
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ytree: A Python package for analyzing merger trees

Citation for published version:
Smith, BD & Lang, M 2019, 'ytree: A Python package for analyzing merger trees', Journal of Open Source
Software. https://doi.org/10.21105/joss.01881

Digital Object Identifier (DOI):
10.21105/joss.01881

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Open Source Software

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/327124469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/britton-smith(db99e4f8-c2a6-464e-92c3-c0090ddd0d57).html
https://www.research.ed.ac.uk/portal/en/publications/ytree-a-python-package-for-analyzing-merger-trees(d17d3292-47e4-473a-b18b-db57adeb7fd1).html
https://doi.org/10.21105/joss.01881
https://doi.org/10.21105/joss.01881
https://www.research.ed.ac.uk/portal/en/publications/ytree-a-python-package-for-analyzing-merger-trees(d17d3292-47e4-473a-b18b-db57adeb7fd1).html


ytree: A Python package for analyzing merger trees
Britton D. Smith1 and Meagan Lang2

1 University of Edinburgh 2 University of Illinois at Urbana-Champaign
DOI: 10.21105/joss.01881

Software
• Review
• Repository
• Archive

Editor: Juanjo Bazán
Reviewers:

• @mgckind
• @aureliocarnero

Submitted: 30 October 2019
Published: 18 December 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

The formation of cosmological structure is dominated, especially on large scales, by the force of
gravity. In the early Universe, matter is distributed homogeneously, with only small fluctuations
about the average density. Overdense regions undergo gravitational collapse to form bound
structures, called halos, which will host galaxies within them. Halos grow via accretion of
the surrounding material and by merging with other halos. This process of merging to form
increasingly massive halos is naturally conceptualized as an inverted tree, where small branches
connect up to continually larger ones, leading eventually to a trunk.
One of the main products of cosmological simulations is a series of catalogs of halos within the
simulated volume at different epochs. Halos within successive epochs can be linked together
to create merger trees that describe a halo’s growth history. An example of such a merger
tree is shown in Figure 1. A variety of algorithms and software packages exist for both halo
identification and merger tree calculation, resulting in a plethora of different data formats that
are non-trivial to load back into memory. A range of negative consequences arise from this
situation, including the difficulty of comparing methods or scientific results and users being
locked into less than ideal workflows.

Figure 1: A visualization of a merger tree. Each circle represents a halo with lines connecting it to its
descendent upward and its ancestors downward, with the size of the circle proportional to the halo’s
mass. Red circles denote the line of the most massive ancestors of the primary halo at a given epoch.
The merger tree was created with the consistent-trees (Behroozi et al., 2013) merger tree code,
loaded by ytree, and visualized with pydot (Pydot, 2008) and graphviz (Gansner & North, 2000).

Smith et al., (2019). ytree: A Python package for analyzing merger trees. Journal of Open Source Software, 4(44), 1881. https://doi.org/10.
21105/joss.01881

1

https://doi.org/10.21105/joss.01881
https://github.com/openjournals/joss-reviews/issues/1881
https://github.com/ytree-project/ytree
https://doi.org/10.5281/zenodo.3580978
http://juanjobazan.com
https://github.com/mgckind
https://github.com/aureliocarnero
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01881
https://doi.org/10.21105/joss.01881


The ytree package (Smith & Lang, 2018) is an extension of the yt analysis toolkit (Turk
et al., 2011) for ingesting and analyzing merger tree data from multiple sources. The ytree
package provides a means to load diverse merger tree data sets into common Python data
structures, analogous to what yt does for spatial data. A merger tree data set loaded by
ytree is returned to the user as a NumPy (van der Walt, Colbert, & Varoquaux, 2011) array
of objects representing the final halo, or node, in each merger tree. Each node object contains
pointers to node objects representing its immediate ancestors and descendent. This allows
the user to intuitively navigate the tree structure.
Data fields, such as position, velocity, and mass, can be queried for any node object, for the
entire tree stemming from a given node, or for just the line of most significant progenitors
(typically the most massive). Field data are returned as unyt_quantity or unyt_array
objects (Goldbaum, ZuHone, Turk, Kowalik, & Rosen, 2018), subclasses of the NumPy array
with support for symbolic units. All data structure creation and field data loading is done
on-demand to limit unnecessary computation. Analogous to yt, derived fields can be created
as linear combinations of any existing fields by supplying a function that accepts a dictionary-
like object that can be expected to contain arrays of the dependent field data. Any portion
of a merger tree data set can be saved to a ytree format (based on HDF5 and using h5py
(Collette, 2013)) that has somewhat faster field loading than most of the supported data
formats. This also allows a subset of data to be extracted for greater portability and for
saving newly created fields resulting from expensive analysis.
The ytree package has been used for semi-analytic galaxy formation models (Côté, Silvia,
O’Shea, Smith, & Wise, 2018); following halo trajectories in zoom-in simulations (Hummels
et al., 2019); and for studying simulated galaxy properties (Garrison-Kimmel et al., 2019;
Smith et al., 2018).

