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Abstract 23 

Arctic landscapes are changing rapidly in response to warming, but future predictions are 24 

hindered by difficulties in scaling ecological relationships from plots to biomes. Unmanned 25 

aerial systems (hereafter ‘drones’) are increasingly used to observe Arctic ecosystems over 26 

broader extents than can be measured using ground-based approaches and facilitate the 27 

interpretation of coarse-grained remotely-sensed datasets. However, more information is 28 

needed about how drone-acquired remote sensing observations correspond with ecosystem 29 

attributes such as aboveground biomass. Working across a willow shrub-dominated alluvial 30 

fan at a focal study site in the Canadian Arctic, we conducted peak growing season drone 31 

surveys with an RGB camera and a multispectral multi-camera array. We derived 32 

photogrammetric reconstructions of canopy height and normalised difference vegetation index 33 

(NDVI) maps along with in situ point-intercept measurements and aboveground vascular 34 

biomass harvests from 36, 0.25 m2 plots. We found high correspondence between canopy 35 

height measured using in situ point-intercept methods compared to drone-photogrammetry 36 

(concordance correlation coefficient = 0.808), although the photogrammetry heights were 37 

positively biased by 0.14 m relative to point-intercept heights. Canopy height was strongly and 38 

linearly related to aboveground biomass, with similar coefficients of determination for point 39 

framing (R2 = 0.92) and drone-based methods (R2 = 0.90). NDVI was positively related to 40 

aboveground biomass, phytomass and leaf biomass. However, NDVI only explained a small 41 

proportion of the variance in biomass (R2 between 0.14 and 0.23 for logged total biomass) 42 

and we found moss cover influenced the NDVI-phytomass relationship. Vascular plant 43 

biomass is challenging to infer from drone-derived NDVI, particularly in ecosystems where 44 

bryophytes cover a large proportion of the land surface. Our findings suggest caution with 45 

broadly attributing change in fine-grained NDVI to biomass differences across biologically and 46 

topographically complex tundra landscapes. By comparing structural, spectral and on-the-47 

ground ecological measurements, we can improve understanding of tundra vegetation change 48 

as inferred from remote sensing. 49 

  50 
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1. Introduction 51 

Arctic ecosystems are warming rapidly (IPCC, 2013) and plant communities are responding 52 

(Elmendorf et al., 2012b, 2015; Myers-Smith et al., 2011, 2019). Shrub growth is climate 53 

sensitive (Elmendorf et al., 2012a; Myers-Smith et al., 2020) and increases in shrub 54 

abundance and decreases in bare ground in plant communities have been reported at sites 55 

around the tundra biome (Elmendorf et al., 2012b; Myers-Smith et al., 2011). However, there 56 

is limited understanding of the controls on vegetation change in tundra plant communities 57 

(Myers-Smith et al., 2020; Post et al., 2019). We do not yet have standardised methods of 58 

quantifying changes in tundra plant canopy structures and growth across the landscape and 59 

there are few allometric relationships relating observable plant dimensions to aboveground 60 

biomass in Arctic ecosystems (Berner et al., 2015). One of the key challenges in tundra 61 

ecological monitoring is acquiring scale-appropriate observations due to the small growth 62 

forms of many plants in this large extent and often less accessible biome (Fisher et al., 2018). 63 

 64 

Remote-sensing approaches have been widely employed to gather information about 65 

changing Arctic landscapes (Bartsch et al., 2020; Berner et al., 2015; Jia et al., 2009; Myers-66 

Smith et al., 2020; Walker et al., 2003a). In tundra ecosystems, there is a critical scale gap 67 

between biome-wide coarse-grain observations from satellite-based remote sensing (with 68 

pixels typically measuring between 64 km2 to 100 m2) and in-situ observations collected at fine 69 

spatial scales typically over a few meters (Bartsch et al., 2020; Myers-Smith et al., 2020; 70 

Riihimäki et al., 2019; Santin-Janin et al., 2009). Bridging this scale gap requires the 71 

integration of observations at intermediate scales. Unmanned aerial systems (hereafter 72 

‘drones’’) are one possible platform for deploying sensors to collect high-resolution data at 73 

landscape scales (Anderson, 2016), which have now become widely used for collecting 74 

environmental data (Assmann et al., 2018; Howell et al., 2020; Karl et al., 2020). However, 75 

empirical work is needed to relate remotely-sensed attributes to ecological variables and 76 

inform scientific interpretations (Räsänen et al., 2019). 77 

 78 
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Fine-scale measurements of three-dimensional plant structure can inform biomass prediction 79 

(Cunliffe et al., 2016; Fraser et al., 2016; Greaves et al., 2017, 2015; Poley and McDermid, 80 

2020). Such methods have been demonstrated with ground-based and airborne light detection 81 

and ranging (LiDAR) observations in Arctic tundra landscapes (Greaves et al., 2017, 2015), 82 

but also with aerial photogrammetry surveys leveraging advances in computer vision 83 

approaches (Alonzo et al., 2020; Fraser et al., 2019, 2016). However, few studies have tested 84 

the correspondence between photogrammetrically determined canopy height and in situ 85 

measurements Arctic plants. Such testing is necessary to inform the successful integration of 86 

drone-derived products into existing ecological monitoring programmes in the tundra biome. 87 

 88 

Spectral reflectance measurements from optical remote sensing have long been used for 89 

vegetation studies (Jia et al., 2003; Myers-Smith et al., 2020; Walker et al., 2003a). Spectral 90 

reflectance data can be used to calculate vegetation indices such as the normalised difference 91 

vegetation index (NDVI), which contrasts the reflectance in the red portion of the spectrum 92 

that is maximally absorbed by chlorophyll with the near-infrared (NIR) portion that is highly 93 

reflected by leaf and canopy structures (Buchhorn et al., 2016). Several studies have shown 94 

that NDVI can be good predictor of photosynthetic tissue biomass (here after phytomass) in 95 

Arctic ecosystems (Boelman et al., 2003; Hogrefe et al., 2017; Walker et al., 2003a), and NDVI 96 

has often also been considered a predictor of total aboveground biomass (Berner et al., 2018; 97 

