
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Poiseuille flow over a wavy surface

Citation for published version:
Haward, SJ, Shen, AQ, Page, J & Zaki, TA 2017, 'Poiseuille flow over a wavy surface', Physical Review
Fluids, vol. 2, no. 12, 124102. https://doi.org/10.1103/PhysRevFluids.2.124102

Digital Object Identifier (DOI):
10.1103/PhysRevFluids.2.124102

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physical Review Fluids

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

https://doi.org/10.1103/PhysRevFluids.2.124102
https://doi.org/10.1103/PhysRevFluids.2.124102
https://www.research.ed.ac.uk/portal/en/publications/poiseuille-flow-over-a-wavy-surface(43c5181f-1c04-4a8b-b88d-e368faf83a70).html


Poisseuille flow over a wavy surface

Simon J Haward and Amy Q Shen
Okinawa Institute of Science and Technology Graduate University

1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

Jacob Page
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

Tamer A. Zaki
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

(Dated: April 2017; Revised July 26, 2017)

We present a detailed series of experiments using spatially-resolved flow velocimetry to examine
the flow of Newtonian fluids through rectangular channels with one wavy surface of wavenumber k.
The glass channels are fabricated by the novel method of selective laser-induced etching, which allows
them to be made with a high (quasi-2D) aspect ratio (width/depth, w/2d = 5) and with an accurate
wave profile of small relative amplitude (A/d = 0.05, A < k). Following the prior theoretical work
for plane Couette flow over a wavy surface [F. C. Charru and E. J. Hinch, “‘Phase diagram’ of
interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability,” J.
Fluid Mech. 414, 195-223 (2000)], we examine the influence of two dimensionless parameters (the
normalized channel depth α = kd and the viscous length scale θ) on the penetration depth P of the
perturbations that the wavy surface induces to the Poisseuille base flow. The asymptotic analysis by
Charru and Hinch predicted three regimes of behavior classified as ‘shallow viscous’ (P ≈ α), ‘deep
viscous’ (P ≈ π), and ‘inviscid’ (P ∼ θ). All three regimes are here verified experimentally. Minor
differences in details of the ‘phase diagrams’ for the flow regimes in α− θ parameter space observed
between Poisseuille and plane Couette flow are attributed to the contrasting boundary conditions
in the different flow configurations. The experimental results presented here also compare favorably
to results from linear theory for a Poiseuille base flow, and thus establish a detailed experimental
complement to the theory.

I. INTRODUCTION

In this work we experimentally examine the Poisseuille
flow of Newtonian fluids through rectangular channels
with a small amplitude sinusoidal perturbation applied
to the surface of one of the channel walls. The problem
is a relevant model for understanding the effects of chan-
nel wall roughness and can also be considered as a model
for the action of shearing between unstable interfaces
in multi-layer flows [1–4]. The problem is also relevant
to shear-induced deformations of soft walls at moderate
Reynolds numbers in microchannels [5, 6], while at higher
Reynolds numbers such studies lend insight into the for-
mation and motion of subaqueous ripples in coastal areas
and river beds, and of sand dunes in the desert [7, 8].

Here we use spatially-resolved micro-particle image ve-
locimetry (µ-PIV) to characterize perturbations to the
Poisseuille base flow state that are induced by the pres-
ence of the wavy wall. The wave has an amplitude A≪ d
and A ≪ λ, where d is the channel half-depth, and λ is
the wavelength of the surface. We vary λ relative to d
in order to span the ‘deep’ (2πd/λ & 1) and ‘shallow’
(2πd/λ . 1) regimes, see schematic diagram in Fig. 1
[2, 4]. We restrict our study to the viscous and inertial
(or inviscid) laminar regimes and we analyze our data in
the context of the ‘phase diagram’ proposed by Charru
and Hinch [2] for plane Couette flow over a wavy sur-
face. It might be expected a-priori that, when viscous

FIG. 1. Poisseuille flow through a channel with a wavy bot-
tom surface. The channel has a half-depth d, while the wavy
surface has wavelength λ and amplitude A ≪ d. The wall
shear rate γ̇w = 3U/d, where U is the average flow velocity
through the channel. The spanwise direction (through z) is
out of the page.

