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Random Surface Growth and Karlin-McGregor

Polynomials

Theodoros Assiotis

Abstract

We consider consistent dynamics for non-intersecting birth and death chains, orig-
inating from dualities of stochastic coalescing flows and one dimensional orthogonal
polynomials. As corollaries, we obtain unified and simple probabilistic proofs of cer-
tain key intertwining relations between multivariate Markov chains on the levels of
some branching graphs. Special cases include the dynamics on the Gelfand-Tsetlin
graph considered in the seminal work of Borodin and Olshanski in [10] and the ones
on the BC-type graph recently studied by Cuenca in [17]. Moreover, we introduce a
general inhomogeneous random growth process with a wall that includes as special
cases the ones considered by Borodin and Kuan [8] and Cerenzia [15], that are related to
the representation theory of classical groups and also the Jacobi growth process more
recently studied by Cerenzia and Kuan [16]. Its most important feature is that, this
process retains the determinantal structure of the ones studied previously and for the
fully packed initial condition we are able to calculate its correlation kernel explicitly
in terms of a contour integral involving orthogonal polynomials. At a certain scaling
limit, at a finite distance from the wall, one obtains for a single level discrete determi-
nantal ensembles associated to continuous orthogonal polynomials, that were recently
introduced by Borodin and Olshanski in [11], and that depend on the inhomogeneities.
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1 Introduction

1.1 Determinantal structures in inhomogeneous random growth mod-

els

This work revolves around two sets of closely related problems and ideas. One of them
is, the construction of consistent dynamics on the levels of certain branching graphs and
the other is, the exact computation of correlations in random stepped surface growth
processes.

These probabilistic models can be viewed as dynamics on (discrete) interlacing arrays,
namely multilevel configurations of particles that satisfy some constraints (that we make
precise below), see Figure 2 below for an illustration. Such (2+1)-dimensional dynam-
ics (2 space and 1 time dimensions) have been extensively studied in the past decade,
see [7],[8],[16],[4],[12],[13]. In addition to being interesting in its own right a further
motivation for this study is the following phenomenon: the exact solvability of a wide
class of (1+1)-dimensional models such as the Totally Asymmetric Simple Exclusion Pro-
cess (TASEP) is a by-product of the fact that they appear as projections of these higher
dimensional models, see [7].

In many of these papers (see [7], [8], [16]) the models considered give rise to de-
terminantal point processes: for a point process on a discrete space X we say that it is
determinantal if for all n ≥ 1 its correlation functions ρn are given as determinants of a
two variable function K : X × X→ C:

ρn (x1, · · · , xn) = det
[

K
(

xi, x j

)]n

i, j=1
.

2



T. Assiotis

Thus, all probabilistic information about the model is encoded in the function K and
questions about its limit behaviour reduce to asymptotic analysis of K.

In all aforementioned papers, the jump rates of particles on each level had a rather
special algebraic dependence on their positions. The main novelty of our contribution
is that we allow (essentially) arbitrary jump rates for individual particles depending on
the position in the horizontal direction, while retaining the determinantal point process
structure.

For many of the works in Integrable Probability the exact solvability of the models
can be traced down to a rich duality structure, see [5], [31], [32]. In this paper a key role is
played by the famous Siegmund duality for birth and death chains, going back to Karlin
and McGregor, see [26], [27]: Consider a birth and death chain in I =N (reflecting at 0) or
a bilateral chain in I = Z with generatorD given by the birth rates λ(x) and death rates
µ(x) (the positive functions λ(·), µ(·) can be essentially arbitrary modulo technicalities).
Then we define its Siegmund dual (which is absorbed at −1 in the birth and death chain

case) with generator D̂ and birth rates given by λ̂(x) = µ(x + 1) and death rates by
µ̂(x) = λ(x). The key property these dual chains satisfy is the following: if we consider
two independent copies X(t) and X̂(t) with generators D and D̂ respectively then for
x, y ∈ I and t ≥ 0 we have:

Px
(

X(t) ≤ y
)

= Py

(

X̂(t) ≥ x
)

.

Then, from considering a coalescing flow of birth and death chains we obtain an
explicit formula in terms of block determinants, describing a joint evolution (X,Y) of
interacting D and D̂-chains. To explain this further we need some notation. Let us
denote the n-dimensional (discrete) Weyl chamber, where all the xi are either inN or Z,
by

Wn = {(x1, · · · , xn) : x1 < · · · < xn}.

Then, for x ∈ Wn+1 and y ∈ Wn we will say that x and y interlace and write y ≺ x if (note
the position of < and ≤):

x1 ≤ y1 < x2 ≤ · · · ≤ yn < xn+1

and denote by Wn,n+1 the space of such pairs (x, y).
The joint evolution (X,Y) takes values in Wn,n+1 and can be described as follows: Y

is autonomous and evolves as n D̂-chains conditioned not to intersect by a Doob’s h-
transform and X as n+1D-chains pushed and blocked by the Y-particles, when the process
is on the boundary of Wn,n+1 (the interactions are local), in order for the interlacing to
remain true. In particular, the X-particles never intersect. As a by-product of the special
structure of these formulae, we obtain as part of our first set of results, that under special
initial conditions of (X,Y) the non-autonomous X-component is in fact distributed as a
Markov chain. Its evolution being that of n + 1 D-chains conditioned not to intersect
by an explicit Doob’s transformation, given in terms of the original transform of the
Y-component.

Analogous formulae, having essentially the same structure, are also obtained for (X,Y)
taking values in Wn,n given by interlacing sequences of the form y1 ≤ x1 < y2 ≤ · · · ≤ xn

(again we write y ≺ x). It is then possible to concatenate such two-level couplings in a
consistent fashion, to build a multilevel process with interlacing components such that,
if started according to certain initial conditions each level evolves as a Markov chain in
its own right with an explicit distribution.

3
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Then, we go on to consider a particular choice of such consistent multilevel dynamics,
that we call the alternating construction. Its distribution at time t ≥ 0 gives rise to a
determinantal point process. To compute its correlation kernel explicitly we make heavy
use of the spectral theory for birth and death chains and their associated orthogonal
polynomials, developed by Karlin and McGregor in [26], [27].

We now proceed to explain our main results in detail and how they relate to other
works in the field of Integrable Probability.

1.2 Intertwinings and consistent multilevel dynamics

We make precise our first set of results. To begin, we need some definitions. We write
pt(x, y) for the transition density of the D-chain and π(·) for the measure with respect to
which it is reversible. Similarly we write p̂t(x, y) and π̂(·) for the ones associated to its
Siegmund dual, the D̂-chain. We shall denote the Karlin-McGregor semigroup associated

to nD-chains killed when they intersect by
(

Pn
t ; t ≥ 0

)

. This is given by the determinantal

transition kernel:

pn
t (x, y) = det(pt(xi, y j))

n
i, j=1.

Similarly, we will write
(

P̂n
t ; t ≥ 0

)

for the one associated to n D̂-chains. We also define

the positive kernels:

(

Λn,n+1 f
)

(x) =
∑

y≺x

n
∏

i=1

π̂(yi) f (y),
(

Λn,n f
)

(x) =
∑

y≺x

n
∏

i=1

π(yi) f (y).

Then, we have the following Theorem, proven as part of more general results in Section
2.3 (for the shortest path to a proof of this particular statement see Remark 2.17).

Theorem 1.1. For t ≥ 0:

Pn+1
t Λn,n+1 = Λn,n+1P̂n

t , (1)

P̂n
tΛn,n = Λn,nPn

t . (2)

After a Doob’s h-transformation (see Section 2.3), by a strictly positive eigenfunction
h(·) of either P̂n

t or Pn
t , the relations above take the form:

PN+1(t)ΛN+1
N = ΛN+1

N PN(t) , ∀t ≥ 0. (3)

Here, the semigroups PN(t),PN+1(t) are Markov on Wn(N) and Wn(N+1) respectively, where
n(N + 1) ∈ {n(N), n(N) + 1}. For example, in [7] the case n(N) = N is considered while in
[8] one has n(N) = ⌊N+1

2 ⌋, see figure below for an illustration. Moreover,ΛN+1
N

is a Markov

kernel from Wn(N+1) to Wn(N).
As mentioned in the subsection above, these results are a by-product of a two-level

coupling of interacting D-chains and D̂-chains, coming from considering a coalescing
stochastic flow, which remarkably admits an explicit transition kernel in terms of a block
determinant. Although, aspects of this probabilistic argument appeared in the seminal
work of Warren [50] in the context of the Brownian web or Arratia flow, our exposition
in Section 2.2 is new, being both elementary and completely self-contained.

4
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X2
1
(T)

X3
1
(T) X3

2
(T)

X4
1
(T) X4

2(T)

X1
1
(T)

Figure 1: Here n(1) = 1, n(2) = 1, n(3) = 2, n(4) = 2. The figure is a snapshot, at fixed time
T of the particle configuration.

Branching graphs Sequences of stochastic evolutions satisfying (3) can be recast in the
framework of coherent dynamics on branching graphs. Let us briefly and informally
describe this, all notions are made precise in Section 4. We consider a graded graph Γ,
with vertex set ⊔NVN such that VN =Wn(N), where n(1) ≤ n(2) ≤ · · · , n(i+ 1)−n(i) ∈ {0, 1}.
Two vertices y ∈ VN and x ∈ VN+1 are connected by an edge if and only if x and y interlace
(more precisely if y ≺ x). We assign certain multiplicities (positive weights) to each edge
and from this, see Section 4, we can associate for all N a natural Markov kernelΛN+1

N
from

VN+1 to VN.
The semigroups PN(t) can be viewed as dynamics on the individual levels VN of Γ.

We will moreover say that they are coherent with respect to the ΛN+1
N

if (3) holds.
A motivation for studying such relations comes from the method of intertwiners of

Borodin and Olshanski: it takes as input a tower of relations (3) for all N and produces a
Markov process with semigroup P∞(t) on the boundaryΩΓ of the graph Γ. Informally the
boundary ΩΓ of Γ is the space parametrizing extremal coherent sequences of probability
measures: {µN}N≥1 on {VN}N≥1 that satisfy,

µN+1Λ
N+1
N = µN

and that cannot be decomposed into convex combinations of other such sequences.
The method was applied in the context of two well known branching graphs related

to representation theory, the Gelfand-Tsetlin graph in [10] by Borodin and Olshanski and
the type-BC graph in [17] by Cuenca. In Section 5 we give alternative proofs of their main
results, showing how they follow from Theorem 1.1. For a brief comparison between the
proofs see Remark 2.17.

Push-Block dynamics Now, suppose we are given a sequence of processes with semi-
groups {Pn(t)}N

n=1
and Markov kernels {Λn+1

n }
N−1
n=1

satisfying (3) derived from Theorem

1.1. We then construct a multilevel process
((

X1(t), · · · ,XN(t)
)

; t ≥ 0
)

, taking values in

Wn(1)×· · ·×Wn(N) so that consecutive levels interlace and which satisfies a Gibbs property
with respect to the Markov kernels Λn+1

n . The interactions between particles (coordinates
Xn

i
) are through the so called push-block dynamics. These dynamics were first intro-

duced in the seminal paper [7] and the continuous Brownian analogue, where pushing
and blocking are no longer distinguishable, in [50].

They are described informally as follows (see Section 3.2 for the rigorous description):
Each particle has two independent exponential clocks with (not necessarily equal) rates
depending only on its position (and not of other particles) for jumping to the right and

5
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to the left respectively by one. Suppose the clock for jumping to the right of particle Xn
i

at level n rings first. Then the particle will attempt to jump to the right by one; if the
interlacing with level n − 1 is no longer satisfied this jump is not allowed and we say
the particle is blocked. Otherwise, it moves by one to the right, possibly triggering some
pushing moves. Namely, if the interlacing is no longer preserved with the next level
then the particle at level n + 1 with respect to which the interlacing is broken also moves
(instantaneously) to the right by one. This pushing is propagated to higher levels.

Then, in Section 3.3 we prove a result of the following sort, that we state informally
here (see Propositions 3.6 and 3.8 for the precise statements):

Proposition 1.2 (Informal statement). Suppose the Markov kernels {Λn+1
n }

N−1
n=1

and semi-

groups (Pn(t); t ≥ 0)N
n=1 obtained from Theorem 1.1 satisfy the intertwining relations (3) for

n = 1, · · · ,N−1. Then, there exists a Markovian coupling
((

X1(t), · · · ,XN(t)
)

; t ≥ 0
)

(taking val-

ues in an interlacing array) evolving according to push-block dynamics with explicit rates (see Sub-

sections 3.2 and 3.3 ) such that the following hold: Assume the process
((

X1(t), · · · ,XN(t)
)

; t ≥ 0
)

is initialized according to the Gibbs measure, whereMN(·) is an arbitrary probability measure on
Wn(N):

ProbMN

1,··· ,N

(

x1, · · · , xN
)

=MN(xN)ΛN
N−1

(

xN, xN−1
)

· · ·Λ2
1

(

x2, x1
)

.

Then, the distribution at time T of
(

X1(T), · · · ,XN(T)
)

is given by the evolved Gibbs measure:

Prob
MNPN(T)
1,··· ,N

(

x1, · · · , xN
)

= [MNPN(T)] (xN)ΛN
N−1

(

xN, xN−1
)

· · ·Λ2
1

(

x2, x1
)

.

Moreover, for each n = 1, · · · ,N the projection to (Xn(t); t ≥ 0) is a Markov process evolving
according to (Pn(t); t ≥ 0).

By the special structure of the Markov kernels and semigroups involved (for certain

initial measuresMN) we get that the evolved measure Prob
MNPN(T)
1,··· ,N

(

x1, · · · , xN
)

is given as

a certain product of determinants. Such measures, by the celebrated Eynard-Mehta The-
orem (see [14]), give rise to determinantal point processes with an extended correlation
kernel K, which can in principle be computed (see Remark 3.7).

1.3 Alternating construction

We will now consider in some detail a particular choice of consistent dynamics. These
dynamics give rise via Proposition 1.2 to an interacting interlacing particle system with
a wall. Such a system can be mapped to a random growth and decay model of a stepped
surface under a certain correspondence between particles and lozenges/cubes, see Figure
2 for an illustration. We first need a definition. Denote by GTs(∞) the set of infinite
symplectic Gelfand-Tsetlin patterns, interlacing arrays of the form, where all particles
live inN, with the origin playing the role of a wall,

GTs(∞) =
{

X =
(

X
(0,1),X(1,1),X(1,2), · · ·

)

: X(i,i) ∈Wi,X(i,i+1) ∈Wi+1;X(i−1,i) ≺ X(i,i) ≺ X(i,i+1)
}

.

Here, the similar notations X(i,i+1) and Wi,i+1 should not be confused, X(i,i+1) denotes a
configuration on a single level (in fact it is the top level of

(

X(i,i),X(i,i+1)
)

which takes

values in Wi,i+1). The dynamics go as follows: Particles at level X(i,i+1) evolve as i + 1

6
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independent D-chains which are pushed and blocked by particles at level X(i,i), which
themselves evolve as i independent D̂-chains that are in turn pushed and blocked by
particles at level X(i−1,i) and so forth, see Figure 2 for an example. We call this the
alternating construction, since we alternate between using the jump rates for D and D̂-
chains on odd and even levels. We think of the position-dependent jump, equivalently
growth and decay, rates as inhomogeneities of the surface.

To make the connection with Proposition 1.2, the projection on level X(n,n+1) evolves
according to the semigroup with transition kernel:

hn,n+1(y1, · · · , yn+1)

hn,n+1(x1, · · · , xn+1)
det(pt(xi, y j))

n+1
i, j=1

and on level X(n,n) according to:

hn,n(y1, · · · , yn)

hn,n(x1, · · · , xn)
det(p̂t(xi, y j))

n
i, j=1.

Moreover, the harmonic functions hn,n+1(·) and hn,n(·) are given by:

hn,n+1(·) = (Λn,n+1Λn,n · · ·Λ1,11)(·) , hn,n(·) = (Λn,nΛn−1,n · · ·Λ1,11)(·).

The distribution of this particle system at time t determines a point process denoted
by Ξt. Assume that all particles are initially fully packed i.e. at levels (i − 1, i) and (i, i) we
have our i particles at positions 0 < 1 < 2 < · · · < i− 1 (see Figure 2). We shall also use the
following notation throughout: the variable z = ((n1, n2), x) will denote the level (n1, n2)
and (horizontal) position x of the particle.

We now explain how the model in the seminal work of Borodin and Kuan [8] related
to the representation theory of the infinite dimensional orthogonal group O(∞) and its
recent generalization by Cerenzia and Kuan [16] are special cases of this construction:
they simply correspond to a particular choice of the rate functions λ(·), µ(·). The rates
considered by Cerenzia and Kuan in [16], depending on two real parameters α, β > −1,
are the following:

λ(n) =
n + α + β + 1

2n + α + β + 1

2(n + α + 1)

2n + α + β + 2
,

µ(n) =
n + β

2n + α + β

2n

2n + α + β + 1
.

For α = β = − 1
2 these specialize to the model studied by Borodin and Kuan in [8] while

for −α = β = 1
2 they specialize to the model studied by Cerenzia [15] related to the infinite

dimensional symplectic group Sp(∞).
We now briefly mention two simple examples of rates that as far as we know cannot

be obtained at present from some other integrable model with determinantal structure.
These correspond to regions with different speeds (with r and n∗ positive constants):

µ(n) ≡ 1 , λ(n) = r1(n ≤ n∗) + 1(n > n∗)

and periodic (in space) rates:

µ(n) ≡ 1 , λ(n) =















1, n even,

r, n odd
.

7



Random Surface Growth and Karlin-McGregor Polynomials

0 1 2 3

(0, 1)

(1, 1)

(1, 2)

(2, 2)

(2, 3)

(3, 3)

(3, 4)

(4, 4)

Figure 2: The visualisation of a particle configuration of GTs(∞) as a stepped surface. In

the first figure the fully packed initial condition is depicted. Particle x
(0,1)
1

wants to jump

to the right and in doing so, pushes all the particles indexed x(i−1,i)
i

and x(i,i)
i

to the right

by one as well, resulting in the surface shown in the second figure. Next, particle x
(2,3)
3

jumps to the right by one and this produces the stepped surface of the last figure.
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Of course, much more complicated variations for the rates can be considered and our
main result below still applies.

Finally, as explained in the previous subsection, the evolved Gibbs measures for
these dynamics are given as products of determinants and by making use of (one of the
many variants of) the famous Eynard-Mehta Theorem, in particular a generalization to
interlacing particles first studied by Borodin and Rains (see [14]) it is standard that there
is an underlying determinantal structure for this point process. However, to compute
the correlation kernel K t explicitly one needs to either invert a Gram matrix or solve a
biorthogonalization problem, which is usually a formidable task.

1.4 Explicit computation of correlation kernel and scaling limit

It is at this point that a further insight is required in order to proceed. We make use of
the spectral theory for one-dimensional birth and death chains first developed by Karlin
and McGregor in [26] and [27]. More precisely we define the polynomials Qi(x) through
the three term recurrence:

Q0(x) = 1,−xQ0(x) = −(λ(0) + µ(0))Q0(x) + λ(0)Q1(x),

−xQn(x) = µ(n)Qn−1(x) − (λ(n) + µ(n))Qn(x) + λ(n)Qn+1(x).

These are orthogonal with respect to the spectral measure dw(x) on R+ with support I,

∫ ∞

0

Qi(x)Q j(x)dw(x) =
1

π( j)
δi j.

Here and onwards we use the notational convention that x is a continuous (spectral as
we see below) variable and not the discrete horizontal position of particles as before (also
n in the three term recurrence above should not be confused with the index of vertical
levels which in the setting of the alternating construction will always be denoted by a
pair of indices).

If we view Dk, the generator of the birth and death chain with rates (λ(·), µ(·)), as a
difference operator in the discrete variable k, then the three term recurrence takes the
form of an eigenfunction relation, with eigenvalue −x ≤ 0:

DkQk(x) = −xQk(x).

These ingredients provide the following spectral expansion for the transition density of
the chain:

pt(i, j) = π( j)

∫ ∞

0

e−txQi(x)Q j(x)dw(x).

We now give one of the simplest explicit examples. It corresponds to the model of [8],
with λ(0) = 1, λ(n) ≡ µ(n) ≡ 1

2 , n ≥ 1 and π(0) = 1, π(n) ≡ 2, n ≥ 1. Then, the Qi are the
Chebyshev polynomials of the first kind, orthogonal with respect to the spectral measure

dw(x) = 1
πx−

1
2 (2 − x)−

1
2 dx on [0, 2]:

∫ 2

0

1

π
x−

1
2 (2 − x)−

1
2 Qi(x)Q j(x)dx =















δi j, i = 0,
1
2δi j, i ≥ 1

.
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Moreover, the polynomials Qn(x) are given explicitly:

Qn(x) =

n
∑

k=0

(−n)k(n)k
(

1
2

)

k

(

x
2

)k

k!

where (a)k =
∏k

i=1(a + i − 1) with (a)0 = 1, is the Pochhammer symbol.

Coming back to the general discussion, one can also define the polynomials Q̂k and
measure ŵ associated to the Siegmund dual chain and many relations exist between these
dual polynomials, which can be found in Section 6.

We then go on to introduce and study in detail, from a probabilistic perspective in
Sections 7 to 9 (see also Subsection 1.5 below), their multivariate versions: For ν ∈ Wn,
we consider the n-variate polynomials given by, with x = (x1, · · · , xn) in Rn,

Qν(x) =
det

(

Qνi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

, Q̂ν(x) =
det

(

Q̂νi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

.

We call these the Karlin-McGregor polynomials, since they were first introduced by
Karlin and McGregor, in their original study of intersection probabilities of birth and
death chains in [28]. We remark that the Karlin-McGregor polynomials have the same
structure as the well-known Schur polynomials, indeed we arrive at them by replacing
the monomials xνi in the numerator determinant by general orthogonal polynomials
Qνi

(x) on [0,∞). Note however that the Schur polynomials are not special cases of our
construction; the monomials are not orthogonal on [0,∞) (they are orthogonal on the
circle).

We can obtain the Markov kernels associated to the alternating construction from
branching rules of these multivariate polynomials (see Section 7, also Remark 11.1). In
particular the harmonic functions hn,n+1(ν) and hn,n(ν) are given by, here λ0 = λ(0) is the
rate of jumping from 0 to 1:

hn,n+1(ν) = (−1)(
n
2)λ

(n
2)

0
Qν(~0) , hn,n(ν) = (−1)(

n−1
2 )λ

(n−1
2 )

0
Q̂ν(~0).

Moving on, it is only after expressing the entries of the determinants appearing in
the distribution of the growth process starting from the fully packed initial condition in
terms of these one dimensional orthogonal polynomials and the spectral measures, that
it is possible to see/guess what the solution to the biorthogonalization problem is. Then
we proceed to carefully check that it is indeed the solution. All of this is done in detail in
Section 10.

The biorthogonalization problem could possibly admit a concise enough solution for
other initial conditions as well, other than the fully packed, although we do not attempt to
do this here; see for example [24] where this is done for the stationary case of the Brownian
motion analogue. Pursuing this further would be an interesting line of investigation.

Finally, after some more algebraic manipulations we arrive at the following result,
proven as a special case of the more general Theorem 10.4 in the text:

Theorem 1.3. Let I be compact then the correlation functions {ρt
k
}k≥0 of the point process Ξt,

associated to the alternating construction starting from the fully packed initial condition, are
determinantal:

ρt
k(z1, · · · , zk)

def
= Ξt({E ∈ GTs(∞) s.t. {z1, · · · , zk} ⊂ E}) = det

(

K t(zi, z j)
)k

i, j=1
(4)

10
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whereK t is given by,

K t (((n1, n2), i), (m1,m2), j)
))

=
1

2πi

∮

u∈C(I)

∫

x∈I

P̃ j(u)P̄i(x)
xn2

um2

e−tx

(x − u)e−tu
dm(x)du

+1 ((n1, n2) ≥ (m1,m2))

∫

I

P̄i(x)xn2−m2P̃ j(x)dm(x) (5)

and,

(P̄, P̃,m) =































(πiQi,Q j,w) if (n1, n2), (m1,m2) = (n, n + 1), (m,m+ 1)

(πiQi, Q̂ j,w) if (n1, n2), (m1,m2) = (n, n + 1), (m,m)

(π̂iQ̂i,Q j, ŵ) if (n1, n2), (m1,m2) = (n, n), (m,m+ 1)

(π̂iQ̂i, Q̂ j, ŵ) if (n1, n2), (m1,m2) = (n, n), (m,m)

. (6)

The contour C(I) is positively oriented and encircles the support I and 0.

That the interval of orthogonality I needs to be compact appears to be a technical
analytic requirement and presumably can be removed. Compactness ensures uniform
convergence for orthogonal decompositions in terms of the polynomials Qi and allows
for the interchange of summation and integration (see e.g. Remark 9.4); it is essentially
only used in the computations in Sections 9 and 10. Because of the length of the paper
we have not tried to remove this assumption.

In the model of Cerenzia and Kuan [16] mentioned above the Qi(x) are the Jacobi
polynomials, which specialize to the Chebyshev polynomials of the earlier works [8],
[15].

We then go on to consider a particular scaling limit, at a finite distance from the
wall and make the connection with Borodin and Olshanski’s work in [11] on discrete
determinantal ensembles associated to continuous orthogonal polynomials.

More precisely, suppose we scale time as t(N) = Nτ and the arguments of the kernel
as (m̃1(N), m̃2(N)) =

(

⌊Nη⌋ +m1, ⌊Nη⌋ +m2
)

and (ñ1(N), ñ2(N)) =
(

⌊Nη⌋ + n1, ⌊Nη⌋ + n2
)

and let α =
η
τ . Note that, we do not scale the horizontal positions which avoids hard

asymptotics involving the orthogonal polynomials Qi, Q̂i or the spectral measures w, ŵ.
Then, we have the following theorem whose proof, based on a simple steepest descent
analysis, can be found in subsection 10.2:

Theorem 1.4. With the notations above and with I+ and I− denoting the upper and lower
endpoints of I respectively, we have:

lim
N→∞

K t(N) (((ñ1(N), ñ2(N)) , i), (m̃1(N), m̃2(N)) , j)
))

= Kα
((

(n1, n2) , i), (m1,m2) , j)
))

=

∫ I+

I−
[−1(x ≥ α) + 1 ((n1, n2) ≥ (m1,m2))] P̄i(x)xn2−m2P̃ j(x)dm(x).

Now, to a weightW(dx) on (some subset of) R for which the moment problem is de-
terminate and a point r ∈ R one can associate a discrete determinantal point process with
kernel denoted by KWr

(

i, j
)

(see Remark 10.6 and [11] for the exact details). Then, as ex-
plained in subsection 10.2, if restricted to single levelsKα

((

(n, n + 1) , i), (n, n + 1) , j)
))

gives
rise to the determinantal ensemble with kernel Kwα (i, j) and also Kα

((

(n, n) , i), (n, n) , j)
))

gives rise to the ensemble governed by the kernel Kŵα (i, j). Thus,Kα
(

((n1, n2), i), (m1,m2), j)
)

provides a novel multilevel determinantal extension of these discrete ensembles, so that
particles on consecutive levels interlace (by construction). Moreover, in this generality, it
is the first time that these ensembles appear in a concrete interacting particle system.
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1.5 Further results

En route, to our computation of the correlation kernelK t we introduce in Section 8 a large
class of coherent probability measures, with respect to the Markov kernels corresponding
to the alternating construction. These depend on a set of parameters (t;α1, · · · , αN) with
N ∈N such that t ≥ 0 and Const ≥ α1 ≥ α2 ≥ · · · ≥ 0, where Const has a natural interpre-
tation in terms of the interval of orthogonality I (see Remark 9.9). Their description is
through the spectral theory explained above and the single variable function:

ψ(x) = ψt,~α(x) =

N
∏

i=1

(1 − αix)e−tx. (7)

By Kolmogorov’s Theorem these measures give rise to a stochastic point process in
GTs(∞) denoted by Ξψ, which specializes to Ξt when all the ~α coordinates are identically
zero. In Theorem 10.4 we show that Ξψ is a determinantal point process with an explicit
kernelKψ.

Moreover, combining the results of Proposition 8.3 and Section 11.3 in the Appendix,
we obtain that under a positive definiteness assumption (see Remark 11.4) for the cor-
responding Karlin-McGregor polynomials these sequences of measures are actually ex-
tremal.

Finally, we observe that an inhomogeneous, with position dependent jumps, two
species analogue of PushASEP (see [6]), with at most two particles per site, arises if
one looks at the rightmost particles in the interlacing array above. In particular the

evolution of the particles
(

X
(0,1)
1

(t),X(1,1)
1

(t),X(1,2)
2

(t), · · · ; t ≥ 0
)

is autonomous. Of course,

the distribution of this (1+1)-dimensional model is completely characterized by Theorem
1.3.

1.6 Outlook and questions

Many directions and questions arise from this work. We indicate and briefly discuss the
ones we find the most interesting:

• (Scaling limits) Study different scaling regimes for the inhomogeneous process
introduced above. It is clear from simulations, performed by the author, that
interesting behaviour arises when one introduces for example slow or fast regions,
periodic or trigonometric rates. The analysis of course boils down to the associated
one-dimensional orthogonal polynomials. Another question is whether in any of
the possible scaling regimes perturbations of the rates still give the same asymptotic
behaviour. This again will come down to universality statements for orthogonal
polynomials.

• (Inhomogeneous TASEP) Borodin-Ferrari studied in [7] a (2 + 1)-dimensional
growth model taking values in a Gelfand-Tsetlin pattern. Each particle has an
independent exponential clock of rate one for jumping to the right by one (µ(n) ≡ 0)
and particles as before interact through the push-block dynamics. The projection
to the left most particles gives the Totally Asymmetric Simple Exclusion Process
(TASEP). In fact the construction in [7] is much more general and allows for level
dependent (constant in space) jump rates, which in terms of TASEP corresponds
to particle dependent speeds. A natural question is to find the right, namely in-
tegrable, inhomogeneous (in space) generalization of the model in [7]. This could

12
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provide a route to some exact solvability in inhomogeneous TASEP which has thus
far resisted many efforts. For a particular case, the slow bond problem (the bond
from -1 to 0 is slow, in this paper’s notation µ(n) ≡ 0, λ(n) = 1−ǫ1(n = −1)), a break-
through was achieved for the leading order behaviour using non-exactly solvable
techniques, see [3].