Myers-Smith et al., 2020). However, different plant tissues have different reflectance 98 

properties (Bratsch et al., 2017; Räsänen et al., 2019), and aboveground biomass is 99 

dominated by non-photosynthetic tissues, such as woody stems, in many communities such 100 

as shrublands (Epstein et al., 2012). Logistical challenges have limited the number of empirical 101 

studies that have been able to test the relationship between NDVI and total aboveground 102 

biomass (Berner et al., 2018; although see Boelman et al., 2003; Goswami et al., 2015). 103 

Furthermore, there is commonly a scale mismatch between the extent sampled for spectral 104 

reflectance (i.e., the ground sampling distance of a remotely-sensed pixel) and the extent over 105 

which aboveground biomass is quantified (Berner et al., 2018; Karlsen et al., 2018). The 106 
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capacity of peak NDVI to explain variation in total biomass requires further evaluation given 107 

the widespread consideration of NDVI as a predictor of total aboveground biomass, combined 108 

with the increasing accessibility of spectral reflectance data at ever-finer spatial resolutions 109 

(Berner et al., 2018; Fraser et al., 2017; Riihimäki et al., 2019). 110 

 111 

In this study, we conducted spatially explicit-comparisons between ground-based and drone-112 

based measurements of canopy height, NDVI and biomass to address biomass monitoring in 113 

tundra ecosystems. We worked across a Salix richardsonii to graminoid ecotone on a shrub-114 

dominated alluvial fan at a focal tundra research site on Qikiqtaruk – Herschel Island. We 115 

examined whether drone data collection combined with image-based modelling approaches 116 

yielded high-fidelity measurements of vegetation attributes. We tested the correspondence 117 

among (i) canopy height models derived from aerial photogrammetry and in-situ point-118 

intercept methods, (ii) canopy height and aboveground biomass of vascular plants, and (iii) 119 

NDVI values obtained at different spatial grains and total vascular plant biomass, 120 

photosynthetic biomass and leaf biomass. Our analyses tested the extent to which drone-121 

based methods can be used to monitor vegetation canopies to infer tundra biomass and 122 

productivity. 123 

 124 

2. Methods 125 

2.1. Site description 126 

We conducted our study on Qikiqtaruk - Herschel Island in the Canadian Arctic. Tundra 127 

vegetation communities here range from graminoid- to shrub-dominated and are underlain by 128 

organic soils and ice-rich permafrost. This site has undergone marked ecological changes in 129 

community composition, increases in canopy height and vegetation abundance, decreases in 130 

bare ground, and an advance in leaf emergence and flowering over nearly two decades of 131 

ecological monitoring (Myers-Smith et al., 2019).  132 

 133 

2.2. Field sampling 134 
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Our study area encompassed a graminoid-shrub ecotone at the edge of a wet willow shrub-135 

dominated alluvial fan (69.571°N, 138.893°W) (Figure 1). We established two adjacent sites, 136 

a 0.5-hectare area to the north was allocated for monitoring canopy structure and biomass 137 

change over time (coordinates in Table S4), and an adjacent sampling area to the south 138 

contained the harvest plots for calibrating allometric relationships between height or NDVI and 139 

biomass. Both the monitoring and harvesting areas were selected to be representative of the 140 

full distribution of canopy heights that we observed in the field (see Figure S8 for comparison 141 

of value distributions). 142 

 143 

To constrain the photogrammetric modelling and locate the point clouds in a coordinate 144 

reference system, 26 ground control markers (265 mm x 265 mm) were deployed across the 145 

entire area and geolocated to a relative 3D accuracy of ≤ 0.015 m with an RTK-GNSS survey 146 

instrument (Leica GS10). Coordinates were relative to a local benchmark, geolocated in 147 

absolute terms to ±0.003 m in X and Y, and ±0.008 m in Z (95% confidence interval), using 148 

the AUSPOS web service. The markers were situated to be visible from the air, and the high 149 

density of markers (ca. 26 markers per ha-1) facilitated image alignment for stable 150 

reconstruction in the texturally complex scene (Poley and McDermid, 2020). 151 

 152 

In June 2016, we selected 36 plots of 50 cm × 50 cm for detailed observation within our 153 

harvesting area (Figure 1d). The plots were arranged in twelve blocks of three replicates, 154 

stratified across the range of canopy heights in order to estimate the allometric models more 155 

efficiently as well as to determine the form of the relationship between mean canopy height 156 

and biomass (Warton et al., 2006). Plots contained no standing water during the period of 157 

observations. The dimensions of the harvest plots were selected to be large enough to contain 158 

representative samples of plant material and to reduce the possible effects of co-registration 159 

errors. The corners of each harvest plot were precisely geolocated using the GNSS. To 160 

minimise the GNSS survey staff sinking into the often-soft ground, we used a ca. 25 cm2 ‘foot’ 161 

on the bottom of the staff to dissipate pressure. 162 
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 163 

To enable canopy height to be modelled across the monitoring area, we undertook a walkover 164 

survey with the GNSS to measure the ground elevation at intervals along transects, which 165 

yielded 911 observations with an average spacing of 1 point per 10 m2. We excluded 36 166 

regularly spaced ground observations for validation purposes and interpolated a terrain model 167 

from the remaining observations using inverse distance weighting (power = 3, search radius 168 

= 7, cell size = 0.1 m). 169 

 170 

On the 30th and 31st of July 2016 after the drone surveys were completed, each of the 36, 50 171 

x 50 cm plots were surveyed using point-intercept methods similar to ITEX protocols (Molau 172 

and Mølgaard, 1996; Myers-Smith et al., 2019). We placed a grid with 36 points at 10 cm 173 

intervals over each plot. At each point, we placed a metal pin vertically and recorded the 174 

maximum height of the canopy above the moss/litter layer representing the ground surface. 175 

Wind speeds were generally light during our ground surveys and our point-intercept 176 

observations did not appear to be influenced by the limited movement of the low stature 177 

canopies. 178 

 179 
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 180 

Figure 1. Overview of the study site encompassing a graminoid-shrub ecotone. The panels 181 

indicate: location of Qikiqtaruk – Herschel Island in the Western Canadian Arctic (a), location 182 

of the study site on an alluvial fan to the east of the Island at 69.571°N, 138.893°W (b), an 183 

aerial oblique photograph of the graminoid to shrub ecotone, looking southwest (c), and true 184 
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colour orthomosaic at 4 mm spatial resolution (d). The orange flags (in c) indicate some of the 185 