effects are dominant and the shear rate is unimportant,
the two configurations (Couette and Poisseuille) should
recover similar behavior [2]. However, when the viscous
and inertial timescales are commensurate, the different
mean-shear distributions in the two configuarations is
more likely to have an effect on the phase diagram. The
experimental establishment of these basic flow regimes in
the phase diagram for Poisseuille flow over wavy surfaces
will provide a benchmark for future experimental stud-
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ies that consider more complex geometrical arrangements
and flows. Possible examples include studies of localized
wall roughness, flow unsteadiness, and the effects of non-
Newtonian fluid rheology. The latter example is of inter-
est across a wide range of Reynolds numbers, from the
inertialess to the inertio-elastic regimes [4]. We note that,
while there are a large number of studies of flows through
pipes and channels with undulating walls, these typically
involve large variations in flow cross-section, which can
be relevant to processes such as peristaltic pumping [9]
and biophysical applications [10]. There are no previ-
ous experimental studies in the literature that examine
steady laminar flows through channels in which the peri-
odic boundary essentially serves as a perturbation to the
base shear flow.

II. PROBLEM DESCRIPTION

Fig. 1 shows a schematic representation of the prob-
lem under consideration. We consider channels of aver-
age half-depth d with a sinusoidal wave of wavelength λ
(wavenumber k = 2π/λ) and amplitude A on the bot-
tom wall. The spanwise width w of the channel (through
z) is assumed ≫ d to provide an approximation to two-
dimensional (2D) flow, and the amplitude A is assumed
≪ d and ≪ λ in order to conform to the linear per-
turbation assumption [2, 4]. In this work, we employ
Poisseuille flow rather than plane Couette flow (as used
in prior linear analyses [2, 4]) simply for the considerable
experimental convenience offered by the former. Here,
our focus is placed on the flow domain defined by the
region of monotonically increasing flow velocity between
the wavy surface and the channel centreline (0 < y < d).
As a characteristic shear rate in the channel we take

the wall value for Poisseuille flow in a channel of half-
depth d:

γ̇w =
3U

d
, (1)

where the average flow velocity U = Q/2dw and Q is the
imposed volumetric flow rate.
The Reynolds number of the flow is defined as:

Re =
2ρUd

η
, (2)

where η is the dynamic viscosity of the Newtonian fluid.
According to Charru and Hinch [2], we classify the flow

in the wavy channels according to two additional dimen-
sionless parameters: (1) the normalized channel depth:

α = kd =
2πd

λ
, (3)

and (2) the normalized viscous length scale:

θ =

(

ηk2

ργ̇w

)1/3

=

(

2α2

3Re

)1/3

. (4)

In plane Couette flow over wavy surfaces, Charru and
Hinch classified channels for which α & 1 as ‘deep’ and
channels for which α . 1 as ‘shallow’ [2]. Three broad
regimes of flow were identified: (i) a shallow viscous
regime with α . 1 and θ > α in which the channel depth
is less than the viscous length and vorticity perturba-
tions penetrate through the entire channel; (ii) a deep
viscous regime with α & 1 and θ & 1 in which vorticity
perturbations are unaffected by either boundary or flow
conditions and penetrate approximately one wavelength
into the channel; (iii) an inviscid regime with α & θ and
θ . 1, in which the perturbation is influenced by inertia
and the depth of the vorticity penetration scales with θ.
Here we will test experimentally whether the same pair of
parameters describe a similar set of regimes for Poiseuille
flow over wavy surfaces.