• (Boundary of generalized type BC-graph) As mentioned above one can associate
a branching graph to the alternating construction, that we call generalized type-BC
branching graph, its multiplicities are given by general product form weights. Is it
possible, at least for certain multiplicities, to describe its boundary? Moreover, what
is the relation of such extreme coherent measures with dynamics on the graph. In
the case of both the Gelfand-Tsetlin graph and the type-BC graph there is an exact
correspondence with continuous time birth and death chain dynamics, discrete
time Bernoulli and also geometric jumps. A more ambitious direction would be to
develop some kind of perturbation theory for these graphs.

1.7 Contents of the paper

We quickly describe the contents of each section. In Section 2, we introduce all the rel-
evant material on birth and death (or bilateral) chains that we need. We then introduce
the coalescing flows and give our two-level couplings formulae. We moreover obtain
our intertwining and Markov functions results. In Section 3, we prove that the formulae
describe the push-block dynamics by showing that they solve the corresponding back-
wards equations and that these are unique. Furthermore, we spell out a procedure for
concatenating such two-level processes in order to build an interlacing array in a consis-
tent manner. In Section 4, we define and collect some facts about branching graphs along
with two classical examples, the Gelfand-Tsetlin graph and the BC-type branching graph,
and the graph corresponding to the alternating construction. We also state the theorem
of Borodin and Olshanski known as the method of intertwiners. In Section 5, we show
how known and new examples of consistent dynamics can be obtained as corollaries of
our first main result, including the ones in [10] and [17] and moreover, we characterize
the ones arising from the coupling studied here that are coherent for the Gelfand-Tsetlin
graph. In Sections 6 and 7, we introduce the Karlin-McGregor polynomials associated to
D and D̂-chains and their multivariate analogues and prove some of their properties. In
Section 8, we introduce coherent measures (with respect to the Markov kernels associ-

ated to the alternating construction)M
ψ
n−1,n,M

ψ
n,n indexed by a functionψ and investigate

some of their properties. For ψt(x) = e−tx these correspond to the distribution at time t
of the push-block dynamics started from the fully packed initial condition as described
in the paragraphs above. In Section 9, we introduce ”evolution operators” for coherent

measures denoted by P
g

n−1,n,P
g
n,n, which when applied to M

ψ
n−1,n,M

ψ
n,n ”evolve” these

measures to M
gψ
n−1,n,M

gψ
n,n. We also obtain some sufficient conditions for functions ψ to

give rise to bona fide probability measures (with positivity being the non-trivial issue
here). In Section 10, we finally prove our second main result, the explicit computation
of the correlation kernel of the process described previously, this being an application
of the Eynard-Mehta theorem (see e.g. [14]) along with some preliminaries. Finally, in
the Appendix we collect a couple of technical proofs along with; essentially reproducing
for our own and the reader’s convenience, an argument of Okounkov and Olshanski
that we found in [37], that uses de Finetti’s theorem to give a sufficient condition for
coherent measures with multiplicative ”generating functions” to be extremal, based on
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a kind of positive definiteness property (an assumption) for the associated orthogonal
polynomials.

Acknowledgements I would like to thank Jon Warren for generously sharing his ideas
during several very useful conversations. I would like to thank the anonymous referees
for many useful comments and suggestions which led to a much improved version of
the paper. Financial support from EPSRC through the MASDOC DTC grant number
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2 Coalescing birth and death chains and intertwinings

2.1 General facts on birth and death chains and their duals

We consider a birth and death chain on I =N, or bilateral birth and death chain on I = Z,
denoted by X, given by the infinitesimal birth (λ(x))x∈I and death (µ(x))x∈I rates and with
matrix of transition rates denoted byD,

D(x, y) =























λ(x) y = x + 1

−λ(x) − µ(x) y = x

µ(x) y = x − 1

.

We assume that λ(x), µ(x) > 0, for all x ∈ Z in the bilateral case and µ(0) = 0 in case of
I =N, i.e. that 0 is reflecting (λ(x) for x ≥ 0 and µ(x) > 0 for x ≥ 1). We moreover assume
that, ∞ is a natural boundary point, namely a process can neither reach in finite time or
be started from such a point (similarly −∞ is assumed natural in case I = Z), so that the
rates uniquely determine our chain. Sufficient conditions for this, will be given later on
below in this subsection. In order to be more concise, we will frequently refer to such a
Markov chain with generator D, as a D-chain. Now, define the forward and backward
discrete derivatives by,

(∇ f )(x) = f (x + 1) − f (x), (∇̄ f )(x) = f (x − 1) − f (x), x ∈ I,

and observe thatD can be regarded as a difference operator acting on functions, f : I → C
as follows,

(D f )(x) = λ(x)(∇ f )(x)+ µ(x)(∇̄ f )(x), x ∈ I.

Denote by pt(x, y) the transition density of the D-chain i.e. with (X(t); t ≥ 0) denoting a
realization of this chain governed by the family of measures indexed by starting positions,
{Px}x∈I then, pt(x, y) = Px(X(t) = y). Furthermore, we denote by (Pt; t ≥ 0) the Feller
semigroup (that maps the space of functions vanishing at infinity to itself), it gives rise
to (the fact that all these are well defined is discussed next). In particular, we will often
use the notation:

Pt1[l,y](x) =
∑

l≤z≤y

pt(x, z).

We note that, under the conditions (8) and (9) below, pt(x, y) will be the unique solution
to the Kolmogorov backward differential equation given by, ∀t > 0, x, y ∈ I,

d

dt
pt(x, y) = Dxpt(x, y),
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subject further to the initial condition, positivity and sub-stochasticity assumptions:

p0(x, y) = δx,y , pt(x, y) ≥ 0 and
∑

y∈I

pt(x, y) ≤ 1.

Here,Dx acts asD on a (possibly multivariate) function in the variable labelled x. Now,
define the symmetrizing measure of the D-chain (the measure with respect to which it is
reversible) which we denote by π as follows,

π(x) =

x
∏

i=1

λ(i − 1)

µ(i)
x ≥ 1, π(0) = 1, π(x) =

−x
∏

i=1

µ(x + i)

λ(x + i − 1)
, x ≤ −1.

In the case of I = N, we will enforce throughout this paper, the following two
conditions (see [30], [45]),

∞
∑

j=0

1

λ( j)π( j)

j
∑

i=0

π(i) = ∞, (8)

∞
∑

j=0

1

λ( j)π( j)

∞
∑

i= j+1

π(i) = ∞. (9)

Then, under conditions (8) and (9) the chain with generator D is uniquely determined
by its rates, it is non-explosive and pt(x, y) is the unique (stochastic) solution to both the
backwards and forwards equations (for proofs of these statements see for example [30] or
[45] and the references therein). Moreover, we have pt(x, y)→ 0 as y→∞ and pt(x, y)→ 0
as x→∞.

In the case of a bilateral chain, in order for both −∞ and +∞ to be natural boundaries,
which in particular, ensures the uniqueness of solutions to both the backwards and
forwards equation and non-explosiveness, we need the following four conditions. The
first two, (10) and (11), govern the behaviour at +∞ and the last two, (12) and (13), at −∞,
for a proof see Theorem 2.5 and the discussion at the end of page 511 of [40],

∞
∑

j=1

1

λ( j)π( j)

j
∑

i=1

π(i) = ∞, (10)

∞
∑

j=1

π( j)

j−1
∑

i=1

1

λ(i)π(i)
= ∞, (11)

−1
∑

j=−∞

1

λ( j)π( j)

−1
∑

i= j+1

π(i) = ∞, (12)

−1
∑

j=−∞

π( j)

−1
∑

i= j

1

λ(i)π(i)
= ∞. (13)

We now come to the definition (going back to the papers of Karlin and McGregor
[26], [27]) of the dual chain X̂, onN− =N ∪ {−1} and Z respectively, that is given by the
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infinitesimal rates λ̂(x) = µ(x + 1) and µ̂(x) = λ(x) and with generator:

D̂(x, y) =























λ̂(x) = µ(x + 1) y = x + 1

−µ(x + 1) − λ(x) y = x

µ̂(x) = λ(x) y = x − 1

.

Note that, in the case ofN− then, −1 is an absorbing state. As before, in order to be concise
and to emphasise the role of duality in this work, we will sometimes refer to this Markov
chain as the D̂-chain and denote its transition density by p̂t(x, y) (in case of a birth and
death chain we only consider the transition density inN, i.e it is the same as that of the

process killed at -1), its semigroup by
(

P̂t; t ≥ 0
)

and symmetrizing measure by π̂.

Now, it is not hard to check that, conditions (8), (9) and (10),(11),(12),(13) respectively

hold for the rates
(

λ, µ
)

, if and only if they hold for the dual rates
(

λ̂, µ̂
)

and thus the dual

chain is well posed with natural boundaries at ±∞ as well.
With the above definitions in place, we arrive at the following key duality relation

for birth and death chains, going back to Karlin’s and McGregor’s classic works [26] and
[27] (see also [44], [19]). The relation is also true for bilateral chains and we present, the
admittedly almost identical, proof in the Appendix because we could not locate it in the
literature. We also give a ”graphical” proof in the next subsection.

Lemma 2.1 (Siegmund duality). For x, y ∈ I and t ≥ 0 we have,

Pt1[l,y](x) = P̂t1[x,∞)(y), (14)

where l = 0 if I =N or l = −∞ if I = Z respectively.

Remark 2.2. Note that, the ˆ operation is not an involution even in the case of I = Z, unlike
the diffusion process setting, see [2]. This is an artefact of the discrete world and will complicate
things a little bit, since these asymmetries make keeping track of the positions of ≤ and < below
important.

2.2 Discrete coalescing flow and two-level process

First, we define the interlacing spaces our processes will take values in, with I being either
N or Z, in particular all coordinates are integers, and with l = 0 or −∞ respectively, as
follows,

Wn(I) = {x = (x1, · · · , xn) ∈ In : l ≤ x1 < · · · < xn < ∞},

Wn,n+1(I) = {(x, y) = (x1, · · · , xn+1, y1, · · · , yn) ∈ I2n+1 : l ≤ x1 ≤ y1 < x2 ≤ · · · < xn+1 < ∞},

Wn,n(I) = {(x, y) = (x1, · · · , xn, y1, · · · , yn) ∈ I2n : l ≤ y1 ≤ x1 < y2 ≤ · · · ≤ xn < ∞}.

Also, define for x ∈Wn(I),

W•,n(x) = {y ∈W•(I) : (x, y) ∈W•,n(I)}.

Similarly, define Wn,•(y),

Wn,•(y) = {x ∈W•(I) : (x, y) ∈Wn,•(I)}.
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Graphical construction of coalescing flow We now describe the ”graphical” construc-
tion of the coalescing flow of birth and death (or bilateral) chains. For each site of the
lattice x ∈ I, we have independent Poisson processes, indexed by time t ∈ R, of up ↑

arrows denoted by {N↑x(t) : t ∈ R} of (constant) rate λ(x) and down ↓ arrows denoted by

{N↓x(t) : t ∈ R} of (constant) rate µ(x).
We now define the family of random maps {Φs,t : I → I; s ≤ t} as follows. For x ∈ I and

s ≤ t, the valueΦs,t(x) is arrived at by starting at time s at site x and following the direction
of the arrows until time t. The site you are on at time t is defined to beΦs,t(x). There is
a slight ambiguity in this definition at arrival times of the arrows and by convention we
take the right continuous (in time) version of this map. See Figure 3 for an illustration.

s t

x

y
Φs,t(x) = y

Figure 3: The graphical construction of the coalescing flow
(

Φs,t(·); s ≤ t
)

.

It is clear from the construction, namely from the properties of the independent

Poisson processes {N↑x ,N
↓
x : x ∈ I}, that almost surelyΦ·,·(·) satisfies: ∀u ≤ s ≤ t ∈ R and

h ∈ R , Φt,t = Id, Φs,t ◦Φu,s = Φu,t, Φs,t
law
= Φs+h,t+h and Φs,t and Φu,s are independent.

Moreover, Φs,t(x) is distributed as a D-chain ran from time s to time t starting from x
and the joint distribution of

(

(Φs,t(x1),Φs,t(x2)); t ≥ s
)

is that of two independentD-chains
starting from sites x1 and x2 at time s, that coalesce when they meet, since once they are
at the same site they will follow the same arrows.

Now, define the dual flow for s ≤ t by:

Φ
∗
s,t(x) =Φ−1

−t,−s(x) = sup{w ∈ I :Φ−t,−s(w) ≤ x}.

Note that,

Φ
∗
s,t

(

Φ
∗
u,s(x)

)

= sup{w ∈ I :Φ−t,−s(w) ≤Φ∗u,s(x)} = sup{w ∈ I :Φ−s,−u ◦Φ−t,−s(w) ≤ x} =Φ∗u,t(x).

More generally, the fact that this again satisfies the stochastic flow properties will be
implied immediately from the pathwise construction below, which also identifies the
dynamics of the random maps {Φ∗s,t; s ≤ t}.

The following statements are purely deterministic. Suppose that on each site of the
lattice x ∈ I we have a countable number, with no accumulation points, of up ↑ and

down ↓ arrows arriving at (distinct) time points {· · · < tx,↑
−1
< tx,↑

0
< tx,↑

1
< tx,↑

2
< · · · } and

{· · · < tx,↓
−1
< tx,↓

0
< tx,↓

1
< tx,↓

2
< · · · } respectively (by convention, tx,·

0
denotes the first arrival
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after time-0). Define the maps F·,·(·) as before: Start at time s at site x and follow the
direction of the arrows until time t. The site you are at is defined to be Fs,t(x). As before,
there is some ambiguity in this definition at the arrival times tx,↑

· , t
x,↓
· of arrows and again

by convention we take the right continuous (in time) version of this map. In particular, if

tx,↑
l

is the first arrow after time s at site x then Fs,t(x) = x for s ≤ t < tx,↑
l

while Fs,tx,↑
l

(x) = x+1

and so on.
Consider F−1

s,t (x) = sup{w ∈ I : Fs,t(w) ≤ x} and our aim is to obtain a pathwise
description for this map. We introduce the following two operations on the original/black
arrows to get new/red arrows. It is important to note the minor asymmetry (coming from
our choice of ≤ in the definition of F−1

s,t ) in the operations below.
1. An up arrow ↑ at time t from site x to site x + 1, becomes a red down arrow ↓ from

site x to site x − 1 at time t. See Figure 4 for an illustration.

x-1

x

x+1
t t

x-1

x

x+1

Figure 4: The transformation of up arrows.

2. A down arrow ↓ at time t from site x + 1 to site x, becomes a red up arrow ↑ from
site x to site x + 1 at time t. See Figure 5 for an illustration.

x

x+1
t t

x

x+1

Figure 5: The transformation of down arrows.

Moreover, define the maps G·,·(·), when evaluated at Gs,t(x) as follows: Start at time t
at site x and follow the direction of the red up and down arrows backwards until time s.
The site you are at, is defined to be Gs,t(x).

We then have the following proposition, whose proof is deferred to the Appendix.

Proposition 2.3. For x ∈ I and s ≤ t, we have F−1
s,t (x) = Gs,t(x).

Observe that, if the processes N↑x of up arrows are independent Poisson processes of

rate λ(x) and down arrows N↓x are of rate µ(x) then the processes of red arrows N↑x ,N
↓
x ,

that are followed byΦ∗, are independent Poisson processes with rates µ(x + 1) and λ(x)
respectively. Thus, this construction identifies the dual flow as that of coalescing D̂-chains
ran backwards in time. In particular, this also gives a graphical proof of the Siegmund
duality Lemma 2.1.

Remark 2.4. It is possible, and equivalent, to consider the dual flowΦ∗ on the (dual) lattice I± 1
2 .

Then, the operations performed to obtain arrows followed by this flow backwards in time become
symmetric.
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We arrive at the following proposition for the finite dimensional distributions of the
coalescing flow. The result is stated for times 0 and t, but by stationarity it extends to
arbitrary pairs of times.

Proposition 2.5. For z, z′ ∈Wn(I),

P

(

Φ0,t(zi) ≤ z′i , for 1 ≤ i ≤ n
)

= det
(

Pt1[l,z′
j
](zi) − 1(i < j)

)n

i, j=1
.

Proof. By translating the non-intersection probability found in display (3) in [28] and the
paragraph following it, to our setting we get for (y1, · · · , yn) ∈Wn(I):

P

(

Φ0,t(zi) = yi, for 1 ≤ i ≤ n
)

= det
(

pt(zi, y j)
)n

i, j=1
.

This is because of the following observation: the fact that theΦ0,t(zi) are equal to distinct
points yi is equivalent to non-coalescence/non-intersection in the time interval [0, t] of
the underlying independent D-chains. Then, summing over (y1, · · · , yn) in {l ≤ y1 ≤

z′
1
, z′

1
+ 1 ≤ y2 ≤ z′2, · · · , z

′
n−1
+ 1 ≤ yn ≤ z′n} and successively adding column j to column

j + 1 we obtain,

P

(

Φ0,t(z1) ≤ z′1 <Φ0,t(z2) ≤ z′2 < · · · <Φ0,t(zn) ≤ z′n
)

= det
(

Pt1[l,z′
j
](zi)

)n

i, j
.

The result will then follow, by writing the indicator function of the event,

{Φ0,t(z1) ≤ z′1,Φ0,t(z2) ≤ z′2, · · · ,Φ0,t(zn) ≤ z′n},

in terms of an expansion of indicator functions of events of the form,

{

Φ0,t(zi1 ) ≤ z′j1 <Φ0,t(zi2) ≤ z′j2 < · · · <Φ0,t(zik ) ≤ z′ik

}

,

for increasing subsequences i1, · · · , ik and j1, · · · , jk. This combinatorial fact is presented
in detail in Proposition 9 of [50], to which the reader is referred to. �

We now come to the key definition of the time-dependent block determinant kernel,

qn,n+1
t ((x, y), (x′, y′)) on Wn,n+1(I).

Definition 2.6. For (x, y), (x′, y′) ∈Wn,n+1(I) and t ≥ 0, define qn,n+1
t ((x, y), (x′, y′)) by,

qn,n+1
t ((x, y), (x′, y′)) =

=

∏n
i=1 π̂(y′

i
)

∏n
i=1 π̂(yi)

(−1)n∇y1
· · · ∇yn

(−1)n+1∇̄x′
1
· · · ∇̄x′

n+1
P

(

Φ0,t(xi) ≤ x′i ,Φ0,t(y j) ≤ y′j for all i, j
)

.

Note that,

qn,n+1
t ((x, y), (x′, y′)) =

∏n
i=1 π̂(y′

i
)

∏n
i=1 π̂(yi)

P

(

Φ0,t(xi) = x′i ,Φ
∗
−t,0(y′j) = y j for all i, j

)

(15)

and that, using Proposition 2.5, qn,n+1
t can be written out explicitly,

qn,n+1
t ((x, y), (x′, y′)) = det

(

At(x, x′) Bt(x, y′)
Ct(y, x′) Dt(y, y′)

)

, (16)
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where, using reversibility with respect to π̂,

At(x, x
′)i j = pt(xi, x

′
j) = −∇̄x′

j
Pt1[l,x′

j
](xi),

Bt(x, y
′)i j = π̂(y′j)(Pt1[l,y′

j
](xi) − 1( j ≥ i)),

Ct(y, x′)i j = π̂
−1(yi)∇yi

∇̄x′
j
Pt1[l,x′

j
](yi),

Dt(y, y′)i j = −
π̂(y′

j
)

π̂(yi)
∇yi

Pt1[l,y′
j
](yi) = p̂t(yi, y

′
j).

We define the family of operators
(

Qn,n+1
t ; t ≥ 0

)

, acting on bounded Borel functions

on Wn,n+1(I) by,

(Qn,n+1
t f )(x, y) =

∑

(x′ ,y′)∈Wn,n+1(I)

qn,n+1
t ((x, y), (x′, y′)) f (x′, y′).

We will say that the family of operators (P(t); t ≥ 0) defined on bounded Borel func-
tions on a space X forms a sub-Markov semigroup on X if the following hold:

P(0) = Id,

P(t)1 ≤ 1 , for t ≥ 0,

P(t) f ≥ 0 , for f ≥ 0,

P(t + s) = P(t)P(s), for s, t ≥ 0. (17)

Proposition 2.7.
(

Qn,n+1
t ; t ≥ 0

)

forms a sub-Markov semigroup on Wn,n+1(I). We can thus

associate to it a Markov process (X,Y) = ((X(t),Y(t)) ; t ≥ 0), with possibly finite lifetime, with
state space Wn,n+1(I).

Proof. We proceed to check the items found in display (17). The initial, or time-0, condition
follows immediately from the representation (15). The second property, follows from
performing the sum

∑

x′∈W⋆,n(y′) and then we are left with the sum,

∑

y′∈Wn(I)

det(p̂t(yi, y
′
j))

n
i, j ≤ 1,∀y ∈Wn, t ≥ 0.

The quite non-trivial at first sight positivity preserving property again follows from repre-

sentation (15). The semigroup property for the transition kernels qn,n+1
t , can be got in the

following fashion. First, by making use of the composition identityΦ0,s+t =Φs,s+t ◦Φ0,s,

then using the independence ofΦs,s+t andΦ0,s, noting thatΦs,s+t
law
= Φ0,t and condition-
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ing on the values ofΦ0,s(xi) andΦ∗−(s+t),−s(y′′
j
) we obtain,

qn,n+1
s+t ((x, y), (x′′, y′′)) =

∏n
i=1 π̂(y′′

i
)

∏n
i=1 π̂(yi)

P

(

Φ0,s+t(xi) = x′′i ,Φ
∗
−(s+t),0(y′′j ) = y j for all i, j

)

=

∏n
i=1 π̂(y′′

i
)

∏n
i=1 π̂(yi)

∑

(x′,y′)∈Wn,n+1(I)

P

(

Φ0,s(xi) = x′i ,Φs,s+t(x
′
i ) = x′′i ,Φ

∗
−s,0(y′j) = y j,Φ

∗
−(s+t),−s(y′′j ) = y′j

)

=
∑

(x′ ,y′)∈Wn,n+1(I)

∏n
i=1 π̂(y′

i
)

∏n
i=1 π̂(yi)

P

(

Φ0,s(xi) = x′i ,Φ
∗
−s,0(y′j) = y j

)

×

∏n
i=1 π̂(y′′

i
)

∏n
i=1 π̂(y′

i
)
P

(

Φs,s+t(x
′
i ) = x′′i ,Φ

∗
−(s+t),−s(y′′j ) = y′j

)

=
∑

(x′ ,y′)∈Wn,n+1(I)

qn,n+1
s ((x, y), (x′, y′))qn,n+1

t ((x′, y′), (x′′, y′′)).

The reason we are restricting our sum, in the second line onwards, over (x′, y′) ∈Wn,n+1(I)
is because by the coalescing property for (x, y) ∈ Wn,n+1(I) we have that almost surely
{Φs,t(xi) = x′

i
,Φ∗−t,−s(y′

i
) = yi} is empty unless (x′, y′) ∈ Wn,n+1(I). This then, concludes the

proof of the proposition. �

We now aim to define a family of time-dependent kernels, qn,n
t ((x, y), (x′, y′)) on Wn,n(I).

We again, consider in a similar fashion a (discrete) stochastic coalescing flow Φ̂s,t, now
consisting of coalescing D̂-chains. Now, define its dual as follows (note well the minor

but important asymmetry to the above considerations) Φ̂
∗

s,t(y) = inf{w : Φ̂−t,−s(w) ≥ y}.
As before, we have an explicit formula for its finite dimensional distributions (also by
stationarity the proposition extends to arbitrary pairs of times s ≤ t).

Proposition 2.8. For z, z′ ∈Wn(I),

P

(

Φ̂0,t(zi) ≥ z′i , for 1 ≤ i ≤ n
)

= det
(

P̂t1[z′
j
,∞)(zi) − 1( j < i)

)n

i, j=1
.

Proof. The proof is entirely analogous to the proof of the Proposition 2.5 forΦ. �

As before, we define the following kernels:

Definition 2.9. For (x, y), (x′, y′) ∈Wn,n(I) and t ≥ 0, define qn,n
t ((x, y), (x′, y′)) by,

qn,n
t ((x, y), (x′, y′)) =

=

∏n
i=1 π(y′

i
)

∏n
i=1 π(yi)

(−1)n∇̄y1
· · · ∇̄yn

(−1)n∇x′
1
· · · ∇x′nP

(

Φ̂0,t(xi) ≥ x′i , Φ̂0,t(y j) ≥ y′j for all i, j
)

.

Observe that,

qn,n
t ((x, y), (x′, y′)) =

∏n
i=1 π(y′

i
)

∏n
i=1 π(yi)

P

(

Φ̂0,t(xi) = x′i , Φ̂
∗

−t,0(y′j) = y j for all i, j
)

. (18)

and that qn,n
t can be written out explicitly,

qn,n
t ((x, y), (x′, y′)) = det

(

At(x, x′) Bt(x, y′)
Ct(y, x′) Dt(y, y′)

)

, (19)
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where,

At(x, x
′)i j = p̂t(xi, x

′
j) = −∇x′

j
P̂t1[x′

j
,∞)(xi),

Bt(x, y
′)i j = π(y′j)(P̂t1[y′

j
,∞)(xi) − 1( j ≤ i)),

Ct(y, x′)i j = π
−1(yi)∇̄yi

∇x′
j
P̂t1[x′

j
,∞)(yi),

Dt(y, y′)i j = −
π(y′

j
)

π(yi)
∇̄yi

P̂t1[y′
j
,∞)(yi) = pt(yi, y

′
j).

Define the family of operators
(

Qn,n
t ; t ≥ 0

)

, acting on bounded Borel functions on

Wn,n(I) by,

(Qn,n
t f )(x, y) =

∑

Wn,n(I)

qn,n
t ((x, y), (x′, y′)) f (x′, y′).

Then, with completely analogous considerations as for
(

Qn,n
t ; t ≥ 0

)

, we get that:

Proposition 2.10.
(

Qn,n
t ; t ≥ 0

)

forms a sub-Markov semigroup on Wn,n(I). We can thus associate

to it a Markov process (X,Y) = ((X(t),Y(t)) ; t ≥ 0), with possibly finite lifetime, with state space
Wn,n(I).

2.3 Intertwinings

We first denote the Karlin-McGregor semigroup associated to n D-chains by
(

Pn
t ; t ≥ 0

)

,

that is given by the following transition density, with x, y ∈Wn(I) and t ≥ 0,

pn
t (x, y) = det(pt(xi, y j))

n
i, j=1.

Similarly, define the Karlin-McGregor semigroup
(

P̂n
t ; t ≥ 0

)

associated to n D̂-chains

(killed at −1 if −1 is an absorbing boundary point) given by its transition density, with
x, y ∈Wn(I) and t ≥ 0,

p̂n
t (x, y) = det(p̂t(xi, y j))

n
i, j=1.

Now, define the positive kernelsΛn,⋆ (not necessarily of finite mass in the case ofΛn,n)
acting on Borel functions on Wn,⋆(I), whenever f is summable, by where ⋆ ∈ {n, n + 1},

(Λn,n+1 f )(x) =
∑

y∈Wn,n+1(x)

n
∏

i=1

π̂(yi) f (x, y), x ∈Wn+1(I),

(Λn,n f )(x) =
∑

y∈Wn,n(x)

n
∏

i=1

π(yi) f (x, y), x ∈Wn(I).

Note that Λn,n+1 involves π̂ while Λn,n involves π. Moreover, observe that we can al-
ternatively view Λn,⋆ as kernels from W⋆ to Wn,⋆, assigning to each x ∈ W⋆ a positive
measure Λn,⋆(x, ·) on Wn,⋆ supported on {(x, y) ∈ Wn,⋆ : x = x}. Finally, abusing notation
it is obvious that we can also view Λn,⋆ as kernels from W⋆ to Wn or as operators acting
on Borel functions on Wn.

Now, consider the projection operators Π⋆,n, acting on bounded Borel functions on
W⋆, induced by the projections on the Y-level, with ⋆ ∈ {n − 1, n},

(Π⋆,n f )(x, y) = f (y), (x, y) ∈W⋆,n.
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Proposition 2.11. For t ≥ 0, we have the following equalities,

Πn−1,nP̂n−1
t = Qn−1,n

t Πn−1,n, (20)

Πn,nPn
t = Qn,n

t Πn,n. (21)

Proof. These follow directly from the probabilistic representations (15) and (18); essen-
tially we are taking the marginal.

Alternatively, we can take the sum
∑

x′∈W⋆,n(y′) in the explicit form of the transition

kernels and use multilinearity of the determinant. For example, in the case of Qn−1,n
t the

statement of the proposition is a consequence of the following:

y′
j

∑

x′
j
=y′

j−1
+1

At (x, x′)i j = Pt1[l,y′
j
](xi) − Pt1[l,y′

j
](xi),

y′
j

∑

x′
j
=y′

j−1
+1

Ct(y, x′)i j = −π̂
−1(yi)∇yi

Pt1[l,y′
j
](yi) + π̂

−1(yi)∇yi
Pt1[l,y′

j−1
](yi).

The case of Qn,n
t is analogous. �

Remark 2.12. This, being an instance of Dynkin’s criterion, has the following probabilistic
interpretation. The evolution of the Y-level is Markovian with respect to the filtration generated
by the process (X,Y). In the case of Wn−1,n, Y evolves as n− 1 D̂-chains killed when they intersect
or when they hit −1 if −1 is absorbing and in the case of Wn,n it evolves as nD-chains killed when
they intersect. In particular, the finite lifetime of the joint process (X,Y) corresponds to the killing
time of Y.

