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Abstract. To efficiently transform genetic associations into drug targets requires evidence 24 

that a particular gene, and its encoded protein, contribute causally to a disease. To achieve 25 

this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) 26 

approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and 27 

independently replicated. From these pQTLs, 64 replicated locally-acting variants were used 28 

as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When 29 

its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running 30 

many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted 31 

variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 32 

instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 33 

92 evidence of colocalization (eCAVIAR).  Results were wide ranging: including, for example, 34 

new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 35 

(SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein 36 

(FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also 37 

demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, 38 

LPL, LTA) in cardiovascular disease risk. 39 

  40 
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Author summary. The targets of most medications prescribed today are proteins. For many 41 

common diseases our understanding of the underlying causes is often incomplete, and our 42 

ability to predict whether new drugs will be effective is remarkably poor. Attempts to use 43 

genetics to identify drug targets have an important limitation: standard study designs link 44 

disease risk to DNA but do not explain how the genotype leads to disease. In our study, we 45 

made robust statistical links between DNA variants and blood levels of 249 proteins, in two 46 

separate groups of Europeans. We then used this information to predict protein levels in large 47 

genetic studies. In many cases, this second step gives us evidence that high or low levels of a 48 

given protein play a role in causing a given disease. Among dozens of high-confidence links, 49 

we found new evidence for a causal role of a protein called SHPS1 in schizophrenia, and of 50 

another protein (FABP2) in heart disease. Our method takes advantage of information from 51 

large numbers of existing genetic studies to prioritize specific proteins as drug targets. 52 

  53 
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Introduction 54 

An initial goal of drug development is the identification of targets – in most cases, proteins – 55 

whose interaction with a drug ameliorates the development, progression, or symptoms of 56 

disease.  After some success, the rate of discovery of new targets has not accelerated despite 57 

substantially increased investment [1]. A large proportion of drugs fail during the last stages 58 

of development – clinical trials – because their targets do not alter whole-organism 59 

phenotypes as expected from observational and other pre-clinical research [2]. Genetic 60 

approaches to drug development [3] offer a distinct advantage over observational studies. It 61 

is estimated that by selecting targets with genetic evidence, the chance of success of those 62 

targets doubles in subsequent clinical development [4]. For example, a recent study found that 63 

12% of all targets for licensed drugs could be rediscovered using GWA studies [5]. Indeed, 64 

there have been a number of recent high-profile successes prioritizing therapeutic targets at 65 

genome-wide scales [6,7]. Nevertheless, the genetic associations of disease are often still not 66 

immediately interpretable [8] and many disease-associated variants alter protein levels via 67 

poorly understood mechanisms. 68 

 69 

When combined with proteomic data, however, genetics can provide insight into proteins that 70 

likely impact disease pathogenesis. Mendelian Randomization (MR) in this context uses 71 

genetic variants to estimate the effect of an exposure on an outcome, using the randomness by 72 

which alleles are allocated to gametes to remove the effects of unmeasured confounding 73 

between a protein and the outcome [9].  Given a set of assumptions, detailed below, this 74 

approach is analogous to a naturally-occurring randomized controlled trial. Using a genetic 75 

variant that predicts the abundance of a mediating molecule, MR tests the hypothesis that this 76 

molecule plays a causal role in disease risk. To do so it takes advantage of the patient’s, or 77 

participant’s, randomization at conception to this molecule’s genetically-determined level. 78 

Under this model, it is possible to use population level genetic information to draw causal 79 

inference from observational data.  80 

 81 
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Proteome-by-phenome MR, in common with all other MR studies, has three key assumptions 82 

that must be fulfilled to ensure the legitimacy of any causal conclusions drawn [10]: 1) that 83 

the SNP is associated with the exposure of interest, 2) that the SNP is independent of any 84 

confounders, and 3) that the SNP does not influence the outcome of interest, except via the 85 

exposure variable. 86 

 87 

A common concern in the use of MR is that the genetic variant is linked to the outcome 88 

phenotype via an alternative causal pathway. In a drug trial this would be analogous to an 89 

intervention influencing a clinical outcome through a different pathway than via its reported 90 

target. To avoid pursuing drugs that target an irrelevant molecular entity, and hence that have 91 

no beneficial effect, we applied MR to proteins – the likely targets of therapy – and limited our 92 

genetic variants to those that are locally-acting protein quantitative trait loci (pQTLs). This 93 

approach provides stronger supporting evidence for a causal role of the protein on disease 94 

than relying on the proximity of a disease-associated genetic variant to a nearby gene, or using 95 

mRNA abundance as a proxy for protein abundance [11]. 96 

 97 

Previous studies have also leveraged the increased availability of pQTL data for drug target 98 

and biomarker discovery [12–18]. For example, in one of the largest pQTL studies to date, Sun 99 

et al. [14] applied an aptamer-based approach (rather than an antibody-based assay as here) 100 

to perform extensive co-localization analyses and used MR to assess the causal contribution 101 

of IL1RL1–IL18R1 locus to atopic dermatitis, and that of MMP12 to coronary heart disease. In 102 

the study presented here, we attempt to systematically use MR to link protein to outcome trait 103 

by taking a three-step approach. Firstly, identifying replicated pQTL in our two European 104 

cohort studies before then using these in a systematic MR approach with two large sets of GWA 105 

study data. In a final step, we test results from one of these sets for evidence of heterogeneity 106 

and colocalization of effects. 107 

 108 

Overall, our proteome-by-phenome MR approach assessed the causal role of 64 proteins in 109 

846 outcomes (e.g. diseases, anthropomorphic measures, etc.), identifying 38 as causally 110 
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contributing to human diseases or other quantitative traits. Notwithstanding the assumptions 111 

of MR, obtaining evidence for causality from studies such as this is far more scalable than via 112 

randomized controlled trials, and is more physiologically relevant than model organism 113 

studies. 114 

 115 

Results 116 

Protein QTLs 117 

The abundance of an individual protein can be associated with DNA variants that are either 118 

local or distant to its gene (termed local- and distal-pQTLs, respectively). In many respects, 119 

locally-acting pQTLs are ideal instrumental variables for MR: they tend to have large effect 120 

sizes, have highly plausible biological relationships with protein level, and provide 121 

quantitative information about (often) directly druggable protein targets. This is in contrast 122 

to distal pQTLs, where the pathway through which they exert their effects is generally 123 

unknown, with no a priori expectation of a direct effect on a single target gene. 124 

 125 

We assayed the plasma levels of 249 proteins using high-throughput, multiplex immunoassays 126 

and then performed genome-wide association of these levels in each of two independent 127 

cohorts (discovery and replication) of 909 and 998 European individuals who had previously 128 

been genotyped. 129 

 130 

Lead-SNPs, defined as the variant with the smallest p-value and accounting for linkage 131 

disequilibrium (Methods), were identified for each protein. As expected, pQTLs were highly 132 

concordant between the two independent cohorts (S1 Table). 121 pQTL were identified in the 133 

discovery dataset, and, of these, 90.1% (109/121) were successfully replicated after 134 

accounting for multiple testing in both the discovery and replication. However, this was felt to 135 

be excessively stringent with respect to instrument identification, and a more permissive 136 

threshold of 5x10-8 was therefore used in the discovery cohort. Of the 209 lead-SNPs identified 137 

in the discovery cohort at this threshold, 154 were successfully replicated (accounting for 138 
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multiple testing during replication and with consistent direction of effect). These represented 139 

pQTLs for 82 proteins, all but two proteins were successfully mapped to an autosomal gene 140 

