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Abstract

Fluorescent cyclic peptides are excellent chemical scaffolds to build optical

agents for molecular imaging. In addition to their favorable physicochemical prop-

erties, they can be modified with multiple organic fluorophores and generate use-

ful probes for biological assays targeting specific proteins, namely receptors or

enzymes. In this article, we review recent advances in the synthetic approaches

for the preparation of fluorescent cyclic peptides as well as some of their applica-

tions in biological imaging, from in vitro live-cell imaging studies to in vivo charac-

terization of preclinical models.
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1 | INTRODUCTION

Peptides have been increasingly employed as chemical scaffolds to

build molecular imaging agents. Peptide structures can form highly

specific interactions with their respective biological targets, and there-

fore meet one of the main requirements in the design of imaging pro-

bes, that is, high specificity.[1] However, linear peptides exhibit some

limitations that can hinder their application in biological studies. Their

lability to proteolytic enzymes—particularly in diseased tissue where

proteases may be abundant—has prompted the development of alter-

native chemical structures that can retain the molecular recognition

properties of the peptides while displaying enhanced chemical stabil-

ity.[2,3] Some of these alternative designs include the incorporation of

unnatural amino acids, such as functionalised or D-amino acids,[4–8]

into the peptide sequence as well as the cyclisation of linear peptides.

Cyclic peptides are ubiquitously found in natural products, from com-

plex macrocycles to small cyclodipeptides. The latter have been

described as extremely compact and stable entities, which can form

noncovalent self-assemblies to yield highly rigid biomimetic materials

for diverse biotechnological and biomedical applications.[9] In this

review, we will focus on cyclic peptides as frameworks to generate

useful fluorescent probes for biological imaging studies.

Most peptides, including cyclic peptides, do not contain chemi-

cal groups that enable their detection by conventional techniques

used in the biology labs, such as fluorimetric assays, fluorescence

microscopy, or flow cytometry.[10] As a result, organic fluorophores

have been incorporated into the peptide sequences to produce

detectable contrast between the target cells and their surrounding

microenvironment.[11] Furthermore, fluorescent cyclic peptides can

be applied to many different biological experiments, from live-cell

imaging to in vivo detection of cancer cells. Herein we review the

advances in the synthetic approaches and applications of fluores-

cent cyclic peptides in biological imaging over the last 10 years. The

review article is structured into two main sections. In the first one,

we review different cyclopeptide topologies and synthetic chemical

approaches for their labeling with small-molecule fluorophores. In

the second one, we cover different examples of biological applica-

tions for fluorescent cyclic peptides, from in vitro studies focused

on receptor expression or enzyme activity, to in vivo experiments in

preclinical cancer models.

This article is dedicated to the memory of Prof. Nick Read for his contributions to the use of fluorescent peptides in biological imaging.
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2 | CHEMICAL SYNTHESIS OF
FLUORESCENT CYCLIC PEPTIDES

2.1 | Synthetic approaches for fluorescent peptide
labeling

Natural aromatic amino acids such as tryptophan, tyrosine and phe-

nylalanine exhibit intrinsic fluorescence in the ultraviolet range (λexc:

257-280 nm, λem: 282-350 nm)[12] and have been successfully

employed in the development of green fluorescent protein (GFP)

mutant variants or fusion tag structures for fluorescence protein label-

ing.[13,14] Nonetheless, their limited optical properties (e.g., short exci-

tation and emission wavelengths, low brightness and photostability)

have hampered their extensive use as biological dyes. Most com-

monly, the generation of fluorescent cyclic peptides for bioimaging

relies on the chemoselective incorporation of an external fluorophore

with suitable spectral properties into an appropriate position within a

bioactive peptide. Careful attention of such parameters during probe

F IGURE 1 Legend on next page.
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design is crucial to afford the desired bioimaging performance. At pre-