Moreover, the following (intermediate) intertwining relations hold.

Proposition 2.13. For t ≥ 0, we have the equalities of positive kernels,

Pn+1
t Λn,n+1 = Λn,n+1Qn,n+1

t , (22)

P̂n
tΛn,n = Λn,nQn,n

t . (23)

Proof. This, similarly to the Proposition above, directly follows from the probabilistic
representations (15) and (18).

Otherwise, we can take the sum
∑

y∈Wn,⋆(x) using the explicit form of the transition
densities and multilinearity. In particular, (22) is a consequence of:

xi+1−1
∑

yi=xi

π̂(yi)Ct(y, x′)i j = ∇x′
j
Pt1[l,x′

j
](xi+1) − ∇x′

j
Pt1[l,x′

j
](xi),

xi+1−1
∑

yi=xi

π̂(yi)Dt(y, y′)i j = −π̂(y′j)Pt1[l,x′
j
](xi+1) + π̂(y′j)Pt1[l,y′

j
](xi).

The proof of (23) is analogous. �

Combining the two preceding propositions, we straightforwardly obtain the following
intertwining relations for the Karlin-McGregor semigroups (where as remarked above
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we simply write Λn,⋆ for Λn,⋆Πn,⋆), for t ≥ 0,

Pn+1
t Λn,n+1 = Λn,n+1P̂n

t , (24)

P̂n
tΛn,n = Λn,nPn

t . (25)

This gives us a machine, for constructing positive eigenfunctions for these semigroups;
in particular it is immediate that, with 1(·) denoting the function which is constant and
equal to 1 on I,

hn,n+1(·) = (Λn,n+1Λn,n · · ·Λ1,11)(·), (26)

hn,n(·) = (Λn,nΛn−1,n · · ·Λ1,11)(·), (27)

are positive harmonic functions for Pn+1
t and P̂n

t respectively. In the case of birth and
death chains, these functions will come up in terms of the multivariate Karlin-McGregor
polynomials, in relation to a general random growth process with a wall, in section 7.

Before proceeding, we need to make precise one more notion, referenced several times
already. For a sub-Markovian semigroup (P(t); t ≥ 0), with a strictly positive eigenfunc-

tion h, with eigenvalue ect, we define its Doob’s h-transform,
(

Ph(t); t ≥ 0
)

by,

(

Ph(t); t ≥ 0
)

def
=

(

e−cth−1 ◦P(t) ◦ h; t ≥ 0
)

,

which now, a fact which can be readily checked, forms an honest Markov semigroup,
Ph(t)1 = 1 (the definition extends to non time-dependent positive kernels).

Now, coming back to our two-level process, suppose ĥn is a strictly positive eigen-

function for P̂n
t namely, P̂n

t ĥn = eλntĥn then,
(

Pn+1
t Λn,n+1ĥn

)

(·) = eλnt
(

Λn,n+1ĥn

)

(·),

so that, Λn,n+1ĥn is a strictly positive eigenfunction of Pn+1
t . Moreover, observe that if ĥn is

a positive eigenfunction for P̂n
t then it is an eigenfunction (with the same eigenvalue) for

Qn,n+1
t . We can thus define an honest Markov process, with semigroup

(

Qn,n+1,ĥn

t ; t ≥ 0
)

,

which is the h-transform of
(

Qn,n+1
t ; t ≥ 0

)

by ĥn. Also, define the strictly positive function

hn+1(·) by,

hn+1(x) = (Λn,n+1ĥn)(x), x ∈Wn+1(I),

and the Markov kernelΛĥn

n,n+1
by (from the definition hn+1(x) = (Λn,n+1ĥn)(x) it is immediate

that Λĥn

n,n+1
1 = 1),

(Λĥn

n,n+1
f )(x) =

1

hn+1(x)

∑

y∈Wn,n+1(x)

n
∏

i=1

π̂(yi)ĥn(y) f (x, y), x ∈Wn+1(I).

Finally, defining
(

Pn+1,hn+1

t ; t ≥ 0
)

to be the Karlin-McGregor semigroup
(

Pn+1
t ; t ≥ 0

)

that is

h-transformed by hn+1, we arrive at our first main result.

Theorem 2.14. Let ĥn be a strictly positive eigenfunction of P̂n
t , then with the notations of the

paragraph above, we have the intertwining relations, for t ≥ 0,

Pn+1,hn+1

t Λ
ĥn

n,n+1
= Λ

ĥn

n,n+1
Qn,n+1,ĥn

t , (28)

Pn+1,hn+1

t Λ
ĥn

n,n+1
= Λ

ĥn

n,n+1
P̂n,ĥn

t . (29)
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Proof. These are immediate consequences of relations (22) and (24) respectively and the
discussion above. �

Moreover, using the theorem just obtained and the Rogers and Pitman Markov func-
tions theory (see Theorem 2 in [41] for example) we immediately get the following
proposition as a corollary.

Proposition 2.15. Consider a Markov process (X,Y) with semigroup
(

Qn,n+1,ĥn

t ; t ≥ 0
)

. Then,

the projection on the X-components evolves as a Markov process with semigroup
(

Pn+1,hn+1

t ; t ≥ 0
)

started from x, if (X,Y) is initialized according to Λĥn

n,n+1
(x, ·). Moreover, in such case, for any

fixed T ≥ 0, the conditional distribution of (X(T),Y(T)) given X(T) is Λĥn

n,n+1
(X(T), ·)

Proof. This is a straightforward application of Theorem 2 of [41], by virtue of the intertwin-
ing relation (28) above, the Markov function φ, being the projection on the X-component,
φ(x, y) = x. For the conditional distribution statement see Remark (ii) on page 575
immediately after Theorem 2 of [41]. �

Similarly, in the setting of having an equal number of particles for the two levels (i.e.
for a process in Wn,n(I)); if gn is a positive eigenfunction of Pn

t and assuming ĝn(x) =
(Λn,ngn)(x) is finite, with the analogous definitions as above, we obtain the following
theorem.

Theorem 2.16. Let gn be a strictly positive eigenfunction of Pn
t . Then, for t ≥ 0,

P̂
n,ĝn

t Λ
gn

n,n = Λ
gn

n,nQ
n,n,gn

t , (30)

P̂
n,ĝn

t Λ
gn

n,n = Λ
gn

n,nP
n,gn

t . (31)

In particular, the projection on the X-components evolves as a Markov process with semigroup
(

P̂
n,ĝn

t ; t ≥ 0
)

started from x, if (X,Y) is initialized according to Λ
gn

n,n(x, ·). Furthermore, for any

fixed time T ≥ 0, the conditional distribution of (X(T),Y(T)) given X(T) is Λ
gn

n,n(X(T), ·).

Remark 2.17. We now explain the shortest path to a complete proof of the single level intertwining
relations (29), (31), or more precisely to the proof of (24), (25). There are two essential ingredients,
the Siegmund duality Lemma 2.1 and the rather ingenious introduction of the q•,⋆t ((x, y), (x′, y′))
transition kernels. Once, we define q•,⋆t ((x, y), (x′, y′)) by (15) or (18), none of its probabilistic
properties or the coalescing flows picture are needed. We can then proceed as in the proofs of
Propositions 2.11 and 2.13 by taking the sums over x′ and y, assuming these sums converge.
Of course, if q•,⋆t ((x, y), (x′, y′)) is positive we can make use of Tonelli’s theorem to interchange
the sums, however with the possibility that both sides are infinite.

We also comment on the relation to Borodin and Olshanski’s approach in [10] (also Cuenca’s
in [17]). Their proof checks the intertwining relation at the multivariate infinitesimal level and
then concludes by a lift to semigroups. Both of our proofs of the Siegmund duality Lemma 2.1 in
the Appendix also contain such a lift, but in the single variable setting. The introduction of the
explicit coupling, equivalently of q•,⋆t ((x, y), (x′, y′)), is what allows us to essentially check such
a relation only in a single variable.

Remark 2.18. By the methods presented above, we have identified the finite lifetime of the process
Z = (X,Y) as the lifetime of the autonomous component Y, which we have described explicitly.
Moreover, under special initial conditions we have proven that the projection on the X-level turns
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xi+1

yi

z z + 1 z + 2 z + 3

xi+1

yi

z z + 1 z + 2 z + 3

Figure 6: In Wn,n+1, a jump of yi pushes (induces a simultaneous jump of) xi+1 to the right

so that the interlacing remains. Here, the jump happens with rate λ̂(z) = µ(z + 1).

out to be a Markov process as well, but the interaction between X and Y still remains unclear.
It is natural to guess, from the locality of the coalescing flow (namely that particles only interact
whence they meet) and the fact that the Y-level is autonomous, that the X-particles should be
blocked and pushed, in order for the interlacing to remain. This turns out to be exactly the case
and we pursue it next.

3 Push-block dynamics

3.1 Push-block dynamics for the two-level process

In this subsection, we prove that the qn,n+1
t transition matrix governs the dynamics of a

continuous time, possibly with finite lifetime, Markov chain (X,Y) in Wn,n+1 described
informally as follows: The Y-level consists of n independent D̂-chains and the X-level of
n + 1 independentD-chains that are ”pushed” and ”blocked” by the Y-particles, when the
process is at the boundary (precised below) ∂Wn,n+1, in order for it to remain in Wn,n+1.
The chain is killed when two Y-particles collide or hit l∗ = l − 1 i.e. at the stopping time,

TWn,n+1 = inf{t > 0 : ∃ 1 ≤ i < j ≤ n , such that Yi(t) = Y j(t) or Yi(t) = l∗}.

See Figures 6-9 for an illustration of the four possible types (pushing and blocking from
the left and from the right) of interaction between X-particles and Y-particles in Wn,n+1.

Similarly, the qn,n
t transition matrix governs the dynamics of a continuous time, possi-

bly with finite lifetime, Markov chain (X,Y) in Wn,n with the following informal descrip-
tion: The Y-level consists of n independent D-chains and the X-level of n independent
D̂-chains that are ”pushed” and ”blocked” by the Y-particles, when the process is at ∂Wn,n,
in order for it to remain in Wn,n. The chain is killed when two Y-particles collide i.e. at the
stopping time (note that compared to Wn,n+1, now Y1(t) never reaches l∗ = l − 1 since the
D-chain is reflecting at l),

TWn,n = inf{t > 0 : ∃ 1 ≤ i < j ≤ n , such that Yi(t) = Y j(t)}.

See Figures 10-13 for an illustration of the possible interactions in Wn,n and also note
the asymmetry (again related to the locations of ≤ and strict < in the definitions of
Wn,n,Wn,n+1) compared to the dynamics in Wn,n+1.

We will only consider the dynamics in Wn,n+1 in detail, as the case of Wn,n is entirely
analogous (but see Remark 3.4 below for a discussion). We define the boundary of Wn,n+1

denoted by ∂Wn,n+1, as follows,

∂Wn,n+1 = {(x, y) ∈Wn,n+1 : ∃1 ≤ i ≤ n + 1, such that with x′i = xi ± 1 then (x′, y) <Wn,n+1}.

Also, define the interior of W̊n,n+1 by W̊n,n+1 =Wn,n+1\∂Wn,n+1. Finally, define the following

indexing sets, In,n+1,+
adm

(x, y) and In,n+1,−
adm

(x, y) for (x, y) ∈Wn,n+1 (”adm” stands for admissible
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xi+1

yi

z z + 1 z + 2 z + 3

xi+1

yi

z z + 1 z + 2 z + 3

Figure 7: In Wn,n+1, a jump of xi+1 to the left is blocked by yi so that the interlacing remains.
Here, the clock of xi+1 rings with rate µ(z + 1).

xi

yi

z − 1 z z + 1 z + 2

xi

yi

z − 1 z z + 1 z + 2

Figure 8: In Wn,n+1, a jump of yi pushes (induces a simultaneous jump of) xi+1 to the left
so that the interlacing remains. Here, the jump happens with rate µ̂(z) = λ(z).

xi

yi

z z + 1 z + 2 z + 3

xi

yi

z z + 1 z + 2 z + 3

Figure 9: In Wn,n+1, a jump of xi to the right is blocked by yi so that the interlacing remains.
Here, the clock of xi rings with rate λ(z).

xi

yi

z z + 1 z + 2 z + 3

xi

yi

z z + 1 z + 2 z + 3

Figure 10: In Wn,n, a jump of yi pushes (induces a simultaneous jump of) xi to the right
so that the interlacing remains. Here, the jump happens with rate λ(z).

xi

yi

z − 1 z z + 1 z + 2

xi

yi

z − 1 z z + 1 z + 2

Figure 11: In Wn,n, a jump of xi to the left is blocked by yi so that the interlacing remains.
Here, the clock of xi rings with rate µ̂(z) = λ(z).

xi

yi+1

z − 1 z z + 1 z + 2

xi

yi+1

z − 1 z z + 1 z + 2

Figure 12: In Wn,n, a jump of yi+1 pushes (induces a simultaneous jump of) xi to the left
so that the interlacing remains. Here, the jump happens with rate µ(z + 1).
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xi

yi+1

z − 1 z z + 1 z + 2

xi

yi+1

z − 1 z z + 1 z + 2

Figure 13: In Wn,n, a jump of xi to the right is blocked by yi+1 so that the interlacing

remains. Here, the clock of xi rings with rate λ̂(z) = µ(z + 1).

jump),

In,n+1,+
adm

(x, y) = {1 ≤ i ≤ n + 1 : (x′, y) ∈Wn,n+1 with x′i = xi + 1},

In,n+1,−
adm

(x, y) = {1 ≤ i ≤ n + 1 : (x′, y) ∈Wn,n+1 with x′i = xi − 1}.

We begin, by observing that we have the following time-0 initial condition,

q0((x, y), (x′, y′)) = δ(x,y),(x′ ,y′). (32)

This follows directly from the form of qt((x, y), (x′, y′)), by noting that as t ↓ 0, the diagonal
entries converge to δxi ,x′i

, δyi ,y′i
, while all other contributions to the determinant vanish (or

see proof of Proposition 2.7).

Moreover, note that the entries of each matrix in the block determinant qn,n+1
t namely

At(x, x′), Bt(x, x′), Ct(x, x′), Dt(x, x′) (we are abusing notation slightly by using the same
notation for both the matrices and their scalar entries) solve the following differential
equations in the backwards variable x, for any x, x′ ∈ I fixed and t > 0,

d

dt
At(x, x

′) = DxAt(x, x
′), (33)

d

dt
Bt(x, x

′) = DxBt(x, x
′), (34)

d

dt
Ct(x, x

′) = D̂xCt(x, x
′), (35)

d

dt
Dt(x, x

′) = D̂xDt(x, x
′). (36)

Observe that the differential equation (35) for Ct follows from the Siegmund duality
Lemma 2.1 and reversibility with respect to π̂ of the D̂-chain.

Now, we consider the discrete generator Dn,n+1, the matrix that gives the rates of the
push-block dynamics in Wn,n+1 (see Figures 6-9 to help visualize the meaning of these
rates; also see Remark 3.4 below for the rates in Wn,n),

Dn,n+1((x, y), (x′, y′)) =











































































λ(xi) x′
i
= xi + 1 and i ∈ In,n+1,+

adm
(x, y)

µ(xi) x′
i
= xi − 1 and i ∈ In,n+1,−

adm
(x, y)

λ̂(yi) = µ(yi + 1) y′
i
= yi + 1 and i + 1 ∈ In,n+1,−

adm
(x, y)

µ̂(yi) = λ(yi) y′
i
= yi − 1 and i ∈ In,n+1,+

adm
(x, y)

λ̂(yi) = µ(yi + 1) (xi+1, yi) = (x + 1, x), (x′
i+1
, y′

i
) = (x + 2, x + 1)

µ̂(yi) = λ(yi) (xi, yi) = (x, x), (x′
i
, y′

i
) = (x − 1, x − 1)

Sn,n+1
(x,y)

(x′, y′) = (x, y)

0 otherwise

,
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where Sn,n+1
(x,y)

is given by,

Sn,n+1
(x,y)

= −
∑

i∈In,n+1,+
adm

(x,y)

λ(xi) −
∑

i∈In,n+1,−
adm

(x,y)

µ(xi) −

n
∑

i=1

[

λ̂(yi) + µ̂(yi)
]

.

Observe that, there is a non-zero rate for the transition (x, y) ∈Wn,n+1 → (x′, y′) < Wn,n+1,
which corresponds to the chain being killed (in the sequel we will identify all such
configurations with a cemetery/absorbing state †); this of course coincides with the rate
of y ∈ Wn(I) → y′ < Wn(I), which is non-zero only for y ∈ ∂Wn(I) and is furthermore
given by,

kn,n+1
(x,y)

=

n−1
∑

i=1

1
(

yi + 1 = yi+1
)

[

λ̂(yi) + µ̂(yi + 1)
]

+ 1
(

y1 = l
)

µ̂(l).

Moreover, note that the first four conditions, given in terms of the indexing sets In,n+1,+
adm

and

In,n+1,−
adm

, in Dn,n+1 above could have been replaced by, (x′, y) ∈ Wn,n+1 and (x, y′) ∈ Wn,n+1

respectively. Also, observe that in the definition of Dn,n+1 the first two rates correspond
to the free evolution of the X-particles as D-chains, the next two to the evolution of the
Y-particles as D̂-chains and the last two to the pushing mechanism (obviously, blocking
corresponds to the 0 rate).

Lemma 3.1. Then, qn,n+1
t solves the (backwards) differential equation, for (x, y), (x′, y′) ∈Wn,n+1

and t > 0:

d

dt
qn,n+1

t ((x, y), (x′, y′)) = (Dn,n+1qn,n+1
t )((x, y), (x′, y′)).

Proof. For (x, y) ∈ W̊n,n+1, the claim follows immediately from (33), (34), (35), (36) and
the multilinearity of the determinant. We will hence, now concentrate on the case of
(x, y) ∈ ∂Wn,n+1. We will only consider the case x1 = y1 = x, as all others are completely
analogous. Moreover, in order to ease notation and make the gist of the simple argument
clear we will further restrict our attention to the rows containing x1, y1 and in fact it is
easy to see that it suffices to consider the 2 × 2 matrix given by, with x′, y′ ∈ I fixed,

det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)

.

By taking the d
dt -differential of the determinant, we easily see from the differential

equations (33), (34), (35), (36) that we get,

d

dt
det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)

= λ(x)

[

det

(

At(x + 1, x′) Bt(x + 1, y′)
Ct(x, x′) Dt(x, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

+µ(x)

[

det

(

At(x − 1, x′) Bt(x − 1, y′)
Ct(x, x′) Dt(x, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

µ(x + 1)

[

det

(

At(x, x′) Bt(x, y′)
Ct(x + 1, x′) Dt(x + 1, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

λ(x)

[

det

(

At(x, x′) Bt(x, y′)
Ct(x − 1, x′) Dt(x − 1, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

.
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On the other hand, what we would like to have, according to the rates of Dn,n+1, is the
following,

d

dt
det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)

= µ(x)

[

det

(

At(x − 1, x′) Bt(x − 1, y′)
Ct(x, x′) Dt(x, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

µ(x + 1)

[

det

(

At(x, x′) Bt(x, y′)
Ct(x + 1, x′) Dt(x + 1, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

λ(x)

[

det

(

At(x − 1, x′) Bt(x − 1, y′)
Ct(x − 1, x′) Dt(x − 1, y′)

)

− det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)]

.

We are thus, required to show that,

det

(

At(x + 1, x′) Bt(x + 1, y′)
Ct(x, x′) Dt(x, y′)

)

= det

(

At(x, x′) Bt(x, y′)
Ct(x, x′) Dt(x, y′)

)

, (37)

which corresponds to x1 being blocked when x1 = y1 and x1 tries to jump to the right (see
the configuration in Figure 9) and also,

det

(

At(x, x′) Bt(x, y′)
Ct(x − 1, x′) Dt(x − 1, y′)

)

= det

(

At(x − 1, x′) Bt(x − 1, y′)
Ct(x − 1, x′) Dt(x − 1, y′)

)

, (38)

which corresponds to x1 being pushed to the left when x1 = y1 and y1 jumps to the left
(see the configuration in Figure 8). Observe that, this latter equality in display (38) is the
same as the one above in display (37), after replacing x with x− 1. Both of these equalities
follow from simple row and column operations. First recall,

At(x, x
′) = pt(x, x

′) = −∇̄x′Pt1[l,x′](x),

Bt(x, y
′) = π̂(y′)

(

Pt1[l,y′](x) − 1
)

,

Ct(y, x′) = π̂−1(y)∇y∇̄x′Pt1[l,x′](y),

Dt(y, y′) = −
π̂(y′)

π̂(y)
∇yPt1[l,y′](y) = p̂t(y, y′).

In order to obtain (37) and hence (38) as well, we work on the RHS and we multiply the
second row by −π̂(x) and add it to the first row to obtain,

At(x, x
′) − π̂(x)Ct(x, x

′) = −∇̄x′Pt1[l,x′](x) − ∇̄x′Pt1[l,x′](x + 1) + ∇̄x′Pt1[l,x′](x) = −∇̄x′Pt1[l,x′](x + 1)

= At(x + 1, x′),

and similarly for the second column, which then gives us the LHS of (37). �

We now add a cemetery state † to the state space and to (the transition matrix) qn,n+1
t , to

make it an honest (i.e. stochastic) transition matrix, denoted by q̃n,n+1
t . This corresponds

to the process with infinite lifetime, that instead of being killed, gets absorbed at † and

stays there forever. Observe that, † = {(x, y) : y <Wn(I)} and so q̃n,n+1
t and D̃n,n+1 are given

by,

q̃n,n+1
t (z,w) = qn,n+1

t (z,w), for z,w , †,

q̃n,n+1
t (†,w) = δ†,w,

q̃n,n+1
t (z, †) = 1 −

∑

w

qn,n+1
t (z,w)
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and,

D̃n,n+1(z,w) = Dn,n+1(z,w), for z,w , †,

D̃n,n+1(†,w) = 0, w , †,

D̃n,n+1(z, †) = rate of transition: y ∈Wn(I)→ y′ <Wn(I), for z = (x, y)

= kn,n+1
(x,y)

=

n−1
∑

i=1

1
(

yi + 1 = yi+1
)

[

λ̂(yi) + µ̂(yi + 1)
]

+ 1
(

y1 = l
)

µ̂(l).

Then, from our previous considerations we get:

Proposition 3.2. For fixed z,w ∈Wn,n+1 ∪ † we have for t > 0,

d

dt
q̃n,n+1

t (z,w) = (D̃n,n+1q̃n,n+1
t )(z,w). (39)

Moreover, q̃n,n+1
0

= Id and also for t ≥ 0, q̃n,n+1
t is positive.

We proceed to prove uniqueness of solutions:

Proposition 3.3. The solution to the backwards equation (39) is unique.

Proof. Following [10] we write D̃n,n+1 = −diag(D̃n,n+1) + D̄n,n+1 where diag(D̃n,n+1)(z,w) =

−D̃n,n+1(z,w)1zw and D̄n,n+1(z,w) = D̂n,n+1(z,w) if z , w and 0 otherwise. We define the

following recursion
{ (

P(k)(t); t ≥ 0
) }

k≥1
, of operators (matrices) by, for t ≥ 0,

P(0)(t) = e−diag(D̃n,n+1)t,

P(k)(t) =

∫ t

0

e−diag(D̃n,n+1)sD̄n,n+1P(k−1)(t − s)ds

and also let
(

P̃(t); t ≥ 0
)

be given by, for t ≥ 0,

P̃(t) =

∞
∑

k=0

P(k)(t).

Then (see Theorem 4.1, Corollary 4.2 of [10]),
(

P̃(t); t ≥ 0
)

is the minimal solution of the

backwards equation, d
dt S(t) = D̃n,n+1S(t) for t > 0 and S(0) = Id and if it is stochastic then,

it is the unique one. So, in such a case it must necessarily coincide with q̃n,n+1
t .

By Proposition 4.3 of [10], in order to show that the minimal solution is indeed stochas-

tic it suffices to prove that for w ∈Wn,n+1, we have Pw

(

(X(t),Y(t)) < w + [−N,N]2n+1
)

→ 0

as N →∞, for fixed t ≥ 0.
Note that,

Pw

(

(X(t),Y(t)) < w + [−N,N]2n+1
)

≤ 2(n + 1) max{Pw (Xn+1(t) > xn+1 +N) ,

Pw (X1(t) < x1 −N)}.

So it suffices to show that the probabilities on the right hand side go to 0 as N → ∞
and since both cases are completely similar, we will show that,

P (Xn+1(t) > xn+1 +N)
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vanishes as N → ∞. This is intuitively obvious, since away from (Yn(t); t ≥ 0), the top
particle (Xn+1(t); t ≥ 0) follows the non-explosiveD-chain dynamics and so the only way
for it to explode is if Yn drives it to +∞, which does not happen (since Yn is itself an
autonomous non-exploding D̂-chain ). More formally, we have (the notation is made
precise below),

P (Xn+1(t) > xn+1 +N) ≤ E

[

P

(

D̄(t) > xn+1 +N

∣

∣

∣

∣

∣

D̄(0) = sup
s≤t

D̂(s) ∨ xn+1

)]

where D̂ is a realization of a D̂-chain and the outer expectation is taken over this. Also
note that,

M = sup
s≤t

D̂(s) < ∞, a.s.

and conditioned on the realization of D̂, the chain D̄ is defined as follows: it moves as a
D-chain except that, jumps below M are suppressed, namely its rates (λ̄, µ̄) are given by,

λ̄(M) = λ(M), µ̄(M) = 0 and λ̄(k) = λ(k), µ̄(k) = µ(k), for k ≥M + 1.

This is again, non-explosive and hence,

P

(

D̄(t) > xn+1 +N

∣

∣

∣

∣

∣

D̄(0) = sup
s≤t

D̂(s) ∨ xn+1

)

→ 0, as N→ ∞.

The result now, follows from the dominated convergence theorem. �

Finally, after a Doob’s h-transform, by a strictly positive eigenfunction h of (P̂n
t ; t ≥ 0),

the rates for the two-level Markov process, evolving according to
(

Qn,n+1,h
t ; t ≥ 0

)

are given

by,

Dn,n+1((x, y), (x′, y′)) =















































































λ(xi) x′
i
= xi + 1 and i ∈ In,n+1,+

adm
(x, y)

µ(xi) x′
i
= xi − 1 and i ∈ In,n+1,−

adm
(x, y)

λ̂i
h
(y1, · · · , yn) y′

i
= yi + 1 and i + 1 ∈ In,n+1,−

adm
(x, y)

µ̂i
h
(y1, · · · , yn) y′

i
= yi − 1 and i ∈ In,n+1,+

adm
(x, y)

λ̂i
h
(y1, · · · , yn) (xi+1, yi) = (x + 1, x), (x′

i+1
, y′

i
) = (x + 2, x + 1)

µ̂i
h
(y1, · · · , yn) (xi, yi) = (x, x), (x′

i
, y′

i
) = (x − 1, x − 1)

Sn,n+1,h
(x,y)

(x′, y′) = (x, y)

0 otherwise

,

where for 1 ≤ i ≤ n,

λ̂i
h
(y1, · · · , yn) =

h(y1, · · · , yi−1, yi + 1, yi+1, · · · , yn)

h(y1, · · · , yn)
λ̂(yi),

µ̂i
h
(y1, · · · , yn) =

h(y1, · · · , yi−1, yi − 1, yi+1, · · · , yn)

h(y1, · · · , yn)
µ̂(yi)

and Sn,n+1,h
(x,y)

is given by,

Sn,n+1,h
(x,y)

= −
∑

i∈In,n+1,+
adm

(x,y)

λ(xi) −
∑

i∈In,n+1,−
adm

(x,y)

µ(xi) −

n
∑

i=1

[

λ̂i
h
(y1, · · · , yn) + µ̂i

h
(y1, · · · , yn)

]

.
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Remark 3.4. We list here the rates for the push-block dynamics in Wn,n, described informally in
the second paragraph of this subsection. With the analogous (with minor modifications due to the
positions of the ≤ and < signs, see also Figures 10-13) definitions for ∂Wn,n, W̊n,n, In,n,+

adm
(x, y) and

In,n,−
adm

(x, y) we have,

Dn,n((x, y), (x′, y′)) =











































































λ̂(xi) x′
i
= xi + 1 and i ∈ In,n,+

adm
(x, y)

µ̂(xi) x′
i
= xi − 1 and i ∈ In,n,−

adm
(x, y)

λ(yi) y′
i
= yi + 1 and i ∈ In,n,−

adm
(x, y)

µ(yi) y′
i
= yi − 1 and i − 1 ∈ In,n,+

adm
(x, y)

λ(yi) (xi, yi) = (x, x), (x′
i
, y′

i
) = (x + 1, x + 1)

µ(yi) (xi−1, yi) = (x − 1, x), (x′
i−1
, y′

i
) = (x − 2, x − 1)

Sn,n
(x,y)

(x′, y′) = (x, y)

0 otherwise

,

where Sn,n
(x,y)

is given by,

Sn,n
(x,y)
= −

∑

i∈In,n,+
adm

(x,y)

λ̂(xi) −
∑

i∈In,n,−
adm

(x,y)

µ̂(xi) −

n
∑

i=1

[

λ(yi) + µ(yi)
]

.

Again observe that, there is a non-zero rate (x, y) ∈ Wn,n → (x′, y′) < Wn,n, which corresponds
to killing the chain; this of course coincides with the rate of y ∈ Wn(I) → y′ < Wn(I), which is
only non-zero for y ∈ ∂Wn(I) and is given by,

kn,n
(x,y)
=

n−1
∑

i=1

1
(

yi + 1 = yi+1
) [

λ(yi) + µ(yi + 1)
]

.

The scheme of proof for the fact that qn,n
t describes the dynamics above is exactly the same as the

one followed for Wn,n+1.

