbins

in the star formation history posteriors or parameter posteriors, and the posteriors are largely consistent within their

1σ error bars. This generally holds true across all of the input SFHs, with the exception of a few measurements for

the SFR and age in the falling SFH. This is not systematic with Nbins and likely caused by inefficiencies in the sampler

when sampling near the edge of the priors.

This confirms that the results presented here are not strongly affected by bin edge effects, or by overfitting. It also

shows that using too few bins (Nbins . 4) fails to recover vital information in the SED. Notably, the effective prior on

SFR(t) does depend on Nbins: allowing more bins with a fixed prior on log(SFRt0/SFRt0−∆t) for each bin means a

more flexible prior on SFR(t). However, this variation is too small to drive strong trends in the posteriors.
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B. TUNING THE CONTINUITY PRIOR TO STAR

FORMATION HISTORIES FROM ILLUSTRIS

Here we use the ensemble of star formation histories

from the Illustris hydrodynamical simulation to tune

the prior on log(SFRt0/SFRt0−∆t) for the continuity

model presented in Section 2.2.2. These SFHs have been

adopted from the data presented in Diemer et al. (2017)

and includes N = 29203 galaxies in the stellar mass

range 9 < log(M/M�) < 12.5. The SFHs have 100 time

steps spaced evenly in linear space and are based on the

star formation model described in Springel & Hernquist

(2003).

The SFHs cover all stars formed in a galaxy at z = 0,

including all progenitors. For low-mass galaxies, the

vast majority of stars is formed in-situ. For high-mass

galaxies, however, a large fraction of their stars have

formed in other halos/galaxies and merged with a more

massive galaxies (Rodriguez-Gomez et al. 2016). This

means that the SFHs of high-mass galaxies at z > 0 are

actually reported as the sum of the SFHs of all of the

galaxies which will eventually combine to form a sin-

gle massive z = 0 galaxy. This will bias the reported

distribution to be somewhat narrower than the true dis-

tribution.

Figure 16 compares the adopted Student’s-t prior to

the distribution of ratios of SFRt0/SFRt0−∆t from the

Illustris simulation for several values of ∆t and t0. The

adopted prior is a reasonable representation of the Il-

lustris star formation histories at a variety of redshifts

and differences in size for the fixed time bins. One of

the striking differences between the prior and the simula-

tion results is that the center of the distribution changes

with δt, which reflects the simple finding that SFRs were

higher at earlier times. We avoid including this effect in

the prior so as to keep the findings general. However in

principle, the cosmic rise and fall of galaxy star forma-

tion rates could be hard-coded into the prior to increase

the accuracy of recovered galaxy SFHs.

C. SFH RECOVERY AS A FUNCTION OF

SIGNAL-TO-NOISE

In Figures 17, 18, 19, and 20 we show the SFH re-

covery as a function of S/N for every mock input SFH.

These figures are analogous to Figures 7 and 6.
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Figure 15. Posterior masses, SFRs, and mass-weighted ages from fitting the mock photometry for a variety of input SFHs
and number of SFH time bins. Each column shows the results from a different SFH prior, while each row shows a different
parameter. The input values are shown with a dashed line. The SFR is calculated by averaging over the most recent 100 Myr.
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Figure 16. The prior adopted for the continuity model (dashed black line) compared to log(SFRt0/SFRt0−∆t) measured from
Illustris galaxies (colored lines). The left panel shows this distribution for several values of t0 at fixed ∆t while the right panel
has a variable ∆t and a fixed t0. The adopted continuity prior is a reasonable replication of, though slightly broader than the
distribution of Illustris SFHs for a variety of choices for ∆t and t0.
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Figure 17. The effect of signal-to-noise on the posteriors for different assumed priors for a constant input SFH. The top panels
show the derived mass and age as a function of prior and S/N. The lower grid of panels shows the posterior SFHs. The input is
a solid black line and the dashed black line is re-binned to match the nonparametric time bins. The median of the posterior is
a thick colored line while the 16th-84th percentiles are shown as shaded regions. Even with very precise S/N=100 photometry,
the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 18. The effect of signal-to-noise on the posteriors for different assumed priors for a falling input SFH. The top panels
show the derived mass and age as a function of prior and S/N. The lower grid of panels shows the posterior SFHs. The input is
a solid black line and the dashed black line is re-binned to match the nonparametric time bins. The median of the posterior is
a thick colored line while the 16th-84th percentiles are shown as shaded regions. Even with very precise S/N=100 photometry,
the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 19. The effect of signal-to-noise on the posteriors for different assumed priors for a constant+burst input SFH. The
top panels show the derived mass and age as a function of prior and S/N. The lower grid of panels shows the posterior SFHs.
The input is a solid black line and the dashed black line is re-binned to match the nonparametric time bins. The median of the
posterior is a thick colored line while the 16th-84th percentiles are shown as shaded regions. Even with very precise S/N=100
photometry, the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 20. The effect of signal-to-noise on the posteriors for different assumed priors for a constant input SFH with a sudden
quenching event. The top panels show the derived mass and age as a function of prior and S/N. The lower grid of panels shows
the posterior SFHs. The input is a solid black line and the dashed black line is re-binned to match the nonparametric time bins.
The median of the posterior is a thick colored line while the 16th-84th percentiles are shown as shaded regions. Even with very
precise S/N=100 photometry, the derived parameters and their associated error bars are sensitive to the chosen prior.
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254

Sparre, M., Hayward, C. C., Feldmann, R., et al. 2017,

MNRAS, 466, 88

Speagle, J. S. 2019, arXiv e-prints, arXiv:1904.02180

Speagle, J. S., Steinhardt, C. L., Capak, P. L., &

Silverman, J. D. 2014, ApJS, 214, 15

Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289

Taylor, E. N., Hopkins, A. M., Baldry, I. K., et al. 2011,

MNRAS, 418, 1587

Thomas, D., Maraston, C., Bender, R., & Mendes de

Oliveira, C. 2005, ApJ, 621, 673

Tojeiro, R., Heavens, A. F., Jimenez, R., & Panter, B.

2007, MNRAS, 381, 1252

Tolstoy, E., Hill, V., & Tosi, M. 2009, Annual Review of

Astronomy and Astrophysics, 47, 371

Torrey, P., Vogelsberger, M., Genel, S., et al. 2014,

MNRAS, 438, 1985

Torrey, P., Vogelsberger, M., Hernquist, L., et al. 2018,

MNRAS, 477, L16

Vogelsberger, M., Genel, S., Springel, V., et al. 2014a,

Nature, 509, 177

—. 2014b, MNRAS, 444, 1518

Walcher, C. J., Coelho, P. R. T., Gallazzi, A., et al. 2015,

A&A, 582, A46

Walt, S. v. d., Colbert, S. C., & Varoquaux, G. 2011,

Computing in Science and Engg., 13, 22.

http://dx.doi.org/10.1109/MCSE.2011.37

Weisz, D. R., Dolphin, A. E., Skillman, E. D., et al. 2014a,

ApJ, 789, 148

Weisz, D. R., Johnson, B. D., & Conroy, C. 2014b, ApJ,

794, L3

Weisz, D. R., Johnson, B. D., Johnson, L. C., et al. 2012,

ApJ, 744, 44

Wright, A. H., Robotham, A. S. G., Bourne, N., et al. 2016,

MNRAS, 460, 765

Wuyts, S., Förster Schreiber, N. M., Lutz, D., et al. 2011,

ApJ, 738, 106

http://dx.doi.org/10.1109/MCSE.2011.37