III. EXPERIMENTAL METHODS

We employ five fluidic devices, which all share com-
mon dimensions with the exception of the wavelength
of the surface roughness present in a section of one of
the channel walls. Fig. 2 shows optical micrographs of
the five channels used in the study, and for convenience
Table I lists the relevant dimensions of each of the five
geometries. The devices are fabricated in fused silica us-
ing the LightFab 3D printer (Lightfab, GmbH), which
employs the technique of selective laser-induced etching
(SLE) [11]. This technique allows the fabrication of de-
vices with a high aspect ratio, an accurate wave profile
(±1 µm precision) and that are resistant to channel de-
formation at even very high imposed flow rates or pres-
sures. The channels all have a half-depth of d = 200 µm
and a span through the z-direction of w = 2 mm. This
provides an aspect ratio AR = w/2d = 5 and hence a rea-
sonable approximation to 2D flow near the channel mid-
plane, z = w/2. The wavy surface located at y = 0 (see
Fig. 1) has amplitude A = 10 µm (i.e. A/d = 0.05), such
that the ratio of maximum to minimum channel cross-
sectional area is given by CR = 410/390 ≈ 1.05. The
wavelength of the rough surface is varied in the range
0.125 ≤ λ ≤ 2 mm, thus providing normalized channel
depths in the range 0.2π ≤ α ≤ 3.2π while maintaining
A ≤ 0.08λ, see Table I. An upstream section of parallel
channel of depth 2d, span w and length L = 10 mm is
incorporated in order to allow the flow to become fully-
developed prior to reaching the downstream wavy wall.
The wavy section itself is also 10 mm in length, and
thus incorporates a minimum of five complete waves in
the case of Device 1 (λ = 2 mm), and more waves for
the other four devices with shorter wavelengths (see Ta-
ble I). To the left hand side of the photographs provided
in Fig. 2, a short section of the upstream parallel region
of the channel is evident immediately before the start of
the wavy region to the right.
Flow through the devices is driven along the x-

direction using a high-precision neMESYS low pressure
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FIG. 2. Photographs of the five wavy-walled microchannels used in the flow experiments. All the devices have half-depth
d = 200 µm, wave amplitude A = 10 µm, and a spanwise width height w = 2 mm through the z-direction (out of the page).
The channels differ only in the respective wavelength of their wavy surfaces: (a) λ = 2000 µm, α = 0.2π, (b) λ = 1250 µm,
α = 0.32π, (c) λ = 400 µm, α = π, (d) λ = 250 µm, α = 1.6π, (e) λ = 125 µm, α = 3.2π.

TABLE I. Salient dimensions of the wavy-walled channels

Device d [mm] h [mm] A [µm] λ [mm] k [mm−1] α

1 0.2 2 10 2.0 π 0.2π
2 0.2 2 10 1.25 1.6π 0.32π
3 0.2 2 10 0.4 5π π
4 0.2 2 10 0.25 8π 1.6π
5 0.2 2 10 0.125 16π 3.2π

syringe pump (Cetoni, GmbH) fitted with a Hamilton
Gastight glass syringe connected to the device via sili-
cone tubing. Two Newtonian fluids of different viscosi-
ties are used in order to access the different regimes of
flow (viscous and inviscid). One of the fluids is plain
deionized (DI) water, and the second fluid is DI water
viscosified by the addition of 13 wt% poly(ethylene gly-
col) (8000 g mol−1, Sigma-Aldrich). The viscosities of
the fluids have been measured at 25◦C using a DHR3
stress-controlled rheometer (TA Instruments, Inc) fitted
with a 40 mm diameter 1◦ cone-plate fixture, yielding
η = 0.87 mPa s and η = 7.72 mPa s for the DI water and
13 wt% aqueous PEG, respectively. The densities of the
fluids have been measured at 25◦C by weighing of fluid
dispensed from calibrated micro-pipettes, yielding values
of ρ = 996.9 kg m−3 and ρ = 1015.5 kg m−3 for the DI

water and the 13 wt% aqueous PEG, respectively. The
values of η and ρ obtained for the 13 wt% aqueous PEG
are in line with expectations based on previous reports
in the literature [12, 13].

Measurements of flow velocity vector fields within the
wavy channels are made using a micro-particle image
velocimetry (µ-PIV) system (TSI, Inc). For this pur-
pose fluids are seeded with 1 µm diameter fluorescent
microparticles (nile red FluoSpheres, Life Technologies)
with excitation and emission wavelengths of 535 and
575 nm, respectively. The flow channel is placed on the
imaging stage of an inverted microscope (Nikon Eclipse
Ti) and the mid-plane of the device (z = w/2) is brought
into focus. The fluid is illuminated through the micro-
scope objective by a dual-pulsed Nd:YLF laser at 527 nm,
which excites the fluorescent particles. The light emit-
ted by the particles is imaged through the same objective
lens, passed through an epifluorescent filter in order to
eliminate the background laser light and projected onto
the sensor array of a high speed Phantom Miro cam-
era (Vision Research, Inc), operating in frame-straddling
mode. Images are captured in pairs in synchronicity with
the pairs of laser pulses. The time between laser pulses
∆t is set such that the average particle displacement be-
tween images in the corresponding image pair is around 8
pixels, which is optimal for the cross-correlation PIV al-
gorithm used to obtain velocity vectors based on a 32×32
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FIG. 3. Typical example of a flow field obtained in Device 4 (λ = 0.25 mm, α = 1.6π) for the flow of 13 wt% PEG at a flow
rate of Q = 1.78 mL min−1 (U = 37.1 mm s−1, γ̇w = 556.25 s−1, Re = 1.95, θ = 2.05). (a) Normalized velocity magnitude
field, (b) Normalized x-velocity component, u/U . (c) Normalized y-velocity component, v/U . Flow is from left to right.