sent, significant advances on synthetic chemistry have given rise to a

diverse array of fluorophore options, many of them commercially

available (Figure 1A). Dyes based on fluorescein, rhodamine, cyanine,

and boron dipyrromethene (BODIPY) organic molecules are among

the most popular fluorescent labels to date aimed to decipher a pleth-

ora of functions in biological systems.[15–21] Despite currently avail-

able options, new fluorophores with longer emission wavelengths and

lower background fluorescence are in pressing need. Indeed, numer-

ous efforts have been made to progress in the development of new

near-infrared (NIR) fluorescent probes, particularly those with emis-

sion peaks appearing in the spectral range of the silent optical window

(650-900 nm),[22] due to their deep penetration capabilities which can

overcome photon attenuation in living tissue.[23] In addition to the tra-

ditionally explored squaraine and cyanine dyes, recent directions of

new NIR fluorophores have pointed out the extension of the aromatic

core of BODIPY or rhodamine scaffolds due to their excellent fluores-

cence quantum yields and photostability. Particularly, the hydrophilic-

ity of rhodamine owing to its cationic character is considered an

attractive feature for biological applications. Nonetheless, the explora-

tion of further generations of these dyes is still an attractive and

emerging topic of research.[24] The self-assembling of minimal cyclic

peptide structures has also been implemented for the preparation of

NIR nano-cluster chromophores with potential use in biological sys-

tems (Figure 1B).[25]

Over the past few decades, new approaches to improve the

signal-to-noise ratios have been described. Activatable fluorophores,

which are able to turn-on their fluorescence according to the charac-

teristics of their surrounding environment, have attracted the atten-

tion of different disciplines because of their improved capabilities for

imaging and wash-free features.[26–31] To achieve these fluorogenic

properties, different sensing mechanisms have been successfully

exploited, including aggregation-induced emission (AIE), photoinduced

electron transfer (PeT), fluorescence resonance energy transfer

(FRET), intramolecular charge transfer (ICT), and spirocyclisation. As

an example, Liu, Tang and coworkers reported a theranostic probe for

simultaneous drug delivery in cancer cells and in situ evaluation of its

therapeutic killing response (Figure 1C).[32] The probe was composed

of a platinum (IV) prodrug linked to a tetraphenylsilole (TPS) fluo-

rophore with AIE sensing capabilities, a caspase-3 specific peptidyl

apoptosis sensor and a cyclic peptide for targeting cancerous cells. On

this system, only after activation of caspase-3 enzymes, the TPS fluo-

rophore was cleaved from the apoptosis-sensing peptide sequence,

triggering the AIE effect of the fluorophore and, therefore, turning the

fluorescence on. Similarly, AIE-based phenomena has also been

applied on minimal cyclic peptides for the detection of phenolic

drugs.[33] Some PeT-dependent BODIPY fluorophore systems have

been found to be sensitive to the polarity environment, showing

increased fluorescence quenching in different microenvironments or

upon binding to various analytes.[34–39]

Depending on the anchoring functional groups, the incorporation

of the fluorescent moiety into the cyclic peptide is performed either

before or after the cyclisation step through different covalent linkages

such as amide,[40–42] thioamide,[43] and thioether[44] bonds, the former

being the most widely applied (Figure 1D).[45] Additionally, numerous

attempts have been made to explore alternative approaches.[46] When

the coupling of the fluorophore takes place prior the cyclisation step,

the amino or carboxylic acid terminal positions of the linear peptides

are the preferred reactive points. For instance, Tamamura et al.