(Ensembl GRCh37). The majority of these proteins (64/80; 80%) had a replicated lead-SNP 141 

within 150kb of the gene encoding the protein (Fig 1). The variant to use as the instrumental 142 

variable for each protein was selected as the replicated lead-SNP lying within 150kb of the 143 

gene encoding the protein with the lowest significant p-value in the discovery set (Methods). 144 

Increasing this proximity threshold to within 1Mb added a single protein only. Further support 145 

for the validity of these instruments was provided through comparison with the results of Sun 146 

et al. [14] and GTEx [19] (Methods): of the instrumental variables identified (a) 52% (14/27) 147 

of those comparable were in high LD (r2>0.8) with the results of Sun et al. (S2 Table), and (b) 148 

30% (16/54) were also called as significant expression QTLs (eQTLs; Bonferroni correction; 149 

S3 Table) in GTEx – in keeping with previous studies [14]. 150 

 151 

 152 

Fig 1. Proteome-by-phenome Mendelian Randomization. 153 

A) Genome-wide associations of the plasma concentrations of 249 proteins from two 154 

independent European cohorts (discovery and replication) were calculated. The plot shows 155 

pQTL position against chromosomal location of the gene that encodes the protein under study 156 

for all replicated pQTLs. The area of a filled circle is proportional to its -log10(p-value) in the 157 

replication cohort. Blue circles indicate pQTLs ±150kb of the gene (‘local-pQTLs’); red circles 158 

indicate pQTLs more than 150kb from the gene. B, C) Local-pQTLs of 64 proteins were taken 159 

forward for proteome-by-phenome MR analysis. These were assessed against 778 outcome 160 

phenotypes from GeneAtlas [20] (panel B; UK Biobank) and 68 phenotypes identified using 161 

Phenoscanner [21,22] (panel C). In each set of results an FDR of <0.05 was considered 162 

significant. D) Heterogeneity in dependent instruments (HEIDI [23]) testing was undertaken 163 

for MR significant results from GeneAtlas (n = 271). This test seeks to distinguish a single 164 

causal variant at a locus effecting both exposure and outcome directly (as in i) or in a causal 165 
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chain (as in ii), from two causal variants in linkage disequilibrium (as in iii), one affecting the 166 

exposure and the other effecting the outcome. 167 

 168 

 169 

Proteome-by-phenome Mendelian Randomization 170 

Proteome-by-phenome MR was then applied to 54,144 protein-trait pairs obtained from these 171 

64 replicated local-pQTLs and 778 traits obtained from GeneAtlas (UK Biobank) [20], and 68 172 

traits from 20 additional genome-wide association (meta-analysis) studies [24–43] identified 173 

through Phenoscanner [21,22] (Fig 1; S4 Table; Methods). Phenoscanner studies were 174 

additionally analyzed because, although the UK Biobank cohort is large (~500,000 175 

individuals), for many diseases the number of affected individuals is small, resulting in low 176 

statistical power (Methods). 177 

 178 

Proteome-by-phenome MR yielded 271 significant protein-trait pairs (FDR <0.05) in 179 

GeneAtlas, and 238 significant (FDR <0.05) pairs using Phenoscanner data. Thirty-two of the 180 

64 proteins were causally implicated for one or more traits in GeneAtlas, and 36 of 64 in the 181 

Phenoscanner studies’ traits. GeneAtlas and Phenoscanner traits are not mutually exclusive, 182 

and some of the Phenoscanner studies included UK Biobank data. Nevertheless, a majority 183 

(60%; 38/64) of the proteins were implicated in one or more traits (e.g. IL6R: as discussed 184 

below; S5 Table and S6 Table). 185 

 186 

For some of these inferences, genetic evidence of an association between a protein and 187 

phenotype has previously been proposed based simply on physical proximity of the genes to 188 

GWA intervals. However, in actually measuring protein products we go well beyond genetic 189 

proximity-based annotation of GWA hits: (a) we provide direct evidence that a SNP actually 190 

changes the abundance of a protein, and (b) notwithstanding the assumptions of MR, that the 191 

change in protein abundance observed is consistent with a causal effect of the protein on 192 

outcome trait variation. In addition, notwithstanding the different significance criteria, nearly 193 

two-thirds (62%; 318/509) of the significant (FDR <0.05) MR associations between protein 194 
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and outcome were not matched by significant (p-value <5x10-8) association of the DNA variant 195 

to outcome.  196 

 197 

Heterogeneity of effect-size estimates 198 

For GeneAtlas results, we use HEIDI to test for heterogeneity of MR effect estimates, and 199 

eCAVIAR to assess the colocalization posterior probability (CLPP) of the instrumental variable, 200 

within a locus. HEIDI tests for heterogeneity of MR effect between the lead variant (the 201 

primary instrument) and those of linked variants. More specifically, it tests the null hypothesis 202 

that the observed MR result is consistent with a single causal variant [23], explicitly accounting 203 

for the LD structure across the locus. eCAVIAR is a probabilistic method to assess the CLPP, 204 

again accounting for LD, that allows for multiple causal variants within a locus. 205 

 206 

Amongst the GeneAtlas results, 77 of 271 survived the HEIDI heterogeneity testing (p-value 207 

>0.05), and 92 of 271 have a CLPP >1% in eCAVIAR (threshold as per the original eCAVIAR 208 

paper [44]), with an intersect of 32. These 32 proteins thus have: (1) high-quality evidence of 209 

association to a DNA variant that provides congruent predictions for both plasma protein 210 

levels and disease risk or trait, and (2) a low risk of pleiotropy, due to the physical proximity 211 

of the pQTL to the protein’s gene, survival of the HEIDI test, and a high CLPP in eCAVIAR (S7 212 

Table). These 32 relationships therefore have the most robust evidence that the level of the 213 

protein directly alters disease risk or trait. Nevertheless, we emphasize that all 509 causal 214 

inferences (271 from GeneAtlas [20] and 238 from studies identified through Phenoscanner 215 

[21,22]; Fig 2, and S5 Table and S6 Table), even those consistent with heterogeneity 216 

(GeneAtlas only), remain potential high-quality drug targets. An appropriate interpretation of 217 

this result is that there are 271 potentially causal links identified in GeneAtlas, with additional 218 

support for 77 based on results of the HEIDI analysis, 92 based upon eCAVIAR analysis, and 219 

32 with support from both. This may be because the HEIDI heterogeneity test (Fig 1) is 220 

susceptible to type I errors (i.e. false positives) in the context of this study. The method can 221 

report significant heterogeneity where there is, in fact, none if: (a) there are multiple causal 222 

variants present within a locus, or (b) there are differences in the LD structure among the 223 
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discovery pQTL GWA population (used for lead-SNP selection), the replication pQTL GWA 224 

study population (used for effect-size estimation), the outcome trait GWA study population, 225 

or that of the LD reference. eCAVIAR may also fail to detect colocalization due to differences 226 

in LD structure between the cohorts. In addition, CLPP depends on the complexity of the LD 227 

within a locus, complex LD structure can result in low CLPP values: suggesting the possibility 228 

of false negative results [44]. Finally, it is worth noting that we applied the HEIDI test in a 229 

conservative manner: a significant HEIDI test implies heterogeneity yet we did not apply a 230 

multiple testing correction. Applying a Bonferroni correction (271 tests) to the HEIDI p-value, 231 

yields 180 of the protein-outcome pairs (rather than 77) as not significantly heterogeneous. 232 

 233 

 234 

Fig 2. Significant (FDR <0.05) proteome-by-phenome MR protein-outcome 235 

causal inferences: disease subset. 236 

 237 

MR significant (FDR<5%) protein-disease outcome results.  238 

a) All MR significant (FDR<5%) protein-disease outcome results for outcomes from the 239 