Remark 3.5. Note that qn1 ,n2

t is the transition kernel of the push-block dynamics in Wn1 ,n2 starting
from any initial distribution ν(x, y), that is supported in Wn1 ,n2 . One should compare with the
”multilevel transition operator” for central or Gibbs measures denoted here by At, considered in
Theorem 3.12 of [8] and later used in [15] Proposition 5.3 and [16] section 5.3, that forms a
semigroup when restricted to such measures. For the two-level dynamics these correspond to a

measure on Wn1,n2 of the form mn2
(x)Λ

hn1
n1,n2

(x, y), where mn2
is a measure on Wn2 and Λ

hn1
n1,n2

(x, y)

is a normalized (Markov) intertwining kernel from section 2.3. It is of course clear that, q
n1,n2,hn1

t
andAt coincide on such measures. Currently, we have no explicit analogue of the transition kernel
for at least 3 levels starting from any initial condition.

3.2 Multilevel process construction

Let the state space I, be fixed. Suppose that, we are given a sequence of positive integers,
n(1) ≤ n(2) ≤ · · · ≤ n(N) ≤ · · · , so that n(k)−n(k− 1) ≤ 1. Moreover, we have the following
(off-diagonal) jump rates (their purpose is explained below),

r+j : Wn(1) → R+, r
−
j : Wn(1) → R+, for 1 ≤ j ≤ n(1),

λi : I→ R+, µ
i : I → R+, for i ≥ 2.
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For, k ≥ 1, the kth level will consist of n(k) (ordered) particles, i.e. will be taking values
in Wn(k). We assume that, the rates for the first level, (r+

j
, r−

j
), with 1 ≤ j ≤ n(1), which

correspond to increasing or decreasing the jth-coordinate by 1 respectively (equivalently
the jth-particle jumping to the right or to the left), give rise to non-explosive dynamics
in Wn(1). In the setting studied in this work, these are given by a conditioning, using a
Doob’s h-transformation, of n(1) independent birth and death chains (see discussion after
proof of Proposition 3.3 above for example). Furthermore, assume that the rates (λi, µi)i≥2

give rise to non-explosive (one-dimensional) birth and death chains in I.
Our goal is to construct, for each N ≥ 1, a multilevel interlaced Markov process

(

X1(t), · · · ,XN(t); t ≥ 0
)

with generator D1,··· ,N, such that for each k ≥ 1,
(

Xk+1(t); t ≥ 0
)

consists of n(k+1) independent birth and death chains, each moving with rates (λk+1, µk+1),
pushed and blocked, when at the boundary of Wn(k),n(k+1) by the (particles of the) process
(

Xk(t); t ≥ 0
)

, as in our two-level couplings from the previous subsection. We do this by

induction. For the first level define,

D1

(

x1, z1
)

=



































r+
i

(

x1
)

z1
i
= x1

i
+ 1, 1 ≤ i ≤ n(1)

r−
i

(

x1
)

z1
i
= x1

i
− 1, 1 ≤ i ≤ n(1)

−
∑n(1)

i=1

[

r+
i

(

x1
)

+ r−
i

(

x1
)]

x1 = z1

0 otherwise

.

Suppose that we have constructed a process
(

X1(t), · · · ,XN−1(t); t ≥ 0
)

, with rates of a

transition
(

x1, · · · , xN−1
)

→
(

z1, · · · , zN−1
)

given by,

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

where, for i ≥ 1, xi and xi+1, zi and zi+1, interlace. We proceed to define the rates D1,··· ,N

giving rise to
(

X1(t), · · · ,XN(t); t ≥ 0
)

. First, suppose that n(N) = n(N − 1) + 1. Then we

let the jump rates
(

x1, · · · , xN
)

→
(

z1, · · · , zN
)

,

D1,··· ,N

((

x1, · · · , xN
)

,
(

z1, · · · , zN
))

be given by,


































































λN(xN
i

) zN
i
= xN

i
+ 1 and i ∈ In(N)−1,n(N),+

adm
(xN, xN−1)

µN(xN
i

) zN
i
= xN

i
− 1 and i ∈ I

n(N)−1,n(N),−
adm

(xN, xN−1)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

xN = zN and (xN, zN−1) ∈Wn(N)−1,n(N)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

(xN
i+1
, xN−1

i
) = (x + 1, x), (zN

i+1
, zN−1

i
) = (x + 2, x + 1)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

(xN
i
, xN−1

i
) = (x, x), (zN

i
, zN−1

i
) = (x − 1, x − 1)

S
(x1,··· ,xN)
1,··· ,N

(

x1, · · · , xN
)

=
(

z1, · · · , zN
)

0 otherwise

,

where S
(x1,··· ,xN)
1,··· ,N is given by,

S
(x1,··· ,xN)
1,··· ,N = −

∑

i∈In(N)−1,n(N),+
adm

(xN ,xN−1)

λN(xN
i ) −

∑

i∈In(N)−1,n(N),−
adm

(xN ,xN−1)

µN(xN
i )

−
∑

z1,··· ,zN−1

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

.
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Similarly, if n(N) = n(N − 1) we then define D1,··· ,N

((

x1, · · · , xN
)

,
(

z1, · · · , zN
))

as follows,



































































λN(xN
i

) zN
i
= xN

i
+ 1 and i ∈ I

n(N),n(N),+
adm

(xN, xN−1)

µN(xN
i

) zN
i
= xN

i
− 1 and i ∈ I

n(N),n(N),−
adm

(xN, xN−1)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

xN = zN and (xN, zN−1) ∈Wn(N),n(N)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

(xN
i
, xN−1

i
) = (x, x), (zN

i+1
, zN−1

i
) = (x + 1, x + 1)

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

(xN
i−1
, xN−1

i
) = (x − 1, x), (zN

i−1
, zN−1

i
) = (x − 2, x − 1)

S̃
(x1,··· ,xN)
1,··· ,N

(

x1, · · · , xN
)

=
(

z1, · · · , zN
)

0 otherwise

,

where S̃
(x1,··· ,xN)
1,··· ,N is given by,

S̃
(x1,··· ,xN)
1,··· ,N = −

∑

i∈I
n(N),n(N),+
adm

(xN ,xN−1)

λN(xN
i ) −

∑

i∈I
n(N),n(N),−
adm

(xN ,xN−1)

µN(xN
i )

−
∑

z1,··· ,zN−1

D1,··· ,N−1

((

x1, · · · , xN−1
)

,
(

z1, · · · , zN−1
))

.

Observe that, by construction for any 1 ≤ k ≤ N, the process consisting of the first

k levels,
(

X1(t), · · · ,Xk(t); t ≥ 0
)

is autonomous, governed by the transition rates D1,··· ,k.

Moreover, given the trajectories of
(

Xk(t); t ≥ 0
)

, the very next (k+1)st level
(

Xk+1(t); t ≥ 0
)

,

simply moves according to the corresponding push-block dynamics in either Wn(k),n(k)+1

or Wn(k),n(k).
The fact that, the process with transition matrixD1,··· ,N just defined, is well-posed can

be seen inductively as follows. Assume that
(

X1(t), · · · ,XN−1(t); t ≥ 0
)

is almost surely

non-explosive. Then by definition, adding level-N,
(

XN(t); t ≥ 0
)

means introducing n(N)

further independent birth and death chains (particles) each moving according to the non-

explosive jump rates (λN, µN) that only interact with
(

XN−1(t); t ≥ 0
)

via the pushing and

blocking mechanism. Hence, this new enlarged process is seen to be non-explosive by
the exact same argument used at the end of the preceding subsection.

3.3 Consistent dynamics for multilevel processes

We will discuss consistency relations under which if the multilevel process, whose con-
struction we have just described, is started according to certain Gibbs or central initial
conditions, then each level evolves as a Markov process and the fixed time T > 0 distribu-
tion of the whole process retains the explicit Gibbs structure. We restrict our attention to
multilevel processes taking values in triangular arrays known as Gelfand-Tsetlin patterns.
The consistency relations and Propositions 3.6 and 3.8 below have analogues, with rather
obvious modifications, to arbitrary multilevel interlaced processes, so that the number of
particles from one level to the next increases by at most 1. We do not spell this out, since
the already heavy notation becomes quite cumbersome.

Before we continue, we note that none of the results of this subsection are essentially
new. In recent years Borodin and collaborators have many variations of constructions
of multilevel processes (see Remark 3.9). In particular Propositions 3.6 and 3.8 follow as
corollaries, after setting things up carefully, of the results found in Section 8 of [10] (see
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Figure 14: An example of a Gelfand-Tsetlin pattern of depth 4 for I = Z, with x1 = 0, x2 =

(0, 2), x3 = (−1, 1, 3), x4 = (−1, 1, 2, 5).

also Section 9 therein). The reader familiar with those constructions can safely skip to
the statements of the propositions (or skip the current subsection altogether). The reason
we decided to include this rather detailed section, other than for completeness of the
paper and sake of exposition, is because our method of proof is different; in particular
the explicit form of the transition kernel of the two-level dynamics (cf. Remark 3.5) does
not appear in any of those works (and is special to our setting).

We first consider the Gelfand-Tsetlin patterns of type-A, with N levels. These are
defined as follows,

GT(N) =
{ (

x1, · · · , xN
)

: xi ∈Wi,i+1(xi+1), for 1 ≤ i ≤ N − 1
}

. (40)

See Figure 14 for an example.
Suppose we have, for 1 ≤ k ≤ N, rates (λk(·), µk(·)) governing modulo interactions the k

independent birth and death chains of the kth level. Denote by, pk
t (·, ·) the transition density

of this chain, also let p̂k
t (·, ·) be the transition density and π̂k(·) the symmetrizing measure

of its Siegmund dual chain (with rates (λ̂k(·), µ̂k(·)). Finally, with these rates as input,

construct the process
(

X1(t), · · · ,XN(t); t ≥ 0
)

via the procedure detailed in subsection 3.2

above.
We want to be able to apply Proposition 2.15 (and Theorem 2.14) repeatedly recur-

sively, for k ≥ 2, to each pair
(

Xk−1,Xk
)

. Towards this end, suppose Xk−1 is distributed

as a Markov process in Wk−1, evolving according to the Doob’s h-transformed Karlin-
McGregor semigroup, by the strictly positive eigenfunction hk−1, with eigenvalue eck−1t,
having transition density,

e−ck−1t hk−1(y1, · · · , yk−1)

hk−1(x1, · · · , xk−1)
det

(

p̂k
t

(

xi, y j

))k−1

i, j=1
.

Moreover, define for k ≥ 2 the following strictly positive function on Wk,

Hk−1 (x1, · · · , xk) =
∑

y∈Wk−1,k(x)

k−1
∏

i=1

π̂k(yi)hk−1(y1, · · · , yk−1). (41)

Then, the basic consistency relation at the level of transition densities, which guaran-
tees that the two descriptions of Xk as the non-autonomous component of the coupling
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(

Xk−1,Xk
)

and the autonomous component of the coupling
(

Xk,Xk+1
)

match, becomes for

k ≥ 2,

e−ck−1t Hk−1(y1, · · · , yk)

Hk−1(x1, · · · , xk)
det

(

pk
t

(

xi, y j

))k

i, j=1
= e−ckt hk(y1, · · · , yk)

hk(x1, · · · , xk)
det

(

p̂k+1
t

(

xi, y j

))k

i, j=1
. (42)

For k = 1 we put by definition H0 ≡ 1 and so,

p1
t

(

x, y
)

= e−c1t h1(y)

h1(x)
p̂2

t

(

x, y
)

. (43)

Let
(

Pk(t); t ≥ 0
)

, denote the Markov semigroup that these densities give rise to and also

define the Markov kernel,

Lk
k−1

(

x, y
)

=

∏k−1
i=1 π̂

k(yi)hk−1(y1, · · · , yk−1)

Hk−1(x1, · · · , xk)
1
(

y ∈Wk−1,k(x)
)

.

Then, we have the following proposition.

Proposition 3.6. Let
(

X1(t), · · · ,XN(t); t ≥ 0
)

be the Markov process with transition matrix

D1,··· ,N, built from the non-explosive rates (λi(·), µi(·))1≤i≤N. Suppose the consistency relations

(41) and (42) hold for 1 ≤ k ≤ N − 1. Let
(

Pk(t); t ≥ 0
)

and Lk
k−1

denote the semigroups and

Markov kernels defined above and letMN(·) be a probability measure on WN . Finally, suppose that,
(

X1(t), · · · ,XN(t); t ≥ 0
)

is initialized according to the Gibbs measure with density in GT(N),

MN(xN)LN
N−1

(

xN, xN−1
)

· · ·L2
1

(

x2, x1
)

. (44)

Then,
(

Xk(t); t ≥ 0
)

for 1 ≤ k ≤ N is distributed as a Markov process evolving according to
(

Pk(t); t ≥ 0
)

and moreover, for fixed T > 0, the law of
(

X1(T), · · · ,XN(T)
)

is given by the evolved

Gibbs measure, with density in GT(N),

[

MNPN(T)
]

(xN)LN
N−1

(

xN, xN−1
)

· · ·L2
1

(

x2, x1
)

. (45)

Proof. The proof is by induction. For N = 2, this is Proposition 2.15 (see Theorem 2.14 as

well). Assume the result is true for N − 1. Then,
(

XN−1(t); t ≥ 0
)

is a Markov process with

semigroup
(

PN−1(t); t ≥ 0
)

. Moreover, from the consistency relation (42) for k = N − 1,

the joint dynamics of
(

XN−1(t),XN(t); t ≥ 0
)

are those considered in Proposition 2.15 and

thus, we obtain that
(

XN(t); t ≥ 0
)

is distributed as a Markov process with semigroup
(

PN(t); t ≥ 0
)

. Furthermore, for fixed T > 0, the conditional law of XN−1(T) given XN(T) is

LN
N−1

(

XN(T), ·
)

. Hence, since the distribution of XN(T) has density
[

MNPN(T)
]

(·), we get

by the induction hypothesis, that the fixed time T > 0, distribution of
(

X1(T), · · · ,XN(T)
)

is given by (45). �

Remark 3.7. If there exist (positive) functions { fk(·)}N
k=2

such that, for 2 ≤ k ≤ N,

hk(x1, · · · , xk) =

k
∏

i=1

fk(xi)Hk−1(x1, · · · , xk)
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Figure 15: An example of a symplectic Gelfand-Tsetlin pattern of depth 2 (note that it has
4 levels), for I =N, with x(0,1) = 0, x(1,1) = 1, x(1,2) = (0, 2), x(2,2) = (0, 2).

and moreover functions {Gk(T, ·)}N
k=1

so that,

[

MNPN(T)
]

(x1, · · · , xN) = HN−1(x1, · · · , xN) det
(

Gi(T, x j)
)N

i, j=1

then (45) simplifies to:

det
(

Gi

(

T, xN
j

))N

i, j=1

N
∏

k=2

k−1
∏

i=1

π̂k
(

xk−1
i

)

h1

(

x1
1

)

N
∏

k=2

k
∏

i=1

fk
(

xk
i

)

N−1
∏

k=1

1
(

xk ∈Wk,k+1(xk+1)
)

.

Hence, since the interlacing constraints can be written as a determinant, for some function g(·, ·)
of two variables, see section 7 for the details, the display above becomes,

det
(

Gi

(

T, xN
j

))N

i, j=1

N
∏

k=2

k−1
∏

i=1

π̂k
(

xk−1
i

)

h1

(

x1
1

)

N
∏

k=2

k
∏

i=1

fk
(

xk
i

)

N−1
∏

k=1

det
(

g
(

xk
i , x

k+1
j

))k+1

i, j=1
.

These types of measures, by the celebrated Eynard-Mehta Theorem (see [14]), give rise to de-
terminantal point processes with an extended correlation kernel K, which can in principle be
computed.

In order to obtain this explicitly however, one has to invert a certain matrix or do some kind of
bi-orthogonalization which is usually a very daunting task. For a particular, but still quite general,
solution of the consistency relations, in the setting of a symplectic Gelfand-Tsetlin pattern, see the
discussion after Proposition 3.8 below, we are able to perform such a computation in Section 10
later on. In fact these computations carry over to a large class of consistent probability measures,
that include the ones corresponding to the dynamics considered in this section as special cases, the
reader is referred to sections 8 to 10 for these developments.

We shall now consider coherent dynamics in symplectic Gelfand-Tsetlin patterns of
depth N defined by,

GTs(N) =
{ (

(x(0,1), x(1,1) · · · , x(N−1,N)
)

: x(i−1,i) ∈Wi,i(x(i,i)), x(i,i) ∈Wi,i+1(x(i,i+1))
}

, (46)

with the notation convention of using two superscript indices to indicate the number of
particles at both the preceding and current levels. See Figure 15 for a simple example.

Suppose that, for each level of GTs(N) we are given (non-explosive) birth and death
rates (λ(k,k)(·), µ(k,k)(·)) and (λ(k,k+1)(·), µ(k,k+1)(·)) and from these we construct a Markov
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process
(

X(0,1)(t),X(1,1)(t) · · · ,X(N−1,N)(t); t ≥ 0
)

, using the recipe detailed in subsection 3.2.

In order to proceed and be able to state the basic consistency relations, we need one
more piece of notation. Define the operation ·̌ on transition matrices of birth and death
(or bilateral) chains, as the inverse of the ·̂ operation, i.e. as the inverse of taking the
Siegmund dual. More explicitly, for a chain with birth rates b(·) and death rates d(·) this
is given by:

(

b̌(z), ď(z)
)

def
= (d(z), b(z − 1)) , z ∈ I.

Observe that, in case I =N this is only defined on chains absorbed at −1. Finally, we shall
use the same notations as before, with obvious modifications, for the transition densities
and symmetrizing measures of the chains with rates (λ(k,k)(·), µ(k,k)(·)), (λ(k,k+1)(·), µ(k,k+1)(·))
and their various transforms.

We would like Proposition 2.15 (see also Theorem 2.14) to be applicable, for 1 ≤ k ≤

N − 1, to each pair
(

X(k,k),X(k,k+1)
)

and Theorem 2.16 to be applicable, for 1 ≤ k ≤ N − 1, to

each pair of the form
(

X(k−1,k),X(k,k)
)

, respectively.

Towards this end, suppose that X(k−1,k−1) evolves according to the h-transformed,
by the strictly positive eigenfunction hk−1,k−1 with eigenvalue eck−1,k−1t, Karlin-McGregor
semigroup with transition kernel in Wk−1,

e−ck−1,k−1t hk−1,k−1(y1, · · · , yk−1)

hk−1,k−1(x1, · · · , xk−1)
det

(

p̂
(k−1,k)
t

(

xi, y j

))k−1

i, j=1

and moreover, define for k ≥ 2 the following strictly positive function on Wk,

Hk−1,k−1 (x1, · · · , xk) =
∑

y∈Wk−1,k(x)

k−1
∏

i=1

π̂(k−1,k)(yi)hk−1,k−1(y1, · · · , yk−1). (47)

We also define, H0,0 ≡ 1. Similarly, suppose that X(k−1,k) evolves according to the following
h-transformed, by the strictly positive eigenfunction hk−1,k with eigenvalue eck−1,kt, Karlin-
McGregor semigroup with transition kernel in Wk,

e−ck−1,kt hk−1,k(y1, · · · , yk)

hk−1,k(x1, · · · , xk)
det

(

p̌
(k,k)
t

(

xi, y j

))k

i, j=1

and also, define for k ≥ 1 the following strictly positive function on Wk,

Hk−1,k (x1, · · · , xk) =
∑

y∈Wk,k(x)

k
∏

i=1

π̌(k,k)(yi)hk−1,k(y1, · · · , yk). (48)

Then, the basic consistency relations at the level of transition densities, which ensure
that the descriptions of the levels X(k−1,k) and X(k,k) in two consecutive two-level couplings
match, become,

e−ck−1,k−1t Hk−1,k−1(y1, · · · , yk)

Hk−1,k−1(x1, · · · , xk)
det

(

p
(k−1,k)
t

(

xi, y j

))k

i, j=1
= e−ck−1,kt hk−1,k(y1, · · · , yk)

hk−1,k(x1, · · · , xk)
det

(

p̌
(k,k)
t

(

xi, y j

))k

i, j=1
,

(49)

e−ck−1,kt Hk−1,k(y1, · · · , yk)

Hk−1,k(x1, · · · , xk)
det

(

p
(k,k)
t

(

xi, y j

))k

i, j=1
= e−ck,kt hk,k(y1, · · · , yk)

hk,k(x1, · · · , xk)
det

(

p̂
(k,k+1)
t

(

xi, y j

))k

i, j=1
.

(50)
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Let,
(

P(k−1,k)(t); t ≥ 0
)

and
(

P(k,k)(t); t ≥ 0
)

denote the corresponding semigroups these

transition densities give rise to and finally define the Markov kernels,

L(k−1,k)(x, y) =

∏k−1
i=1 π̂

(k−1,k)(yi)hk−1,k−1(y1, · · · , yk−1)

Hk−1,k−1(x1, · · · , xk)
1
(

y ∈Wk−1,k(x)
)

,

L(k,k)(x, y) =

∏k
i=1 π̌

(k,k)(yi)hk−1,k(y1, · · · , yk)

Hk−1,k(x1, · · · , xk)
1
(

y ∈Wk,k(x)
)

.

Then, with similar considerations as in Proposition 3.6 above, by inductively applying
Proposition 2.15 and Theorem 2.16 interchangeably we obtain:

Proposition 3.8. Let
(

X(0,1)(t),X(1,1)(t) · · · ,X(N−1,N)(t); t ≥ 0
)

be the multilevel Markov process

in GTs(N) built from the (non-explosive) rates (λ(k,k)(·), µ(k,k)(·)) and (λ(k,k+1)(·), µ(k,k+1)(·)). Sup-
pose that, for all k the consistency relations (50) hold. LetM(N−1,N) (·) be a probability measure on

WN. Suppose that,
(

X(0,1)(t),X(1,1)(t) · · · ,X(N−1,N)(t); t ≥ 0
)

is initialized according to the Gibbs

measure with density in GTs(N),

M(N−1,N)(x(N−1,N))LN
N−1

(

x(N−1,N), x(N−1,N−1)
)

· · ·L2
1

(

x(1,2), x(1,1)
)

L1
1

(

x(1,1), x(0,1)
)

. (51)

Then, for each k the projections
(

X(k,k)(t); t ≥ 0
)

and
(

X(k,k+1)(t); t ≥ 0
)

are distributed as Markov

processes, evolving according to the semigroups
(

P(k,k)(t); t ≥ 0
)

and
(

P(k,k+1)(t); t ≥ 0
)

respec-

tively. Moreover, for fixed times T > 0, the law of
(

X(0,1)(T),X(1,1)(T) · · · ,X(N−1,N)(T)
)

has density

in GTs(N) given by,

[

M(N−1,N)P(N−1,N)(T)
]

(x(N−1,N))LN
N−1

(

x(N−1,N), x(N−1,N−1)
)

· · ·L2
1

(

x(1,2), x(1,1)
)

L1
1

(

x(1,1), x(0,1)
)

.

(52)

The most natural solution (this fact is readily checked) to the consistency relations (49)
and (50) in a symplectic Gelfand-Tsetlin pattern, for I = N, is given by, with (λ(·), µ(·))
being the rates of a reflecting at the origin (non-exploding) birth and death chain,

(

λ(k,k+1)(·), µ(k,k+1)(·)
)

=
(

λ(·), µ(·)
)

, for k ≥ 0, (53)
(

λ(k,k)(·), µ(k,k)(·)
)

=
(

λ̂(·), µ̂(·)
)

, for k ≥ 1. (54)

As already stated several times, this particular construction and its intimate relation to
orthogonal polynomials will be studied in detail in later sections.

Remark 3.9. As already mentioned, a related approach for constructing continuous-time consis-
tent multivariate/multilevel dynamics on countable spaces, which partly inspired our exposition,
can be found in Section 8 of [10]. This takes as input the following: a sequence E1, · · · ,EN

of countable sets, Q1, · · · ,QN (regular) matrices of transition rates on these sets (equivalently
(P1(t); t ≥ 0), · · · , (PN(t); t ≥ 0) the Markovian semigroups corresponding to them) and Markov
kernels Λ2

1
, · · · ,ΛN

N−1
:

Λk
k−1 : Ek × Ek−1 → [0, 1] ,

∑

y∈Ek−1

Λk
k−1(x, y) = 1,∀x ∈ Ek, k = 2, · · · ,N.
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Finally, it is assumed that the intertwining/coherency relations between the (single level) semi-
groups/transition matrices hold, for k = 2, · · · ,N:

QkΛ
k
k−1 = Λ

k
k−1Qk−1,

Pk(t)Λk
k−1 = Λ

k
k−1Pk−1(t), t ≥ 0.

Then, from this data a consistent coupling is provided, with the analogous consequences of
Proposition 3.6 and 3.8 above, see Proposition 8.6 in [10]. In particular, using only the single
level intertwining relations (29) and (31), which are elementary to obtain c.f. Remark 2.17, we
could have made use of the theory developed in Section 8 of [10] to construct consistent multilevel
dynamics. However, since we already have a two-level coupling, from which as we tried to stress
throughout this work (29) and (31) originate after all, and for completeness of this paper, we
decided to present and discuss in detail the multilevel construction in subsections 3.2 and 3.3.

4 Branching graphs andMarkov processes on their boundaries

4.1 General setup of branching graphs

We assume that we are given a set of vertices V, decomposed into levels V = ⊔∞
N=1

VN,
where each VN is countable. We moreover, assume that for each x ∈ VN+1 there is at least
one edge but not infinitely many connecting it to a vertex in VN and for each y ∈ VN there
is at least one edge connecting it to a vertex in VN+1. There are no edges between vertices
of non-consecutive levels.

For N ≥ 1 and each x ∈ VN+1 and y ∈ VN, let mult(x, y) ∈ R+ denote the multiplicity
or weight of the edge connecting x and y. If there is no such edge then this is 0. Define
inductively the dimension of x ∈ VN+1 by,

dimN+1(x) =
∑

y∈VN

mult(x, y)dimN(y).

Note that, we need to stipulate dim1(·) for vertices at the first level. In all the examples
that we consider, this will always be 1. We can then define the Markov kernel or link
ΛN+1

N
: VN+1 → VN (note that this is a generalized map, that maps a point in VN+1 to a

probability measure on VN) as follows,

ΛN+1
N (x, y) =

mult(x, y)dimN(y)

dimN+1(x)
.

Denoting byMp(E) the space of probability measures on a measurable space E (Mp(E) is
a Banach space with the total variation norm), the kernels {ΛN+1

N
}N≥1 induce the following

projective chain,

Mp(V1)←Mp(V2)← · · ·Mp(VN)← · · · .

The projective limit lim
←
Mp(VN), is by definition the convex set consisting of sequences of

probability measures {µN}
∞
N=1

that are coherent with respect to the links,

µN+1Λ
N+1
N = µN,
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or more explicitly, for y ∈ VN,

µN(y) =
∑

x∈VN+1

µN+1(x)ΛN+1
N (x, y).

This space is equipped with the projective limit topology. Now, we will call the extreme

points of lim
←
Mp(VN) denoted by V∞ = Ex

(

lim
←
Mp(VN)

)

, the boundary of the branch-

ing graph (or more generally of the projective chain) with the topology inherited from
lim
←
Mp(VN). Then, from Theorem 9.2 of [39] we get that if V∞ , 0, then there exists a

natural map,

Mp(V∞)→ lim
←
Mp(VN), (55)

that is an isomorphism of measurable spaces. More precisely, V∞ comes along with a
family of (abstract) Markov kernels Λ∞

N
: V∞ → VN, which induce a map Mp(V∞) →

lim
←
Mp(VN), which is an isomorphism of measurable spaces. It is a remarkable fact that

in certain concrete situations the (abstract) Markov kernels Λ∞N : V∞ → VN can be given
explicitly. Moreover, we will say that a Markov kernel from a locally compact space X
to a locally compact space Y is Feller if the induced contraction that maps C(Y) to C(X)
in fact maps C0(Y) into C0(X) , the continuous functions vanishing at infinity. We finally
come to the following definition.

We shall say that, V∞ is the Feller boundary of the branching graph if V∞ is locally
compact, for all N ≥ 1 the Markov kernels ΛN+1

N ,Λ∞N are Feller and furthermore the map
(55) is an isomorphism of measurable spaces.

4.2 Method of intertwiners and semigroups on the boundary

The following theorem is known as the method of intertwiners, first proven by Borodin
and Olshanski in [10]:

Theorem 4.1. Assume that V∞ is the Feller boundary of the branching graph described above.
Assume that, ∀N ≥ N0 we have Feller semigroups (PN(t); t ≥ 0) on the levels VN, that satisfy the
following intertwining relations, for all t ≥ 0 and N ≥ N0,

PN+1(t)ΛN+1
N = ΛN+1

N PN(t).

Then, there exists a unique Feller semigroup (P∞(t); t ≥ 0) on V∞ such that,

P∞(t)Λ∞N = Λ
∞
N PN(t), for t ≥ 0,N ≥ N0.

Furthermore, if µN is the unique invariant probability measure for (PN(t); t ≥ 0) then there exists
a unique probability measure µ∞ on V∞ that is invariant with respect to (P∞(t); t ≥ 0).

4.3 Examples of branching graphs

In this subsection, we describe three examples of branching graphs. The first two are
classical and originated from the representation theory of Lie groups. The third one, the
generalized BC-type branching graph, is new and is related to the two-step branching
rules for the multivariate Karlin-McGregor polynomials. We will provide rather complete
information for the Gelfand-Tsetlin graph, since we will mainly focus on it in Section 5.
The same kind of information is available for the BC-type graph, although the notation
gets a bit more cumbersome, while for the generalized BC-type branching graph much
less is known.
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Figure 16: An example of a path of length 4 in the Gelfand-Tsetlin graph, given by a
Gelfand-Tsetlin pattern of depth 4. Here the path in terms of signatures κ1 → κ2 → κ3 →
κ4 is given by κ1 = 1, κ2 = (3, 1), κ3 = (4, 2,−1), κ4 = (5, 3, 1,−2), which transformed into
our notation gives, x1 = 1, x2 = (1, 4), x3 = (−1, 3, 6), x4 = (−2, 2, 5, 8).