reported a cyclic peptide inhibitor of the epidermal growth factor

receptor (EGFR) evolved from the disulfide bond ring closure between

two Cys residues and fluorescently labeled with fluorescein at the N-

terminus through an amide bond linkage.[47] Nonetheless, most com-

monly the peptide ring closure involves both the α-amino and acid ter-

minal functional groups. Therefore, the fluorophore is generally

coupled after the cyclisation step to nucleophilic groups placed on the

side chains of the peptide sequence, such as Cys (thiol), Ser (hydroxy),

and Lys (amino), being the latter the most popular choice among

F IGURE 1 Common fluorophores and strategies for fluorescent peptide labeling. A, Representative selection of fluorescent cores (black and
white) and reported fluorophores (colored) for the preparation of fluorescent cyclic peptides covering the blue to NIR fluorescent range. B, NIR
nano-cluster chromophores evolved from the peptide self-assembling of tryptophan-tryptophan cyclic dipeptides (cyclo-WW) and Zn(II).
Chemical Structure of cyclo-WW (top). Transmission electron microscopy image of the cyclo-WW + Zn(II) spherical nanospheres (middle) Scale
bar: 300 nm. Emission spectra of the nanospheres in DMSO in a range of different excitation wavelengths (bottom). C, Mechanism of action of
the multifunctional theranostic probe TPS-DEVD-Pt-cRGD for the in situ early evaluation of cisplatin drug effect in cancer cells by aggregation-
induce fluorescence emission (left). Photoluminescence (PL) spectra of TPS-CH2N3, apoptosis sensor TPS-DEVD and TPS-DEVD-Pt-cRGD in
DMSO/PIPES (v/v = 1/199) (right). Inset: corresponding pictures taken under irradiation of a UV lamp at 365 nm. D, Common amino acid side-
chain coupling reactions for the chemical incorporation of fluorophores (FL) into cyclic peptides. E, Application of pCAP in SPPS for the
preparation of the cell permeable c[(pCAP)FΦRRRRQ] peptide to detect intracellular tyrosine phosphatase (PTP) activity. Fixed-cell confocal
microscopy images of MCF-7 human breast cancer cells treated with the labeled peptide (5 μM, blue fluorescence) and the nuclear stain DRAQ5
(red fluorescence) with and without pre-treatment with 1 mM sodium pervanadate as a PTP inhibitor (top). Trp-BODIPY amino acids with green
and red fluorescent emission applied for the preparation of fluorescent cyclic peptides on SPPS. Representative example of c[RKKW(BODIPY)

FWG] peptide with green fluorescent emission upon selective binding with Aspergillus Fumigatus fungal cells. Time-lapse high-resolution imaging
of A. fumigatus upon incubation with a cell membrane counterstain (red) and the peptide (2 mM, green) for 0 and 10 minutes, respectively. Scale
bar, 2.5 mm. (bottom). All images in part B were reproduced with permission from reference 25, Springer Nature Limited [publisher of ref. 25], the
image in part C was reprinted (adapted) with permission from (Y. Yuan, R. T. K. Kwok, B. Z. Tang, B. Liu, J. Am. Chem. Soc. 2014, 136, 2546-2554),
copyright (2014) American Chemical Society and all images in part E were reprinted (adapted) with permission from (Z. Qian, T. Liu, Y. Y. Liu,
R. Briesewitz, A. M. Barrios, S. M. Jhiang, D. Pei. ACS Chem. Biol. 2013; 8, 423-431), copyright (2013) American Chemical Society and reference
54, Springer Nature Limited [publisher of reference 54]
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all.[48,49] If required, the fluorophore conjugation is also extended with

an additional linker spacer (e.g., PEG) to prevent steric hindrance

interference of the fluorophore with peptide target recognition or to

modulate chemical properties such as probe solubility. Lin, Yong and

coworkers reported the incorporation of a 800CW cyanine dye to a

peptide targeting tumor angiogenesis using a PEG spacer to improve

the long-term circulation of the probe.[50]