Phenoscanner [21,22] studies (see key for details).  240 

b) All MR significant (FDR<5%) protein-disease outcome results for outcomes from 241 

GeneAtlas [20]. An asterisk indicates MR estimates that are not significantly heterogeneous 242 

upon HEIDI testing (see key for details). 243 

c) Key. From the outside in: HGNC symbol of the protein (exposure); disease outcome; key 244 

color (matching the protein name in the outer ring); bar chart of the signed squared beta 245 

estimate divided by the squared standard error of the MR estimate, using pQTL data from 246 

the discovery cohort (CROATIA-Vis); bar chart of the signed squared beta estimate divided 247 

by the squared standard error of the MR estimate, using pQTL data from the 248 

replication cohort (ORCADES). Central links join identical outcomes for which more than 249 
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one protein was found to be MR significant. The color of the links indicates similar outcome 250 

groups, e.g. thyroid disease. 251 

The key to the outcome descriptions is detailed further in S9 Table and S10 Table. 252 

d) Example concordance (due to sample overlap) plot for all proteins with significant MR 253 

evidence in GeneAtlas for causal roles in asthma (IL1RL1, IL1RL2, IL2RA, IL4R, IL6R). 254 

GeneAtlas traits are on the left. Phenoscanner traits are on the right. Thickness of connecting 255 

lines is proportional to -log10(p-value). The Phenoscanner studies included here are derived 256 

from [24,26,27,30,38,41–43], of which [26,38,42,43] include at least some part of the UKBB 257 

data. However, [26,42,43] use only data from the first phase (~150,000 individuals) 258 

genotype release from UK Biobank. 259 

 260 

 261 

Tractability of the proteins assessed as therapeutic targets 262 

Of the 32 proteins for which we identified a significant MR association in GeneAtlas (S5 Table), 263 

we found 1319 compounds (S8 Table) associated with 10 proteins in ChEMBL. Of these 264 

compounds, 10 have already been tested in phase 2, or greater, trials: targeting DLK1, LPL, 265 

and LGALS3. 266 

 267 

Our results draw causal inference between the plasma concentration of specific proteins and 268 

many diseases and outcome phenotypes. For example, we provide supporting evidence for a 269 

role of IL4R in asthma, IL2RA in thyroid dysfunction, and IL12B in psoriasis (Fig 2), as well as 270 

many cellular phenotypes, such as Transferrin receptor protein 1 (encoded by TFRC) in mean 271 

corpuscular hemoglobin. Multiple disease endpoints exist to which we have found a MR link 272 

and, additionally, for some diseases we have causal links from multiple proteins (Fig 2A and 273 

2B; S5 Table and S6 Table). 274 

 275 

Many-to-One: multiple proteins link to asthma. 276 
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Asthma is an inflammatory condition affecting the airways. Using GeneAtlas data, our analysis 277 

finds 5 proteins – all interleukin receptors – whose levels causally contribute to asthma 278 

disease risk: IL1RL1, IL1RL2, IL2RA, IL4R, and IL6R (Fig 2D). Prior links between these 279 

proteins and asthma or atopy exist (IL1RL1 [45,46] and IL1RL2 [14], IL2RA [41,47], IL4R [48], 280 

and IL6R [41,48–52]), albeit not necessarily strong evidence for a causal link. Of these, IL6R 281 

was not significantly heterogeneous in HEIDI testing (p >0.05), and also IL4R if accounting for 282 

multiple tests (p >0.05/271). Only IL6R had a CLPP >1% in eCAVIAR. Given the association 283 

between eosinophils and asthma, it is worth noting that IL1RL1, IL1RL2, IL2RA, and IL4R are 284 

all linked to ‘Eosinophil count’ and ‘Eosinophil percentage’ in GeneAtlas. Whilst not a true 285 

replication, due to the use of UK Biobank data in both GeneAtlas and some of the Phenoscanner 286 

studies, Fig 2D reveals strong concordance between the MR links identified between the two. 287 

Of the 12 Phenoscanner studies reporting significant MR links in this study [24,26–288 

28,30,32,34,37,38,41–43], 5 include UK Biobank data from ~150,000 individuals 289 

[26,32,34,42,43], and one uses the full UK Biobank release [38]. 290 

 291 

One-to-Many: Linking IL6R levels to atopy, rheumatoid arthritis, and coronary artery 292 

disease. 293 

We also found evidence for a causal association between plasma IL6R abundance and 294 

coronary artery disease (CAD), atopy, and rheumatoid arthritis (Fig 2, S5 Table, and S6 Table). 295 

We note previous support for these inferences: for example, tocilizumab (a humanized 296 

monoclonal antibody against IL6R protein) is in clinical use for treating rheumatoid arthritis 297 

[53], prior MR evidence has linked elevated levels of soluble IL6R to reduced cardiovascular 298 

disease [54,55], and, as discussed above, there is previous genetic evidence of a link between 299 

IL6R and atopy [41,48–52]. 300 

 301 

SHPS1 and schizophrenia 302 

Three proteins were implicated in the pathogenesis of schizophrenia: (i) Tyrosine-protein 303 

phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) – Fig 3, (ii) Tumor necrosis factor 304 
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receptor superfamily member 5 (CD40), and (iii) Low affinity immunoglobulin gamma Fc 305 

region receptor II-b (FCGR2B). 306 

 307 

 308 

Fig 3: Co-localization of SHPS1 (encoded by SHPS1: synonym SIRPA) and 309 

schizophrenia DNA associations. 310 

Upper panel, LocusZoom [56] of the region surrounding SHPS1 and the associations with 311 

schizophrenia [28]; lower panel, associations with SHPS1. Lower panel inset, the relative 312 

concentration of SHPS1 across the 3 genotypes of rs4813319 – the DNA variant used as the 313 

instrumental variable (IV) in the MR analysis: CC, CT, and TT. 314 

 315 

 316 

Focusing on SHPS1, it is highly expressed in the brain, especially in the neuropil (a dense 317 

network of axons, dendrites, and microglial cell processes) in the cerebral cortex 318 

(https://v18.proteinatlas.org/ENSG00000198053-SIRPA/tissue [57–59]; accessed 01 Apr 319 

2019), and co-localizes with CD47 at dendrite-axon contacts [60]. Mouse models in which 320 

the SHPS1 gene is disrupted exhibit many nervous system abnormalities, such as reduced 321 

long term potentiation, abnormal synapse morphology and abnormal excitatory 322 

postsynaptic potential (MGI: 5558020 [61]; http://www.informatics.jax.org/; v6.13; 323 

accessed 01 Apr 2019). Other mouse and rat models link CD47 to sensorimotor gating and 324 

social behavior phenotypes [62–66]. In addition, SHPS1 mediates activity-dependent 325 

synapse maturation [61] and may also have a role as a “don’t eat me” signal to microglia 326 

[67]. SHPS1 levels tend to be lower in the dorsolateral prefrontal cortex of schizophrenia 327 

patients [68]. Finally, the observed effect of SHSP1 on schizophrenia was not significantly 328 

heterogeneous in the results of the Schizophrenia Working Group of the Psychiatric 329 

Genomics Consortium (2014) (p-value 0.53). 330 

 331 

FABP2 and coronary artery disease 332 
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Four other proteins, in addition to IL6R, were identified as contributing to CAD pathogenesis, 333 

namely FABP2, FGF5, LPL, and LTA (Fig 2). FGF5, LPL, IL6R, and LTA had been implicated 334 

previously [26,69,70], whereas FABP2 had more limited prior evidence for its involvement. 335 

 336 

pQTL analysis identified two lead DNA variants in close proximity (<150kb) to the FABP2 gene. 337 

Using SNP rs17009129, we find a causal link between FABP2 abundance and CAD (p-value 338 