36 harvest plots (blue squares in d) and the wide squares (in c) indicate some of the 26 ground 186 

control markers (red crosses in d). 187 

 188 

2.3. Biomass harvest 189 

Our sampling at the end of July coincided with the period of peak biomass across the growing 190 

season at this location. Within each of the 36 sub-plots, all standing vascular plants were 191 

harvested down to the top of the moss/litter layer (after Walker et al., 2003a) on the 31st of 192 

July and 1st of August 2016. Harvested biomass was separated into three partitions: (if) woody 193 

stems, (ii) shrub leaves (including catkins that accounted for less than 10% of the ‘leaf’ 194 

biomass), and (iii) herbaceous material (consisting of mainly graminoids and equisetum, but 195 

also some forbs). Salix richardsonii produces catkins before leaves in June and the seeds are 196 

mostly dispersed by mid-July. At the time of drone data collection and biomass harvesting, 197 

most catkins had dispersed their seeds and were senesced. Biomass was dried at ca. 35°C 198 

for ≥ 70 hours, until it reached a constant weight (<0.2% change) over a 24-hour period. 199 

  200 

 201 

2.4. Aerial surveys 202 

2.4.1. Aerial survey for canopy height modelling 203 

To obtain aerial images for modelling of canopy heights, we used a 24 megapixel camera 204 

(Sony α6000), equipped with a prime lens (Sony SEL 20 mm F2.8), carried on a Tarot 680 205 

hexacopter controlled with a PixHawk running open source ArduPilot (http://ardupilot.org) 206 

software (Table 1). Two sets of survey flights were undertaken, the first obtaining nadir 207 

imagery and the second obtaining oblique (ca. 20° from nadir). Images were obtained with a 208 

spatial grain of ca. 4-6 mm at the canopy top (Cunliffe and Anderson, 2019). The camera was 209 

triggered by the flight controller based on distance travelled, with both sets of flights together 210 

capturing ≥ 22 photos for every part of the study area (equivalent to forward overlap of 75% 211 

and sidelap of 65% for each flight). We collected 673 RGB photographs over the survey area. 212 
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Mission flight speeds ensured that motion blur during shutter exposure was less than one third 213 

of the ground sampling distance. Image data were originally recorded in lossless RAW-file 214 

format (Sony ARW), and were converted to uncompressed TIFF using Sony’s Image Data 215 

Converter (v4). 216 

 217 

2.4.1. Aerial survey for spectral reflectance 218 

To obtain images for modelling spectral reflectance, we used Parrot Sequoia (Paris, France) 219 

multi-camera arrays (firmware 1.0.0), to record the Red (640-680 nm) and Near-infrared (770-220 

820 nm) bands with an instantaneous-field-of-view of 61.9° (across flight line) and 48.5° (along 221 

flight line) (Parrot, 2017). Recent studies indicate a generally good, but sometimes mixed 222 

correspondence between surface reflectance measured with Sequoia or similar multi-camera 223 

arrays and satellite observations (e.g. from Sentinel-2) (Díaz-Delgado et al., 2019; Fawcett et 224 

al., 2020; Fernández-Guisuraga et al., 2018; Franzini et al., 2019; Khaliq et al., 2019; Matese 225 

et al., 2015). We reduced issues associated with the precision of the Sequoia observations 226 

(Fawcett and Anderson, 2019) as much as possible by adhering to best practices (Assmann 227 

et al., 2018). To learn more about the consistency of the drone-derived NDVI products under 228 

real-world operational conditions, we conducted four multispectral surveys under different 229 

spatial grain and illumination conditions, using different survey altitude, sun elevation and 230 

cloud conditions (Assmann et al., 2018; Fawcett et al., 2020; Stow et al., 2019). 231 

 232 

The Sequoia sensors were mounted on multi-rotor (as above) and flying-wing (Zeta Phantom 233 

FX-61) platforms with PixHawk flight controllers. We undertook four multispectral surveys over 234 

two days, at altitudes of 19 m, 50 m, 120 m and 121 m above ground level, to sample a range 235 

of spatial resolutions and illumination conditions with respect to cloud cover and sun 236 

illumination angle (Table 1). The three multirotor flights carried the same Sequoia sensor, 237 

while the flying-wing carried a second Sequoia sensor. A MicaSense spectral reflection 238 

calibration panel reflecting ca. 50% of light was imaged before and after each survey, and the 239 

image considered to be the most representative of illumination conditions during the survey 240 
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was used for empirical line calibration of spectral reflectance during processing (Assmann et 241 

al., 2018). The reflectance values of the panel were measured under laboratory conditions 242 

before and after the field campaign, and we used the mean of these two measurements to 243 

minimise errors arising from degradation in panel reflectance (Assmann et al., 2018). The 244 

Sequoia was triggered using a two-second intervalometer to achieve an overlap of at least 245 

five images across the study area.  246 

 247 

Table 1. Description of drone surveys. (A) and (B) refer to the two Parrot Sequoia sensors, 248 

and local time refers to the middle of the survey period. 249 

Sensor 
Altitude 
agl [m] 

GSD 
[m] 

Date Local 
time 

(UTC-

8) 

Solar 
elevation 
(degrees) 

Platform Mean 
wind 

speed 

[m s-1] 

Cloud conditions 

Sony α6000  19 0.005 25th July 2016 13:20 39.9 Multirotor 3.4 Thin cirrus (sun not 
obscured) 

Parrot Sequoia (A) 19 0.018 26th July 2016 17:34 27.3 Multirotor 3.1 Thin cirrus (sun not 
obscured) 

Parrot Sequoia (A) 50 0.047 30th July 2016 13:10 38.7 Multirotor 4.2 Scattered cumulus (sun 
not obscured) 

Parrot Sequoia (B) 120 0.119 30th July 2016 13:21 38.7 Flying wing 4.9 Cumulus (sun obscured) 

Parrot Sequoia (A) 121 0.121 26th July 2016 19:50 15.6 Multirotor 3.1 Scattered cumulus (sun 
not obscured) 