pixel grid. For each flow rate examined in each device,
vector fields are ensemble-averaged over the data from
20 image pairs. Due to the various wavelengths of the
devices, a range of objective lenses are used in the exper-
iments in order to provide the maximum possible spatial
resolution while also allowing at least one full wave of the
rough surface to be visualized in each case. For Devices
1 and 2, a 4× NA = 0.13 objective is used; for Device 3 a
5× NA = 0.15 objective is used, and for Devices 4 and 5 a
10× NA = 0.3 objective is used. The corresponding mea-
surement width, over which microparticles contribute to
the determination of velocity vectors, is δzm ≈ 142, 109
and 31 µm for the 4×, 5× and 10× lenses, respectively
[14]. Even in the worst case of the 4× objective lens, δzm
is only 7% of the channel width, so should not result in
any significant measurement error given the high channel
aspect ratios and therefore the expected 2D nature of the
flow close to the mid-plane.

An example of a typical velocity field measurement (in
this case coming from Device 4, with λ = 0.25 mm and an
imposed average flow velocity of U = 37.1 mm s−1 with
the 13 wt% aqueous PEG solution) is shown in Fig. 3.
Such conditions correspond to α = 1.6π, θ = 2.05 and
hence are expected to fall into the deep viscous regime
(α & 1, θ & 1) [2]. Fig. 3a shows the normalized velocity

magnitude field
√

(u2 + v2)/U (where u and v are the
x and y velocity components, respectively), imaged over
three wavelengths of the wavy surface. Fig. 3b shows the
normalized field of x velocity component, u/U . There is
an almost imperceptible difference between Figs. 3a and
3b, which clearly shows the flow field is dominated by
u. In Fig. 3c, we show the normalized y-component of
the velocity field, v/U . Here, the effect of the wavy sur-
face is clearly apparent, with positive v values measured
above rising edges of the wave and negative v values mea-
sured above falling surfaces of the wave. However, it is
worthwhile mentioning the magnitude of v is quite small

(∼ O(0.05U)). Such small velocity components can be
quite challenging to measure by µ-PIV and also demon-
strate the small perturbation caused by the wavy sur-
face to the Poisseuille base flow. Since for a Poisseuille
flow vPois ≡ 0, our measurement of v allows a simple
and direct determination of the perturbation component
v′ = v − vPois ≡ v.
In this work, we use this v′ perturbation component

to evaluate an experimental measure of the penetration
depth Pv of the disturbance by using a criterion similar
to that employed by Page and Zaki [4]:

Pv ≡ ky(Λv = 0.95), where Λv(y) =

∫ y

0
|v′(y)|

2
dy

∫ d

0
|v′(y)|2dy

. (5)

For each value of y, we evaluate |v′(y)| by averaging v′

over the full range of x in the field of view of the µ-PIV
measurement. We have chosen to relax the criterion from
Λ = 0.99 (used by Page and Zaki [4]) to Λv = 0.95 due
to the additional noise present in our experimental data
compared with their computations. We use a criterion
similar to that suggested by Page and Zaki, as opposed
to that used by Charru and Hinch [2], mainly because
the criterion developed by Page and Zaki can account for
any non-local vorticity away from the wavy channel wall
[4]. Non-local vorticity amplification has recently been
predicted for viscoelastic flow through wavy channels and
we intend to investigate this phenomenon experimentally
in future work, against which we wish to compare both
our current results and the results of their linear theory.
Although various possible approaches can be conceived

to extract a x-velocity perturbation component u′ from
our experimental data and thus to compute the full span-
wise vorticity perturbation ωz