1.1x10−4; FDR <0.05; βMR -0.11; seMR 0.028; βMR and seMR units: log(OR)/standard deviation of 339 

residualised protein concentration) without significant heterogeneity (p-value 0.24) which 340 

suggests shared causal genetic control. Furthermore, a second independent SNP (LD r2 <0.2; 341 

rs6857105) replicates this observation (MR p-value 5.0x10−4; HEIDI p-value 0.34; βMR -0.17; 342 

seMR 0.047). Both SNPs (rs17009129, and rs6857105) fell below genome-wide significance (p-343 

value <5x10−8) in the full meta-analysis of van der Harst [38] on CAD. Consequently, this is the 344 

first time, to our knowledge, that variants associate with FABP2 abundance have been 345 

demonstrated to contribute causally to CAD pathogenesis. 346 

 347 

Discussion 348 

Proteome-by-phenome MR efficiently and robustly yields evidence for proteins as drug 349 

targets. It offers a data-driven approach to drug discovery using population-level data, and 350 

quantifies the strength of evidence for causation. Previous studies have made successful forays 351 

into the use of pQTL in mapping protein variation onto disease [12–18], and both the coverage 352 

of the proteome and the availability of disease and trait GWA study results are ever increasing. 353 

By using the lead variants of locally-acting pQTLs as instrumental variables, we focused 354 

specifically on a subset of functionally relevant variants for those proteins under study: this 355 

choice reduced the multiple testing burden when compared to genome-wide scans for 356 

associations of the outcome trait. 357 

 358 

A potential problem with antibody- and aptamer-based assays is that any perturbation to 359 

binding, such as a change to an epitope, appears incorrectly as a change in abundance. In the 360 

absence of a well-defined reference, we cannot exclude the possibility that some of the pQTL 361 
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we have called indicate epitope changes rather than changes in protein abundance. However, 362 

in each case, a bona fide biological association does exist between the genetic variant and the 363 

protein. With respect to MR, this would change the biological interpretation of the exposure 364 

only: protein abundance or sequence isoform, for example.  365 

 366 

In addition, proteome-by-phenome MR has inherent limitations. First, a true positive MR 367 

association in our analysis implies that any intervention to replicate the effect of a given 368 

genotype would alter the relevant phenotype. Nevertheless, this association is informative 369 

neither of the time interval, during development for example, nor the anatomical location in 370 

which an intervention would need to be delivered. Second, pleiotropic effects cannot be 371 

excluded entirely without (unachievable) quantification of every mediator. Third, the 372 

abundance of a protein in plasma may be an imperfect proxy for the effect of a drug targeting 373 

that protein at the level of a whole organism. Finally, plasma abundance does not necessarily 374 

reflect activity. For example, a variant may cause expression of high levels of an inactive form 375 

of a protein. Or, for proteins with both membrane-bound and unbound forms, the MR direction 376 

of effect observed from quantifying soluble protein abundance may not reflect that of 377 

membrane-bound protein. For many membrane-bound proteins, a soluble (often 378 

antagonistic) form exists that is commonly produced through alternative splicing or 379 

proteolytic cleavage of the membrane-bound form. Based on 1,000 Genomes [71,72] data, the 380 

variant we use to predict IL6R level, rs61812598, for example, is in complete LD with the 381 

missense variant rs2228145 whose effects on proteolytic cleavage of the membrane-bound 382 

form and alternative splicing have been examined in detail [73]. Carriers of the 358Ala allele 383 

at rs2228145 tend to have increased soluble IL6R but reduced membrane-bound IL6R in a 384 

number of immune cell types. Differences between the effects of soluble and membrane-bound 385 

forms of a protein may be widespread. For example, dupilumab is a monoclonal antibody that 386 

targets IL4R, a key component of both IL4 and IL13 signaling. It is currently under 387 

investigation for the treatment of asthma and has shown promising results in both 388 

eosinophilic and non-eosinophilic asthma [74,75]. Based on our results, we would have 389 

predicted that increased levels of IL4R result in a lower risk of asthma (S5 Table). This is in 390 
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contrast to the direction-of-effect due to dupilumab administration. However, as with IL6R, 391 

IL4R has both a soluble and a membrane-bound form. Encouragingly, despite this, a 392 

relationship between dupilumab and asthma remains plausible – as evidenced by the 14 393 

recently completed or ongoing clinical trials to assess the efficacy and safety of dupilumab in 394 

asthma (as of 26 March 2019, ClinicalTrials.gov). 395 

 396 

As well as its utility in identifying potential therapeutic targets for drug development, 397 

proteome-by-phenome MR also allows for an assessment of potential off-target effects of 398 

existing pharmacological targets. For example, we predict an effect of IL4R modulation on 399 

eosinophil count and percentage. This is an association already realized in one of the phase II 400 

clinical trials investigating dupilumab in asthma: a rise in eosinophil count was observed for 401 

some patients, even leading to the withdrawal of one patient from the study [74]. 402 

 403 

In summary, we have identified dozens of plausible causal links by conducting GWA of 249 404 

proteins, followed by phenome-wide MR using replicated locally-acting pQTLs of 64 proteins. 405 

The approach is statistically robust, relatively inexpensive, and high-throughput. 54,144 406 

protein-outcome links were assessed and 509 significant (FDR <0.05) links identified: 407 

including anthropometric measures, hematological parameters, and diseases. Opportunities 408 

to discover larger sets of plausible causal links will increase as study sizes and pQTL numbers 409 

grow. Indeed, whole-proteome versus Biobank GWA Atlas studies will likely become feasible 410 

as pQTL measurement technologies mature further.   411 

Methods 412 

Ethics statement. 413 

ORCADES: The study was approved by Research Ethics Committees in Orkney and 414 

Aberdeen (North of Scotland REC, 26/11/2003). 415 

CROATIA-Vis: The study received approval from the relevant ethics committees in 416 

Scotland (South East Scotland Research Ethics Committee, REC reference: 417 
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11/AL/0222) and Croatia (University of Split School of Medicine Ethics committee, 418 

Class:003-08/11-03/-005 No.: 2181-198-03-04/10-11-0008). 419 

All participants gave written informed consent and both studies complied with the 420 

tenets of the Declaration of Helsinki. 421 

 422 

Cohort description. From the islands of Orkney (Scotland) and Vis (Croatia) respectively, the 423 

ORCADES [76] and CROATIA-Vis [77,78] studies are of two isolated population cohorts that 424 

are both genotyped and richly phenotyped. 425 

The Orkney Complex Disease Study (ORCADES) is a family-based, cross-sectional study that 426 

seeks to identify genetic factors influencing cardiovascular and other disease risk in the 427 

isolated archipelago of the Orkney Isles in northern Scotland [76]. Genetic diversity in this 428 

population is decreased compared to Mainland Scotland, consistent with the high levels of 429 

endogamy historically. 2,078 participants aged 16-100 years were recruited between 2005 430 

and 2011, most having three or four grandparents from Orkney, the remainder with two 431 

Orcadian grandparents. Fasting blood samples were collected and many health-related 432 

phenotypes and environmental exposures were measured in each individual. 433 

The CROATIA-Vis study includes 1,008 Croatians, aged 18-93 years, who were recruited from 434 

the villages of Vis and Komiza on the Dalmatian island of Vis during spring of 2003 and 2004. 435 

They underwent a medical examination and interview, led by research teams from the 436 

Institute for Anthropological Research and the Andrija Stampar School of Public Health, 437 

(Zagreb, Croatia). All subjects visited the clinical research center in the region, where they 438 

were examined in person and where fasting blood was drawn and stored for future analyses. 439 