The Gelfand-Tsetlin graph The vertices at level N of this branching graph are given by
signatures of length N, i.e. integer sequences κ = (κ1, · · · , κN) so that κ1 ≥ κ2 ≥ · · · ≥ κN.
Moreover, vertices κ at level N and ν at level N + 1 are connected if they interlace in the
following way, ν1 ≥ κ1 ≥ ν2 ≥ · · · ≥ κN ≥ νN+1, the multiplicity mult(ν, κ) being equal to 1
in such a case. To transform this into our notation, note that there is a bijection,

(κ1 ≥ · · · ≥ κN) 7→ (y1 < y2 < · · · < yN),

given by,

κ̃i = κi +N − i and yi = κ̃N−i.

Observe that, under this bijection if,

ν = (ν1 ≥ · · · ≥ νN+1) 7→ x = (x1 < x2 < · · · < xN+1),

κ = (κ1 ≥ · · · ≥ κN) 7→ y = (y1 < y2 < · · · < yN),

then, ν1 ≥ κ1 ≥ ν2 ≥ · · · ≥ κN ≥ νN+1 if and only if y ∈ WN,N+1(x). Hence, observe that a
path of length N is given by a Gelfand-Tsetlin pattern (of type-A) of depth N. See Figure
16 for an example.

The Gelfand-Tsetlin graph has a representation theoretic origin, vertices at level N
parametrize the irreducible characters of U(N), the N-dimensional unitary group. The
edges correspond to how an irreducible representation ofU(N) when restricted toU(N−1)
splits into irreducibles (since when restricted it becomes reducible).

It is a remarkable Theorem, originally due to Edrei [22] (in an equivalent form) and
Voiculescu [48] (see also [47], [37], [9]) that the boundary of the Gelfand-Tsetlin graph can
be described explicitly. In order to do this, we need some more definitions.

Let R∞+ denote the product of countably many copies of R+ and also write R4∞+2
+ =

R∞+ × R
∞
+ × R

∞
+ × R

∞
+ × R+ × R+, equipped with the product topology. Then, consider

Ω ⊂ R4∞+2
+ the set of sextuples,

ω = (α+, β+;α−, β−; δ+, δ−),
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so that,

α± = (α±1 ≥ α
±
2 ≥ · · · ≥ 0) ∈ R∞+ and β± = (β±1 ≥ β

±
2 ≥ · · · ≥ 0) ∈ R∞+ ,

∞
∑

i=1

(α±i + β
±
i ) ≤ δ± and β+1 + β

−
1 ≤ 1.

Note that,Ω is locally compact under the induced topology. Then set,

γ± = δ± −
∞
∑

i=1

(α±i + β
±
i )

and observe that γ± ≥ 0 and define for u ∈ C∗ and ω ∈ Ω the function Φ (ω; u) given by,

Φ (ω; u) = eγ
+(u−1)+γ−(u−1−1)

∞
∏

i=1

1 + β+
i

(u − 1)

1 − α+
i

(u − 1)

1 + β−
1

(u−1 − 1)

1 − α−
i

(u−1 − 1)
.

As its poles do not accumulate to 1, the function Φ (ω; u) is holomorphic in a neighbour-
hood of the unit circle T = {u ∈ C : |u| = 1}. For n ∈ Z, we denote its Laurent coefficient
by,

φn(ω) =
1

2πi

∮

T

Φ (ω; u)
du

un+1

and for a signature ν = (ν1, · · · , νN) of length N define,

φν(ω) = det
(

φνi−i+ j(ω)
)N

i, j=1

and the Markov kernels Λ∞
N

: Ω→ VN by,

Λ∞N (ω, ν) = dimN(ν)φν(ω) ,∀N ≥ 1, ω ∈ Ω, ν = (ν1, · · · , νN),

where dimN(ν) =
∏

1≤i< j≤N
νi−ν j+ j−i

j−i is the dimension of a level-N signature ν = (ν1, · · · , νN).

Then, Ω is the Feller boundary of the Gelfand-Tsetlin graph with link from Ω to level
N given by Λ∞

N
(for the Feller property in particular, see Corollary 2.11 of [9]).

BC-type branching graph This graph has a representation theoretic origin as well. For
certain values of its multiplicities it describes the branching of the irreducible characters
of the Lie groups {SO(2N + 1)}N≥1, {Sp(2N)}N≥1 and {O(2N)}N≥1. Vertices at level N are
now given by positive signatures of length N, namely κ = (κ1 ≥ · · · ≥ κN ≥ 0) with two
vertices κ = (κ1 ≥ · · · ≥ κN ≥ 0) and ν = (ν1 ≥ · · · ≥ νN+1 ≥ 0) being connected by
an edge and we write κ ≺BC ν, if and only if there exists an ”intermediate” signature
ρ = (ρ1 ≥ · · · ≥ ρN ≥ 0) such that,

ρ1 ≥ κ1 ≥ · · · ≥ ρN ≥ κN and ν1 ≥ ρ1 ≥ · · · ≥ ρN ≥ νN+1,

or equivalently in our notation, under the transformation described previously in the
context of the Gelfand-Tsetlin graph κ 7→ y, ρ 7→ z and ν 7→ x,

y ∈WN,N(z) and z ∈WN,N+1(x).
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The multiplicities are now given in terms of certain coefficients associated to the multi-
variate θ = 1 Jacobi polynomials, so they depend on two real parameters a, b; see Section
3 of [17] for more details. It is a theorem, originally of Okounkov and Olshanski [38],
but also see Section 3 of [17] for a nice exposition and a proof of the Feller property, that
the boundary of the BC-type branching graph can be parametrized by the space ΩBC

(which does not depend on a, b) being the closed subspace of R2∞+1
+ consisting of points

ωBC = (αBC, βBC, δBC) such that,

αBC = (αBC
1 ≥ α

BC
2 ≥ · · · ≥ 0) ∈ R∞+ , β

BC = (1 ≥ βBC
1 ≥ β

BC
2 ≥ · · · ≥ 0) ∈ R∞+ and

∞
∑

i=1

(αBC
i + β

BC
i ) ≤ δBC.

Alternating construction and generalized BC-type branching graph This corresponds
to the construction of a general random growth process with a wall in later sections,
which we call the alternating construction. The graph consists of the vertices and edges
of the BC-type branching graph described above, but with more general multiplicities
(in particular the BC-type graph is a special case). Of course, these multiplicities are not
arbitrary but arise from the consistent dynamics between Karlin-McGregor semigroups
namely (24) and (25), or from the branching rules for multivariate Karlin-McGregor
polynomials. These polynomials arise as follows: to any family {Qi}i≥1 of orthogonal
polynomials in [0,∞) we can associate a multivariate determinantal version, indexed

by ν ∈ WN, by det
(

Qνi
(x j)

)N

i, j=1
/det

(

xi−1
j

)N

i, j=1
. Then using the branching rules for these

polynomials, see Section 7 (also the Appendix) one can obtain the following general
multiplicities. In the notation of this paper, if we define the following (positive) weight
functions by,

(z, y) ∈WN,N(N) , wN,N(z, y) =

N
∏

i=1

π(yi),

(x, z) ∈WN,N+1(N) , wN,N+1(x, z) =

N
∏

i=1

π̂(zi),

then, the multiplicities are given by,

mult(x, y) =
∑

z:y∈WN,N(z),z∈WN,N+1(x)

wN,N(z, y)wN,N+1(x, z).

Moreover, observe that for x ∈ WN+1, its dimension in the branching graph is given by
the harmonic function from (26),

dimN+1(x) = hN,N+1(x) = (ΛN,N+1ΛN,N · · ·Λ1,11)(x).

Under a certain positive definiteness assumption, which admittedly can be non-trivial to
check (see Appendix), our results from sections 8 and 9 partially describe the boundary
of these graphs. More precisely, we first introduce a large class of coherent measures for
this graph in Section 8. Combining Lemma 8.3 (see also subsection 9.2) and the results of
subsection 11.3 in the Appendix (under this positive definiteness assumption, see Remark
11.4) we show that these coherent sequences are actually extremal.

Remark 4.2. The projective chains associated to all these graphs can also be recast in terms of
branching coefficients of certain families of (symmetric) functions (see Appendix).
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5 Examples of consistent dynamics

Before giving any examples we first record some useful facts and fix notation. Throughout
this section we will denote the Vandermonde determinant by,

∆n(x) =
∏

1≤i< j≤n

(x j − xi), x ∈Wn(I).

We will consider a difference operator L that is the generator of a birth and death chain
or a bilateral birth and death chain with quadratic rates, i.e. so that with x ∈ I,

L = (ax2 + bx + c)∇ + (ax2 + b̄x + c̄)∇̄.

We assume throughout that, a, b, c, b̄, c̄ are such that the rates are positive namely,

λ(x) = (ax2 + bx + c) > 0 and µ(x) = (ax2 + b̄x + c̄) > 0 , ∀x ∈ I

and that conditions (8),(9) or (10),(11),(12) and (13) respectively are always satisfied for all
chains considered in this subsection. Finally, observe that we need the leading coefficient
a to be the same for both rates.

Now, with all these requirements in place a direct computation (see e.g. [21] Proposi-
tion 6.2.1) gives that,

n
∑

i=1

Lxi
∆n(x) =

(

a
n(n − 1)(n − 2)

3
+ (b − b̄)

n(n − 1)

2

)

∆n(x), x ∈Wn(I),

where each Lxi
is a copy of the difference operator L acting in the xi variable. So that, we

can h-transform n independent copies of L-chains by ∆n to stay in Wn(I).
Define the following operator from functions on Wn(I) to functions on Wn+1(I), these

when viewed as Markov kernels from Wn+1(I) to Wn(I) are the links that appear in the
Gelfand-Tsetlin graph by,

(LVnd
n→n+1 f )(x) =

n!

∆n+1(x)

∑

y∈Wn,n+1(x)

∆n(y) f (y), x ∈Wn(I).

Then, we have the following lemma.

Lemma 5.1. For n ≥ 1, the kernels LVnd
n→n+1

are Feller.

Proof. In order to prove this, it suffices to apply the kernel LVnd
n→n+1

to a delta function δy

and show that (LVnd
n→n+1

δy)(x) vanishes as x → ∞. This can be readily checked, see e.g.
Proposition 3.3 of [10] for the details. �

Now, suppose that we are given as above the following birth and death (reflecting at
the origin, µ(0) = 0) or bilateral (I = Z) chain with generatorD = L so that,

D(x, y) =























ax2 + bx + c y = x + 1

−(ax2 + bx + c) − (ax2 + b̄x + c̄) y = x

ax2 + b̄x + c̄ y = x − 1

.

Then, a simple computation gives us that the h-transform of the chain with generatorD
by the strictly positive function π̂−1 (which is an eigenfunction with eigenvalue b − b̄) is
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the (reflecting) birth and death (or bilateral birth and death chain) with generator D̃with
rates,

D̃(x, y) =























a(x + 1)2 + b(x + 1) + c y = x + 1

−(a(x + 1)2 + b(x + 1) + c) − (ax2 + b̄x + c̄) y = x

ax2 + b̄x + c̄ y = x − 1

.

Moreover, we define
(

P∆n+1

n+1
(t); t ≥ 0

)

to be the Karlin-McGregor semigroup of n + 1

copies of D-chains h-transformed by ∆n+1 and similarly
(

P̃∆n
n (t); t ≥ 0

)

to be the Karlin-

McGregor semigroup of n copies of D̃-chains h-transformed by ∆n. Then as expected
these possess the Feller property.

Lemma 5.2. The semigroups
(

P∆n+1

n+1
(t); t ≥ 0

)

and
(

P̃∆n
n (t); t ≥ 0

)

are Feller for any n.

Proof. This, again easily follows by applying these semigroups to δy and making use of
the fact that the one dimensional transition densities in the Karlin-McGregor semigroups
satisfy pt(xi, y j), p̃t(xi, y j)→ 0 as xi →∞ (or −∞) and that moreover ∆n(x) ≥ 1. �

Then, Theorem 2.14 and in particular, the intertwining relation (29) immediately gives
the following proposition which is the main result of this subsection.

Proposition 5.3. P∆n+1

n+1
(t)LVnd

n→n+1
f = LVnd

n→n+1
P̃∆n

n (t) f , for n ≥ 1, f ∈ C0(Wn(I)) and t ≥ 0 .

We now, list several interesting applications of this proposition. For a = b = b̄ = 0
and c, c̄ > 0, we obtain the well known intertwining between non-colliding (asymmetric)
continuous time random walks.

For a linear birth and death chain, i.e. with a parameter θ > 0 and rates given by,

Dθ(x, y) =























x + θ y = x + 1

−2x − θ y = x

x y = x − 1

,

we get that,

D̃θ(x, y) =























x + θ + 1 y = x + 1

−2x − θ − 1 y = x

x y = x − 1

.

Observe that D̃θ =Dθ+1,the birth rate or equivalently the drift to the right of the preceding
level increased by 1, in particular such a construction cannot be iterated indefinitely.
Moreover, Proposition 5.3 gives the discrete analogue of the intertwining between n + 1
non-intersecting squared Bessel processes of dimension d abbreviated by BESQ(d) and n
non-intersecting BESQ(d + 2) (see Proposition 3.14 of [2]).

We can also consider the Meixner process, which is the analogue of the Laguerre
diffusion (a BESQ process with a restoring drift towards the origin, for certain choices of
parameters the modulus of Ornstein Uhlenbeck processes, for more details see [2]) with
parameters r, θ > 0,

DMe
r,θ (x, y) =























r(x + θ) y = x + 1

−r(x + θ) − (r + 1)x y = x

(r + 1)x y = x − 1

,
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then,

D̃Me
r,θ (x, y) =























r(x + θ + 1) y = x + 1

−r(x + θ + 1) − (r + 1)x y = x

(r + 1)x y = x − 1

.

Similarly as above, we see that D̃Me
r,θ
= DMe

r,θ+1
, so that the drift to the right has decreased

from the preceding level, or when thinking in terms of the couplings, the birth rate for
the autonomous particles is greater by 1.

As a final example, we consider the bilateral birth and death chain studied by Borodin
and Olshanski in [10], with u, u′, v, v′ ∈ C satisfying the assumptions in section 5.1 therein
(these ensure well-posedness and non-explosion, moreover note that although the pa-
rameters can be complex, they really correspond to 4 free real parameters ),

D
U(∞)
u,u′,v,v′(x, y) =























(x − u)(x − u′) y = x + 1

−(x − u)(x − u′) − (x + v)(x + v′) y = x

(x + v)(x+ v′) y = x − 1

,

so that,

D̃
U(∞)
u,u′,v,v′(x, y) =























(x + 1 − u)(x + 1 − u′) y = x + 1

−(x + 1 − u)(x + 1 − u′) − (x + v)(x+ v′) y = x

(x + v)(x+ v′) y = x − 1

.

As before note the following fact, D̃
U(∞)
u,u′ ,v,v′ =D

U(∞)
u−1,u′−1,v,v′ . Then, Proposition 5.3 above

immediately gives as a corollary Theorem 6.1 of [10]. This along with the method of inter-
twiners (see Subsection 4.2), constructs a Feller process on the boundaryΩ of the Gelfand-
Tsetlin graph. We note that the motivation behind these specific rates stems from the
fact that the corresponding semigroups leave invariant the so called zw-measures, which
are consistent measures on the Gelfand-Tsetlin graph and whose decomposition into ex-
tremal coherent measures is the problem of harmonic analysis on the infinite dimensional
unitary groupU(∞) (for more details see [39]).

Characterization of Vandermonde intertwiners for push-block dynamics The choice
of quadratic rates might have seemed a bit arbitrary. We now proceed to briefly explain
its significance. More specifically, we show that in order for the Vandermonde links,

(LVnd
n→n+1 f )(x) =

n!

∆n+1(x)

∑

y∈Wn,n+1(x)

∆n(y) f (y), x ∈Wn(I),

to intertwine the levels of the (type-A) Gelfand-Tsetlin pattern valued process moving
according to the push-block dynamics considered in the two-level couplings of this paper
(or c.f. equality (29), for the semigroups for each level to be consistent with these links)
then, the rates λ(x) and µ(x) must be quadratic functions of x ∈ I, with coefficients related
as shown below in displays (56) and (57).

Starting from the process of the two first levels, taking values in W1,2, it is easy to
see from relation (28) that we need π̂−1 to be an eigenfunction of the generator D̂ for the
resulting intertwining kernel to be given by,

1

x2 − x1
1(x1 ≤ y < x2).

48



T. Assiotis

Since D̂ is reversible with respect to π̂, this requirement is equivalent to the fact that
the transpose (when viewed as an infinite matrix indexed byN or Z) of D̂ minus some
constant times the identity matrix ( D̂T − const × Id) is the generator of a birth and death
(or bilateral) chain with rates,

D̃(x, y) =























λ̃(x) = λ(x + 1) y = x + 1

−λ(x + 1) − µ(x) y = x

µ̃(x) = µ(x) y = x − 1

.

Now this is true, if and only if, for some constant c0,

λ(x + 1) + µ(x) − µ(x + 1) − λ(x) = c0 ,∀x ∈ Z.

Then, moving to the two-level process taking values in W2,3, an analogous consideration
(with λ, µ still denoting the birth and death rates of the chains on the 2nd level) leads to
the extra requirement that,

λ(x + 2) + µ(x) − µ(x + 1) − λ(x + 1) = c1 ,∀x ∈ Z.

These two conditions are now sufficient to characterize λ(x) and µ(x) as quadratic func-
tions of x. Let Λ(x) = (∇λ)(x) and M(x) = (∇µ)(x) so that,

Λ(x)−M(x) = c0,

Λ(x + 1) −M(x) = c1.

Observe that, with n ≥ 0 we haveΛ(x+n)−M(x) = Λ(x+n)−Λ(x+n−1)+Λ(x+n−1)−M(x)=
c1 − c0 + Λ(x + n − 1) −M(x) = · · · = n(c1 − c0) + c0 and similarly for n negative. Thus,

Λ(y) = y(c1 − c0) + c0 +M(0),

M(y) = y(c1 − c0) +M(0).

From these, we obtain,

µ(y) =
y(y − 1)

2
(c1 − c0) + (µ(1)− µ(0))y+ µ(0), (56)

λ(y) =
y(y − 1)

2
(c1 − c0) + (c0 + µ(1) − µ(0))y+ λ(0), (57)

where λ(1) = c0 + µ(1) − µ(0) + λ(0) so that c0 = µ(1) − µ(0) + λ(0) − λ(1) and λ(2) =
c1 + λ(0) + µ(1) + µ(0) so that c1 = λ(2) − λ(0) − µ(1) − µ(0).

In conclusion, at an algebraic level we need to specify five positive real parameters
λ(0), λ(1), λ(2), µ(0), µ(1). Of course in addition to that, we need µ(y), λ(y) > 0 and that
the well-posedness conditions (8), (9) or (10), (11), (12) and (13) respectively are satisfied.
Finally, if we denote by r+

1
(x), r−

1
(x) the quadratic birth and death rates respectively of the

single chain at level 1 then, the rates for the chains at level n are given by r+n (x) = r+
1

(x+n−1)
and r−n (x) = r−

1
(x).

Intertwining relations for dynamics on BC-type graphs The aim of this subsection is
to prove Proposition 5.6 below, first proven as Theorem 5.1 in [17] by Cuenca. We will
use the following notation. In all that follows, I =N and we define,

Wn,n+1
BC

= {(x, y) ∈ (Wn+1,Wn) : ∃ z ∈Wn, such that y ∈Wn,n(z), z ∈Wn,n+1(x)}.
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Analogously to Wn,n+1 we define Wn,n+1
BC

(x) for x ∈Wn+1.
Moreover, we consider the following rates for aD-chain depending on 4 parameters

(u, u′, a, b), which satisfy the relations (5.1) in [17] (these conditions ensure positivity of
the rates and non-explosivity of the chain and will not be recalled since they don’t affect
the essentially algebraic arguments below), with βu,u′ denoting the birth rate and δu,u′ the
death rate, for x ∈N,

βu,u′(x) =
(x + a + b + 1)(x + a + 1)(x − u)(x − u′)

(2x + a + b + 1)(2x+ a + b + 2)
,

δu,u′ (x) =
x(x + b)(x + u + a + b + 1)(x + u′ + a + b + 1)

(2x + a + b + 1)(2x+ a + b)
.

The parameters (a, b) will be fixed throughout so we suppress any dependence of βu,u′

and δu,u′ on them. Now, define the following functions f, g,B again depending on (a, b)
but not on u and u′ by,

f(x) =
(2x + a + b + 2)x!Γ(x + b + 1)

Γ(x + a + b + 2)Γ(x + a + 2)
, x ∈N,

g(y) =
(2y + a + b + 1)Γ(y + a + b + 1)Γ(y + a + 1)

y!Γ(y + b + 1)
, y ∈N,

B(x, y) =
1

2
f(x)g(y), x, y ∈N.

Define the function Fn on Wn by,

Fn(x) =

n
∏

i< j













(

x j +
a + b + 1

2

)2

−

(

xi +
a + b + 1

2

)2










.

Furthermore, define the following kernel,

(LBC
n→n+1 f )(x) =

2nn!Γ(n + a + 1)

Γ(a + 1)Fn+1(x)

∑

y∈Wn,n+1
BC

(x)

Fn(y) f (y)
∑

z:y∈Wn,n(z),z∈Wn,n+1(x)

n
∏

i=1

B(zi, yi), x ∈Wn+1.

Then, we have the following lemma originally proven in [17].

Lemma 5.4. For n ≥ 1, the kernels LBC
n→n+1

are Feller.

Proof. The fact that these are Markov, i.e. correctly normalized, comes from the branching
of the normalized Jacobi polynomials, see Section 3 of [17]. Moreover, to show that they
are Feller, it again suffices to check it for a delta function; however the situation is a bit
more involved than for LVnd

n→n+1
, see Proposition 3.1 of [17] for the details. �

Denote by
(

Pu,u′
n (t); t ≥ 0

)

the Karlin-McGregor semigroup associated to n D-chains

with birth and death rates βu,u′ and δu,u′ respectively. It can be checked, see Lemma

4.12 of [17], that Fn is a positive eigenfunction of Pu,u′

n (t) with eigenvalue ecnt, where cn =
n(n−1)(n−2)

3 −
n(n−1)

2 (u+u′+b) (this fact can also be obtained via iteration of the results below)

so that in particular, we can define the honest Markov semigroup
(

Pu,u′ ,Fn
n (t); t ≥ 0

)

given

by the h-transform of
(

Pu,u′
n (t); t ≥ 0

)

by Fn. Then, under the assumptions on (u, u′, a, b)

referred to above we have:
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Lemma 5.5. For n ≥ 1, the semigroups
(

Pu,u′,Fn
n (t); t ≥ 0

)

are Feller.

Proof. This as before, immediately follows from the fact that the one dimensional transi-
tion densities that go in the Karlin-McGregor semigroups are Feller along with the fact
that Fn(x) ≥ 1. �

Finally, the following proposition along with the method of intertwiners immediately
gives a Feller process on the boundary ΩBC of the type-BC branching graph.

Proposition 5.6. Pu+1,u′+1,Fn+1

n+1
(t)LBC

n→n+1
f = LBC

n→n+1
Pu,u′,Fn

n (t) f , for n ≥ 1, f ∈ C0(Wn), t ≥ 0.

Again, the interest in these specific rates stems from the fact that they preserve the
so called z-measures, which are the analogues of the zw-measures mentioned previously,
for the problem of harmonic analysis on infinite dimensional BC-type groups. For more
details and a complete study of the z-measures see the recent paper [17].

Proposition 5.6 will follow from the two relations given in Proposition 5.7 below,
which reveal a ”hidden” dynamic on ”intermediate signatures” (see Okounkov’s paper
[36] and the references therein for more about these). In fact, this is exactly the dynamic
followed by the projection on the even levels (x(i,i) in our notation), if one constructs a
symplectic Gelfand-Tsetlin pattern valued process, that links (on odd levels) the semi-

groups
(

Pu+1,u′+1,Fn+1

n+1
(t); t ≥ 0

)

and
(

Pu,u′,Fn
n (t); t ≥ 0

)

and initializes it according to a Gibbs

measure (see Proposition 3.8).

Some more definitions are necessary. Let the functions F̂n and F̄n+1 on Wn and Wn+1

respectively be given by,

F̂n(z) =
∑

y∈Wn,n(z)

n
∏

i=1

g(yi)Fn(y), z ∈Wn,

F̄n+1(x) =
∑

z∈Wn,n+1(x)

n
∏

i=1

f(zi)F̂n(z), z ∈Wn+1.

Moreover, we define the following Markov kernels LBC
n,n from Wn to Wn, and LBC

n,n+1
from

Wn+1 to Wn respectively by,

(LBC
n,n f )(z) =

1

F̂n(z)

∑

y∈Wn,n(z)

f (y)

n
∏

i=1

g(yi)Fn(y), z ∈Wn,

(LBC
n,n+1 f )(x) =

1

F̄n+1(x)

∑

z∈Wn,n+1(x)

f (z)

n
∏

i=1

f(zi)F̂n(z), x ∈Wn+1.

Observe that, we have the composition property,

LBC
n→n+1 = L

BC
n,n+1 ◦ L

BC
n,n

and from comparing the two expressions in order to get the right normalization constant,
we have,

F̄n+1(x) =
Γ(a + 1)

n!Γ(n + a + 1)
Fn+1(x), x ∈Wn+1.
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Finally, we denote by
(

Pu,u′ ,F̂n
n (t); t ≥ 0

)

the Karlin-McGregor semigroup associated with n

birth and death chains with birth rate,

g(x)βu,u′(x)

g(x + 1)
, x ∈N,

and death rate,

g(x + 1)δu,u′(x + 1)

g(x)
, x ∈N,

that is moreover Doob’s h-transformed by F̂n. The fact that, this is indeed an eigenfunction
of n copies of such birth and death chains follows (recursively) from relation (58) of

Proposition 5.7 below. This semigroup,
(

Pu,u′ ,F̂n
n (t); t ≥ 0

)

that is driving the evolution of n

non-intersecting birth and death chains is the ”hidden” dynamic alluded to above. Now,
Proposition 5.6 is an immediate consequence of the following result.

Proposition 5.7. For n ≥ 1 and t ≥ 0, we have the intertwining relations:

Pu,u′ ,F̂n
n (t)LBC

n,n = L
BC
n,nPu,u′,Fn

n (t) (58)

Pu+1,u′+1,Fn+1

n+1
(t)LBC

n,n+1 = L
BC
n,n+1P

u,u′ ,F̂n
n (t) (59)

Proof. In the setting of Theorem 2.16, with n and n particles on each of the X and Y levels,
we choose theD-chains (the Y-level) to have rates given by,

λ(x) =
g(x + 1)δu,u′(x + 1)

g(x)
, x ∈N,

µ(x) =
g(x − 1)βu,u′(x − 1)

g(x)
, x ∈N.

Observe that, by performing an h-transform by the function
∏n

i=1 π
−1(yi)g(yi)Fn(y) the

evolution of these chains is driven by
(

Pu,u′,Fn
n (t); t ≥ 0

)

and thus we obtain (58).

Now, in the setting of Theorem 2.14 with n and n + 1 particles, let the D-chains
(the X-level in this new setting, note that these are different from the ones considered
above) have birth rate given by βu+1,u′+1(x) and death rate given by δu+1,u′+1(x). Then,
performing an h-transform of the corresponding n D̂-chains (the Y-level) by the function
∏n

i=1 π̂
−1(zi)f(zi)F̂n(z) we obtain (59) after we observe the following compatibility relations

between the jump rates,

βu+1,u′+1(x + 1)
f(x + 1)

f(x)
= µ(x + 1) = βu,u′(x)

g(x)

g(x + 1)
, x ∈N, (60)

δu+1,u′+1(x)
f(x − 1)

f(x)
= λ(x) = δu,u′ (x + 1)

g(x + 1)

g(x)
, x ∈N. (61)

To see that these relations hold, first note that by making use of Γ(x+ 1) = xΓ(x) we obtain
the following, for ratios of f and g at consecutive points,

f(x + 1)

f(x)
=

(2x + a + b + 4)(x + 1)(x + b + 1)

(2x + a + b + 2)(x + a + b + 2)(x + a + 2)
, x ∈N,

g(x + 1)

g(x)
=

(2x + a + b + 4)(x + 1)(x + b + 1)

(2x + a + b + 2)(x + a + b + 2)(x + a + 2)
, x ∈N.
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Similarly, we have relations for ratios of the birth and death rates with different parame-
ters,

βu+1,u′+1(x + 1)

βu,u′ (x)
=

(x + a + b + 2)(x+ a + 2)(2x+ a + b + 1)(2x+ a + b + 2)

(2x + a + b + 3)(2x+ a + b + 4)(x+ a + b + 1)(x + a + 1)
, x ∈N,

δu+1,u′+1(x)

δu,u′ (x + 1)
=

x(x + b)(2x + a + b + 3)(2x+ a + b + 2)

(2x + a + b + 1)(2x+ a + b)(x + 1)(x + 1 + b)
, x ∈N.

Using these, (60) and (61) can be readily checked and we are done. �

Strong Stationary Duals Here, we briefly point out the close connection to the theory
of Strong Stationary Duality. The setup is that of W1,1 and with I = N i.e. X and Y each
consist of a single particle. We define the cumulative of π, by

∑

0≤y≤x π(y). Thus, Theorem

2.16 gives that if a D̂-chain (X-level) is being kept above a (reflecting) D-chain (Y-level)
via the push-block mechanism we have been studying; then if theD-chain is distributed

initially according to
π(y)

∑

0≤y≤x π(y) 1(y ≤ x), the evolution of the projection on the X-particle

is that of a D̂-chain h-transformed by
∑

0≤y≤x π(y) (see for example Theorem 5.5 of [20] in
the discrete time case).