Acknowledgements

Britton acknowledges the amazing yt community for being amazing as well as financial support
from NSF grant AST-1615848. M. Lang would like to acknowledge the Gordon and Betty
Moore Foundation’s Data-Driven Discovery Initiative for supporting her contributions to this
work through Grant GBMF4561 to Matthew Turk.

References

Behroozi, P. S., Wechsler, R. H., Wu, H.-Y., Busha, M. T., Klypin, A. A., & Primack, J. R.
(2013). Gravitationally Consistent Halo Catalogs and Merger Trees for Precision Cosmology,
763, 18. doi:10.1088/0004-637X/763/1/18
Collette, A. (2013). Python and hdf5. O’Reilly.
Côté, B., Silvia, D. W., O’Shea, B. W., Smith, B., & Wise, J. H. (2018). Validating Semi-
analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simula-
tions, 859(1), 67. doi:10.3847/1538-4357/aabe8f
Gansner, E. R., & North, S. C. (2000). An open graph visualization system and its applications
to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE, 30(11), 1203–1233.
doi:10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
Garrison-Kimmel, S., Wetzel, A., Hopkins, P. F., Sanderson, R., El-Badry, K., Graus, A.,
Chan, T. K., et al. (2019). Star formation histories of dwarf galaxies in the FIRE simulations:
dependence on mass and Local Group environment, 489(4), 4574–4588. doi:10.1093/mnras/
stz2507

Smith et al., (2019). ytree: A Python package for analyzing merger trees. Journal of Open Source Software, 4(44), 1881. https://doi.org/10.
21105/joss.01881

2

https://doi.org/10.1088/0004-637X/763/1/18
https://doi.org/10.3847/1538-4357/aabe8f
https://doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
https://doi.org/10.1093/mnras/stz2507
https://doi.org/10.1093/mnras/stz2507
https://doi.org/10.21105/joss.01881
https://doi.org/10.21105/joss.01881


Goldbaum, N. J., ZuHone, J. A., Turk, M. J., Kowalik, K., & Rosen, A. L. (2018). Unyt:
Handle, manipulate, and convert data with units in python. Journal of Open Source Software,
3(28), 809. doi:10.21105/joss.00809
Hummels, C. B., Smith, B. D., Hopkins, P. F., O’Shea, B. W., Silvia, D. W., Werk, J.
K., Lehner, N., et al. (2019). The Impact of Enhanced Halo Resolution on the Simulated
Circumgalactic Medium, 882(2), 156. doi:10.3847/1538-4357/ab378f
Pydot. (2008). Pydot. GitHub repository. https://github.com/pydot/pydot; GitHub.
Smith, B. D., Regan, J. A., Downes, T. P., Norman, M. L., O’Shea, B. W., & Wise, J.
H. (2018). The growth of black holes from Population III remnants in the Renaissance
simulations, 480(3), 3762–3773. doi:10.1093/mnras/sty2103
Smith, B., & Lang, M. (2018, February). Ytree: Merger-tree toolkit. doi:10.5281/zenodo.
1174374
Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman, M.
L. (2011). yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data, 192(1), 9.
doi:10.1088/0067-0049/192/1/9
van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure
for Efficient Numerical Computation. Computing in Science and Engineering, 13(2), 22–30.
doi:10.1109/MCSE.2011.37

Smith et al., (2019). ytree: A Python package for analyzing merger trees. Journal of Open Source Software, 4(44), 1881. https://doi.org/10.
21105/joss.01881

3

https://doi.org/10.21105/joss.00809
https://doi.org/10.3847/1538-4357/ab378f
https://github.com/pydot/pydot
https://doi.org/10.1093/mnras/sty2103
https://doi.org/10.5281/zenodo.1174374
https://doi.org/10.5281/zenodo.1174374
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.01881
https://doi.org/10.21105/joss.01881

	Summary
	Acknowledgements
	References