Many biochemical and physiological measurements were performed, and questionnaires of 440 

medical history as well as lifestyle and environmental exposures were collected. 441 

 442 

Genotyping. Chromosomes and positions reported in this paper are from GRCh37 443 

throughout. Genotyping of the ORCADES cohort was performed on the Illumina Human Hap 444 

300v2, Illumina Omni Express, and Illumina Omni 1 arrays; that of the CROATIA-Vis cohort 445 

used the Illumina HumanHap300v1 array. 446 
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 447 

The genotyping array data were subject to the following quality control thresholds: genotype 448 

call-rate 0.98, per-individual call-rate 0.97, failed Hardy-Weinberg test at p-value <1x10−6, and 449 

minor allele frequency 0.01; genomic relationship matrix and principal components were 450 

calculated using GenABEL (1.8-0) [79] and PLINK v1.90 [80,81]. 451 

 452 

Assessment for ancestry outliers was performed by anchored PCA analysis when compared to 453 

all non-European populations from the 1,000 Genomes project [71,72]. Individuals with a 454 

mean-squared distance of >10% in the first two principal components were removed. 455 

Genotypes were phased using Shapeit v2.r873 and duoHMM [82] and imputed to the HRC.r1-456 

1 reference panel [83]. 278,618 markers (Hap300) and 599,638 markers (Omni) were used 457 

for the imputation in ORCADES, and 272,930 markers for CROATIA-Vis. 458 

 459 

Proteomics. Plasma abundance of 249 proteins was measured in two European cohorts using 460 

Olink Proseek Multiplex CVD2, CVD3, and INF panels. All proteomics measurements were 461 

obtained from fasting EDTA plasma samples. Following quality control, there were 971 462 

individuals in ORCADES, and 887 individuals in CROATIA-Vis, who had genotype and 463 

proteomic data from Olink CVD2, 993 and 899 from Olink CVD3, and 982 and 894 from Olink 464 

INF. The Olink Proseek Multiplex method uses a matched pair of antibodies for each protein, 465 

linked to paired oligonucleotides. Binding of the antibodies to the protein brings the 466 

oligonucleotides into close proximity and permits hybridization. Following binding and 467 

extension, these oligonucleotides form the basis of a quantitative PCR reaction that allows 468 

relative quantification of the initial protein concentration [84]. Olink panels include internal 469 

and external controls on each plate: two controls of the immunoassay (two non-human 470 

proteins), one control of oligonucleotide extension (an antibody linked to two matched 471 

oligonucleotides for immediate proximity, independent of antigen binding) and one control of 472 

hybridized oligonucleotide detection (a pre-made synthetic double stranded template), as 473 

well as an external, between-plate, control (http://www.olink.com/; accessed: 19th June 474 

2016). 475 
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 476 

Prior to analysis, we excluded proteins with fewer than 200 samples with measurements 477 

above the limit of detection of the assay. Of the 268 unique proteins reported by Olink, 253 478 

passed this threshold in ORCADES, and 252 in CROATIA-Vis, with an intersect of 251 proteins. 479 

Protein values were inverse-normal rank-transformed prior to subsequent analysis. 480 

 481 

The subunits of IL27 are not distinguished in Olink’s annotation (Q14213, EBI3; and Q8NEV9, 482 

IL27). However, it has only one significant locus, local to the EBI3 gene (lead variant, 483 

rs60160662, is within 16kb). Therefore, EBI3 (Q14213) was selected as representative for this 484 

protein when discussing pQTL location (local/distal) so as to avoid double counting.  485 

 486 

The CVD2, CVD3, and INF panels are commercially available from Olink. The proteins on these 487 

panels were selected by Olink due to a priori evidence of involvement in cardiovascular and 488 

inflammatory processes. Two proteins, CCL20 and BDNF, have been removed at the request 489 

of Olink (due to issues with the assay). 490 

 491 

Detection of pQTL. Genome-wide association of these proteins was performed using 492 

autosomes only. Analyses were performed in three-stages. (1) a linear regression model was 493 

used to account for participant age, sex, genotyping array (ORCADES only), proteomics plate, 494 

proteomics plate row, proteomics plate column, length of sample storage, season of 495 

venepuncture (ORCADES only), and the first 10 principal components of the genomic 496 

relationship matrix. Genotyping array and season of venepuncture are invariant in CROATIA-497 

Vis and therefore were not included in the model. (2) Residuals from this model were 498 

corrected for relatedness, using GenABEL’s [79] polygenic function and the genomic 499 

relationship matrix, to produce GRAMMAR+ residuals. Outlying GRAMMAR+ residuals 500 

(absolute z-score >4) were removed and the remainder rank-based inverse-normal 501 

transformed. (3) Genome-wide association testing was performed using REGSCAN v0.5 [85]. 502 

 503 
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Genome-wide association results were clumped by linkage disequilibrium using PLINK v1.90 504 

[80,81]. Biallelic variants within ±5Mb and r2 >0.2 to the lead variant (smallest p-value at the 505 

locus) were clumped together, and the lead variant is presented. r2 was derived from all 506 

European populations in 1,000 Genomes [71,72]. 507 

 508 

We have chosen to describe pQTL as local- or distant- so as to distinguish naming based on 509 

genomic location from that based on mode of action i.e. cis- (acting on the same DNA molecule) 510 

and trans- (acting via some diffusible mediator). That is, most local- variation may well act in 511 

cis but not necessarily so. 512 

 513 

Mendelian Randomization. In the context of proteome-by-phenome MR, a DNA variant (a 514 

single nucleotide polymorphism in this case) that influences plasma protein level is described 515 

as an ‘instrumental variable’, the protein as the ‘exposure variable’, and the outcome 516 

phenotype as the ‘outcome variable’. 517 

The lead-SNP with the lowest p-value meeting the following criteria was used as the 518 

instrumental variable for each protein: 519 

(1) Minor allele frequency >1% in both ORCADES and CROATIA-Vis cohorts. 520 

(2) An imputation info score (SNPTEST v2) of >0.95 in both ORCADES and CROATIA-Vis. 521 

(3) Located within ±150kb of the gene coding for the protein (start and end coordinates 522 

of the gene as defined by Ensembl GRCh37 [86]). 523 

(4) Significant (as defined below) SNP:protein link in both the discovery and replication 524 

cohorts. 525 

 526 

Lead-SNP selection was performed using the discovery (CROATIA-Vis; p-value <5x10-8) 527 

cohort; replication was defined based on a Bonferroni correction for the number of significant 528 

lead-SNPs present in the discovery cohort (CROATIA-Vis). In order to avoid a ‘winner’s curse’, 529 

genome-wide association effect size estimates and standard errors from the replication cohort 530 

(ORCADES) were used for MR.  531 
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 532 

We perform MR as a ratio of expectations, using up to second-order partial derivatives of the 533 

Taylor series expansion for effect size estimates, and up to first-order for standard errors 534 

(Delta method) [87]: 535 

 536 

(1) 𝛽𝑌𝑋 ≈
𝛽𝑌𝑍

𝛽𝑋𝑍
(1 +

𝑠𝑒𝑋𝑍
2

𝛽𝑋𝑍
2 ) 537 

(2) 𝑠𝑒𝑌𝑋 ≈  √
𝑠𝑒𝑌𝑍

2

𝛽𝑋𝑍
2 +

𝛽𝑌𝑍
2  × 𝑠𝑒𝑋𝑍

2

𝛽𝑋𝑍
4  538 

(3) 𝑝𝑌𝑋 ≈ 2Φ (
−|𝛽𝑌𝑋|

𝑠𝑒𝑌𝑋
) 539 

 540 

where βij is the causal effect of j on i, seij is the standard error of the causal effect estimate of j 541 

on i; subscript X is the exposure, Y the outcome trait, and Z the instrumental variable. Φ is the 542 

cumulative density function of the standard normal distribution. This method is identical to 543 

that of SMR [23] apart from the second term in the bracket of Equation 1 (resulting from the 544 

inclusion of second-order partial derivatives). An FDR of <0.05 was considered to be 545 

significant. FDR estimations were performed separately on those results derived from 546 