An emerging alternative strategy of fluorescence peptide label-

ing relies on the direct preparation of non-natural fluorescent

amino acid derivatives as building blocks for standard solid-phase

peptide synthesis (SPPS).[10] This method affords great flexibility as

it enables the selective incorporation of dyes anywhere in the pep-

tide sequence using conventional SPPS procedures[51] and without

the need of orthogonal side-chain protecting groups. On this basis,

Pei and et al. reported a cell permeable peptide for detecting intra-

cellular tyrosine phosphatase activities by embedding of a non-

fluorescent phosphocoumaryl aminopropionic acid (pCAP), which

behaves as a phosphotyrosine analogue, so that selective dephos-

phorylation by protein tyrosine phosphatases released the couma-

rin fluorescence (Figure 1E).[52] Recently, our group designed novel

fluorescent Trp-BODIPY amino acids with green and red fluores-

cent emission that exhibit a fluorogenic behavior upon selective

peptide target binding and also retain the lipophilic character of the

native tryptophan, avoiding the modification of polar groups (e.g.,

amines and thiols) that may me crucial for the biological properties

of the peptide (Figure 1E). These versatile amino acids have been

successfully applied for the preparation of fluorescent cyclic pep-

tides to image different processes associated with fungal infections

and cancer.[53–56]

2.2 | Different fluorescent cyclopeptide topologies

In comparison to their linear counterparts, cyclic peptides possess

reduced conformational freedom, which can result in improved biolog-

ical properties. Constrained structures exhibit more resistance to

chemical or enzymatic hydrolysis, better cell permeability and bind to

their molecular targets with higher affinity and selectivity, enhancing

their potential as therapeutics and biochemical research tools.[57,58]

The synthetic preparation of cyclic peptides (typically around 5-14-

mer) either mimicking natural structures or displaying novel arche-

types is achieved through diverse approaches including phage display

technology, split-intein circuit ligation, mRNA display, combinatorial

chemistry as well as de novo synthesis. Thanks to their oligomeric

nature based on sequential amino acid units conforming the amide

bond backbone skeleton, automated SPPS approaches can be easily

implemented. A representative example of a natural-mimicking

cyclopeptide used for bioimaging purposes is octreotide, a somato-

statin-like peptide which has been fluorescently labeled with fluores-

cein isothiocyanate for potential clinical usage in cancer diagnosis.[59]

In another example, GX1, a cyclic 9-mer peptide identified by phage

display technology, was labeled with a cyanine dye for fluorescence

imaging of tumor vasculature.[60] According to the positions involved,

peptide ring closure can be formed between the N-terminal and the

C-terminal end, between side chains to either terminus or in between

side chains through amide (homodetic) or other chemically stable

bonds (heterodetic), such as disulphide bridges or ether, lactone and

thioether linkages. Besides, other more complex cyclic topologies

have also been produced thanks to the development of new chemical

cross linker strategies in addition to traditional disulfide bond linkages

between two Cys residues. In an example, a BODIPY-based fluo-

rophore was conjugated to the C-terminal position of a stapled pep-

tide evolved from the direct linkage of phenyl and tryptophan

residues through a palladium-catalyzed CH activation reaction.[61]

Alternative approaches involve the generation of cyclopeptide

adducts whose fluorescence is encoded in the peptide sequence. An

illustrative example was shown by Perrin et al., who prepared bicyclic

fluorescent peptides via the condensation of an ortho-phthalaldehyde

unit with the amine and thiol reactive groups of a cyclic peptide pre-

cursor to yield a fluorescent isoindole staple.[62] Other examples

include the coordination of an iridium complex to the imidazole

groups of histidine side chains of an RGD-containing peptide for

simultaneous cyclisation and luminescence formation[63] and a double

“click” cyclisation reaction from two biscyclooctynylated units of a lin-

ear precursor to yield cyclopeptide adducts bearing a bisazide fluo-

rogenic dye.[64] Despite the simplicity of inherent fluorescent cyclic

peptides, they often show suboptimal characteristics (e.g., wave-

lengths, quantum yields) for widespread application in molecular

imaging.