′ = ∂v′/∂x − ∂u′/∂y, we
deliberately choose not to do this. We consider it a safer
and more reliable approach to simply use v′ to quantify
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FIG. 4. Experimentally measured normalized fields of v′ showing the y-velocity perturbations in the three regimes of flow.
(a) ‘Shallow viscous’ regime (α < π, θ > α) in Device 2 (α = 0.32π). (b) ‘Deep viscous’ regime (α > π, θ > 1) in Device 4
(α = 1.6π). (c) ‘Inviscid’ regime (α > θ, θ < 1) in Device 4 (α = 3.2π). Flow is from left to right.

the perturbation, as per Eq. 5. As will be shown, the
v′ perturbation component alone is sufficient to properly
characterize the disturbance and has the advantage that
it can be extracted directly from the measured velocity
field without the need for any assumptions or approxima-
tions. Furthermore, we validate our experimental results
against the linearized perturbation equations from which
both u′ and v′ are available and thus allows the pertur-
bation to be characterized according to both v′ and ωz

′,
as explained next.

IV. LINEAR PERTURBATION EQUATIONS

The amplitude of the surface waviness over the range
of α considered here is sufficiently low that linear the-
ory can be invoked to explain the structure of the flow
perturbations. In the linear limit, the wavy lower surface
can be treated as a regular perturbation to smooth-walled
Poiseuille flow, U ≈ UPois.(y)ex+u′(x), where |u′| ∼ ǫU .
The amplitude of the small perturbation, ǫ ≪ 1, is arbi-
trary in the linear problem. Here we use the amplitude
of the wall roughness to define ǫ, which enables a direct
quantitative comparison with the experimental results.
We adopt the disturbance ansatz u′(x) =

R [û(y)exp(ikx)]. The (dimensional) linear equations
for û are

ikû+
dv̂

dy
= 0, (6a)

ikUû+ U
′

v̂ = −ik
p̂

ρ
+ ν

(

d2

dy2
− k2

)

û, (6b)

ikUv̂ = −
1

ρ

dp̂

dy
+ ν

(

d2

dy2
− k2

)

v̂, (6c)

where U(y) = UPois.(y) = (3/2)U [1− (y − d)2/d2]. The
total velocity vanishes on the wavy surface. Upon lin-
earization, this requirement yields a homogenous bound-
ary condition for the normal velocity, v̂(y = 0) = 0, and

a slip condition on the streamwise velocity, û(y = 0) =
−γ̇wA. Both velocity components vanish at the top wall.
Note that the slip condition at the lower wall fixes the
amplitude of the perturbation velocity, ǫ = 3A/d.
Equations 6(a-c) are solved using an expansion in

Chebyshev polynomials in the wall-normal coordinate,
evaluated at the Gauss-Lobatto points. A total of N =
100 polynomials are used to accurately resolve the per-
turbation field.
From the results of the linear analysis, in addition to

evaluating the penetration depth Pv according to Eq. 5,
we also evaluate a similar quantity Pω by replacing v′ in
Eq. 5 with the full vorticity perturbation ωz

′ = ∂v′/∂x−
∂u′/∂y:

Pω ≡ ky(Λω = 0.95),

where Λω(y) =

∫ y

0
|ωz

′(y)|
2
dy

∫ d

0
|ωz

′(y)|
2
dy
, (7)

which is the same as the measure employed previously
by Page and Zaki [4].

V. RESULTS

In our experiments in quasi-2D channel flow over wavy
surfaces, we indeed observe three regimes of flow broadly
comparable with those described by Charru and Hinch [2]
and Page and Zaki [4] for plane Couette flow over a wavy
surface. In Fig. 4, we show examples of the y-velocity per-
turbations v′ caused by the Poisseuille flow over the wavy
surface in each of the three regimes. In our case, as we
will show, the shallow viscous regime occurs in channels
with α < π and θ > α, as shown in Fig. 4a for the case of
Device 2 (α = 0.32π). Here, the perturbation is antisym-
metric about x = 0, extends straight out from the wavy
surface and penetrates all the way through the channel
depth. For α > π, the channel becomes deep. In the deep
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FIG. 5. Results from the linear equations for direct comparison with the experiments from Fig. 4. Normalized fields of v′ for
the cases: (a) ‘Shallow viscous’ regime with α = 0.32π, θ = 4.79. (b) ‘Deep viscous’ regime with α = 1.6π, θ = 5.36. (c)
‘Inviscid’ regime with α = 1.6π, θ = 0.51.