Remark 5.8. Using the results of this paper, we can also obtain Theorem 2.3 of [51] which
studies a process in a symplectic Gelfand-Tsetlin pattern. Similarly, we could consider pure-birth
chains, which strictly speaking are not covered by the results of this work, since we assume that
we are dealing with positive death rates (µ(x))x∈I > 0, but with entirely analogous considerations
Theorem 2.1 of [51] can also be recovered by the methods that are presented here.

6 Birth and death chain orthogonal polynomials

We will now recall the well known connection, between the probabilistic world of birth
and death chains and the analytic counterpart of their associated orthogonal polynomials
on the positive half line. The main references for this subsection will be the seminal
papers of Karlin and McGregor, [26] and [27], where most of the theory was laid out.
From here onwards, we fix a birth and death chain with generator D, reflecting at 0,
with rates (λ(·), µ(·)) and symmetrizing measure π(·). As usual we shall also denote by

D̂ the generator of its Siegmund dual (which is absorbed at −1) with rates (λ̂(·), µ̂(·)) and
symmetrizing measure π̂(·). We will also, often write λk for λ(k), πk for π(k) and so on.

We begin by defining the following family of polynomials {Qi}i≥0 by the three term
recursion (note that µ(0) = 0),

Q0(x) = 1,

−xQ0(x) = −(λ(0) + µ(0))Q0(x) + λ(0)Q1(x),

−xQn(x) = µ(n)Qn−1(x) − (λ(n) + µ(n))Qn(x) + λ(n)Qn+1(x).

Then, see Theorem 1 of [27], there exists at least one measure w(dx) on R+ = {0 ≤ x < ∞},
such that these polynomials are orthogonal with respect to w(dx), so that,

∫ ∞

0

Qi(x)Q j(x)w(dx) =
1

π( j)
δi j.
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For such a moment problem to be determinate, so that the measure w is unique, when
µ(0) = 0, as in the case of the D-chain, it suffices for the backwards equation to have a
unique solution (see [27], Theorem 14). In particular, any of the conditions in section 2
that ensure the well-posedness of the backwards equation are enough for determinacy.
In such a case, we have that,

w(dx) = dw(x),

where w(x) is a real valued non-decreasing function, being continuous on the left, with
w(x) = 0 for x ≤ 0 and w(∞) = 1. We will denote by I = [I−, I+] ⊂ [0,∞] the support,
supp(w) of the measurew. These orthogonal polynomials provide the following spectral
expansion of the transition density (see [27] for example) that will be useful for us,

pt(i, j) = π( j)

∫ ∞

0

e−txQi(x)Q j(x)dw(x). (62)

Remark 6.1 (Explicit examples). We give some simple examples for λ(·), µ(·) such that the cor-
responding orthogonal polynomials Qi(x) and spectral measures w(dx) are explicit. The following
rates were considered by Cerenzia and Kuan in [16], depending on two real parameters α, β > −1:

λ(n) =
n + α + β + 1

2n + α + β + 1

2(n + α + 1)

2n + α + β + 2
,

µ(n) =
n + β

2n + α + β

2n

2n + α + β + 1
.

They give rise to the Jacobi polynomials Q
α,β

i
(x) orthogonal in [0, 2] with respect to the weight

w(dx) = wα,β(dx):

wα,β(dx) = Z(α, β)xα(2 − x)βdx,

for some normalization constant Z(α, β). For α = β = − 1
2 these specialize to the model studied

by Borodin and Kuan in [8] related to O(∞) while for −α = β = 1
2 they specialize to the model

studied by Cerenzia [15] related to Sp(∞). The associated orthogonal polynomials in both cases
are the Chebyshev (which are specializations of the Jacobi polynomials).

The following examples are taken from Section 3.1 of [42]. Further explicit examples can be
found in the references therein. In all cases w(dx) is actually a discrete measure with atoms of
mass w(n) at the positive integers n ∈ N. The associated (2+1)-dimensional growth and decay
processes were not studied before.

The so called M/M/∞ queue is a birth and death process with rates and symmetrizing measure
given by:

λ(n) ≡ λ, µ(n) = µn, π(n) =

(

λ

µ

)n

/n!.

The orthogonal polynomials associated to it are Qn(x) = Cn

(

x
µ ; λµ

)

where Cn(x; a) are the Charlier

polynomials defined by:

0 = Cn−1(x; a)+ (x − a − n)Cn(x; a)+ aCn+1(x; a),

with C0(x; a) = 1,C−1(x; a). These are orthogonal with respect to the Poisson distribution:

w(n) =
ane−a

n!
; n = 0, 1, · · ·
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More precisely:

∞
∑

n=0

Ci

(

n;
λ

µ

)

C j

(

n;
λ

µ

) (

λ/µ
)n

n!
e−(λ/µ) =

δi j

π( j)
.

Moreover, the polynomials associated to the birth and death chain with linear rates:

λ(n) = (n + β)λ, µ(n) = nµ,

are the so called Meixner polynomials (see Section 1.3.2 in [42]). Finally for finite birth and death
chains one can also obtain the dual Hahn, Krawtchouk and Racah polynomials, see [42].

We also define the polynomials {Q̂i}i≥0, associated to the dual chain with generator

D̂. So that, in the recursion above the rates
(

λ, µ
)

are replaced by the dual rates
(

λ̂, µ̂
)

. In

particular, the new recursion is given by,

−xQ̂n(x) = λ(n)Q̂n(x) − (µ(n + 1) + λ(n))Q̂n(x) + µ(n + 1)Q̂n+1(x).

Since now µ̂(0) = λ(0) > 0 (recall the D̂-chain gets absorbed at −1), in order for the
moment problem to be determinate, we need to further require (see [26] or [27]),

∞
∑

j=0

π̂( j)















j
∑

k=0

π(k)















2

= ∞.

A sufficient, easier to check in practise, condition for this is (see unnumbered display
after equation (0.11) on page 367 of [26]),

∞
∑

n=1

1

µ̂(n)
=

∞
∑

n=1

1

λ(n)
= ∞.

In such a case (of determinacy), the dual spectral measure, denoted by dŵ(x), satisfies the
following key relation (see [26] section 6),

dŵ(x) =
xdw(x)

λ(0)
.

So that in particular, the supports are equal supp(ŵ) = supp(w) = I. From now on, we
assume that both moment problems are determinate with unique solutions w(·) and ŵ(·)
respectively.

We will denote by 〈·, ·〉m the L2 inner product with measure m. By Corollary 2.3.3 of
[1] we obtain that, since the solution of the moment problem is unique, the polynomials
{Qi}i≥0 are dense in L2 (I,w). Hence, for f ∈ L2 (I,w),

f =

∞
∑

k=0

〈Qk, f 〉wQkπ(k), (63)

with the series converging in the L2 (I,w) sense. We will furthermore, mainly be interested
in functions f ∈ L2 for which this expansion actually converges uniformly. By Theorem
6 of [27], we have that for f (x) = Qi(x)e−tx the series,

f (x) =

∞
∑

k=0

〈Qk, f 〉wQk(x)π(k), (64)
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converges absolutely, for t ≥ 0 and all x ∈ C, the convergence being uniform over every

bounded set,
{

(t, x) : 0 ≤ t ≤ T and |x| ≤ R
}

. Moreover, we have the following bound,

∞
∑

k=0

|〈Qk, f 〉w||Qk(x)|π(k) ≤ et|x|Qi (−|x|) .

It can be easily seen that, in a little bit more generality, the series (64) above converges
uniformly on compact sets of (t, x) with 0 ≤ t ≤ T and |x| ≤ R, for f (x) = pm(x)e−tx where
pm(x) is any polynomial of degree m. In particular, if pm(x) =

∑m
i=0 cm

i
Qi(x) the previous

bound becomes,

∞
∑

k=0

|〈Qk, f 〉w||Qk(x)|π(k) ≤ et|x|
m

∑

i=0

|cm
i |Qi (−|x|) .

Remark 6.2. Under certain regularity and growth assumptions on w at I− and∞, one can prove
that the series in display (64) converges uniformly on compact intervals of I for bounded variation
functions f , such that their derivative satisfies a certain integrability condition (see in particular
Theorem 4.17.2 of [35] and the references therein).

We need one more property of functions of the form f (x) = pm(x)e−tx, namely that,

〈Qn, f 〉w → 0 as n→∞.

This can be seen as follows, by writing pm(x) =
∑m

i=0 c̃m
i

Qi(x)πi we have by (62),

〈Qn, f 〉w =

m
∑

i=0

c̃m
i pt(n, i)→ 0 as n→∞,

since, for any i ∈ N and t ≥ 0, pt(n, i) → 0 as n → ∞. Finally, we have the following

relations between {Qi}i≥0 and their duals {Q̂i}i≥0 (see [45] or section 6 of [26]),

πn+1Qn+1(x) = Q̂n+1(x) − Q̂n(x), (65)

−xQ̂n(x) = λnπn(Qn+1(x) −Qn(x)). (66)

We are now in a position to prove the following result, which is modelled on and is
essentially a generalization of Proposition 3.1 of [16]. It is what makes all subsequent
calculations work.

Proposition 6.3. 1.
∑n

i=0 πiQi(x) = Q̂n(x).

2.
∑n−1

k=0 π̂kQ̂k(x) = λ0

x (1 −Qn(x)).

3. 〈Q̂n, f (0) − f 〉w =
∑∞

k=n+1〈πkQk, f 〉w , for f in L2 (I,w) so that series (64) converges
pointwise at 0.

4.
∑∞

k=n〈π̂kQ̂k, f 〉ŵ = 〈Q̂n, f 〉w , for f in L2 (I,w) so that 〈Qn, f 〉w → 0.

Proof. To prove (1), note that by telescoping
∑n

i=1 πiQi(x) = Q̂n(x) − Q̂0(x) = Q̂n(x) − 1 and
that π0Q0(x) = 1. To prove (2), first note,

π̂(n)Q̂n(x) = λ(0)

(

Qn+1(x) −Qn(x)

−x

)
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and hence by summing,

n−1
∑

k=0

π̂(k)Q̂k(x) = λ(0)

(

Qn(x) − 1

−x

)

.

To prove (3), observe that 〈Q̂n, 1〉w = 〈
∑n

i=0 πiQi, 1〉w = 1. Also note that Qn+1(0) = Qn(0) =

· · · = Q0(0) = 1 and thus from (1) we also get Q̂n(0) =
∑n

k=0 πk. Moreover, by convergence
of the orthogonal decomposition at 0 we have,

〈Q̂n, f (0)〉w = f (0) =

∞
∑

k=0

〈Qk, f 〉wQk(0)π(k) =

∞
∑

k=0

〈πkQk, f 〉w,

〈Q̂n, f 〉w =

n
∑

k=0

〈πkQk, f 〉w.

Subtracting the two we get (3). In order to prove (4), we have,

n−1
∑

k=0

〈π̂kQ̂k, f 〉ŵ = 〈λ(0)

(

Qn(x) − 1

−x

)

, f 〉ŵ = 〈1 −Qn, f 〉w
n→∞
−→ 〈1, f 〉w,

where the limit holds by our assumption that 〈Qn, f 〉w → 0. Hence,

∞
∑

k=n

〈π̂kQ̂k, f 〉ŵ = 〈Qn, f 〉w.

�

7 Branching rules for multivariate Karlin-McGregor polynomials

For ν ∈Wn, we define the n-variate Karlin-McGregor polynomials by, with x = (x1, · · · , xn)
in Rn,

Qν(x) =
det

(

Qνi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

=

det
(

Qνi
(x j)

)n

i, j=1

∆n(x)
, (67)

Q̂ν(x) =
det

(

Q̂νi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

=

det
(

Q̂νi
(x j)

)n

i, j=1

∆n(x)
. (68)

The polynomial systems, det
(

Qνi
(x j)

)n

i, j=1
and det

(

Q̂νi
(x j)

)n

i, j=1
were first introduced by

Karlin and McGregor, in their seminal study of intersection probabilities of birth and
death chains in [28]. Some further properties were also presented in their subsequent
brief note [29]. Observe that in particular, these multivariate polynomials are orthogonal
in the continuous chamber 0 ≤ x1 ≤ x2 · · · ≤ xn (denoted x ∈ Wn([0,∞)), with respect to
the weights

∏n
i=1 dw(xi)∆

2
n(x) and

∏n
i=1 dŵ(xi)∆

2
n(x) respectively.

Most importantly, we have the following two-step branching rules. The calculations
below are in fact more or less implicitly done on page 1116 of [29].
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Proposition 7.1.

det
(

Qνi
(x j)

)n+1

i, j=1

det
(

xi−1
j

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1=0

=
(−1)n

λn
0

∑

k∈Wn,n+1(ν)

n
∏

i=1

π̂ki

det
(

Q̂ki
(x j+1)

)n

i, j=1

det
(

xi−1
j+1

)n

i, j=1

, (69)

det
(

Q̂νi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

=
∑

k∈Wn,n(ν)

n
∏

i=1

πki

det
(

Qki
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

. (70)

Proof. We prove (69) first. In the first equality below we make use of the fact that Qk(0) = 1

and in the last one we make use of the relation −xQ̂(x) = λnπn(Qn+1(x) −Qn(x)).

det
(

Qνi
(x j)

)n+1

i, j=1

det
(

xi−1
j

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1=0

=

det
(

Qνi+1
(x j+1) −Qνi

(x j+1)
)n

i, j=1

det
(

xi−1
j+1

)n

i, j=1

∏n
j=1 x j+1

=

det
(

Qνi+1
(x j+1)−Qνi

(x j+1)

x j+1

)n

i, j=1

det
(

xi−1
j+1

)n

i, j=1

=
∑

k∈Wn,n+1(ν)

det
(

Qki+1(x j+1)−Qki
(x j+1)

x j+1

)n

i, j=1

det
(

xi−1
j+1

)n

i, j=1

=
∑

k∈Wn,n+1(ν)

det
(

−
π̂ki

λ0
Q̂ki

(x j+1)
)n

i, j=1

det
(

xi−1
j+1

)n

i, j=1

.

In order to prove (70) we make use of part 1 of Proposition 6.3 so that (where we set
ν0 + 1 = 0),

det
(

Q̂νi
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

=

det
(

∑νi

ki=0
πki

Qki
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

=

det
(

∑νi

ki=νi−1+1
πki

Qki
(x j)

)n

i, j=1

det
(

xi−1
j

)n

i, j=1

.

Note that, we can finally pull out the sum
∑

k∈Wn,n(ν) by multilinearity. �

Consider the functions,

hn,n+1(ν, x) = (−1)(
n
2)λ

(n
2)

0
Qν(x), for ν ∈Wn+1(N) and x ∈Wn+1([0,∞)), (71)

hn,n(ν, x) = (−1)(
n−1

2 )λ
(n−1

2 )
0
Q̂ν(x), for ν ∈Wn(N) and x ∈Wn([0,∞)) (72)

and define, for ν in Wn+1 and Wn respectively,

hn,n+1(ν) = hn,n+1(ν, 0), (73)

hn,n(ν) = hn,n(ν, 0). (74)

Now, from the branching rules and our original intertwining relations from section
2.3 we prove the following:
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Proposition 7.2. hn,n+1 and hn,n are positive harmonic functions for n + 1 independent copies of
D-chains and n independent copies of D̂-chains in Wn+1 and Wn respectively.

Proof. Observe that, from the branching relations we get,

hn,n(ν) =
(

Λn,nhn−1,n
)

(ν), for ν ∈Wn(N),

hn,n+1(ν) =
(

Λn,n+1hn,n
)

(ν), for ν ∈Wn+1(N)

and hence,

hn,n(ν) =
(

Λn,nΛn−1,n · · ·Λ1,11
)

(ν), for ν ∈Wn(N),

hn,n+1(ν) =
(

Λn,n+1Λn,n · · ·Λ1,11
)

(ν), for ν ∈Wn+1(N).

From relations (26) and (27) and the discussion around them, the conclusion is now
evident. �

Remark 7.3. In fact, some more general eigenfunction relations exist. For x1 < x2 < · · · < xn ≤ 0
we have,

(−1)
n(n−1)

2 det
(

Qνi
(x j)

)n

i, j=1
> 0

and it can be readily checked that this is an eigenfunction of n independentD-chains in Wn (see
for example displays (19) and (30) respectively in [28]). These eigenfunctions can also be used to
construct consistent dynamics and we will pursue this elsewhere.

Before continuing, we briefly recall some well known determinantal conditions for

interlacing, namely representations of 1
(

k ∈Wn,n+1(ν)
)

and 1 (k ∈Wn,n(ν)) in terms of

determinants. First of all, we have the following identity for 1
(

y ∈Wn,n(x)
)

,

1
(

y1 ≤ x1 < y2 ≤ · · · ≤ xn
)

= det
(

1(yi ≤ x j)
)n

i, j=1
.

From this, by swapping x’s and y’s and putting yn+1 = ∞, or by declaring yn+1 = virt, a
virtual variable and agreeing that 1(x ≤ virt) = 1, we obtain the analogous identity for

1
(

y ∈Wn,n+1(x)
)

,

1
(

x1 ≤ y1 < x2 ≤ · · · ≤ yn < xn+1
)

= det
(

1(xi ≤ y j)
)n+1

i, j=1
.

This can also be written as, after subtracting the last column from each of the rest,

1
(

x1 ≤ y1 < x2 ≤ · · · < xn+1
)

= det
(

fi, j
)n+1

i, j=1
,

where,

fi, j =















−1(xi > y j) if j ≤ n

1 if j = n + 1
.

Thus, if we define,

φ(i, j) = πi1(i ≤ j),

φ̂(i, j) = −π̂i1(i < j),

φ̂(virt, j) = 1,

then from Proposition 7.1, it is easy to see that:
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Corollary 7.4. The kernels Λ
hn,n+1

n,n+1
(ν, ·) andΛ

hn,n
n,n (ν, ·), for any ν ∈Wn+1 and ν ∈Wn respectively,

that are defined by,

Λ
hn,n

n,n+1
(ν, k) = 1

(

k ∈Wn,n+1(ν)
)

∏n
i=1 π̂ki

hn,n(k)

hn,n+1(ν)
=

det
(

φ̂(ki, ν j)
)n+1

i, j=1
hn,n(k)

hn,n+1(ν)
, (75)

Λ
hn−1,n
n,n (ν, k) = 1 (k ∈Wn,n(ν))

∏n
i=1 πki

hn−1,n(k)

hn,n(ν)
=

det
(

φ(ki, ν j)
)n

i, j=1
hn−1,n(k)

hn,n(ν)
, (76)

are Markov.

Finally, denoting by
(

P
hn,n+1

n+1
(t); t ≥ 0

)

and
(

P̂
hn,n
n (t); t ≥ 0

)

the Karlin-McGregor semi-

groups associated with n + 1D-chains and n D̂-chains, h-transformed by hn,n+1 and hn,n

respectively, we immediately get the following corollary of Theorems 2.14 and 2.16.

Corollary 7.5. For t ≥ 0, we have the intertwining relations,

P
hn,n+1

n+1
(t)Λ

hn,n

n,n+1
= Λ

hn,n

n,n+1
P̂

hn,n
n (t), (77)

P̂
hn,n
n (t)Λ

hn−1,n
n,n = Λ

hn−1,n
n,n P

hn−1,n
n (t). (78)

8 Coherent measures

We now move on towards defining, in displays (81) and (82), measures denoted byM
ψ
n,n+1

andM
ψ
n,n, depending on a function ψ, that are coherent with respect to the Markov links

Λ
hn,n

n,n+1
and Λ

hn−1,n
n,n . We first need some definitions and technical preliminaries.

Consider the Taylor remainder for a function f , that is (n − 1)-times differentiable at
0, given by,

R
f
n(x) =















f (x) n ≤ 0

f (x) −
∑n−1

k=0
f (k)(0)

k! xk n ≥ 1
.

Now, define for f that is ( j− n)-times or ( j− (n+ 1))-times continuously differentiable

at 0 respectively, the following functions on N, Ψn,n+1
n+1− j

(·) and Ψn,n
n− j

(·) (their dependence

on f will be suppressed),

Ψ
n,n+1
n+1− j

(i) = 〈πiQi, (−x)n+1− jR
f

j−(n+1)
〉w, i ∈N, (79)

Ψ
n,n
n− j

(i) = 〈π̂iQ̂i, (−x)n− jR
f

j−n
〉ŵ, i ∈N. (80)

We also define the discrete convolution for functions h1, h2 :N×N→ C and h3 :N→
C as follows,

(h1 ∗ h2) (u, v) =
∑

k≥0

h1(u, k)h2(k, v),

(h1 ∗ h3) (u) =
∑

k≥0

h1(u, k)h3(k).

The lemma below states that, alternating convolutions ofφ and φ̂withΨn,n
n− j

andΨn,n+1
n+1− j

respectively are nicely consistent. This will be useful in the computations performed in
Proposition 8.4 that proves that the measures introduced below are indeed coherent.
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Lemma 8.1. Assume that f (x) = p(x)e−tx, where p(x) is a fixed polynomial of arbitrary degree.
Then, we have,

1.
(

φ ∗Ψn,n
n− j

)

(i) = Ψn−1,n
n− j

(i).

2.
(

φ̂ ∗Ψn,n+1
n+1− j

)

(i) = −λ0Ψ
n,n
n− j

(i).

Proof. To prove (1) note,

(

φ ∗Ψn,n
n− j

)

(i) =
∑

k≥0

πi1(i ≤ k)Ψn,n
n− j

(k)

=
∑

k≥i

πi〈π̂kQ̂k, (−x)n− jR
f

j−n
〉ŵ

= πi〈Qi, (−x)n− jR
f

j−n
〉w = Ψ

n−1,n
n− j

(i).

Now to prove (2) first observe that with T
f
m(x) = (−x)−mR

f
m(x) then, T

f
m(0) = limx→0 T

f
m(x) =

f (m)(0)

m! (−1)m and so,

(

φ̂ ∗Ψn,n+1
n+1− j

)

(i) = −
∑

k≥0

π̂i1(i < k)Ψn,n+1
n+1− j

(k)

=
∑

k≥i+1

π̂i〈πkQk, (−x)n+1− jR
f

j−(n+1)
〉w

= −π̂i〈Q̂i, ((−x)n+1− jR
f

j−(n+1)
)(0) − (−x)n+1− jR

f

j−(n+1)
〉w.

Moreover, since dŵ = xdw
λ(0) and 1

x

(

((−x)n+1− jR
f

j−(n+1)
)(0) − (−x)n+1− jR

f

j−(n+1)

)

= (−x)n− jR
f

n− j

we get,

(

φ̂ ∗Ψn,n+1
n+1− j

)

(i) = −λ0〈π̂iQ̂i, (−x)n− jR
f

j−n
〉ŵ.

�

Remark 8.2. Of course, the condition that f (x) = p(x)e−tx is unnecessarily restrictive. All that
is needed, other than the necessary differentiability assumptions on f , in order to prove (1) is that

〈Qk, (−x)n− jR
f

j−n
〉w → 0 as k→ ∞ and for (2) that the orthogonal decomposition of T

f
m converges

pointwise at 0.

We now, define the coherent measures M
ψ
n,n+1

and M
ψ
n,n, for ψ in L2 (I,w) or L2 (I, ŵ)

respectively as follows,

M
ψ
n,n+1

(ν) =
(−1)(

n
2)

λ
(n

2)
0

det
(

〈πνi
Qνi
, (−x)n+1− jψ〉w

)n+1

i, j=1
hn,n+1(ν), for ν ∈Wn+1, (81)

M
ψ
n,n(ν) =

(−1)(
n−1

2 )

λ
(n−1

2 )
0

det
(

〈π̂νi
Q̂νi
, (−x)n− jψ〉ŵ

)n

i, j=1
hn,n(ν), for ν ∈Wn. (82)
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Note that, by simply unpacking the notation and observing that the powers of (−1)’s
actually cancel out, these can be written as,

M
ψ
n,n+1

(ν1, · · · , νn+1) =
1

λ
(n

2)
0

det

(∫

I

πνi
Qνi

(x)xn+1− jψ(x)dw(x)

)n+1

i, j=1

hn,n+1(ν1, · · · , νn+1),

M
ψ
n,n(ν1, · · · , νn) =

1

λ
(n−1

2 )
0

det

(∫

I

π̂νi
Q̂νi

(x)xn− jψ(x)dŵ(x)

)n

i, j=1

hn,n(ν1, · · · , νn).

The measuresMψ are real (not necessarily positive) measures and as we see in Lemma
8.3 below their mass is explicit. Moreover, Lemma 8.3, shows that the ”generating func-
tions” (with respect to the corresponding multivariate orthogonal polynomials) of these
measures are multiplicative. This property, under some extra assumptions (see Appendix),
implies that these coherent measures, when they are positive and normalized to be prob-
ability measures (see subsection 9.2), are in fact extremal (and thus, they correspond to
points of the boundary of the branching graph coming from the alternating construction,
see subsection 4.3).

Lemma 8.3. With ⋆ = n, n + 1, let ψ ∈ L2 be such that each of the functions {(−x)n+1−iψ(x)}n+1
i=1

has an orthogonal decomposition converging pointwise at the points {x j}
n+1
j=1

. Then,

∑

ν∈W⋆

M
ψ
n,⋆(ν)

hn,⋆(x, ν)

hn,⋆(ν)
=

⋆
∏

i=1

ψ(xi), (83)

where the functions hn,⋆ where defined in (71), (72). In particular, the measuresM
ψ
n,⋆ have mass

ψ(0)⋆. Moreover, if ψ ≡ 1 thenM
ψ
n,⋆(ν) = 1(ν = (0, · · · , ⋆ − 1)).

Proof. We apply the Cauchy-Binet formula (for infinite sums, see for example Lemma 2.1
of [16]), to obtain with ⋆ = n + 1 (the case ⋆ = n is exactly the same with only changes in
notation),

∑

ν∈Wn+1

M
ψ
n,n+1

(ν)
hn,n+1(x, ν)

hn,n+1(ν)
=

det
(

∑

k≥0〈πkQk, (−x)n+1−iR
ψ

i−(n+1)
〉wQk(x j)

)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

=

det
(

(−x j)
n+1−iψ(x j)

)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

=

n+1
∏

i=1

ψ(xi).

We have also used the fact that,

det
(

(−xi)
n+1− j

)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

= (−1)(
n
2)

det
(

x
n+1− j

i

)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

= (−1)(
n
2)(−1)⌊

n+1
2 ⌋ ≡ 1.
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Moreover, we have,

M
ψ
n,n+1

(0, · · · , n) =
det

(

∑

k≥0〈πkQk, (−x)n+1−i〉wQk(x j)
)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,··· ,xn=0

=

det
(

(−x j)
n+1−i

)n+1

i, j=1

det
(

x
j−1

i

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,··· ,xn=0

= 1.

�

Our interest in these measures, as already anticipated, stems from the fact that they
are coherent/consistent with respect to the intertwining kernels.

Proposition 8.4. Let ψ(x) = p(x)e−tx, where p(x) is a polynomial of arbitrary degree. Then with
k ∈Wn,

M
ψ
n,n(k) = (M

ψ
n,n+1
Λ

hn,n

n,n+1
)(k) , for ψ(0) = 1, (84)

M
ψ
n−1,n(k) = (M

ψ
n,nΛ

hn−1,n
n,n )(k). (85)

Proof. We prove (85) first, using the Cauchy-Binet formula for the passage to the second
equality,

∑

ν∈Wn

M
ψ
n,n(ν)Λ

hn−1,n
n,n (ν, k) =

(−1)(
n−1

2 )

λ
(n−1

2 )
0

hn−1,n(k)
∑

ν∈Wn

det
(

φ(ki, ν j)
)n

i, j=1
det

(

〈π̂νi
Q̂νi
, (−x)n− jR

ψ
j−n
〉ŵ

)n

i, j=1

=
(−1)(

n−1
2 )

λ
(n−1

2 )
0

hn−1,n(k) det
(

(φ ∗Ψn,n
n− j

)(ki)
)n

i, j=1

=
(−1)(

n−1
2 )

λ
(n−1

2 )
0

hn−1,n(k) det
(

Ψ
n−1,n
n− j

(ki)
)n

i, j=1
=M

ψ
n−1,n

(k).

We now turn to the proof of (84) and calculate, again using the Cauchy-Binet formula for
the second equality,

∑

ν∈Wn+1

M
ψ
n,n+1

(ν)Λ
hn,n
n,n (ν, k) =

(−1)(
n
2)

λ
(n

2)
0

hn,n(k)
∑

ν∈Wn

det
(

φ̂(ki, ν j)
)n+1

i, j=1
det

(

〈πνi
Qνi
, (−x)n− jR

ψ
j−n
〉w

)n+1

i, j=1

=
(−1)(

n
2)

λ
(n

2)
0

hn,n(k) det
(

(φ̂ ∗Ψn,n+1
n+1− j

)(ki)
)n+1

i, j=1

=
(−1)(

n−1
2 )

λ
(n−1

2 )
0

hn,n(k) det
(

Ψ
n,n
n− j

(ki)
)n

i, j=1
=M

ψ
n,n(k).

The penultimate equality, follows from
(

φ̂ ∗Ψn,n+1
n+1− j

)

(i) = −λ0Ψ
n,n
n− j

(i) and the fact that the

last row of {(φ̂ ∗ Ψn,n+1
n+1− j

)(ki)}
n+1
i, j=1

is given by, with kn+1 = virt (recall for j ≤ n + 1 that
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R
ψ

j−(n+1)
= ψ),

(φ̂ ∗Ψn,n+1
n+1− j

)(virt) =
∑

i≥0

Ψ
n,n+1
n+1− j

(i) =
∑

i≥0

〈πiQi, (−x)n+1− jR
ψ

j−(n+1)
〉wQi(0) = ((−x)n+1− jψ)(0) = δ j,n+1,

where we have assumed ψ(0) = 1 and also used the fact that Qi(0) = 1. �

Remark 8.5. Again, conditions on ψ can be relaxed c.f. Remark 8.2.