GeneAtlas and those derived from studies in Phenoscanner. 547 

 548 

DNA variant to trait association: GeneAtlas. UK Biobank has captured a wealth of 549 

information on a large – approximately 500,000 individuals – population cohort that includes 550 

anthropometry, hematological traits, and disease outcomes. All 778 outcome traits from UK 551 

Biobank in GeneAtlas (http://geneatlas.roslin.ed.ac.uk/; Canela-Xandri et al. (2018) [88]) 552 

were included. The analysis method of all 778 traits was as described for 717 in Canela-Xandri 553 

et al. (2017) [20]. For each protein, the lead (lowest DNA variant-protein association p-value 554 

in the discovery cohort) biallelic (Phase 3, 1,000 Genomes [71,72]) variant meeting the criteria 555 

above and an imputation info score >0.95 in UK Biobank, was selected for each protein, and 556 

MR performed. 557 
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 558 

DNA variant to trait association: Phenoscanner. Phenoscanner [21,22] was used to 559 

highlight existing GWA studies for inclusion. For each protein, the lead (lowest DNA variant-560 

protein association p-value in the discovery cohort) biallelic (1,000 Genomes [71,72]) meeting 561 

the criteria above was selected. rs545634 was not found in the Phenoscanner database and 562 

was therefore replaced with the second most significant variant meeting the above criteria: 563 

chr1:15849003. Phenoscanner was run with the following options: Catalogue: ‘Diseases & 564 

Traits’, p-value cut-off: ‘1’, Proxies: ‘None’, Build ‘37’. The results from those studies that 565 

returned a value for all input variants were kept and MR performed. Phenoscanner 566 

(http://www.phenoscanner.medschl.cam.ac.uk/information/; accessed 25 Sep 2018) state 567 

that they report all SNPs on the positive strand. Given this, alleles were harmonized as 568 

required. No attempt to harmonize based on allele frequency was made; therefore, the 569 

direction of effect of C/G and A/T SNPs should be interpreted with care. Results from 20 570 

additional studies were obtained, corresponding to 68 outcomes. 571 

HEIDI. Heterogeneity in dependent instruments (HEIDI) analysis [23], is a method of testing 572 

whether the MR estimates obtained using variants in linkage disequilibrium with the lead 573 

variant are consistent with a single causal variant at a given locus (Fig 1D).  HEIDI analysis was 574 

performed using software provided at https://cnsgenomics.com/software/smr/ (accessed 28 575 

Aug 2018; v0.710). We used pQTL data from ORCADES for assessment as the exposure. 576 

Biallelic variants from the 1,000 Genomes [71,72] (European populations: CEU, FIN, GBR, IBS, 577 

and TSI) were used as the linkage disequilibrium reference. We used the default ‘cis-window’ 578 

of 2000kb, and a maximum number of variants of 20 (as is the default value for the software). 579 

 580 

We performed HEIDI analysis of all exposure-outcome links that were found to be significant 581 

(FDR <0.05) using outcomes from GeneAtlas (n=271), as well as links found to be MR 582 

significant (FDR <0.05) with CAD from the meta-analysis of van der Harst [38], and for SHPS1 583 

and schizophrenia [28]. 584 

 585 



 23 

We applied the following filters for variants to be included in the analysis: minor allele 586 

frequency MAF >0.01 and, in the GeneAtlas and ORCADES data, an imputation info score of 587 

>0.95. 588 

 589 

eCAVIAR. eCAVIAR [44] is a method for assessing the colocalization posterior probability 590 

(CLPP) for two traits at a locus, whilst allowing for multiple causal variants. We ran eCAVIAR 591 

with a maximum of 5 causal variants per locus and defined a locus as per the original eCAVIAR 592 

paper [44]: 50 SNPs up- and down-stream of the relevant variable (the instrumental variable 593 

in this case). eCAVIAR was run using software provided at 594 

https://github.com/fhormoz/caviar/ (accessed 12 Mar 2020; v2.2). As with HEIDI, we used 595 

pQTL data from ORCADES for assessment as the exposure, biallelic variants from the 1,000 596 

Genomes [71,72] as an LD reference, and applied identical filters for variant inclusion. 597 

 598 

We performed eCAVIAR analysis of all exposure-outcome links that were found to be 599 

significant (FDR <0.05) using outcomes from GeneAtlas (n = 271). 600 

 601 

Comparison to eQTL 602 

Result for all SNP:gene pairs analyzed in whole blood were downloaded from GTEx [19] (v7) 603 

from the GTEx Portal (https://gtexportal.org/; accessed 04 Sep 2019). Results were extracted 604 

for the instrumental variables and the genes encoding their proteins for the 64 proteins for 605 

which an instrumental variable was successfully identified in this study. Matching was based 606 

on Ensembl Gene ID, and variant chromosome, position, and alleles (GRCh37). 607 

 608 

Comparison to plasma pQTL using an orthogonal, aptamer-based, method 609 

The supplementary data files for Sun et al. [14] were downloaded on 04 Sep 2019. From 610 

Supplementary Table 4, pQTL identified were extracted for the 64 proteins for which an 611 

instrumental variable was successfully identified in this study.  Proteins were matched based 612 

on an exact UniProtID match. The LD (r2) between the lead locally-acting (as defined above) 613 

and ‘cis-acting’ (as defined by Sun et al.) SNP identified for each protein was calculated using 614 
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the European populations from the 1,000 Genomes project (as described above) using PLINK 615 

v1.90 [80,81]. 616 

 617 

Links to existing drug therapies 618 

Protein names were matched to ChEMBL IDs using the UniProtID mapping API 619 

(https://www.uniprot.org/help/api_idmapping; accessed 27 Oct 2019). ChEMBL [89] was 620 

searched programmatically using the ChEMBL web resource client in Python 3.6 621 

(https://github.com/chembl/chembl_webresource_client; accessed 27 Oct 2019). 622 
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Supplementary Materials 917 

S1 Table. List of pQTLs (linkage disequilibrium clumped). 918 

List of lead SNPs for each protein following linkage disequilibrium (LD) clumping, together 919 

with replication information. Biallelic variants within ±5Mb and r2 >0.2 to the lead variant 920 

(smallest p-value at the locus) were clumped together. European populations in 1,000 921 

Genomes [71,72] were used as the LD reference.  922 

Columns are: 'hgnc_symbol': HUGO gene naming consortium symbol of the exposure 923 

(protein); 'snpid': 'chr'_'pos'; 'rsid': rsID; 'chr': chromosome (GRCh37) of the SNP; 'pos': 924 

position (GRCh37) of the SNP; 'a1': effect allele; 'a0': other allele; 'n_pri': number of 925 

individuals in the primary cohort (CROATIA-Vis); 'freq1_pri': frequency of the effect allele in 926 

the primary cohort (CROATIA-Vis); 'beta1_pri': beta estimate of the effect allele in the 927 

primary cohort (CROATIA-Vis); 'se_pri': standard error of 'beta1_pri' in the primary cohort 928 

(CROATIA-Vis); 'p_pri': p-value of 'beta1_pri' and 'se_pri'; 'info_pri': SNPTEST (v2) info of the 929 

imputation in the primary cohort (CROATIA-Vis); 'r2_pri': coefficient of determination of the 930 

regression in the primary cohort (CROATIA-Vis); 'n_sec': as for the primary cohort 931 