 250 

2.5. Image based modelling  251 

2.5.1. Processing for canopy height models 252 

The aerial images were processed using structure-from-motion photogrammetry on a high 253 

performance workstation with a workflow based on Cunliffe et al. (2016). Geotagged image 254 

data and marker coordinates were imported into Agisoft PhotoScan (v1.2.4) and converted 255 

into a common coordinate reference system (WGS84 UTM 7N; EPSG:32607). Image quality 256 

was assessed using PhotoScan’s image quality tool, which assesses the sharpness of the 257 

sharpest part of each photograph; all images had a sharpness of ≥ 0.77. Photos were matched 258 

and cameras aligned using the highest quality setting, key point limit of 100,000, unlimited tie 259 

points, generic and reference pair preselection were enabled, and adaptive camera model 260 

fitting was disabled. Camera location accuracy was set to 25 m, marker location accuracy was 261 
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set to 0.01 m, marker projection accuracy was set to two pixels, and tie point accuracy was 262 

set to one. 263 

 264 

The sparse cloud was filtered and tie points with reprojection error above 0.55 were excluded 265 

from further analysis. We reviewed the estimated camera positions to verify their plausibility 266 

and removed any obviously erroneous tie points from the sparse cloud. Geolocated markers 267 

were manually placed on all projected images for each of the 26 ground control points (Cunliffe 268 

et al., 2016; Kachamba et al., 2016). Three markers used for independent accuracy 269 

assessment were deselected at this stage. The bundle adjustment was then optimised using 270 

the filtered cloud of tie points and the following lens parameters: focal length (f), principal point 271 

(cx, cy), radial distortion (k1, k2, k3), tangential distortion (p1, p2), aspect ratio and skew 272 

coefficients (b1, b2). Out of 673 images, 95% (636) were aligned and used for the multi-view 273 

stereopsis (dense cloud generation) using the ultrahigh quality setting, mild depth filtering and 274 

point colour calculation enabled. The dense point cloud was exported in the .laze format, with 275 

point coordinate and RGB attributes. 276 

 277 

The dense point cloud was analysed in PDAL (v1.9.1 PDAL Contributors, 2020). The corner 278 

coordinates were used to subset points for each harvest plot. Within each plot, the normalised 279 

height above ground (hereafter height) of each point was calculated relative to the horizontally 280 

closest corner coordinate. Any points with a calculated negative height above the inferred 281 

ground surface were set to zero. In a few instances where corner marker posts were visible in 282 

the point cloud, these points were removed manually from the point cloud. We determined the 283 

maximum height for each cell across a 0.01 m grid using the rasterstats package (v0.13.1). 284 

For cells containing no points, maximum heights were interpolated with inverse distance 285 

weighting considering an array of 11 x 11 cells using a power term of two, and cells with no 286 

neighbouring points in that area remained empty. We used the 1-cm spatial grain when 287 

creating the canopy height model (CHM) to preserve the fine-scale detail in the point cloud 288 
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(Alonzo et al., 2020; Cunliffe et al., 2016; Wallace et al., 2017). Plot-level mean height was 289 

then extracted from this grid of the local maximum elevations.  290 

 291 

2.5.2. Processing for spectral reflectance 292 

The multispectral images were processed using Pix4Dmapper Pro (v4.0.25). We implemented 293 

radiometric corrections using downwelling sun irradiance and pre- or post-flight images of 294 

reflectance panels following Assmann et al. (2018). Ground control markers were manually 295 

placed in ≥15 images, and then automatic placement was employed and manually verified. 296 

Normalised difference vegetation index (NDVI) maps were generated using the ‘AG 297 

Multispectral Template’ at the native resolution of the GSD (Table 1). The R Package 298 

‘exactextractr’ (Baston, 2019, v0.1.1) was used to extract the mean NDVI of each plot, using 299 

areal weighting to avoid the edge effects associated with inclusion or exclusion of boundary 300 

pixels. Solar elevations were calculated using the ‘suncalc’ package (v0.5.0) (Thieurmel and 301 

Elmarhraoui, 2019). To examine pairwise pixel covariance, we resampled NDVI, 302 

photogrammetrically-derived canopy height and NDVI-derived canopy height to a common 303 

0.25 m spatial resolution with bilinear interpolation. 304 

 305 

2.6. Landscape biomass estimation 306 

To demonstrate how this approach might support upscaling studies, we estimated 307 

aboveground vascular biomass density for the monitoring area based on modelled canopy 308 

height and NDVI using the allometric functions calibrated from the adjacent harvest plots 309 

(Figures 3 and S5, Tables S1 and S2). This analysis was undertaken using the ‘raster’ 310 

package v. 3.1-5 (Hijmans and et al., 2020) and visualised using the package ‘rasterVis’ v. 311 

0.47 (Lamigueiro and Hijmans, 2019). We calculated upper and lower estimates for biomass 312 

in the monitoring plot, using the standard error of the allometric equations, in order to account 313 

for this source of uncertainty in the landscape estimates. 314 

 315 

2.7. Statistical analysis 316 
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Statistical analysis was conducted in R (v3.6.1) (R Core Team, 2019). To compare agreement 317 

between point framing and structure-from-motion metrics of canopy height, we calculated 318 

concordance correlation coefficients using the ‘DescTools’ package (after Lin, 1989) and we 319 

described this relationship with a power function fitted with ordinary least squares regression 320 

because using a positive exponent means the model passes through the origin. We used least 321 

squares optimisation to fit linear models between canopy height and aboveground biomass, 322 

with intercepts constrained through the origin as plants with zero height above ground have 323 

no biomass above ground. The intercept terms in the unconstrained point-intercept and 324 

photogrammetry canopy height-biomass models were not statistically significant (p = 0.78 and 325 

p = 0.25, respectively) and constraining model intercepts made only small differences to model 326 

slopes (Table S1). We reported errors as standard deviations unless otherwise stated.  327 

 328 

We used least squares optimisation to fit exponential models between NDVI and three 329 

vascular plant biomass pools: (i) total aboveground biomass, (ii) phytomass (calculated as the 330 

sum of shrub leaves and herbaceous material), and (iii) the biomass of shrub leaves. 331 

Comparisons between remotely-sensed NDVI and biomass usually have a substantial 332 

mismatch in observation extents due to the larger grain of satellite products relative to smaller 333 

extents of directly measured harvest plots (Bartsch et al., 2020; Berner et al., 2018). In our 334 

study, we undertook spatially explicit drone-based sampling of corresponding areas, so thus 335 

our biomass and NDVI measurements do not have this scale mismatch. Because non-336 

harvested moss can contribute to the differential reflectance of red and near-infrared energy, 337 

we hypothesized that the proportion of moss cover might influence the relationships between 338 