Among all the cyclic peptide sequences described for the devel-

opment of molecular imaging agents, special mention should be

made to the Arg-Gly-Asp (RGD) tumor-homing motif for being one

of the most prominent structures (Figure 2). The RGD motif has a

long history of being used in the targeting of integrin transmem-

brane receptors, including α5β1, α8β1, αvβ1, αvβ3, αvβ5, αvβ6, αvβ8,

and αIIbβ3 subtypes. Among all these, αvβ3 integrin, with an impor-

tant role in the early phase of tumor forming and metastasis and

overexpressed in several types of cancer, is currently the most

widely studied.[65] RGD-containing cyclopeptides for αvβ3 integrin

are predominantly based on the -RGDfV-,[66] -RGDyK-,[67] and

-RGDfK-[42,68] sequences to afford improved target affinities,

although other motifs have also been explored. For instance, the

iRGD motif, whose cyclisation results from a disulfide bond

between two Cys side chains groups, shows more efficient tumor

penetration[69] and better cell internalization[70] for improved thera-

peutic performance. Chen et al. reported a NIR fluorescent iRGD-

based peptide with affinity for αvβ3 integrin receptor with higher

cellular staining for tumor-targeted imaging.[44] In another example,

a dual-cargo iRGD peptide bearing two fluorescent dyes on each

terminus was synthesized by Kim and coworkers to separately track

the endocytic internalization and delivery of different fragments in

cancer cells. In comparison to a control peptide having a non-iRGD

sequence, such probe displayed better tumor imaging contrast.[71]

More recently, efforts have been devoted to design RGD

cyclopeptides to selectively image other relatively unexplored

integrin receptors, such as αvβ8, with promising results.[72]
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The advancement on the development of new RGD probes have

also given rise to the generation of novel systems. Smith and

coworkers prepared a noncovalent probe by coupling a squaraine dye

within a tetralactam macrocycle embedding a c(RGDfK) cancer

targeting peptide.[73] This system exhibited remarkable high photo-

stability and low phototoxicity for the fluorescent NIR detection of

tumor cells in vivo. Further examples include a highly branched

nanoprobe architecture evolved from the conjugation of c(RGDfK)

peptide and a NIR cyanine dye onto polyamidoamine dendrimers for

the identification of early stage esophageal squamous cell carcinoma

and with potential theranostic applications.[74] Achilefu et al. reported

the coupling of a NIR carbocyanine fluorophore to two units of

c(RGDfK) peptide through their respective lysine side chains.[75] This

approach achieved remarkable improvement in αvβ3/αvβ5 integrin

binding affinity and tumor uptake compared to monovalent precur-

sors. Similarly, Liu et al. reported a fluorescent probe bearing two

cRGD moieties connected through different linkers to afford higher

stability and faster binding kinetics for such receptors.[76]

3 | BIOLOGICAL APPLICATIONS OF
FLUORESCENT CYCLIC PEPTIDE PROBES

As partially described in the section above, fluorescent cyclic peptides

have been described for multiple applications in biological studies,

from in vitro cell-based assays to in vivo imaging studies. Furthermore,

their molecular versatility has facilitated their use for targeting differ-

ent proteins, from cell-surface receptors to active enzymes or intracel-

lular proteins. In this section, we will review some of the reported

applications of fluorescent cyclic peptides for biological studies.

Many of the reports considering fluorescent cyclic peptides are

focused on targeting biological receptors that are over-expressed in

tumor tissues. As an example, Lu, Chen and coworkers developed

Cy5.5-LyP-1, a tumor lymphatic-specific peptide including the fluores-

cent dye Cy5.5 to visualize lymphangiogenesis in tumor-draining

lymph nodes.[77] This technology holds promise to detect high risk

lymph nodes before tumor metastasis and after micro-metastasis. Fur-

thermore, this peptide could accelerate the development of

F IGURE 2 RGD-containing fluorescent cyclic peptide structures. Representative selection of peptide sequences including RGD motif:
c(RGDyK), c(RGDfK), and c(RGDfV) peptides selective for αvβ3 integrin receptor, disulfide-based c(CRGDC) peptides named iRGD and divalent
fluorescent RGD conjugates for improved tumor-targeted imaging, and c[GLRGDLp(NMe)K] peptide for selective imaging of αvβ8 integrin
receptor. FL, fluorophore
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antilymphatic therapeutics and improve our understanding of the

interactions between cells in primary tumors and the tumor draining

lymph nodes.