(CROATIA-Vis) but in the secondary cohort (ORCADES); 'freq1_sec': as for the primary 932 

cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'beta1_sec': as for the 933 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'se_sec': as for the 934 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'p_sec': as for the 935 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'info_sec': as for the 936 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'r2_sec': as for the 937 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'uniprot_swissprot': 938 

UniProtID of the exposure (protein), see http://www.uniprot.org/; 'ensembl_gene_id': 939 

Ensembl gene ID (GRCh37; see http://grch37.ensembl.org/index.html) of the gene-of-origin 940 

of the protein; 'chromosome_name': chromosome (GRCh37) of the gene of the protein, as 941 

per Ensembl GRCh37; 'start_position': start position (GRCh37) of the gene of the protein, as 942 

per Ensembl GRCh37; 'end_position': end position (GRCh37) of the gene of the protein, as 943 

per Ensembl GRCh37; 'description': HUGO gene naming consortium description of the 944 
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exposure (protein); 'replicated_pqtl': is the lead SNP of the cluster (as identified in the 945 

primary cohort) replicated in the secondary cohort (Bonferroni correction for multiple 946 

testing. TRUE if it is; FALSE if not); 'within_gene_plus_flank_tol': is the SNP within the gene-947 

of-origin of the protein +/- 150kb (TRUE is it is; FALSE if not). 948 

 949 

S2 Table. Comparison of the lead-SNPs identified here and those identified 950 

using an orthogonal, aptamer-based assay. 951 

Aptamer-based assay results are those of Sun et al. [14]. 952 

Columns are ‘hgnc_symbol’: the HGNC symbol corresponding to the UniProtID; 953 

‘exposure’: the UniProtID of the protein; ‘rsid_olink’: the rsID of the lead-SNP from 954 

this study; ‘chr_olink’: the chromosome, GRCh37, of the lead-SNP from this study; 955 

‘pos_olink’: the position, GRCh37, of the lead-SNP from this study; ‘a1_olink’: allele 1 956 

of the lead-SNP from this study; ‘a0_olink’: allele 0 of the lead-SNP from this study; 957 

‘rsid_sun’: the rsID of the lead-SNP from Sun et al.; ‘chr_sun’: the chromosome, 958 

GRCh37, of the lead-SNP from Sun et al.; ‘pos_sun’: the position, GRCh37, of the lead-959 

SNP from Sun et al.; ‘a1_sun’: allele 1 of the lead-SNP from Sun et al.; ‘a0_sun’: allele 0 960 

of the lead-SNP from Sun et al.; ‘ld_r2’: the linkage disequilibrium (r2) of the two SNPs, 961 

as measured in the European individuals from 1,000 Genomes (Methods). 962 

 963 

S3 Table. Comparison of the lead-SNPs identified here and eQTL. 964 

eQTL data derived from ‘Whole blood’ from GTEx [19] (v7). Bonferroni correction 965 

0.05/54. 966 

Columns are ‘hgnc_symbol’: the HGNC symbol corresponding to the UniProtID; ‘rsid’: 967 

rsID of the SNP; ‘chr’: chromosome of the SNP, GRCh37; ‘pos’: position of the SNP, 968 

GRCh37; ‘a1’: the effect allele; ‘a0’: the other allele; ‘uniprot’: UniProtID of the protein; 969 

‘n_protein_pri’: number of individuals in the primary protein cohort (CROATIA-Vis); 970 

‘freq1_protein_pri’: frequency of the effect allele in the primary protein cohort 971 

(CROATIA-Vis); ‘beta1_protein_pri’: effect-size estimate in the primary protein 972 
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cohort (CROATIA-Vis); ‘se_protein_pri’: standard error of ‘beta1_protein_pri’; 973 

‘p_protein_pri’: p-value of ‘beta1_protein_pri’ and ‘se_protein_pri’; ‘info_protein_pri’: 974 

SNPTEST (v2) imputation info score in the primary protein cohort (CROATIA-Vis); 975 

‘n_protein_sec’: as for the primary cohort (CROATIA-Vis) but in the secondary cohort 976 

(ORCADES); ‘freq1_protein_sec’: as for the primary cohort (CROATIA-Vis) but in the 977 

secondary cohort (ORCADES); ‘beta1_protein_sec’: as for the primary cohort 978 

(CROATIA-Vis) but in the secondary cohort (ORCADES); ‘se_protein_sec’: as for the 979 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 980 

‘p_protein_sec’: as for the primary cohort (CROATIA-Vis) but in the secondary cohort 981 

(ORCADES); ‘info_protein_sec’: as for the primary cohort (CROATIA-Vis) but in the 982 

secondary cohort (ORCADES); ‘ensembl_gene_id’: Ensembl gene ID corresponding to 983 

the protein; ‘pval_nominal_gtex’: nominal p-value in GTEx (v7) whole blood; 984 

‘slope_gtex’: effect-size estimate in GTEx (v7) whole blood; ‘slope_se_gtex’: standard 985 

error of ‘slope_gtex’ in GTEx (v7) whole blood; ‘pval_nominal_threshold_gtex’: 986 

nominal p-value threshold for calling a variant-gene pair significant for the gene in 987 

GTEx (v7) whole blood; ‘min_pval_nominal_gtex’: smallest nominal p-value for the 988 

gene in GTEx (v7) whole blood; ‘pval_beta’: beta-approximated permutation p-value 989 

for the gene in GTEx (v7) whole blood. 990 

 991 

S4 Table. Additional studies identified using Phenoscanner. 992 

Table of the additional studies (and outcome traits) identified through Phenoscanner 993 

[21,22]. Note that ‘Coronary artery disease’ was included from van der Harst et al. [38] both 994 

with and without the inclusion of data from UK Biobank.  995 

Columns are ‘Outcome’: trait under study; ‘PMID’: PubMed ID of the study; ‘First author’: 996 

First author the publication; ‘Year’: year of publication of the study; ‘Paper title’: title of the 997 

study. 998 

 999 

S5 Table. Mendelian Randomization results from GeneAtlas. 1000 
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Table of the all significant (FDR <0.05) Mendelian Randomization (MR) results using data 1001 

from GeneAtlas [20]. pQTL for both cohorts are included, however, in order to avoid a 1002 

‘winner’s curse’, MR was conducted using data from the secondary protein cohort 1003 

(ORCADES). 1004 

Columns are 'hgnc_symbol': HUGO Gene Nomenclature Committee symbol of the exposure 1005 

protein; 'outcome_description': description of the UK biobank outcome from GeneAtlas; 1006 

'rsid': rsID; 'snpid': 'chr'_'pos'; 'chr': chromosome (GRCh37); 'pos': position (GRCh37); 'a1': 1007 

effect allele; 'a0': other allele; 'exposure': UniProtID of the protein; 'ensembl_gene_id': 1008 

Ensembl (GRCh37) gene ID of the exposure protein; 'n_exposure_pri': number of individuals 1009 

in the primary protein cohort (CROATIA-Vis); 'freq1_exposure_pri': frequency of the effect 1010 

allele in the primary protein cohort (CROATIA-Vis); 'beta1_exposure_pri': regression 1011 

coefficient (per additional effect allele) in the primary protein cohort (CROATIA-Vis); 1012 

'se_exposure_pri': standard error of ‘beta1_exposure_pri’; 'p_exposure_pri': p-value of 1013 

‘beta1_exposure_pri’ and ‘se_exposure_pri’; 'info_exposure_pri': SNPTEST (v2) imputation 1014 

info score in the primary protein cohort (CROATIA-Vis); 'n_exposure_sec': as for the primary 1015 

cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'freq1_exposure_sec': as for 1016 

the primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 1017 

'beta1_exposure_sec': as for the primary cohort (CROATIA-Vis) but in the secondary cohort 1018 