NDVI and biomass. We extracted the proportion of moss cover from our point-intercept 339 

observations and tested the influence of moss cover on NDVI-biomass relationships by adding 340 

an interaction term in our model of the relationship between NDVI and phytomass. The code 341 

for statistical analyses and data visualisation is available from 342 

https://github.com/AndrewCunliffe/OrcaManuscript.  343 
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3. Results 344 

3.1. Drone photogrammetry captured variation in plant canopy height 345 

We found strong agreement between canopy heights as observed with point-intercept method 346 

and structure-from-motion photogrammetry (Figures 2 and S1). The photogrammetrically-347 

derived canopy heights had a consistent positive bias relative to point-intercept heights, with 348 

a median difference of 0.14 ± 0.05 m (± SD). Differences in mean canopy height between 349 

methods were smaller for the shortest and tallest plots, and greatest for the plots of 350 

intermediate heights (Figure S1). The concordance correlation coefficient was 0.79 (with 95% 351 

confidence intervals of 0.68 to 0.86). 352 

 353 

  354 

Figure 2. Canopy heights observed with point-intercept methods were positively correlated 355 

with canopy heights observed with structure-from-motion photogrammetry (SfM) at the plot 356 

level. Open circles represent observed values. The dotted line shows the 1:1 relationship for 357 

reference and the solid line is a power model. Mean canopy heights measured with SfM were 358 

consistently positively biased, on average by 0.14 m, relative to mean canopy heights 359 

measured with point-intercept . 360 

Page 15 of 37 AUTHOR SUBMITTED MANUSCRIPT - ERL-108803.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

 361 

3.2. Canopy height explained variation in total biomass across plots 362 

We found canopy height explained most of the variation in the aboveground biomass of 363 

vascular plants across the Salix richardsonii-dominated graminoid-shrub ecotone. The 364 

biomass models had slopes of 3623 ± 177 g m-1 and 2522 ± 143 g m-1, explaining 0.92 and 365 

0.90 of the variance for point-intercept and SfM-derived canopy heights respectively (Figure 366 

3). Total aboveground biomass within the sampled plots ranged from 149 g m2 to 2,431 g m2 367 

with a mean of 1012 ± 699 g m2. Shrubs (woody material and leaves) accounted for the 368 

majority of biomass in 32 of the 36 plots. The biomass of shrub leaves was positively related 369 

to total biomass (slope = 19 g m-2) and explained 70% of the variation in total biomass (Figure 370 

5a). However, phytomass, calculated as the sum of shrub leaves and herbaceous material 371 

typically accounted for less than 10% of total biomass (Figure S3), and did not correspond 372 

with total biomass (Figure 5b). Herbaceous material (largely equisetum and some forbs) 373 

typically accounted for half of the phytomass in each harvest plot, ranging from 3% to 87% of 374 

the phytomass. The mass of leaf material was a reasonable predictor of total biomass (y = 375 

-63.7 + 19.04 x; R2 = 0.70; Figure 5a); however, phytomass was a poor predictor of total 376 

biomass (y = -1185 0.8471- x; R2 = 0.01; Figure 5b). 377 

 378 

 379 

Figure 3. Aboveground biomass was strongly predicted by canopy height, but less strongly by 380 

NDVI. For each harvest plot, the mean canopy height was measured with point-intercept (a) 381 

and structure-from-motion photogrammetry (b), and mean NDVI was extracted from the 0.119 382 
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m grain raster (c). Linear models with constrained intercepts were fitted using least mean 383 

squares optimisation, with constrained intercepts for the canopy height models. The linear 384 

model fit is a simplification of the likely saturating relationships that we would expect to find 385 

across the full variation of NDVI and biomass values. 386 

 387 

3.3. NDVI weakly explained variation in biomass 388 

We found that NDVI positively corresponded with total aboveground biomass, phytomass and 389 

shrub leaf biomass (Figures 3c, 4 and S3, Tables 2 and S2). However, NDVI explained less 390 

than a quarter of the variance in total aboveground biomass (14% to 23%), phytomass (2% to 391 

7%) and leaf biomass (6% to 21%) across all four spatial grains investigated (Figure 4, Table 392 

2). The predictive relationships weakened slightly as the spatial grain of the NDVI rasters 393 

became finer from 0.121 m to 0.018 m, with larger residual standard errors and smaller 394 

coefficients of determination (Table 2). With a coarser spatial grain, the overall mean and 395 

variability amongst plot NDVI values was lower, although the relationship at the coarsest 396 

spatial grain (0.121 m) deviated slightly from this pattern (Figure S4a). We speculate that this 397 

may relate to more pronounced bi-directional reflectance experienced during this particular 398 

drone survey that was conducted with a lower sun elevation of just 15.6 degrees (Table 1). 399 

We tested whether the proportion of moss cover influenced the relationship between NDVI 400 

and total biomass, phytomass and the three biomass pools (Table S3, Figure S6), and though 401 

the interaction effects were similar with stronger NDVI-biomass relationships among plots with 402 

lower moss cover, the interaction was only significant (p < 0.05) for the phytomass relationship 403 

for the 0.121 m raster (Figure 5c). 404 

 405 

To understand the performance of NDVI as a predictor of biomass, it is informative to examine 406 

the pairwise pixel covariance between NDVI and canopy height, as canopy height is a strong 407 

predictor of biomass (Figure 6). We found a generally positive relationship between NDVI and 408 

canopy height, although the relationship was weaker at canopy heights below 0.2 m and once 409 
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NDVI saturated at ca. 0.75. This relationship was consistent across all four spatial grains of 410 

NDVI sampled, and suggests NDVI-biomass transfer functions will be more uncertain where 411 

canopies are low (< 0.2 m) or NDVI is high (> 0.75). We used an NDVI-height transfer function 412 

developed by Bartsch et al. (2020) to predict canopy height from NDVI and compare these 413 

predictions to photogrammetrically-derived canopy height (Figure S10), and found that while 414 

there was a generally positive relationship, the slope differed by a factor of ca. five. Models 415 

fitted to predict canopy height as a function of NDVI are reported in Table S5. 416 

 417 

 418 

Figure 4. Mean NDVI was positively, but weakly related to total biomass, phytomass and leaf 419 

biomass at the plot level. Open circles represent observations, and black lines are linear 420 

models fitted to the log transformed biomass data described in Table 2. Exponential models 421 

fitted to non-transformed biomass data are presented in Figure S5 and Table S2.  422 