Other studies with fluorescent cyclic peptides have been focused

on cell imaging by taking advantage of some differences (e.g., xenobi-

otic uptake) between diseased and healthy cells. The cyclic peptide

analogue c(WXEAAYQkFL) was coupled to a carboxyfluorescein label

through the amino group on the side chain of the D-lysine residue.[78]

This new cyclic peptide proved to be preferentially uptaken by breast

cancer cells and was used to detect them in human blood. Other con-

jugates using this peptide sequence include theranostic probes where

the peptide was linked to chemotherapeutic drugs, such as doxorubi-

cin, in order to increase their target efficacy.[79]

Fluorescent cyclic peptides can be also directed to specific com-

partments of the cell. Our group previously reported the fluorogenic

Trp-BODIPY amino acid to prepare an environmentally-sensitive ana-

logue of the antimicrobial cyclic peptide PAF26 with high affinity for

the membranes of fungal cells.[54] In this case, the use of a fluorogenic

label enabled to brightly stain the membranes of the fungal pathogen

Aspergillus fumigatus with high signal-to-noise ratios and without the

need for washing steps (Figure 1E). In another example, Trp-BODIPY

amino acid was employed for the preparation of a fluorescent cyclic

lactadherin mimic for the detection of apoptotic bodies[55] as well as a

fluorescent cyclopeptide for the quantification of drug-induced apo-

ptosis,[80] displaying strong binding in a Ca2+ independent-manner,

unlike the gold standard for apoptosis detection Annexin V.

Fluorophore-bearing oligomers of cyclic dipeptides have also been

implemented for the intracellular delivery of pDNA.[81] Other peptides

have been described to target intracellular organelles. On this basis,

the rapid uptake and subcellular localization of fluorescently-labeled

analogues of the cyclic depsipeptide kapakahine E was reported.[82]

Specific localisation within the Golgi apparatus was confirmed by

colocalization experiments with other commercially-available markers.

Nucleic acids are another example of widely targeted macromolecules

inside cells. Yavin and coworkers synthesized FITC-labeled peptide

nucleic acids with a cyclic structure and confirmed their uptake in

U87MG glioblastoma cells as well as their blocking function of miR-

155, a reported oncogenic miRNA.[83]

Cyclic fluorescent peptides have also been developed to target

liposomes. In the work reported by Dreher and coworkers, a novel

cyclic peptide including the NGR motif (cKNGRE) was conjugated to

the pH-sensitive Oregon Green dye.[84] These conjugates showed

good affinity to the CD13 marker found in cancer cells, and were fur-

ther used to favor the delivery of doxorubicin into tumors.

3.1 | Fluorescent cyclic peptides targeting cell
receptors

As described before, cyclic peptides including the RGD structure can

bind to integrin-type receptors with high affinity. Vahrmeijer et al.

designed a fluorescent cyclic peptide including a cyclic RGD motif and

label it with the NIR ZW800-1 dye for intraoperative imaging. The

NIR peptide was found to bind multiple integrin receptors and there-

fore could be used to detect different types of cancer.[85] In an

attempt to improve the cellular uptake performance, the group of

Smith described the preparation of novel fluorescent probes including

the squaraine fluorophore with deep red fluorescence emission.

Squaraine dyes were conjugated to a collection of cyclic RGD-

containing peptides with variable targeting properties in ovarian can-

cer cells and the divalent conjugate was found to exhibit the highest

cellular uptake.[86] In another example, Tang, Liu and coworkers built

up a cyclic RGD peptide with AIE characteristics and a caspase-

activatable motif so that increased fluorescence was observed in

regions with high caspase activity.[87,88]

Another important cell-surface receptor that has been targeted

with fluorescent cyclic peptides is the hepatocyte growth factor

receptor (HGFR), also called c-Met. This receptor is present on the

surface of tumor cells in several types of cancer, such as gastric carci-

noma,[89] ovarian cancer,[90] and colorectal polyps,[91] Among others.