(ORCADES); 'se_exposure_sec': as for the primary cohort (CROATIA-Vis) but in the 1019 

secondary cohort (ORCADES); 'p_exposure_sec': as for the primary cohort (CROATIA-Vis) 1020 

but in the secondary cohort (ORCADES); 'info_exposure_sec': as for the primary cohort 1021 

(CROATIA-Vis) but in the secondary cohort (ORCADES); 'outcome': outcome code of the UK 1022 

biobank outcome from GeneAtlas; 'beta1_outcome': beta of the effect allele on the outcome 1023 

in GeneAtlas; 'se_outcome': standard error of ‘beta1_outcome’; 'p_outcome': p-value 1024 

corresponding to ‘beta1_outcome’ and ‘se_outcome’; 'info_outcome': imputation info score 1025 

in UK Biobank; 'freq1_outcome': frequency of the effect allele in UK Biobank; 1026 

'beta_mr_delta_sec': beta value using the delta MR method (using up to second order partial 1027 

derivatives; See the appendix of Lynch and Walsh for further information) using estimates 1028 

from the secondary cohort; 'se_mr_delta_sec': standard error of 'beta_mr_delta_sec' using 1029 
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the delta MR method (using up to first order partial derivatives; See the appendix of Lynch 1030 

and Walsh for further information) using estimates from the secondary cohort; 1031 

'p_mr_delta_sec': p-value corresponding to 'beta_mr_delta_sec' and 'se_mr_delta_sec'; 1032 

'fdr_sig_mr_delta_sec': significance of 'p_mr_delta_sec' at a False Discovery Rate (FDR) of 1033 

<5%. True / False. 1034 

 1035 

S6 Table. Mendelian Randomization results from studies identified using 1036 

Phenoscanner. 1037 

Table of all Mendelian Randomization results using data acquired through Phenoscanner 1038 

[21,22]. pQTL for both cohorts are included, however, in order to avoid a ‘winner’s curse’, 1039 

MR was conducted using data from the secondary protein cohort.  1040 

Columns are 'hgnc_symbol': HUGO Gene Nomenclature Committee symbol of the exposure 1041 

protein; 'trait': outcome trait description; 'snp': chr'chr':'pos'; 'rsid': rsID; 'chr': chromosome 1042 

(GRCh37); 'pos': position (GRCh37); 'a1': effect allele; 'a0': other allele; 'exposure': UniProtID 1043 

of the protein; 'n_exposure_pri': number of individuals in the primary protein cohort 1044 

(CROATIA-Vis); 'freq1_exposure_pri': frequency of the effect allele in the primary protein 1045 

cohort (CROATIA-Vis); 'beta1_exposure_pri': regression coefficient (per additional effect 1046 

allele) in the primary protein cohort (CROATIA-Vis); 'se_exposure_pri': standard error of 1047 

'beta1_exposure_pri'; 'p_exposure_pri': p-value of 'beta1_exposure_pri' and 1048 

'se_exposure_pri'; 'info_exposure_pri': SNPTEST (v2) imputation info score in the primary 1049 

protein cohort; 'n_exposure_sec': as for the primary cohort (CROATIA-Vis) but in the 1050 

secondary cohort (ORCADES); 'freq1_exposure_sec': as for the primary cohort (CROATIA-1051 

Vis) but in the secondary cohort (ORCADES); 'beta1_exposure_sec': as for the primary cohort 1052 

(CROATIA-Vis) but in the secondary cohort (ORCADES); 'se_exposure_sec': as for the 1053 

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 'p_exposure_sec': as 1054 

for the primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); 1055 

'info_exposure_sec': as for the primary cohort (CROATIA-Vis) but in the secondary cohort 1056 

(ORCADES); 'ensembl_gene_id': Ensembl (GRCh37) gene ID of the exposure protein; 'study': 1057 
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name of the consortium/lead author of the outcome study; 'pmid': PubMed ID of the outcome 1058 

study; 'ancestry': ancestry of the population within which the outcome was measured; 'year': 1059 

the year the outcome study was published; 'beta1_outcome': regression coefficient (per 1060 

additional effect allele) in the outcome study; 'se_outcome': standard error of 1061 

'beta1_outcome'; 'p_outcome': p-value of 'beta1_outcome' and 'se_outcome'; 'n_outcome': 1062 

number of individuals in the outcome study; 'n_cases_outcome': number of cases in the 1063 

outcome study; 'n_controls_outcome': number of controls in the outcome study; 1064 

'n_studies_meta_outcome': if a meta-analysis, number of studies included; 'units_outcome': 1065 

units of analysis in the outcome study (IVNT stands for inverse normal rank transformed 1066 

phenotype); 'dataset': Phenoscanner dataset ID; 'beta1_outcome_flipped': has the sign of 1067 

'beta1_outcome' been inverted from that provided by Phenoscanner due to calling of the 1068 

effect vs. non-effect allele? True / False; 'beta_mr_delta_sec': beta value using the delta MR 1069 

method (using up to second order partial derivatives; See the appendix of Lynch and Walsh 1070 

for further information) using estimates from the secondary cohort; 'se_mr_delta_sec': 1071 

standard error of ‘beta_mr_delta_sec’ using the delta MR method (using up to first order 1072 

partial derivatives; See the appendix of Lynch and Walsh for further information) using 1073 

estimates from the secondary cohort; 'p_mr_delta_sec': p-value corresponding to 1074 

'beta_mr_delta_sec' and 'se_mr_delta_sec'; 'fdr_sig_mr_delta_sec': significance of 1075 

'p_mr_delta_sec' at a False Discovery Rate (FDR) of <5% (True / False). 1076 

 1077 

S7 Table. HEIDI and eCAVIAR. 1078 

Table of the eCAVIAR [44] and HEIDI [23] results for all significant (FDR <0.05) 1079 

Mendelian Randomization (MR) results using data from GeneAtlas [20]. 1080 

Columns are ‘snpid’: chromosome_position (GRCh37); ‘exposure’: UniProtID of the protein; 1081 

'hgnc_symbol': HUGO Gene Nomenclature Committee symbol of the exposure protein; 1082 

‘outcome’: outcome code of the UK biobank outcome from GeneAtlas; ‘outcome_description’: 1083 

description of the UK biobank outcome from GeneAtlas; 'p_HEIDI': p-value of the HEIDI 1084 
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statistic; 'nsnp_HEIDI': the number of SNPs used in the calculation of the HEIDI statistic; 1085 

‘CLPP’: colocalization posterior probability (as per eCAVIAR). 1086 

 1087 

S8 Table. ChEMBL results. 1088 

Compounds targeting the mediators listed in S5 Table. Columns are ‘uniprot’: 1089 

UniProtID; ‘gene_symbol’: Gene Symbol; ‘target_chembl_id’: CHEMBL ID for this 1090 

protein; ‘compound_id’: CHEMBL compound ID; ‘max_phase’: CHEMBL-reported 1091 

maximum phase of drug development for this compound; ‘drug_synonyms’: drug 1092 

names; ‘indication_class’:  CHEMBL-reported indication for this compound. 1093 

 1094 

S9 Table. Key of Fig 2A. 1095 

Key for the abbreviations used in Fig 2A. 1096 

Columns are ‘Abbreviation’ and ‘Outcome Description’. 1097 

 1098 

S10 Table. Key of Fig 2B. 1099 

Key for the abbreviations used in Fig 2B. 1100 

Columns are ‘Abbreviation’ and ‘Outcome Description’. 1101 

 1102 