Page 18 of 37AUTHOR SUBMITTED MANUSCRIPT - ERL-108803.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

 423 

 424 

Figure 5. Shrubs are the dominant species in this landscape, and total aboveground biomass 425 

was predicted strongly by shrub leaf biomass, but not by overall phytomass. The mass of 426 

shrub leaves explained 70% of the variation in total biomass (a), but phytomass, calculated 427 

as the sum of shrub leaves and herbaceous material, explained none of the variation in total 428 

biomass (b). The proportion of moss cover only had a significant influence on the relationship 429 

between NDVI and phytomass for the 0.121 m grain raster (c). The relationship between NDVI 430 

and phytomass was strong when moss cover was low, but weakened as moss cover increased 431 

(See Figure S6 for non-significant interactions for other biomass pools and NDVI products). 432 
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 433 

Figure 6. Pairwise pixel covariance between NDVI and canopy height inferred from the 434 

photogrammetry for the monitoring area, both resampled to a common 0.25 m spatial 435 

resolution. There is a general positive relationship between NDVI and canopy height, although 436 

this breaks down at canopy heights below 0.2 m and once NDVI saturates at ca. 0.75. Models 437 

fitted to predict canopy height as a function of NDVI are reported in Table S5. 438 

  439 
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Table 2. Parameters of linear models fitted to mean plot normalised difference vegetation 440 

index (NDVI) and log-transformed total aboveground biomass, phytomass (leaf + 441 

herbaceous), and leaf biomass. In all cases the model form was ln(Y) = a + b X and n = 36. 442 

Dependent variable grain of NDVI in 
m 

a b R2 RMSE 

Total biomass 0.121 -2.976 ± 2.987 13.04 ± 4.049 0.23 0.7162 

Total biomass 0.119 -0.372 ± 2.39 9.902 ± 3.373 0.20 0.7308 

Total biomass 0.047 1.282 ± 2.244 7.412 ± 3.103 0.14 0.7571 

Total biomass 0.018 2.909 ± 1.539 4.947 ± 2.037 0.15 0.7553 

Phytomass 0.121 2.808 ± 1.479 3.307 ± 2.005 0.07 0.3547 

Phytomass 0.119 3.464 ± 1.166 2.518 ± 1.646 0.06 0.3565 

Phytomass 0.047 4.374 ± 1.082 1.207 ± 1.496 0.02 0.3651 

Phytomass 0.018 4.664 ± 0.744 0.772 ± 0.985 0.02 0.3653 

Leaf biomass 0.121 0.263 ± 1.428 5.54 ± 1.937 0.19 0.3426 

Leaf biomass 0.119 1.213 ± 1.126 4.429 ± 1.589 0.19 0.3443 

Leaf biomass 0.047 1.326 ± 1.005 4.183 ± 1.389 0.21 0.339 

Leaf biomass 0.018 3.255 ± 0.754 1.45 ± 0.998 0.06 0.3703 

The standard error of the parameter is shown by ±. 443 

 444 

3.4. Upscaling to landscape biomass estimations 445 

We estimated aboveground vascular biomass density across the graminoid-shrub ecotone for 446 

the 0.5 ha-1 monitoring area (Figure 1d). Estimated biomass at this landscape-level differed 447 

substantially between the five predictors, canopy height and NDVI at each of the four spatial 448 

grains (Figure 6; Table 3). We calculated the difference in estimated biomass relative to the 449 

CHM-derived biomass map, as we considered this to be the most accurate product (based on 450 

the model performance and our knowledge of this site). Although we consider the CHM-451 

derived biomass estimate to be the most accurate, errors in the allometric model and in the 452 

canopy heights from the interpolated terrain model and plant surface model will all contribute 453 

uncertainty. For example, evaluation of the terrain model accuracy against 36 validation points 454 

indicated a mean residual elevation of 0.029 m ± SD 0.035 m. Although small, the systematic 455 
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bias of 0.029 m in the interpolated terrain model (Figure S7) amounts to 10% of the 0.278 m 456 

mean canopy height estimated for the monitoring area, and so would equals a 10% 457 

underestimate of biomass inferred from the CHM. The allometric models were fitted using 458 

similar distributions of canopy height and NDVI values to those found across the adjacent 459 

monitoring site. The distribution for the harvested samples of the two coarser NDVI rasters 460 

(0.121 and 0.119 m) had slightly truncated tails, which may have contributed to greater 461 

uncertainty in the model fit (Figure S8). 462 

 463 

We found substantial differences in the estimated average biomass inferred from the five 464 

datasets (Table 3). NDVI-based biomass estimates are generally greater than the height-465 

based estimates (Figure 7f,I,l,o; Figure S9), apart from areas with taller shrubs near the centre 466 

of the monitoring area. Estimated biomass was positively correlated with the spatial grain of 467 

the NDVI maps, mainly due to differences in the allometric models between different grain 468 

sizes (Table S2, Figure S5). However, the biomass estimates from NDVI were highly uncertain 469 

as demonstrated by the range of possible values (Table 3). 470 

 471 
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 472 

Figure 7. Landscape-level biomass maps estimated from the canopy height model and NDVI 473 

for four spatial grains, using the allometric equations obtained above. Canopy height model 474 

(a), biomass-inferred from canopy height (b), RGB orthomosaic (c), NDVI reflectance (d), (g), 475 

(j), (m), biomass-inferred from NDVI *e),(h), (k), (n), and biomass difference maps relative to 476 

the biomass map inferred from canopy height (f), (i), (l), (o). 477 

  478 
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Table 3. Biomass density in the monitoring area estimated using the allometric equations 479 

obtained above. Lower and upper bounds are calculated using the standard errors for the 480 

equation coefficients (Table S2). 481 

Predictor 

Biomass (g m-2) 

Best estimate Lower bound Upper bound 

CHM 672 634 710 

NDVI 0.018 m 972 -128 26,704 

NDVI 0.047 m 989 -301 205,831 

NDVI 0.119 m 1087 -357 324,568 

NDVI 0.121 m 1195 -501 752,362 

 482 

4. Discussion 483 

We found that canopy heights across a graminoid-shrub ecotone could be measured over fine 484 