Using a randomized platform to produce non-natural macrocyclic pep-

tides, Suga, Lee, and coworkers optimized a HGFR-binding macrocy-

clic peptide that was subsequently labeled with fluorescein. The

peptide showed high c-Met binding affinity in gastric carcinoma cells

and showed promising results for in vivo imaging.[89] Similarly, the

Cy5-labeled cyclic peptide GE137 was reported by Burggraaf et al. as

a molecular probe to detect HGFR in ovarian cancer cells (Figure 3A).

The peptide sequence included two disulphide bonds between four

cysteine residues, which were essential for high binding affinity to the

receptor. The GE137 peptide displayed specific binding to c-Met in

colorectal polyps, as well as good water solubility.[91]

Oxytocin receptors are another interesting group of proteins that

have been widely studied. Like other hormones, oxytocin has important

functions as chemical messengers and key roles in the reproductive sys-

tem. To further study these receptors, Karpenko et al. reported the con-

jugation of a stable version of oxytocin, named carbetocin, to the

environmentally-sensitive Nile Red dye using a PEG spacer and pro-

duced a turn-on fluorescent probe with improved capabilities for oxyto-

cin imaging.[92] The related vasopressin-type receptors have been also

subject of study because of their neuroendocrine effect as well as cogni-

tive and behavioral functions, among others. In this context, the group

of Manning reported the first peptide to detect the specific localisation

of V1b-type vasopressin receptors in brain. The fluorescent cyclic pep-

tide was based on the structure of vasopressin (d[Leu4, Lys8]VP)[93] and

included one molecule of AlexaFluor 647 as the fluorophore.

Recently, our group disclosed the preparation of a red fluorescent

analogue of a cyclopeptide with high affinity for keratin-1 (KRT1) cell

receptor, overexpressed in aggressive breast cancer tumors, that

enabled the simultaneous imaging of KRT1+ cancerous cells in combi-

nation with tumor-associated macrophage markers in tumor tissue

samples (Figure 3B).[56] Finally, other peptides have been reported to

target EGFR, which is central in multiple signaling pathways related to

cell proliferation and differentiation. EGFR are often over-expressed

in cancer cells and Tamamura et al. described a series of cyclic

decapeptide analogues including a bright fluorescein moiety as func-

tional inhibitors of the dimerization between the EGF monomers.[47]
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3.2 | Fluorescent cyclic peptides targeting
enzymes

Matrix metalloproteinases (MMPs) are enzymes with proteolytic activ-

ity against a broad range of extracellular matrix proteins. MMPs are

involved in the cleavage of cell surface receptors as well as in the

release of apoptotic ligands and activation of chemokines.[94] MMPs

are essential enzymes and play important roles in multiple biological

processes, such as proliferation, migration, adhesion, and differentia-

tion among others. Gelatinases are a subgroup of MMPs that have

F IGURE 3 Legend on next page.
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been described in tumor progression, angiogenesis, and metastasis.[95]

Li and coworkers described fluorescent cyclic peptides bearing the

HWGF motif and a fluorescent Cy5.5 reporter.[96] Notably, two differ-

ent cyclisation strategies were pursued, and cyclic peptides were

either formed by disulphide bonds or via intracellular amide linkages.

The two different conjugates were compared for binding to the target,

and the latter exhibited greater stability, providing an efficient probe

to image gelatinases. Similarly, Jeong et al. designed a Cy5.5-labeled

fluorescent cyclic peptide for imaging of the enzyme MMP-2, which

was detected in colonic lesions of an inflammation-induced colorectal

cancer model.[97] More recently, Xue et al. described a novel chemical

method to analyze the intracellular activity of AKT.[98] AKT plays a

crucial role in cell survival, being related to oncogenesis and tumor

maintenance. The authors employed a FRET strategy to couple a pair

of cyclic peptides targeting two different regions of the protein: (a)

the phosphorylated site of Ser474 and (b) a distal epitope of AKT

(Figure 3C). The resulting construct displayed a fluorescent signal con-

tingent upon AKT phosphorylation and was used to profile the intra-

cellular dynamics of AKT signaling.

3.3 | Fluorescent cyclic peptides targeting other
biomolecules

The complexes between fibrin and fibronectin are abundant in the

tumor microenvironment but they are rarely present in normal tissues.