9 Evolution of coherent measures

9.1 Evolution operators for coherent measures and their basic proper-

ties

We now define some kind of evolution operators acting on the coherent measures,
that generalize the h-transformed Karlin-McGregor semigroups. For ψ in L2 (I,w) and

L2 (I, ŵ) respectively, define P
ψ
n,n+1

and P
ψ
n,n by,

P
ψ
n,n+1

(k, ν) =
hn,n+1(ν)

hn,n+1(k)
det

(

〈Qki
, πν j

Qν j
ψ〉w

)n+1

i, j=1
, for k, ν ∈Wn+1, (86)

P
ψ
n,n(k, ν) =

hn,n(ν)

hn,n(k)
det

(

〈Q̂ki
, π̂ν j

Q̂ν j
ψ〉ŵ

)n

i, j=1
, for k, ν ∈Wn. (87)

Note that,

P
ψ
•,⋆(k0, ν) =M

ψ
•,⋆(ν), where k0 = (0, 1, · · · , ⋆ − 1). (88)

This is because, by row and column operations both sides are the same up to a multiplica-
tive constant and since, from the following lemma they both sum to ψ(0)⋆, they must in
fact be equal.

Moreover, observe that by (62) forψ(x) = φt(x) = e−tx then
(

P
φt

n,n+1
; t ≥ 0

)

and
(

P
φt

n,n; t ≥ 0
)

are exactly the h-transformed Karlin-McGregor semigroups
(

P
hn,n+1

n+1
(t); t ≥ 0

)

and
(

P̂
hn,n
n (t); t ≥ 0

)

respectively. We will now study their properties. The non-trivial issue of positivity will
be dealt with at the end of this subsection. First, we have the following lemma regarding
their normalization.

Lemma 9.1. If, ψ is such that its orthogonal decomposition converges pointwise in a neighbour-
hood of 0, we then have,

∑

ν∈Wn+1

P
ψ
n,n+1

(k, ν) = ψ(0)n+1, ∀k ∈Wn+1,

∑

ν∈Wn

P
ψ
n,n(k, ν) = ψ(0)n, ∀k ∈Wn.
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Proof. We only prove the first equality, as the second is analogous,

∑

ν∈Wn+1

P
ψ
n,n+1

(k, ν) =
1

hn,n+1(k)

∑

ν∈Wn+1

det
(

〈Qki
, πνi

Qνi
ψ〉w

)n+1
i, j=1 (−1)(

n
2)λ

(n
2)

0

det
(

Qνi
(x j)

)n+1

i, j=1

det
(

xi−1
j

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,··· ,xn+1=0

=
(−1)(

n
2)λ

(n
2)

0

hn,n+1(k)

det
(

∑

m≥0〈Qki
, πmQmψ〉wQm(x j)

)n+1

i, j=1

det
(

xi−1
j

)n+1

i, j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,··· ,xn+1=0

=
(−1)(

n
2)λ

(n
2)

0

hn,n+1(k)

det
(

Qki
(x j)

)n+1

i, j=1

det
(

xi−1
j

)n+1

i, j=1

n+1
∏

i=1

ψ(xi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1,··· ,xn+1=0

= ψ(0)n+1.

�

The simple, but important proposition below, describes the evolution of coherent
measures. Its proof is an easy consequence of the Cauchy-Binet formula and of uniform
convergence of the orthogonal decomposition on compact sets for functions of the form
p(x)e−tx, with p(x) a polynomial.

Proposition 9.2. Assume I is compact or equivalently I+ < ∞ and moreover suppose ψ1(x) =
p1(x)e−t1x and ψ2(x) = p2(x)e−t2x, where p1, p2 are arbitrary polynomials and t1, t2 ≥ 0. We then
have the following equalities,

∑

k∈Wn+1

M
ψ1

n,n+1
(k)P

ψ2

n,n+1
(k, ν) =M

ψ1ψ2

n,n+1
(ν), ∀ν ∈Wn+1, (89)

∑

k∈Wn

M
ψ1

n,n(k)P
ψ2

n,n(k, ν) =M
ψ1ψ2

n,n (ν), ∀ν ∈Wn. (90)

Proof. We only prove (89), as (90) is completely analogous. The passage to the second
equality below first uses the Cauchy-Binet formula and secondly the uniform convergence
of the orthogonal decomposition on compacts, in order to justify the interchange

∑

〈·, ·〉w =
〈
∑

·, ·〉w, of summation and integration,

∑

k∈Wn+1

M
ψ1

n,n+1
(k)P

ψ2

n,n+1
(k, ν) = (−1)(

n
2)λ

(n
2)

0
hn,n+1(ν)

∑

k∈Wn+1

det
(

〈πki
Qki
, (−x)n+1− jψ1〉w

)n+1

i, j=1
det

(

〈Qki
, πν j

Qν j
ψ2〉w

)n+1

i, j=1

= (−1)(
n
2)λ

(n
2)

0
hn,n+1(ν) det















〈
∑

m≥0

〈πmQm, πνi
Qνi
ψ2〉wQm, (−x)n+1− jψ1〉w















n+1

i, j=1

= (−1)(
n
2)λ

(n
2)

0
hn,n+1(ν) det

(

〈πνi
Qνi
, (−x)n+1− jψ1ψ2〉w

)n+1

i, j=1
=M

ψ1ψ2

n,n+1
(ν).

�

Remark 9.3. In fact, the argument above gives,

∑

k∈Wn+1

P
ψ1

n,n+1
(µ, k)P

ψ2

n,n+1
(k, ν) = P

ψ1ψ2

n,n+1
(µ, ν), ∀µ, ν ∈Wn+1,

∑

k∈Wn

P
ψ1

n,n(µ, k)P
ψ2

n,n(k, ν) = P
ψ1ψ2

n,n (µ, ν), ∀µ, ν ∈Wn.
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Then (89) and (90) become a consequence of (88).

Remark 9.4. The assumptions that I is compact and that ψ1, ψ2 are of the special form p(x)e−tx

could of course be removed as long as the interchange of summation and integration in the second
equality above can be justified.

Finally, we give a linear algebraic proof of the following intertwining relations. Al-
though, we have already obtained these equalities in the special case ψt(x) = e−tx in
Corollary 7.5 by other means and for general functions ψ will not be used in the sequel;
we decided to present it, since it sheds some light on the relations between the dual
Karlin-McGregor polynomials that are essential for these commutation relations to hold.

Proposition 9.5. Let ψ be as in the statement of Proposition 9.2 and moreover assume ψ(0) = 1.
Then,

P
ψ
n,n+1
Λ

hn,n

n,n+1
= Λ

hn,n

n,n+1
P
ψ
n,n,

P
ψ
n,nΛ

hn−1,n
n,n = Λ

hn−1,n
n,n P

ψ
n−1,n.

Proof. We only prove the first relation, as the second is analogous. Observe that (noting
also that the dummy variable on the left is (n + 1)-dimensional while on the left n-
dimensional),

∑

z∈Wn+1

P
ψ
n,n+1

(k, z)Λ
hn,n

n,n+1
(z, ν) =

∑

z∈Wn

Λ
hn,n

n,n+1
(k, z)P

ψ
n,n(z, ν),

is equivalent to,

∑

z∈Wn+1

det
(

〈Qki
, πz j

Qz j
ψ〉w

)n+1

i, j=1
det

(

φ̂(ν j, zi)
)n+1

i, j=1
=

∑

z∈Wn

det
(

φ̂(z j, ki)
)n+1

i, j=1
det

(

〈Q̂zi
, π̂ν j

Q̂ν j
ψ〉ŵ

)n

i, j=1
.

The left hand side, by the Cauchy-Binet formula is equal to,

det















〈Qki
,
∑

z≥0

πzQzφ̂(ν j, z)ψ〉w















n+1

i, j=1

.

For j ≤ n, the entries of the matrix are given by (recall that Qki
(0) = ψ(0) = 1),

∑

z=ν j+1

〈πzQz,−π̂ν j
Qki
ψ〉w = 〈Q̂ν j

, π̂ν j
Qki
ψ − π̂ν j

Qki
(0)ψ(0)〉w = 〈Q̂ν j

, π̂ν j
Qki
ψ〉w − 〈Q̂ν j

, π̂ν j
〉w = ai j + b j.

While, the entries of the last column j = n + 1 are,

〈Qki
,
∑

z≥0

πzQzψ〉w = Qki
(0)ψ(0) = 1.

To work on the right hand side, we first expand det
(

φ̂(z j, ki)
)n+1

i, j=1
in the last column which

consists of all 1’s. The lth-summand in this expansion is given by,

(−1)n+1+l
∑

z∈Wn

det
(

φ̂(z j, ki)
)

1≤i,l≤n+1,1≤ j≤n
det

(

〈Q̂zi
, π̂ν j

Q̂ν j
ψ〉ŵ

)n

i, j=1

= (−1)n+1+l det















∑

z≥0

φ̂(z, ki)〈Q̂z, π̂ν j
Q̂ν j

ψ〉ŵ















1≤i,l≤n+1,1≤ j≤n

.
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The entries of the matrix in the determinant are given by,

−〈

ki−1
∑

z=0

π̂zQ̂z, π̂ν j
Q̂ν j

ψ〉ŵ = 〈(Qki
− 1)

λ0

x
, π̂ν j

Q̂ν j
ψ〉ŵ = 〈(Qki

− 1), π̂ν j
Q̂ν j

ψ〉w = ai j + c j.

Now, by summing over l, we obtain the determinant of an (n + 1) × (n + 1) matrix with
the last column being all 1’s and the other entries being ai j + c j.

By column operations, more precisely by subtracting a multiple of the last all 1’s
column from the each of the rest, the equality of the left and right hand sides is immediate.

�

Remark 9.6. Proposition 8.4 can also be seen as a corollary of Proposition 9.5 using (88).

9.2 Positivity of evolution operators and coherent measures

We now arrive at the question of positivity of the coherent measures. It will in fact be
easier to consider a more general problem, namely to address this question first for the
evolution operators.

As already observed by (62), forψ(z) = φt(z) = e−tz the determinants det
(

〈Qki
, πνi

Qνi
φt〉w

)n+1

i, j=1

and det
(

〈Q̂ki
, π̂νi

Q̂νi
φt〉ŵ

)n

i, j=1
are exactly the transition densities of the Karlin-McGregor

semigroups associated to n + 1 birth and death chains with generatorD and n birth and
death chains with generator D̂ respectively, killed when they collide and so they are
positive. Hence, since hn,n and hn,n+1 are positive as well we obtain:

Lemma 9.7. P
φt

n,n+1
and P

φt

n,n are positive, ∀t ≥ 0.

Our goal now, is to find conditions on a so that with ψa(z) = 1− az the operatorP
ψa

n,n+1

is positive. We make use of an argument found in Proposition 5.1 of [16], that is recalled
briefly here (see Proposition 5.1 part (4) of [16], in particular the paragraph between
equations (23) and (24) therein, for the details). Our computations below, are quite
simple (compared to [16], although we do follow the same argument) taking advantage
of the relation between the normalization constants and the rates of the chain. First, we
calculate for i, j ∈N,

〈Qi, π jQ j(1 − az)〉w = δi, j + aπ j〈Qi, µ jQ j−1 − (λ j + µ j)Q j + λ jQ j+1〉w

= δi, j + aδi, j−1
1

π j−1
π jµ j − a(λ j + µ j)δi, j + aδi, j+1λ j

1

π j+1
π j

= δi, j + aλ j−1δi, j−1 − a(µ j + λ j)δi, j + aµ j+1δi, j+1,

since
π j

π j−1
=

λ j−1

µ j
.

We now, reduce the problem as in Proposition 5.1 of [16]. First, note that if yi > xi + 1

for some i then we get det
(

〈Qxi
, πy j

Qy j
ψ〉w

)n

i, j=1
= 0, since the resulting matrix has a 2 × 2

block form consisting of an off diagonal block of 0’s and a diagonal block of 0’s and
the same happens for xi > yi + 1. Thus, we must have |xi − yi| ≤ 1 and we can further

restrict to the case |xi − xi+1| ≤ 1, for otherwise det
(

〈Qxi
, πy j

Qy j
ψ〉w

)n

i, j=1
breaks into a

product of determinants with entries so that |xi − xi+1| ≤ 1. Hence, we are led to the case
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xi = x, xi+1 = x + 1, · · · , which is the same as considering whether the determinant of the
tridiagonal matrix {Ai, j}

x+m
i, j=x

with entries, for some m ≤ n,

Ai, j = δi, j + aλ j−1δi, j−1 − a(µ j + λ j)δi, j + aµ j+1δi, j+1

is positive. In order to answer this, we recall the following nice property of tridiagonal
matrices (see page 5 of [23]): If each diagonal entry is greater than or equal to the sum of
the off-diagonal entries in that row then, all its principal minors are non-negative. So, it
suffices to find conditions on a such that,

Ai,i ≥ Ai,i−1 + Ai,i+1,

or more explicitly,

1 − a(µi + λi) ≥ aµi + aλi.

So we need,

a ≤
1

2
(λi + µi)

−1,∀i.

Thus, by letting C = sup
i≥0

(

λi + µi
)

we have proven that:

Lemma 9.8. If a ≤ 1
2C then, P

ψa

n,n+1
is positive.

Remark 9.9. We note here, the close connection between the condition a ≤ 1
2C and the true

interval of orthogonality. Namely, if the support of the measure w is given by supp(w) = [I−, I+],
with 0 ≤ I− < I+ ≤ ∞, then Theorem 14 of [46] gives that ( cn therein is equal to, in our notation,
µn + λn),

1

2

(

I− + I+
)

≤ lim sup
n→∞

{λn + µn}

and thus,

I+ ≤ 2lim sup
n→∞

{λn + µn} ≤ 2C.

In particular, since 2C ≤ 1
a the root of ψa(z) = 1 − az is not in [I−, I+].

Moreover, with analogous considerations if we let Ĉ = sup
i≥0

(

λ̂i + µ̂i

)

we obtain the

following lemma:

Lemma 9.10. If b ≤ 1
2Ĉ

then P
ψb

n,n is positive.

Finally, from Lemma 9.8 and Lemma 9.10 and Proposition 9.2 we obtain as a corollary
the positivity of the coherent measures:

Corollary 9.11. Assume I is compact and let a ≤ 1
2C , b ≤

1
2Ĉ

then,M
ψa

n,n+1
andM

ψb

n,n are positive.
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10 Correlation kernels

10.1 Computation of the correlation kernel

In this subsection we assume that supp(w) = I is compact and that ψ is of the form,

ψ(x) = ψt,~α(x) =

N
∏

i=1

(1 − αix)e−tx, (91)

for someN ∈N and 1
2

(

1
C ∧

1
Ĉ

)

≥ α1 ≥ α2 ≥ · · · ≥ 0 and t ≥ 0. We denote byGTs(∞) the set

of all infinite symplectic Gelfand-Tsetlin patterns, namely infinite interlacing sequences
of the following form:

GTs(∞) =
{

X =
(

X
(0,1),X(1,1),X(1,2), · · ·

)

: X(i−1,i) ∈Wi,i
(

X
(i,i)

)

,X(i,i) ∈Wi,i+1
(

X
(i,i+1)

)

}

.

Define for n ∈N, the following cylinder sets Cn,n

(

x(0,1), · · · , x(n,n)
)

,Cn,n+1

(

x(0,1), · · · , x(n,n+1)
)

in GTs(∞), given by,

Cn,n

(

x(0,1), · · · , x(n,n)
)

=

{

X ∈ GTs(∞) : X(0,1) = x(0,1), · · · ,X(n,n) = x(n,n)
}

,

Cn,n+1

(

x(0,1), · · · , x(n,n+1)
)

=

{

X ∈ GTs(∞) : X(0,1) = x(0,1), · · · ,X(n,n+1) = x(n,n+1)
}

.

We consider the random variable Xψ, taking values in GTs(∞), with distribution Ξψ

defined by its values on the cylinder sets as follows,

Ξψ
[

Cn,n

(

x(0,1), · · · , x(n,n)
)]

=M
ψ
n,n

(

x(n,n)
)

Λ
hn−1,n
n,n

(

x(n,n), x(n−1,n)
)

× · · · ×Λ
h0,1

1,1

(

x(1,1), x(0,1)
)

=

n−1
∏

k=1

det
(

φ(x
(k−1,k)
i

, x(k,k)
i

)
)k

i, j=1
det

(

φ̂(x
(k,k)
i
, x(k,k+1)

i
)
)k+1

i, j=1

× det
(

φ(x(n−1,n)
i

, x(n,n)
i

)
)n

i, j=1

(−1)(
n−1

2 )

λ
(n−1

2 )
0

det
(

〈π̂
x

(n,n)
i

Q̂
x

(n,n)
i

, (−x)n− jψ〉ŵ

)n

i, j=1
,

(92)

Ξψ
[

Cn,n+1

(

x(0,1), · · · , x(n,n+1)
)]

=M
ψ
n,n+1

(

x(n,n+1)
)

Λ
hn,n

n,n+1

(

x(n,n+1), x(n,n)
)

× · · · ×Λ
h0,1

1,1

(

x(1,1), x(0,1)
)

=

n
∏

k=1

det
(

φ(x(k−1,k)
i

, x(k,k)
i

)
)k

i, j=1
det

(

φ̂(x(k,k)
i
, x(k,k+1)

i
)
)k+1

i, j=1

×
(−1)(

n
2)

λ
(n

2)
0

det
(

〈π
x

(n,n+1)
i

Q
x

(n,n+1)
i

, (−x)n+1− jψ〉w

)n+1

i, j=1
. (93)

Note that, Xψ is well defined by the coherency property of Proposition 8.4 and pos-
itivity of Corollary 9.11. Moreover, observe that for ψ(x) = ψ

t,~0(x) = φt(x) = e−tx then

(see Proposition 3.8 and the discussion following it), Ξφt gives the distribution at time
t of D-chains on odd levels and D̂-chains on even levels in GTs(∞) interacting via the
push-block dynamics, started from the fully packed initial condition.
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Equivalently, we can view Xψ as a random point configuration inN ×N, so that Ξψ

determines a probability measure on 2N×N. Abusing notation, we will also denote this by

Ξψ. Our goal, is to calculate explicitly the correlation functions (defined below) {ρ
ψ

k
}k≥0 of

this point process in Theorem 10.4. As above, we will denote by (n1, n2) ∈ {(n, n), (n, n+1)}
the levels of GTs(∞). For example, (0, 1) denotes the first level, (1, 1) the second level,
(1, 2) the third level and so on. For a point z of the form ((n1, n2), x) with (n1, n2) as above
and x ∈ N we will say that z ∈ Xψ, if z belongs to the point configuration corresponding
to Xψ.

In what follows, we will denote by C(I), a positively oriented (counter-clockwise)
loop around [0, I+] (and not just around I = [I−, I+], recall I− ≥ 0) that is chosen in such a
way that it contains no zeros ofψ. Observe that, this is always possible by Remark 9.9. Our
method of proof is essentially an application (of a variant) of the famous Eynard-Mehta
theorem (see [14]).

We begin with some technical preliminaries but first a comment on notations. In all
that follows, all the real weighted integrals over the interval I, for which we use the
notation 〈·, ·〉m, will be in the x-variable, while all the contour integrals over C(I) will be
in the variable u.

Lemma 10.1. We have the following contour integral expressions for alternating convolutions
of φ and φ̂. In the 1st and 3rd equalities below we have a total of 2n terms in the convolutions, in
the 2nd a total of 2n + 1 terms and in the 4th one 2n − 1 terms.













φ ∗
φ̂

λ0
∗ · · · ∗ φ ∗

φ̂

λ0













(i, j) = −
1

2πi

∮

C(I)

〈πiQi,
Q j(u)

x − u
〉w

1

un
du,













φ ∗
φ̂

λ0
∗ · · · ∗

φ̂

λ0
∗ φ













(i, j) = −
1

2πi

∮

C(I)

〈πiQi,
Q̂ j(u)

x − u
〉w

1

un
du,













φ̂

λ0
∗ φ ∗ · · · ∗

φ̂

λ0
∗ φ













(i, j) = −
1

2πi

∮

C(I)

〈π̂iQ̂i,
Q̂ j(u)

x − u
〉ŵ

1

un
du,













φ̂

λ0
∗ φ ∗ · · · ∗ φ ∗

φ̂

λ0













(i, j) = −
1

2πi

∮

C(I)

〈π̂iQ̂i,
Q j(u)

x − u
〉ŵ

1

un
du.

Proof. We begin by writing,

φ(i, j) = πi1(i ≤ j) = πi〈Qi,

j
∑

k=0

πkQk〉w = 〈πiQi, Q̂ j〉w

= −
1

2πi

∮

C(I)

〈πiQi,
Q̂ j(u)

x − u
〉wdu

and in a similar fashion,

φ̂(i, j) = −πi1(i < j) = −π̂i〈Q̂i,

j−1
∑

k=0

π̂kQ̂k〉ŵ = 〈π̂iQ̂i,
λ0

x
(Q j(x) − 1)〉ŵ

= −
1

2πi

∮

C(I)

〈π̂iQ̂i, λ0

Q j(u)

x − u
〉ŵ

1

u
du.
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The last equality holds because,

Q j(x) − 1

x
= −

1

2πi

∮

C(I)

Q j(u)

u(x − u)
du for x ∈ [0, I+].

Moreover,

(φ ∗ φ̂)(i, j) = −
1

2πi

∑

k≥0

−π̂k1(k < j)

∮

C(I)

〈πiQi,
Q̂k(u)

x − u
〉wdu

= −
1

2πi

∮

C(I)

〈πiQi,−

∑j−1

k=0
π̂kQ̂k(u)

x − u
〉wdu

= −
1

2πi

∮

C(I)

〈πiQi,
λ0

u

Q j(u) − 1

x − u
〉wdu

= −
1

2πi

∮

C(I)

〈πiQi, λ0

Q j(u)

x − u
〉w

1

u
du,

where the last equality follows from the fact that for all n ≥ 1,
∮

C(I)

1

un(x − u)
du = 0 for x ∈ [0, I+].

Similarly,

(φ̂ ∗ φ)(i, j) = −
1

2πi

∑

k≥0

πk1(k ≤ j)

∮

C(I)

〈π̂iQ̂i, λ0
Qk(u)

x − u
〉ŵ

1

u
du

= −
1

2πi

∮

C(I)

〈π̂iQ̂i, λ0

∑ j

k=0
πkQk(u)

x − u
〉ŵ

1

u
du

= −
1

2πi

∮

C(I)

〈π̂iQ̂i, λ0

Q̂ j(u)

x − u
〉ŵ

1

u
du.

By induction, we easily obtain the statement of the lemma. �

We now define the following functions Φ(n1 ,n2)

(k1,k2)
(·, ·), that will come up in the computa-

tion of the correlation kernel, on N ×N for (n1, n2) ≥ (k1, k2) given by the convolutions

in the Lemma above, but with
φ̂
λ0

replaced by −
φ̂
λ0

(we just put the factors (−1)(
n
2) and

(−1)(
n−1

2 ) from the cylinder set distributions in the φ̂’s). More explicitly, we define,

Φ
(n,n+1)

(k,k+1)
(i, j) =













φ ∗













−
φ̂

λ0













∗ · · · ∗ φ ∗













−
φ̂

λ0

























(i, j) = (−1)n−k
(

−
1

2πi

)

∮

C(I)

〈πiQi,
Q j(u)

x − u
〉w

1

un−k
du,

Φ
(n,n+1)

(k,k)
(i, j) =

























−
φ̂

λ0













∗ φ ∗ · · · ∗ φ ∗













−
φ̂

λ0

























(i, j) = (−1)n+1−k
(

−
1

2πi

)

∮

C(I)

〈π̂iQ̂i,
Q j(u)

x − u
〉ŵ

1

un+1−k
du,

Φ
(n,n)

(k,k)
(i, j) =

























−
φ̂

λ0













∗ φ ∗ · · · ∗













−
φ̂

λ0













∗ φ













(i, j) = (−1)n−k
(

−
1

2πi

)

∮

C(I)

〈π̂iQ̂i,
Q̂ j(u)

x − u
〉ŵ

1

un−k
du,

Φ
(n,n)

(k−1,k)
(i, j) =













φ ∗













−
φ̂

λ0













∗ · · · ∗













−
φ̂

λ0













∗ φ













(i, j) = (−1)n−k
(

−
1

2πi

)

∮

C(I)

〈πiQi,
Q̂ j(u)

x − u
〉w

1

un−k
du
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and note that, when (n1, n2) = (k1, k2) then,

Φ
(n,n+1)

(n,n+1)
(i, j) = δi, j,

Φ
(n,n)

(n,n)
(i, j) = δi, j.

Moving on, for ψ as in (91) we define the following functions for n, j, i ∈N,

En,n+1
n+1− j

(i) = −
1

2πi

∮

C(I)

Qi(u)

ψ(u)(−u)n+1− j+1
du, (94)

En,n
n− j

(i) = −
1

2πi

∮

C(I)

Q̂i(u)

ψ(u)(−u)n− j+1
du. (95)

Then, we have the following biorthogonality relations between theΦ’s andΨ’s as functions
of i ∈N.

Lemma 10.2.
∑

i≥0

Ψ
n,n+1
n+1−k

(i)En,n+1
n+1−l

(i) = δk,l, for k, l ≤ n + 1,

∑

i≥0

Ψ
n,n
n−k

(i)En,n
n−l

(i) = δk,l, for k, l ≤ n.

Proof. We only prove the first equality, as the second is entirely analogous,

∑

i≥0

Ψ
n,n+1
n+1−k

(i)En,n+1
n+1−l

(i) = −
1

2πi

∑

i≥0

〈πiQi, (−x)n+1−kψ〉w

∮

C(I)

Qi(u)

ψ(u)(−u)n+1−l+1
du

= −
1

2πi

∮

C(I)

∑

i≥0

〈πiQi, (−x)n+1−kψ〉w
Qi(u)

ψ(u)(−u)n+1−l+1
du

= −
1

2πi

∮

C(I)

1

(−u)k−l+1
du = δk,l.

�

The last technical ingredient that we need is:

Lemma 10.3. For all n ∈N, the functions En,n+1
1

(·), · · · ,En,n+1
n+1

(·) form a basis for the linear span

of the functions
(

φ̂ ∗Φ(n,n+1)

(0,1)

)

(virt, ·), · · · ,
(

φ̂ ∗Φ(n,n+1)

(n,n+1)

)

(virt, ·) and similarly En,n
1

(·), · · · ,En,n
n (·)

form a basis for the linear span of
(

φ̂ ∗Φ(n,n)

(0,1)

)

(virt, ·), · · · ,
(

φ̂ ∗Φ(n,n)

(n−1,n)

)

(virt, ·).

Proof. Write Qi(x) =
∑i

k=0 ak(i)xk. By using residue calculus and moreover since we only
have a singularity at 0, we obtain that,

En,n+1
n+1− j

(i) = −
1

2πi

∮

C(I)

Qi(u)

ψ(u)(−u)n+1− j+1
du = −

(−1)n+1− j+1

(n + 1 − j)!

dn+1− j

dun+1− j

(

Qi(u)

ψ(u)

)
∣

∣

∣

∣

∣

u=0

= −
(−1)n+1− j+1

(n + 1 − j)!

n+1− j
∑

l=0

f
n+1− j

l

dl

dul
Qi(u)

∣

∣

∣

∣

∣

u=0

=

n+1− j
∑

l=0

f̃
n+1− j

l
al(i),
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where the coefficients { f
n+1− j

l
}
n+1− j

l=1
only depend on the derivatives of 1/ψ(u) at u = 0. In

particular f
n+1− j

n+1− j
= 1

ψ(0) = 1 , 0 and hence also the leading coefficient f̃
n+1− j

n+1− j
, 0. Thus we

have,

span{En,n+1
1

(·), · · · ,En,n+1
n+1

(·)} = span{a0(·), · · · , an(·)}.

Similarly, if we write Q̂i(x) =
∑i

k=0 âk(i)xk then,

En,n
n− j

(i) =

n− j
∑

l=0

g̃
n− j

l
âl(i),

with g̃
n− j

n− j
, 0. Hence,

span{En,n
1

(·), · · · ,En,n
n (·)} = span{â0(·), · · · , ân−1(·)}.

On the other hand, for 0 ≤ k ≤ n, we have that,

(

φ̂ ∗Φ(n,n+1)

(k,k+1)

)

(virt, j) =
∑

i≥0

(−1)n−k
(

−
1

2πi

)

∮

C(I)

〈πiQi,
Q j(u)

x − u
〉w

1

un−k
du

= (−1)n−k
(

−
1

2πi

)

∮

C(I)

Q j(u)

−u

1

un−k
du

= (−1)n−kan−k( j).

Hence,

span{
(

φ̂ ∗Φ(n,n+1)

(0,1)

)

(virt, ·), · · · ,
(

φ̂ ∗Φ(n,n+1)

(n,n+1)

)

(virt, ·)} = span{a0(·), · · · , an(·)}.

Similarly, for 1 ≤ k ≤ n, we have,
(

φ̂ ∗Φ(n,n)

(k−1,k)

)

(virt, j) = constn,kan−k( j)

and thus,

span{
(

φ̂ ∗Φ(n,n)

(0,1)

)

(virt, ·), · · · ,
(

φ̂ ∗Φ(n,n)

(n−1,n)

)

(virt, ·)} = span{â0(·), · · · , ân−1(·)}.

The statement of the lemma is now evident. �

We finally arrive at our main result, that Ξψ is a determinantal point process with

an explicit kernel given in terms of the orthogonal polynomials {Qi}i≥0, {Q̂i}i≥0 and the
spectral measures w, ŵ.