(cm) spatial scales using structure-from-motion photogrammetry. Heights derived from drone 485 

photogrammetry corresponded strongly with those obtained using conventional point-intercept 486 

methods (Figure 2) (Molau and Mølgaard, 1996; Myers-Smith et al., 2019). Canopy heights 487 

were positively correlated with vascular plant biomass (Figure 3), indicating that 488 

photogrammetry-derived data can be used to accurately estimate aboveground tundra 489 

biomass. However, vegetation greenness as measured by NDVI only weakly corresponded 490 

with vascular plant biomass and was influenced by the amount of moss cover on the ground 491 

(Figure 5c, Figure S6). The relationship between fine-grain peak NDVI and biomass can be 492 

influenced by moss or other types of evergreen vegetation cover. Nonlinear make the NDVI-493 

biomass relationships particularly sensitive to the range and quality of the sample used to fit 494 

the curve. Our findings suggest that the relationship between fine-grain peak NDVI and 495 

biomass can be influenced by moss or other types of evergreen vegetation cover. Our study 496 

highlights that drone-derived canopy height can inform monitoring of vegetation change over 497 

larger and more representative extents, and thus improve projections of plant responses to 498 

warming in tundra ecosystems. 499 
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 500 

Photogrammetry-derived canopy heights were taller than in situ measured canopy heights 501 

We found a positive bias in canopy heights measured with point-intercept relative to 502 

photogrammetry, which we attribute to differences in the way the two approaches quantify 503 

canopy architecture. The photogrammetry-derived heights in our study may have also been 504 

slightly exaggerated by slight depression at the plot corners by the survey staff on the ground 505 

surface at the top of the moss layer (ca. 2 - 3 cm) The plot-level terrain models will have 506 

smaller vertical errors than the model applied across the monitoring area (Figure S7), because 507 

elevations were interpolated over smaller horizontal distances (< 0.71 m). It is also possible 508 

that the fewer point-intercept observations within each harvest plot (n = 36) may under sample 509 

canopy structure relative to the photogrammetry (n ≤ 2500). Several studies have now 510 

reported strong correspondence between canopy heights reconstructed with photogrammetry 511 

and in situ measurements (Alonzo et al., 2020; Karl et al., 2020; Poley and McDermid, 2020). 512 

For example, Clement and Fraser (2017) reported similarly good correspondence between in-513 

situ versus photogrammetrically-derived maximum canopy heights for 20 shrubs measured at 514 

an Arctic tundra site near Iqaluktuuttiaq (Cambridge Bay). However, such comparisons are 515 

hindered by the sensitivity of maximum height measurements to outliers in these often noisy 516 

point clouds (Cunliffe et al., 2016). The comprehensive review by Poley and McDermid (2020) 517 

discusses such inter-comparisons of different canopy height measurements in further detail, 518 

but they were unable draw general conclusions because all sets of observations are sensitive 519 

to the ways in which they are collected, processed and analysed (Cunliffe et al., 2016; Fraser 520 

et al., 2019; Wallace et al., 2017). Our findings suggest that, when applied in a consistent m 521 

canopy height manner, drone photogrammetry is an appropriate tool for monitoring shrub 522 

canopy heights in such ecosystems. 523 

 524 

Canopy heights predicted aboveground biomass 525 

Canopy height strongly predicted aboveground biomass for the Salix richardsonii-dominated 526 

community that we studied, which corroborates similar reports for photogrammetry across a 527 
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range of biomes and plant communities (Alonzo et al., 2020; Bendig et al., 2015; Grüner et 528 

al., 2019; Howell et al., 2020; Karl et al., 2020; Selsam et al., 2017; Wijesingha et al., 2019). 529 

Estimating aboveground biomass from canopy height models depends on having an 530 

underlying terrain model of sufficient quality to describe topographic variability (Cunliffe et al., 531 

2016; Fraser et al., 2019; Poley and McDermid, 2020). In this study, we derived our terrain 532 

model using RTK-GNSS observations, which can be a viable option for characterising 533 

topography over extents of up to a few hectares. In ecosystems where canopies are spatially 534 

or temporally discontinuous, terrain models could also be derived directly from 535 

photogrammetric point clouds (Cunliffe et al., 2016; Fraser et al., 2019). Terrain models 536 

derived using other survey techniques could also be co-registered in a hybrid approach 537 

(Dandois and Ellis, 2013). However, propagation of uncertainties including co-registration 538 

error is vital for understanding the limits of detection of genuine change in canopy height 539 

(James et al., 2017). 540 

 541 

Refining predictions of biomass from canopy height 542 

Relationships between plant dimensions and biomass are sensitive to the ways in which these 543 

measurements are obtained (Cunliffe et al., 2020). Cross-site data syntheses therefore require 544 

the use of standardised protocols for data collection and processing (such as HiLDEN 545 

https://arcticdrones.org/, Assmann et al., 2018; Cunliffe and Anderson, 2019). As noted by 546 

Pätzig et al. (2020), there is a need for further coordinated work to calibrate the relationship 547 

between photogrammetric-inferred canopy height and aboveground biomass for different 548 

taxonomic groups. There is also a need to quantify the sensitivity of these relationships to key 549 

parameters (e.g., the spatial resolution of the input data, the implementation of multi-view 550 

stereopsis and the spatial grain of analysis, sensu Wallace et al., 2017; Zarco-Tejada et al., 551 

2014), as well as to differences in environmental conditions (e.g., illumination and wind-552 

induced movement of plant canopies, Dandois et al., 2015; Frey et al., 2018). 553 

 554 

Vegetation greenness only weakly corresponded with biomass 555 

Page 26 of 37AUTHOR SUBMITTED MANUSCRIPT - ERL-108803.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



   
 

   
 

We found that NDVI only weakly predicted the aboveground biomass of vascular plants, 556 

explaining at most 23% of the variation in total biomass, and even less of the variance in 557 

phytomass or leaf biomass (Figures 4 and S3, Tables 2 and S4). Inferring aboveground 558 

biomass from NDVI is predicated on the assumptions that (i) NDVI is a good predictor of 559 

phytomass, and (ii) that phytomass is a good predictor of total biomass. We found that while 560 

NDVI had some capacity to explain variance in phytomass (Figure 4, Table 2), phytomass was 561 

a very weak predictor of total biomass (Figure 5b). Across spatial grains, predictive 562 

relationships weakened slightly as the spatial grain of the NDVI rasters became finer from 563 

