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Summary

The formation of cosmological structure is dominated, especially on large scales, by the force of
gravity. In the early Universe, matter is distributed homogeneously, with only small fluctuations
about the average density. Overdense regions undergo gravitational collapse to form bound
structures, called halos, which will host galaxies within them. Halos grow via accretion of
the surrounding material and by merging with other halos. This process of merging to form
increasingly massive halos is naturally conceptualized as an inverted tree, where small branches
connect up to continually larger ones, leading eventually to a trunk.
One of the main products of cosmological simulations is a series of catalogs of halos within the
simulated volume at different epochs. Halos within successive epochs can be linked together
to create merger trees that describe a halo’s growth history. An example of such a merger
tree is shown in Figure 1. A variety of algorithms and software packages exist for both halo
identification and merger tree calculation, resulting in a plethora of different data formats that
are non-trivial to load back into memory. A range of negative consequences arise from this
situation, including the difficulty of comparing methods or scientific results and users being
locked into less than ideal workflows.

Figure 1: A visualization of a merger tree. Each circle represents a halo with lines connecting it to its
descendent upward and its ancestors downward, with the size of the circle proportional to the halo’s
mass. Red circles denote the line of the most massive ancestors of the primary halo at a given epoch.
The merger tree was created with the consistent-trees (Behroozi et al., 2013) merger tree code,
loaded by ytree, and visualized with pydot (Pydot, 2008) and graphviz (Gansner & North, 2000).
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The ytree package (Smith & Lang, 2018) is an extension of the yt analysis toolkit (Turk
et al., 2011) for ingesting and analyzing merger tree data from multiple sources. The ytree
package provides a means to load diverse merger tree data sets into common Python data
structures, analogous to what yt does for spatial data. A merger tree data set loaded by
ytree is returned to the user as a NumPy (van der Walt, Colbert, & Varoquaux, 2011) array
of objects representing the final halo, or node, in each merger tree. Each node object contains
pointers to node objects representing its immediate ancestors and descendent. This allows
the user to intuitively navigate the tree structure.
Data fields, such as position, velocity, and mass, can be queried for any node object, for the
entire tree stemming from a given node, or for just the line of most significant progenitors
(typically the most massive). Field data are returned as unyt_quantity or unyt_array
objects (Goldbaum, ZuHone, Turk, Kowalik, & Rosen, 2018), subclasses of the NumPy array
with support for symbolic units. All data structure creation and field data loading is done
on-demand to limit unnecessary computation. Analogous to yt, derived fields can be created
as linear combinations of any existing fields by supplying a function that accepts a dictionary-
like object that can be expected to contain arrays of the dependent field data. Any portion
of a merger tree data set can be saved to a ytree format (based on HDF5 and using h5py
(Collette, 2013)) that has somewhat faster field loading than most of the supported data
formats. This also allows a subset of data to be extracted for greater portability and for
saving newly created fields resulting from expensive analysis.
The ytree package has been used for semi-analytic galaxy formation models (Côté, Silvia,
O’Shea, Smith, & Wise, 2018); following halo trajectories in zoom-in simulations (Hummels
et al., 2019); and for studying simulated galaxy properties (Garrison-Kimmel et al., 2019;
Smith et al., 2018).
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