Theorem 10.4. Let I be compact and ψ be of the form (91). Then, the correlation functions

{ρ
ψ

k
}k≥0 of Ξψ are determinantal,

ρ
ψ

k
(z1, · · · , zk)

def
= Ξψ({E ∈ GTs(∞) s.t. {z1, · · · , zk} ⊂ E}) = det

(

Kψ(zi, z j)
)k

i, j=1
(96)

whereKψ is given by,

Kψ (

((n1, n2), i), (m1,m2), j)
)

=
1

2πi

∮

C(I)

P̃ j(u)〈P̄i(x),
xn2

um2

ψ(x)

(x − u)ψ(u)
〉mdu

+1 ((n1, n2) ≥ (m1,m2)) 〈P̄i(x), xn2−m2P̃ j(x)〉m (97)
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and,

(P̄, P̃,m) =































(πiQi,Q j,w) if (n1, n2), (m1,m2) = (n, n + 1), (m,m+ 1)

(πiQi, Q̂ j,w) if (n1, n2), (m1,m2) = (n, n + 1), (m,m)

(π̂iQ̂i,Q j, ŵ) if (n1, n2), (m1,m2) = (n, n), (m,m+ 1)

(π̂iQ̂i, Q̂ j, ŵ) if (n1, n2), (m1,m2) = (n, n), (m,m)

. (98)

Proof. This is an application of a variant of the Eynard-Mehta Theorem, more specifically
Proposition A.2 of [15]. Identifying the functions therein from Lemma 10.2 and Lemma
10.3 we get that,

Kψ (

((n1, n2), i), (m1,m2), j)
)

= −Φ
(m1,m2)

(n1,n2)
(i, j)1 ((n1, n2) < (m1,m2)) +

m2
∑

k=1

Ψ
n1,n2

n2−k
(i)Em1,m2

m2−k
( j).

(99)

So, we need to calculate
∑m2

k=1
Ψ

n1,n2

n2−k
(i)Em1,m2

m2−k
( j). The calculation of this sum is elementary

but rather tedious. Moreover, all the sums that are encountered in the sequel are finite,
so there are no further issues with convergence other than the ones encountered already.
We can assume (n1, n2) = (n, n + 1), (m1,m2) = (m,m + 1), as all other cases are analogous;

we just need to change Qi’s to Q̂i’s and w to ŵ, note that in particular we are not using
any specific properties of the Qi’s or w below.

We first assume that m ≤ n. Then (note that, for k ≤ m + 1 we have R
ψ

k−(n+1)
= ψ),

m+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) = −
1

2πi

m+1
∑

k=1

〈πiQi, (−x)n+1−kψ〉w

∮

C(I)

Q j(u)

ψ(u)(−u)m+2−k
du

= −
1

2πi

∮

C(I)

〈πiQi,
m+1
∑

k=1

(−x)n+1−k

(−u)m+2−k
ψ〉w

Q j(u)

ψ(u)
du.

By using,

m+1
∑

k=1

(−x)n+1−k

(−u)m+2−k
=

u

x − u

(

1 −
(

u

x

)m+1
)

(−x)n+1

(−u)m+2
,

we get,

m+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) = −
1

2πi

∮

C(I)

〈πiQi,
u

x − u

(

1 −
(

u

x

)m+1
)

(−x)n+1

(−u)m+2
ψ〉w

Q j(u)

ψ(u)
du

=
1

2πi

∮

C(I)

〈πiQi,
1

x − u

(−x)n+1

(−u)m+1
ψ〉w

Q j(u)

ψ(u)
du + 〈πiQi, (−x)(n+1)−(m+1)Q j〉w,

where we have taken the residue at u = x in the second term.
We now assume that m ≥ n + 1. We split the sum into two,

m+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) =

n+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) +

m+1
∑

k=n+2

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j). (100)
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We calculate the first summand as before,

n+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) = −
1

2πi

∮

C(I)

〈πiQi,
u

x − u

(

1 −
(

u

x

)n+1
)

(−x)n+1

(−u)m+2
ψ〉w

Q j(u)

ψ(u)
du. (101)

For the second summand first recall that Ψn,n+1
n+1−k

(i) = 〈πiQi, (−x)n+1−kR
ψ

k−(n+1)
〉w where

R
ψ

k−(n+1)
(x) = ψ(x) −

∑k−(n+1)−1

l=0

ψ(l)(0)

l! (−x)l(−1)l and thus,

m+1
∑

k=n+2

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) = −
1

2πi

∮

C(I)

〈πiQi,
m+1
∑

k=n+2

(−x)n+1−k

(−u)m+2−k















ψ(x) −

k−(n+1)−1
∑

l=0

ψ(l)(0)

l!
(−x)l(−1)l















〉w
Q j(u)

ψ(u)
du.

(102)

So, we need to calculate,

m+1
∑

k=n+2

(−x)n+1−k

(−u)m+2−k















ψ(x) −

k−(n+1)−1
∑

l=0

ψ(l)(0)

l!
(−x)l(−1)l















=
1

(−u)m+2















m+1
∑

k=n+2

(ψ(x) − ψ(0))
(−u)k

(−x)k−(n+1)

−

m+1
∑

k=n+3

k−(n+2)
∑

l=0

ψ(l)(0)

l!

(−u)k(−1)l

(−x)k−(n+1)−l















.

Repeatedly using the geometric summation identity we get that this is equal to,

1

(−u)m+2

[

(ψ(x)− ψ(0))
(−1)(−u)n+2

x − u

(

1 −
(

u

x

)(m+1)−(n+1)
)

−

(m+1)−(n+1)−1
∑

r=1

ψ(r)(0)

r!

(−1)(−u)n+2+r(−1)r

x − u

(

1 −
(

u

x

)(m+1)−(n+1)−r
)















= −
(−u)(n+1)−(m+1)

x − u















ψ(x) − ψ(0) −

(m+1)−(n+1)−1
∑

r=1

ψ(r)(0)

r!
(−u)r(−1)r















+
(−x)(n+1)−(m+1)

x − u















ψ(x) − ψ(0) −

(m+1)−(n+1)−1
∑

r=1

ψ(r)(0)

r!
(−x)r(−1)r















= −
(−u)(n+1)−(m+1)

x − u

[

R
ψ

(m+1)−(n+1)
(u) − ψ(u) + ψ(x)

]

+
(−x)(n+1)−(m+1)

x − u
R
ψ

(m+1)−(n+1)
(x).

Hence,

m+1
∑

k=n+2

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) =
1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u

[

R
ψ

(m+1)−(n+1)
(u) − ψ(u) + ψ(x)

]

〉w
Q j(u)

ψ(u)
du

−
1

2πi

∮

C(I)

〈πiQi,
(−x)(n+1)−(m+1)

x − u
R
ψ

(m+1)−(n+1)
(x)〉w

Q j(u)

ψ(u)
du.

Now, by taking the residue at u = x, in both contour integrals in the terms involving

R
ψ

(m+1)−(n+1)
we get (note that there is no pole at u = 0 in the first contour integral),

1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u
R
ψ

(m+1)−(n+1)
(u)〉w

Q j(u)

ψ(u)
du −

1

2πi

∮

C(I)

〈πiQi,
(−x)(n+1)−(m+1)

x − u
R
ψ

(m+1)−(n+1)
(x)〉w

Q j(u)

ψ(u)
du

= −〈πiQi,
(−x)(n+1)−(m+1)

ψ(x)
R
ψ

(m+1)−(n+1)
(x)Q j(x)〉w + 〈πiQi,

(−x)(n+1)−(m+1)

ψ(x)
R
ψ

(m+1)−(n+1)
(x)Q j(x)〉w = 0.
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So,

m+1
∑

k=n+2

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) =
1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u

[

−ψ(u) + ψ(x)
]

〉w
Q j(u)

ψ(u)
du

= −
1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u
〉wQ j(u)du +

1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u
ψ(x)〉w

Q j(u)

ψ(u)
du.

Thus, combining with the first summand we get that for m > n,

m+1
∑

k=1

Ψ
n,n+1
n+1−k

(i)Em,m+1
m+1−k

( j) = −
1

2πi

∮

C(I)

〈πiQi,
(−u)(n+1)−(m+1)

x − u
〉wQ j(u)du

+
1

2πi

∮

C(I)

〈πiQi,
(−x)n+1ψ(x)

(−u)m+1(x − u)ψ(u)
〉wQ j(u)du. (103)

To obtain the correlation kernel for m > n, recall that there is also a contribution from
Φ

(m,m+1)

(n,n+1)
which is given by,

Φ
(m,m+1)

(n,n+1)
(i, j) = (−1)n−m

(

−
1

2πi

)

∮

C(I)

〈πiQi,
Q j(u)

x − u
〉w

1

um−n
du

= −
1

2πi

∮

C(I)

Q j(u)〈πiQi,
(−u)(n+1)−(m+1)

x − u
〉wdu.

Putting it all together, we get that,

Kψ (

((n, n + 1), i), (m,m+ 1), j)
)

=
1

2πi

∮

C(I)

Q j(u)〈πiQi,
(−x)n+1

(−u)m+1

ψ(x)

(x − u)ψ(u)
〉wdu

+1 (n ≥ m) 〈πiQi, (−x)(n+1)−(m+1)Q j〉w. (104)

Multiplying by the conjugating factor (−1)(n+1)−(m+1) (these do not alter the correlation
kernel since they vanish when we take the determinant), we obtain the statement of the
Theorem. �

10.2 Large time and finite distance from wall limit

We now take ψ(u) = ψt(u) = e−tu so that we are considering the push-block dynamics and
we want to take a large time limit while zooming in and looking at particles being at a
finite distance from the wall.

More precisely, let t ∼ Nτ and m, n ∼ Nη so that moreover, the differences between the
different levels m − n is constant. Furthermore note, that i, j which govern the position
of the particles will be fixed and not scaled with N. This of course, avoids any delicate

asymptotics involving the orthogonal polynomials Qi, Q̂i or the spectral measures w, ŵ.
The exact statement of the result is as follows:

Theorem 10.5. Let t(N) = Nτ and

(m̃1(N), m̃2(N)) =
(

⌊Nη⌋ +m1, ⌊Nη⌋ +m2
)

,

(ñ1(N), ñ2(N)) =
(

⌊Nη⌋ + n1, ⌊Nη⌋ + n2
)

,
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with α =
η
τ . Then we have:

lim
N→∞

Kψt(N)
((

(ñ1(N), ñ2(N)) , i), (m̃1(N), m̃2(N)) , j)
))

= Kα
((

(n1, n2) , i), (m1,m2) , j)
))

=

∫ I+

I−
[−1(x ≥ α) + 1 ((n1, n2) ≥ (m1,m2))] P̄i(x)xn2−m2P̃ j(x)dm(x).

Proof. First, note that the term:

1 ((ñ1(N), ñ2(N)) ≥ (m̃1(N), m̃2(N))) 〈P̄i(x), xñ2(N)−m̃2(N)P̃ j(x)〉m = 1 ((n1, n2) ≥ (m1,m2)) 〈P̄i(x), xn2−m2P̃ j(x)〉m

remains constant in N. We hence, focus on the double integral term of the kernel Kψt(N)

and write it as (recall I = [I−, I+]),

1

2πi

∫ I+

I−

∮

C(I)

e−t(N)x+ñ2(N)log(x)

e−t(N)u+m̃2(N)log(u)

P̃ j(u)P̄i(x)

(x − u)
dm(x)du.

Write the term involving exponentials as,

e−t(N)x+ñ2(N)log(x)

e−t(N)u+m̃2 (N)log(u)
=

e−N(τx−ηlog(x))

e−N(τu−ηlog(u))
+ oN(1).

Let f (z) = τz − ηlog(z). Then f ′(z) = τ −
η
z and so z = α

def
=

η
τ is a critical point. Write,

e−N(τx−ηlog(x))

e−N(τu−ηlog(u))
=

e−N( f (x)− f (α))

e−N( f (u)− f (α))
.

We would like to deform the C(I) contour to a contour Cs so that,

ℜ
(

f (x) − f (α)
)

≥ 0 , for x ∈ [0, I+],

ℜ
(

f (u) − f (α)
)

< 0 , for u on the Cs contour

and thus, the double integral will converge uniformly to zero as N → ∞. In the process
however, we might pick some residues from the pole of 1

x−u depending on howα compares
with I+. First note that for x ∈ R, ℜ( f (x) − f (α)) ≤ 0 is equivalent to,

αe
x
α−1 ≥ |x|.

Hence, there exists β < 0 so that ℜ( f (x) − f (α)) < 0 for x < β andℜ( f (x) − f (α)) > 0 for
x > β except at α. Similarly, with u = x + iy the inequality ℜ

(

f (u) − f (α)
)

< 0 is then
equivalent to,

αe
x
α−1 < (x2 + y2)

1
2

and note that supβ≤x≤α αe
x
α−1 = α. We can thus deform the C(I) contour to a contour Cs

that is equal to a rectangle with sides parallel to the real and imaginary axes so that the
two sides that are parallel to the imaginary axis have real parts r1 = α and r2 < β and the
two sides that are parallel to the real axis have imaginary parts im1 > α and im2 < −α.
Then, on this contour we haveℜ

(

f (u) − f (α)
)

< 0 except at α, where it vanishes. If α ≤ I+

in the course of this deformation we also pick the residue at u = x which gives the single
integral,

−

∫ I+

I−
1(x ≥ α)P̄i(x)xn2−m2P̃ j(x)dm(x).
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Thus, for α > I+ the kernelKψt(N) converges to a triangular matrix whose diagonal entries
are 1. This corresponds to the frozen or fully packed region; the particles at high levels
haven’t had time to move yet since η > τI+. On the other hand, for α ≤ I+, in the scaling
regime considered here,Kψt(N) converges to a kernel Kα with entries,

Kα
(

((n1, n2), i), ((m1,m2), j)
)

=

∫ I+

I−
[−1(x ≥ α) + 1 ((n1, n2) ≥ (m1,m2))] P̄i(x)xn2−m2P̃ j(x)dm(x).

(105)

�

Remark 10.6. [Multilevel extension of discrete ensembles] As already mentioned in the intro-
duction Borodin and Olshanski in Section 3 of [11] introduced the so called discrete determinantal
ensembles associated to continuous orthogonal polynomials.

Their definition goes as follows: suppose W(dx) is a weight on R for which the moment
problem is determinate (see [11] for the precise statements). Let P∗

k
(x) be the kth orthonormal

polynomial with respect to this weight with positive leading coefficient. The discrete ensemble
associated to the weightW(dx) (or equivalently to the polynomials P∗

k
(x)) is the determinantal

point process with the following kernel KWr
(

i, j
)

:

KWr
(

i, j
)

=

∫ ∞

r

P∗i (x)P∗j(x)W(dx).

It is easy to see that if restricted to single levels Kα
((

(n, n + 1) , i), (n, n + 1) , j)
))

gives rise
to the determinantal ensemble with kernel Kwα (i, j) and also Kα

((

(n, n) , i), (n, n) , j)
))

gives rise to
the ensemble governed by the kernel Kŵα (i, j); since conjugation by a function does not alter the
correlation functions and thus the determinantal measure.

Thus,Kα
(

((n1, n2), i), (m1,m2), j)
)

provide a novel multilevel determinantal extension of these
discrete ensembles, so that particles on consecutive levels interlace (by construction). Moreover,
in this generality, it is the first time that these ensembles appear in a concrete interacting particle
system.

11 Appendix

11.1 Technical results

Proof of Lemma 2.1. We will show that for x, y ∈ Z and t ≥ 0,

pt(x, y) = −∇̄y

∞
∑

w=x

p̂t(y,w),

from which the statement of Lemma 2.1 follows. It will be more convenient to write this
equality in matrix form. Define the doubly infinite matrices U,V as follows,

Ai j =















1 j ≥ i

0 otherwise
, Bi j =























1 i = j

−1 j = i + 1

0 otherwise

.

Observe that, AB = BA = Id and moreover and this is the key relation, BD = D̂TB where
D̂T denotes the transpose of D̂. Then, with this notation in place we want to show,

P(t) = AP̂T(t)B
def
= P∗(t), for t ≥ 0.
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First note that P∗(0) = Id and moreover,where in the first equality we interchange d
dt and

an infinite sum which will be justified below, and in the second we use the backwards
equation, for t > 0,

d

dt
P∗(t) = A

(

d

dt
P̂(t)

)T

B

= A
(

D̂P̂(t)
)T

B

= AP̂T(t)D̂TB

= AP̂T(t)BD = P∗(t)D.

Finally, note that−∇̄y

∑∞
w=x p̂t(y,w) ≥ 0 and

∑

y∈Z −∇̄y

∑∞
w=x p̂t(y,w) = 1. Hence, by unique-

ness of solutions to the forwards equation we obtain that for t ≥ 0, P∗(t) = P(t). Now, in
order to justify the interchange of summation and differentiation it suffices to show that
the series,

∞
∑

w=x

d

dt
p̂t(y,w)

converges uniformly on compact intervals of t, where x, y ∈ Z are fixed. First, note that
for n ≥ 1 we have,

x+n
∑

w=x

d

dt
p̂t(y,w) = λ̂(y)

x+n
∑

w=x

p̂t(y − 1,w) −
(

λ̂(y) + µ̂(y)
)

x+n
∑

w=x

p̂t(y,w) + µ̂(y)

x+n
∑

w=x

p̂t(y + 1,w).

(106)

Hence,
∑x+n

w=x
d
dt p̂t(y,w) converges on 0 ≤ t < ∞ and moreover, has uniformly bounded

partial sums. More specifically,

x+n
∑

w=x

∣

∣

∣

∣

∣

d

dt
p̂t(y,w)

∣

∣

∣

∣

∣

≤ 2
(

λ̂(y) + µ̂(y)
)

, ∀t ≥ 0,∀n ≥ 1.

Thus, the partial sums of,

∞
∑

w=x

p̂t(y,w)

are uniformly bounded and equicontinuous, which can be seen as follows. If we define,
for fixed x, y ∈ Z, fn(t) =

∑x+n
w=x p̂t(y,w) we obviously have | fn(t)| ≤ 1,∀t ≥ 0 and n ≥ 1.

Moreover, for s ≤ t in [0,T] we have by the Mean Value Theorem, for some u ∈ (s, t),

fn(t) − fn(s) = (t − s)
d

du
fn(u)

and hence,

| fn(t) − fn(s)| ≤

∣

∣

∣

∣

∣

∣

∣

x+n
∑

w=x

d

du
p̂u(x, y)

∣

∣

∣

∣

∣

∣

∣

≤ |t − s| sup
u∈[0,T]

x+n
∑

w=x

∣

∣

∣

∣

∣

d

du
p̂u(y,w)

∣

∣

∣

∣

∣

≤ 2
(

λ̂(y) + µ̂(y)
)

|t − s| , ∀n ≥ 1.
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So, by the Arzela Ascoli Theorem we obtain that the series
∑∞

w=x p̂t(y,w) converges uni-
formly on every finite interval in t and hence by equality (106) the series

∑∞
w=x

d
dt p̂t(y,w)

does so as well. By iterating the same argument, we also see that this holds for
∑∞

w=x
dk

dtk p̂t(y,w) for any k ≥ 1. �

Proof of Proposition 2.3. The result is implied from the following two claims, for s ≤ t,
x, x′, x′′,w ∈ I:

1. If Fs,t(w) = x′ ≤ x then Gs,t(x) ≥ w.
2. If Fs,t(w) = x′′ > x then Gs,t(x) < w.
To show the first one, observe that without loss of generality we can assume that

Fs,t(w) = x. Then, attempt to follow the original/forwards path starting from w at time s
and that ends at x at time t backwards in time, using only the red arrows, until the first
time this is no longer possible. This happens iff the original/forwards path/chain came
up using an up ↑ arrow or the chain running backwards encounters a red up ↑ arrow. The
claim then follows, since the backwards path always stays above the original/forwards
path.

To show the second one, note that without loss of generality we can assume that
Fs,t(w) = x + 1. Consider the last instance (if they never meet the claim is trivial) τ <
t the forwards path starting from w at time s and moving according to the original
arrows and the backwards path starting from x at time t and using the red arrows are
together. This is equivalently, the first instance (cf. right continuity) they meet, with time
running backwards from t. This can only happen if the forwards path encounters an up
↑ arrow which means the backwards path encountered a down red ↓ arrow, which gives
a contradiction. This is since the paths would split at τ, with time running backwards in
such cases. �

11.2 Projective chains from branching of functions

Suppose we are given ∀n ∈ N, indexing sets In ⊂ Z
n, Polish spaces Xn = X × · · · × X,

a distinguished point ū ∈ X, Borel measures wn on Xn and finally families of functions
{Fn (x; u1, · · · , un)}x∈In

orthogonal in L2 (Xn,wn) normalized so that Fn (x; ū, · · · , ū) = 1,
∀n ∈ N, x ∈ In. Consider the convex set, denoted by Yn, consisting of functions Fn such
that the following series converges uniformly inXn (this can be relaxed) and in L2 (Xn,wn),

F Mn
n (u1, · · · , un) =

∑

x∈In

Mn(x)Fn (x; u1, · · · , un) , (107)

where,

Mn(x) ≥ 0 , ∀x ∈ In and
∑

x∈In

Mn(x) = 1. (108)

Note that, by the orthogonality of the {Fn (x; ·)}x∈In
we obtain that the {Mn(x)}x∈In

are
determined uniquely by the Fn(·) as follows,

Mn(x) =
〈Fn (·) , Fn (x; ·)〉wn

〈Fn (x; ·) , Fn (x; ·)〉wn

. (109)

Now, further assume that,

Fn(x; u1, · · · , un−1, ū) =
∑

y∈In−1

Λn
n−1(x, y)Fn−1

(

y; u1, · · · , un−1
)

, (110)
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for some Markov kernels, Λn
n−1

from In to In−1 i.e.

Λn
n−1(x, y) ≥ 0 , ∀x ∈ In, y ∈ In−1 and (necessarily)

∑

y∈In−1

Λn
n−1(x, y) = 1.

Moreover, we assume that for any fixed x ∈ In the measure Λn
n−1

(x, ·) is supported on
finitely many y ∈ In−1. Observe that, this is always the case for branching graphs by
definition. In particular, the functions {Fn (x; ·)}x∈In,n≥1 generate a projective chain with
levels {In}n≥1 and Markov links from In to In−1 given by Λn

n−1
(x, y) with x ∈ In and y ∈ In−1.

Remark 11.1. In the case of the alternating construction, In = Wn(N), X = [0, I+] and ū = 0.
For ν ∈ In and u1, · · · , un ∈ [0, I+], the functions Fn(ν; u1, · · · , un) are given by (cf. (71)),

Fn(ν; u1, · · · , un) =
hn−1,n(ν; u1, · · · , un)

hn−1,n(ν; 0, · · · , 0)
=

hn−1,n(ν; u1, · · · , un)

hn−1,n(ν)

and the Markov kernels Λn
n−1

(ν, κ), for ν ∈Wn and κ ∈Wn−1, as follows,

Λn
n−1(ν, κ) =

(

Λ
hn−1,n−1

n−1,n Λ
hn−2,n−1

n−1,n−1

)

(ν, κ).

Moving on to coherent measures, the fact that MnΛ
n
n−1
=Mn−1 is equivalent to,

FMn
n (u1, · · · , un−1, ū) =

∑

y∈In−1

Mn−1(y)Fn−1(y; u1, · · · , un−1). (111)

This can be seen as follows. If MnΛ
n
n−1
= Mn−1, we multiply both sides of (110) by Mn(x)

and sum over x ∈ In first (there is only one infinite sum here so we can interchange them
without any issues) to arrive at (111). On the other hand, if (111) holds we can again
multiply (110) by Mn(x) and sum over x ∈ In to obtain using (111),

∑

y∈In−1

Mn−1(y)Fn−1(y; u1, · · · , un−1) =
∑

y∈In−1

∑

x∈In

Mn(x)Λn
n−1(x, y)Fn−1

(

y; u1, · · · , un−1
)

,

with both series converging uniformly and in L2
(

Xn−1,wn−1

)

and by taking the inner

product with Fn−1(z; ·) we get,

Mn−1(z) =
∑

x∈In

Mn(x)Λn
n−1(x, z).

Thus (truncated) coherent measures up to level N, namely sequences of probability
measures {Mn}n≤N such that MnΛ

n
n−1
= Mn−1 for n ≤ N are in bijection with sequences

{Fn}n≤N such that Fn ∈ Yn with Fn(u1, · · · , un) = FN(u1, · · · , un, ū, · · · , ū). Thus, if we
define (SFn) (u1, · · · , un−1) = Fn (u1, · · · , un−1, ū) which is an affine map from Yn to Yn−1

and consider the projective limit,

Y = lim
←
Yn (112)

consisting of functions F∞ on the space X∞0 = (u1, u2, · · · ) ∈ X × X × · · · (having only
finitely many coordinates not equal to ū) such that,

F F∞n (u1, · · · , un)
def
= F∞(u1, · · · , un, ū, ū, · · · ) ∈ Yn ,∀n ∈N, (113)

then studying the extremal coherent measures is equivalent to the study of Ex (Y).
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11.3 Factorization implies extremality

We now aim to prove under several assumptions that if F∞ factorizes then, the corre-
sponding coherent measure is extremal. We will reduce the problem to an application of
de Finetti’s theorem, following an argument which in this particular setting, as far as we
know, originates with Okounkov’s and Olshanski’s paper [37].

We assume that, ∀n ∈ N and x ∈ In, the functions Fn (x; u1, · · · , un) are symmetric
polynomials on [0, I+]n, orthogonal with respect to a weight wn and ū = 0. It will be more
convenient to work on the n-dimensional torus Tn = {(z1, · · · , zn) ⊂ C : |zi| = 1} rather
than the cube. We letW denote the BCn Weyl group namely,

W = S(n) ⋉ Zn
2 ,

where the symmetric group S(n) acts by permuting the variables andZn
2 acts as follows,

f (z1, · · · , zn) 7→ f (z±1
1 , · · · , z

±1
n ).

We will be interested in W-invariant Laurent polynomials in n variables on Tn. It is a
well known fact, that the algebra of n-variableW-invariant Laurent polynomials can be
identified with the standard algebra of symmetric polynomials in n variables (see first
paragraph of Section 2 of [43] for a discussion). More concretely, under the change of
variables,

ui =
I+

2













1 −
zi + z−1

i

2













= g(zi),

we can map symmetric polynomials on the cube [0, I+]n to W-invariant Laurent poly-
nomials on Tn and vice versa and note that the distinguished point ū = 0 gets mapped
to z = 1. We can thus, consider the corresponding W-invariant Laurent polynomial
to Fn(x; u1, · · · , un), denoted by Gn(x; z1, · · · , zn) = Fn(x; g(z1), · · · , g(zn)), orthogonal in
L2 (Tn, w̃n) where w̃n is obtained by the change of variables formula. Finally, we denote the

corresponding convex set Ỹn consisting of functions Gn(z1, · · · , zn) = Fn(g(z1), · · · , g(zn))
so that,

Gn(z1, · · · , zn) =
∑

x∈In

Mn(x)Gn (x; z1, · · · , zn) , (114)

Gn(x; z1, · · · , zn−1, 1) =
∑

y∈In−1

Λn
n−1(x, y)Gn−1

(

y; z1, · · · , zn−1
)

.

We make the following essential (and rather non-trivial to check) positive definiteness
assumption, namely that ∀x ∈ In,

G(x; z1, · · · , zn) =
∑

λ1,··· ,λn∈Z

a(x;λ1, · · ·λn)zλ1

1
· · · zλn

n , with a(x;λ1, · · ·λn) ≥ 0 ,∀λ1, · · · , λn ∈ Z.

Note that, since G(x; z1, · · · , zn) = 1 this implies that,

∑

λ1,··· ,λn∈Z

a(x;λ1, · · ·λn) = 1
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and so by the positivity of the a(x;λ1, · · ·λn) for (z1, · · · , zn) ∈ Tn, |Gn(x; z1, · · · , zn)| ≤ 1 and
in particular the series (114) converges uniformly. Thus, Gn is a continuous,normalized,
positive definite, symmetric function on Tn.

Hence, and this is the key observation, the convex set Ỹn is a subset of the convex set
of characteristic functions of measures on Zn invariant under the action of S(n). Thus,
Ỹ = lim

←
Ỹn the set of functions G∞ on (z1, z2, · · · ) ∈ T∞0 such that,

Gn(z1, · · · , zn)
def
= G∞(z1, · · · , zn, 1, 1, · · · ) ∈ Ỹn ,∀n ∈N, (115)

is a (convex) subset of the convex setZ of characteristic functions of probability measures
on Z∞ = Z × Z × · · · , invariant under the action of S(∞). We have thus arrived at the
following result.

Proposition 11.2. Under the assumptions above, for G∞ ∈ Ỹ further assume that there exists

G1 ∈ Ỹ1 such that ∀n ≥ 1,

G∞(z1, · · · , zn, 1, 1, · · · ) =
n

∏

i=1

G1(zi). (116)

Then, G∞ ∈ Ex(Ỹ).

Proof. By de Finetti’s theorem and the factorization property (116) we have G∞ ∈ Ex(Z).

Since Ỹ is a convex subset ofZwe get G∞ ∈ Ex(Ỹ). �

Remark 11.3. We have a Markov kernel Λ∞n : Ex(Ỹ) → In, defined for G∞ ∈ Ex(Ỹ) such that
(116) holds, that is given as follows,

Λ∞n (G1, x)
def
= MG1

n (x)
def
=
〈
∏nG1 (·) ,Gn (x; ·)〉w̃n

〈Gn (x; ·) ,Gn (x; ·)〉w̃n

. (117)

Remark 11.4. Note that, the assumptions considered in this section are satisfied in the case of
general β normalized Jack (see [37]) and Jacobi (see [38]) polynomials. Checking the positive

definiteness of Gn(ν; ·) corresponding to Fn(ν; ·) =
hn−1,n(ν;·)

hn−1,n(ν) , cf. (71) which would imply the

extremality of Mn = M
ψ
n−1,n for ψ(x) = p(x)e−tx where p(x) is an arbitrary polynomial is in

general non-trivial.
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