0.121 m to 0.018 m (Table 2). We attribute two main causes for the weak correspondence 564 

between NDVI and biomass. Firstly, although leaf biomass was a strong predictor of total 565 

aboveground biomass, leaf biomass accounted for typically only half of the phytomass in each 566 

plot, and phytomass (including herbaceous material and shrub leaves) only weakly 567 

corresponded with total biomass (Figure 5). Vegetation indices that integrate all 568 

photosynthetically active material are often poor predictors of total biomass (Bratsch et al., 569 

2017; Räsänen et al., 2019). Secondly, we found indications that moss cover influenced the 570 

relationship between NDVI and phytomass. The direction of the relationship was consistent; 571 

however, the interaction effect was only statistically significant in one of the 12 combinations 572 

of NDVI raster and biomass pool tested (Table S3). We found that the relationship between 573 

NDVI and vascular phytomass was mediated by the amount of moss cover beneath the 574 

sampled vegetation and weakened as moss cover increased (Figures 5C and S6). Vegetation 575 

species composition therefore affects the biomass NDVI-relationship. 576 

 577 

The relationship between NDVI and biomass in this setting is approximated by the relationship 578 

between NDVI and canopy height across the monitoring site. NDVI was generally positivity 579 

related to canopy height across all four NDVI rasters (Figure 6); however, the relationship was 580 

very weak at canopy heights below 0.2 m and NDVI values above ca. 0.75. NDVI-biomass 581 

transfer functions will thus be more uncertain where canopies are low (< 0.2 m) possibly due 582 
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to increased signal from bryophytes or NDVI saturates at around 0.75. Canopy heights inferred 583 

from NDVI using the NDVI-height transfer function developed by Bartsch et al. (2020) were 584 

linearly related to canopy heights inferred from photogrammetry, although were positively 585 

biased by a factor of ca. five and subject to the same issues around the shorter (< 0.2 m) 586 

canopies and once NDVI saturated. This bias suggests that NDVI-biomass transfer functions 587 

will need to be calibrated more specifically for different situations.  588 

 589 

The weak correspondence between NDVI and phytomass that we observed contrasts with 590 

reports of stronger positive relationships between NDVI and aboveground biomass derived 591 

from datasets compiled across different spatial scales (Boelman et al., 2003; Goswami et al., 592 

2015; Walker et al., 2003b). NDVI has a saturating relationship with biomass and NDVI-593 

biomass relationships can be confounded by a variety of ecological variables, land-surface 594 

properties and view angle effects (Buchhorn et al., 2016; Karlsen et al., 2018; Myers-Smith et 595 

al., 2020; Walker et al., 2003a). Our findings are consistent with the well-known saturation 596 

effect (e.g., Berner et al., 2018), and we may have found better correspondence between 597 

NDVI and biomass if we had sampled over a wider range of NDVI values beyond those that 598 

were most prevalent at our study site. The unmeasured biomass associated with moss was 599 

likely small compared with the biomass associated with the vascular plants at this site (Reid 600 

et al., 2012), but if we had included moss in our biomass harvests, this might have modified 601 

relationships between NDVI and biomass. Our results highlight the need for caution when 602 

deriving total biomass maps from vegetation indices in high latitude ecosystems with variable 603 

land cover. The biome-wide tundra greening patterns and trends observed with large-grain 604 

satellite datasets are unlikely to directly represent plant functional attributes such as canopy 605 

height or biomass in situ (Myers-Smith et al., 2020). Thus, to improve our understanding of 606 

vegetation greening in tundra ecosystems across vegetation types and geographic gradients, 607 

we need data collection across scales from focal sites to the tundra biome (Fisher et al., 2018; 608 

Miller et al., 2019; Myers-Smith et al., 2020). 609 
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 610 

Landscape-estimates of biomass 611 

The spatially continuous estimates of canopy height and inferred vascular plant biomass 612 

across our monitoring site (Figure 6, Table 3) are well suited for upscaling studies. These 613 

kinds of highly accurate and precise products help to overcome limitations with incomplete 614 

characterisations of plant communities due to labour intensive and resource limited in situ 615 

monitoring programs (Alonzo et al., 2020; Bartsch et al., 2020; Myers-Smith et al., 2019). Of 616 

particular concern are the difficulties comparing observations from very different spatial 617 

extents, between remotely-sensed observations and small, potentially non-representative in 618 

situ plots. Biomass estimated from NDVI was highly uncertain (Table 3), even when only 619 

accounting for uncertainty in the coefficients of our exponential models without accounting for 620 

uncertainties in the NDVI values themselves. Drone-derived products are useful for calibrating 621 

and validating biomass retrievals of these properties from coarse-scale observations, and for 622 

testing key of assumptions underpinning novel retrievals approaches (Bartsch et al., 2020). 623 

Photogrammetric approaches to monitoring plant canopies can also be deployed over even 624 

larger extents using similar data from airborne surveys (Alonzo et al., 2020). 625 

 626 

5. Conclusion 627 

This study expands the empirical understanding of how fine-grained remotely-sensed 628 

observations relate to vegetation attributes. By comparing structural, spectral reflectance and 629 

on-the-ground ecological metrics, we can improve our understanding of the scaling 630 

relationships from fine- to coarse-scale observations of tundra vegetation change. Drone-631 

collected data are already helping us to fill in the missing landscape-scale gap in tundra 632 

ecological monitoring, and future work must use coordinated protocols to underpin biome-633 

scale data synthesis (e.g. HiLDEN https://arcticdrones.org/ and Cunliffe and Anderson, 2019). 634 

We found strong agreement in canopy heights measured using in-situ point-intercept methods 635 

compared to drone-photogrammetry. Canopy height was strongly and linearly related to the 636 
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aboveground biomass of vascular plants, explaining ca. 90% of the observed variability in the 637 

biomass. Vegetation ‘greenness’ measured as NDVI across four independent multispectral 638 

surveys explained only a small proportion of the variability in the biomass of vascular plants 639 

and was influenced by moss cover, suggesting caution should be used when attributing 640 

differences in NDVI to differences in either vascular plant biomass or phytomass. Our 641 

comparison of structural, spectral and in-situ ecological measurements contributes to 642 

improved understanding of tundra vegetation as inferred from remote sensing and thus 643 

informs monitoring projections tundra vegetation change with warming. 644 

645 
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