FIG. 6. Results from the linear equations for direct comparison with the experiments from Fig. 4 and the linear results shown
in Fig. 5. Normalized fields of ωz

′ for the cases: (a) ‘Shallow viscous’ regime with α = 0.32π, θ = 4.79. (b) ‘Deep viscous’
regime with α = 1.6π, θ = 5.36. (c) ‘Inviscid’ regime with α = 1.6π, θ = 0.51.

viscous regime (e.g. α = 1.6π, θ & 1, Fig. 4b, for Device
4) the perturbation is again antisymmetric about x = 0
and extends straight out from the wavy surface. How-
ever, in this case the perturbation decays within the flow
domain reaching a depth of ky ≈ π into the channel. The
inviscid regime (α > θ, θ . 1) is illustrated in Fig. 4c,
here again for the channel with α = 1.6π (Device 4).
Under this regime, inertia becomes significant and tilts
the perturbation forwards. The perturbation becomes
localized closer to the wavy surface, and the magnitude
of the perturbation decreases noticeably compared with
the deep viscous regime (Fig. 4b).

Fig. 5a-c present numerical results from linear theory.
The v′ perturbation fields are obtained under the same
conditions as Fig. 4a-c, respectively. Note that the wavi-
ness of the bottom boundary is modeled in linear theory
by a slip condition at the mean-wall location. As such,
the bottom boundary is flat in Fig. 5. As can be seen, the
qualitative comparison between the experiments (Fig. 4)

and the linear theory (Fig. 5) is very favorable. The pen-
etration of v′ into the channel is progressively reduced,
and the perturbation field is titled forward in the inviscid
regime Fig. 5c.

The results from linear theory for ωz
′ perturbation

fields are presented in Fig. 6a-c. These again are ob-
tained under the same geometric and flow conditions as
the images in Figs. 4 and 5 parts a-c, respectively. Un-
like the transverse velocity v′, which peaks away from
the wall, the peak in ωz

′ is at the wavy surface, which
is the site of vorticity injection. The perturbation then
decays monotonically with increasing distance into the
channel. The decay is within a smaller distance from the
wall as compared with v′ since the latter also includes an
irrotational component.

Fig. 7 shows how the penetration depth of the pertur-
bation depends on the imposed flow conditions within
each of the five wavy channel devices. Fig. 7a presents
Pv as a function of θ, determined from experimental mea-
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FIG. 7. (a) Experimental penetration depth Pv as a function of θ, and (b) normalized experimental penetration depth Pv/α
as a function of θ/α for each of the five wavy channel devices. Numerical penetration depth results from linear theory for (c)
Pv as a function of θ, and (d) Pω as a function of θ.

surements. Here we can see that within shallow channels
(α < π), Pv ≈ α for the entire range of θ accessible in our
experiment. In deep channels (α ≥ π), a plateau region of
constant Pv for θ & 1 indicates the deep viscous regime.
As the channel depth increases from shallow to deep,
the plateau penetration depth Pv → π. An asymptotic
regime appears to have been reached at α = 1.6π (≈ 5),
as was shown theoretically for flow in a wavy plane Cou-
ette [2]. Here, Pv ≈ π in the high-θ plateau. At lower
θ . 1, the inviscid regime in the deep channels is charac-
terized by power-law behaviour with Pv ∼ θ1/3. Power-
law behaviour was also shown by Charru and Hinch in
the inviscid regime, but with a stronger θ dependence
P ∼ θ.

Fig. 7b, presents the experimental data in the form
of Pv/α as a function of θ/α. Here it is clear that as
α decreases Pv → α, reaching asymptotic behavior at
α = 0.32π (≈ 1), as was also shown for flow in the wavy
plane Couette [2]. Also from Fig. 7b, the onset of inviscid
behavior is observed (in deep channels) for θ < α, as
predicted.

Figs. 7c,d show the results of the penetration depth
determined from linear theory for Poiseuille flow. Fig. 7c
shows Pv as a function of θ, and is directly comparable

to Fig. 7a, showing remarkably good agreement between
the experiment and the simulation when this measure of
penetration is used. This encouraging result lends valid-
ity to the experimental approach and demonstrates that
the experimental flow channels conform well to the con-
straints of the linear assumption made in the theoretical
model. Finally, Fig. 7d shows the result of using the full
vorticity perturbation ωz

′ to determine the penetration
depth according to Eq. 7. Here, the expected scaling of
P ∼ θ is recovered in the inviscid regime.

In general, the observations made in Fig. 7 are con-
sistent with the earlier predictions for flow in the wavy
plane Couette [2]. Differences between asymptotic values
of P in deep channels, and P/α in shallow channels, can
be attributed to the contrasting boundary condition at
y = d (ky = α). In the plane Couette there is a rigid no-
slip boundary at y = d through which the perturbation
cannot penetrate. In the Poisseuille flow considered here,
there is no physical boundary at y = d and the perturba-
tion is able to penetrate beyond the channel half-depth.
Experimentally, we do not obtain the expected scaling
for P ∼ θ in the inviscid regime, but the complementary
linear results for Poiseuille flow (Fig. 7c-d) show clearly
that this is simply because we have characterized the pen-
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FIG. 8. Detail of the deep viscous flow regime (α > π, θ > 1) as observed in three devices under conditions of similar θ. (a)
Device 3 (α = π) at θ = 8.44. (b) Device 4 (α = 1.6π) at θ = 7.86. (c) Device 5 (α = 3.2π) at θ = 8.50. Flow is from left to
right.

FIG. 9. Detail of the inviscid flow regime (α > θ, θ < 1) as observed in three deep devices under conditions of similar θ. (a)
Device 3 (α = π) at θ = 0.55. (b) Device 4 (α = 1.6π) at θ = 0.56. (c) Device 5 (α = 3.2π) at θ = 0.55. Flow is from left to
right.

etration using v′ as opposed to ωz
′. The measures of pen-

etration from linear theory show that Pω (Eq. 7) yields a
penetration depth proportional to θ, which emerges from
a balance between advection and diffusion. Conversely,
the measure of Pv (Eq. 5) quantifies the penetration of
the larger-scale potential flow driven by the wall vorticity,
which is the solution to ∇2ψ = −ω.

Fig. 8, provides additional experimental details on the
appearance of v′ perturbations in the deep viscous flow
regime in channels of various α ≥ π at roughly equiva-
lent θ ≈ 8. It can be seen that in these deep channels,
at each value of α, the perturbation extends a distance
ky ≈ π into the channel. The value π arises as a simple
consequence of the generation of two vorticity rolls per
wave on the rough surface.

Fig. 9 illustrates the appearance of the v′ perturba-
tions observed in experiments performed within the in-
viscid regime (α > θ, θ . 1) in the three deep channels
(α ≥ π), here all at a similar value of θ ≈ 0.55. A
one-to-one comparison between the images in Fig. 8a-c
and those in Fig. 9a-c, respectively, shows that as the
flow transitions from the viscous to the inviscid regime

the perturbation is modified in a similar way in each of
the three deep channels. In the inviscid regime the per-
turbations lean forward under the action of shear and
penetrate less deeply into the channel as compared with
the deep viscous regime. In addition there is a noticable
reduction in the intensity of the perturbation (note the
color scale is maintained constant between Figs. 8 and
9).

One particular difference between our results and those
of Charru and Hinch [2] is that from the measurement
of Pv (see Fig. 7) we are unable to observe the invis-
cid regime within shallow channels (at least within the
range of θ that we could access experimentally). How-
ever, some indication of the inviscid regime in the shal-
low channels is evident in the v′ perturbation fields, as
shown in Fig. 10. Here it is apparent that as θ is de-
creased within the inviscid regime in a shallow channel
(α = 0.32π), the perturbation is pushed forward by the
shear and also reduced in intensity, just as is observed in
the inviscid regime in deeper channels (see Fig. 9). How-
ever, in the shallow channels the perturbation continues
to reach all the way through the flow domain even for
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FIG. 10. v′ perturbations in a shallow channel (Device 2, α = 0.32π) under conditions corresponding to the inviscid regime
(α > θ, θ < 1). (a) θ = 0.39, (b) θ = 0.28, (c) θ = 0.21. Flow is from left to right.

FIG. 11. ‘Phase diagram’ for Newtonian regimes observed in
Poiseuille flow through channels with one wavy surface.

very low θ = 0.21 (Fig. 10c), so that the inviscid regime
in such shallow channels is not evident in the measure-
ment of Pv.

Based on the observations and measurements made
for Poisseuille flows of Newtonian fluids through chan-
nels with wavy surfaces, a ‘phase diagram’ (of similar
form to those presented by Charru and Hinch [2] and
Page and Zaki [4]) can be constructed to delineate the
regimes of deep viscous, shallow viscous and inviscid flow
in α−θ parameter space. According to our observations,
we consider shallow channels as those with α < π and
deep channels as those with α > π. The deep viscous
regime occupies the top-right quadrant of the phase di-
agram with α > π, θ & 1 in which, according to both
our measures of the penetration depth (Eqs. 5 and 7),
P ≈ π. The shallow viscous regime to the left of the

phase diagram is defined by α < π, θ & α, and in this
regime we find P ≈ α according to both our measures of
the penetration depth (Eqs. 5 and 7). Both the shallow
viscous and the deep viscous regimes observed in wavy
channel Poisseuille flow are almost exactly equivalent to
the regimes predicted by Charru and Hinch and modeled
by Page and Zaki for plane Couette flow over a wavy sur-
face [2, 4]. The main differences between our experimen-
tal results and their theory arise in the inviscid regime.
In our case, the inviscid regime occupies the lower region
of the phase diagram defined by α & θ, θ . 1 (as it is in
the work of Charru and Hinch [2]), however here we sub-
divide the inviscid regime into shallow inviscid (α < π,
θ . α) and deep inviscid (α > π, θ . 1) parts. Shallow
inviscid behavior is characterized by a distortion of the
perturbation but is indistinguishable from the shallow
viscous regime in terms of the penetration depth mea-
surement, with Pv ≈ α. In the deep inviscid subregime,
according to our experimental measure of the penetration
depth and linear theory Pv ∼ θ1/3. Linear theory con-
firms this scaling using the same measure of penetration
(Eqs. 5), however linear results also indicate that the as-
sociated penetration of the vorticity perturbation in the
inviscid regime (for deep and shallow channels) scales as
Pω ∼ θ, which is in agreement with earlier predictions
[2].

VI. SUMMARY AND CONCLUSIONS

In this work we have employed a novel microfabrica-
tion technique known as selective laser-induced etching
(SLE) to produce a series of five 3D-printed glass chan-
nels. Each rectangular channel incorporates one sinu-
soidal wavy surface of small amplitude and a particular,
well-defined wavelength. We have performed spatially-
resolved µ-PIV in the channels using two Newtonian flu-
ids of contrasting viscosity in order to measure veloc-
ity field perturbations caused to the Poisseuille base flow
state by the wavy surface as the imposed flow rate is var-
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ied over a wide range. The small amplitude of the wavy
surface results in very small perturbations to the trans-
verse velocity components of at most around 5% of the
average flow velocity, however these small vector compo-
nents are accurately measured by the µ-PIV. The SLE
technique is shown to be sufficiently precise to enable
the fabrication of channels with accurate geometrical pa-
rameters that conform to the requirements of linearity,
as confirmed by the excellent agreement between our ex-
perimental measurements and numerical results from the
linear perturbation equations. Our combination of tech-
niques has enabled the first experimental test of the va-
lidity of the theoretical predictions and phase diagram
made by Charru and Hinch [2] for shear flow over a
wavy surface. While their asymptotic analysis assumed
a plane Couette base state, here the flow configuration
is pressure-driven Poisseuille flow. In general, our re-
sults agree remarkably well with theirs and fit into an
analogous phase diagram, with only minor modifications
which we attribute to the absence of a rigid boundary at

the location ky = α (y = d) in the case of the Poisseuille
flow studied here. The results presented here lay a solid
groundwork for benchmark comparison against flows un-
der conditions of more complex geometrical and/or rhe-
ological parameters. In particular, we have an interest in
viscoelastic shear flows over wavy surfaces, which have
recently been studied theoretically by Page and Zaki [4],
with the prediction of some intriguing non-local vorticity
amplification effects that remain to be confirmed exper-
imentally.
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