This feature makes them valuable targets for tumor imaging. In this

context, Wang et al. described the cyclic peptide iCREKA for targeting

and imaging the tumor stroma.[99] FITC-labeled iCREKA peptides dis-

played binding to fibrin-fibronectin complexes and subsequent per-

meabilisation into glioma cells.

In a related context, the extra domain B of fibronectin (EDB-FN)

mediates cell adhesion and migration, and its expression is related to

multiple processes in cancer. To specifically target EDB-FN in prostate

cancer, Lu and coworkers designed a Cy5-labeled cyclic version of the

ZD2 peptide (sequence: CTVRTSADC).[100] This peptide showed good

capabilities for optical molecular imaging and potential applications

for the diagnosis and treatment of prostate cancer. Alternative

approaches for targeting proteins with NIR fluorescent peptides

include the cyclic albumin-binding domain peptide conjugated for lym-

phatic imaging[101] or the histone H1-binding peptide for imaging apo-

ptosis in vivo as a response to anticancer treatments.[102]

Actin is one of the most abundant proteins in eukaryotic cells and

is widely involved in cell division and cell signaling. On this basis, ana-

logues of the natural cyclic peptides jasplakinolide and chondramide

C, which behave as actin-stabilizing structures, have been rationally

designed and optimized. These peptides have been modified with a

green fluorescent BODIPY reporter and used for imaging static actin

in fixed permeabilized as well as nonpermeabilised cells.[103] This

study rendered nontoxic cyclic peptides as nontoxic and cell-

permeable probes to selectively image static, long-lived actin filaments

against dynamic F-actin and monomeric G-actin populations in live

cells, with negligible disruption of rapid actin dynamics. More recently,

Lukinavicius and coworkers have described rhodamine derivatives of

jasplakinolide which are efflux-insensitive and enabled G- and F-actin

structures in live cells.[104]

3.4 | In vivo imaging using fluorescent cyclic
peptides

A major feature of fluorescence imaging is its capability to visualize

biological systems at multiple levels, from microscopy images with

subcellular resolution to whole-body images where probes found in

different tissues within a living organism can be monitored simulta-

neously. In vivo imaging is advantageous in that it allows examination

of a biological question in the native microenvironment and under

physiological conditions. Many probes for in vivo imaging, particularly

fluorophores emitting in the NIR region of the spectra,[105–109] have

been described.

In the last 15 years, there has been a lot of interest to modulate

the optical properties of fluorescent scaffolds[110–113] (e.g., excita-

tion/emission, water solubility, fluorescence lifetime) to generate

probes with improved characteristics for in vivo imaging. In addition

to widely used commercial fluorophores, such as cyanines or rhoda-

mines, fluorophores with additional features have been developed.

Achilefu et al. reported a pH-sensitive construct composed of a pH-

activatable cyanine dye and cyclic RGD peptide for targeting and

F IGURE 3 Examples of applications of fluorescent cyclic peptide probes. A, GE137 fluorescent peptide with selective targeting against c-Met
receptor in ovarian cancer cells. ex vivo fluorescence microscopy images of tissue sections from normal colon and adenomatous polyp biopsies
taken after GE137 administration (red fluorescence) and overlap (shown in yellow) with immunohistochemical staining for c-Met (bottom left).
Simultaneous white and fluorescent colonoscopy images from patients, showing representative lesions with increased fluorescence (a-f, bottom
right). Polyps are indicated by the white arrows. B, Fluorogenic Trp-BODIPY (red) cyclopeptide targeting Keratin 1 (KRT1) protein for imaging of
aggressive carcinomas. ex vivo tissue imaging of aggressive carcinomas displaying multicolour staining of tumor-associated macrophages with
anti-Iba1 (green), KRT1+ cells with peptide (red) and DAPI nuclear stain (blue) (right). macrophage-cancer cell interactions are identified with

white arrows. Scale bar: 10 mm. C, Förster resonance energy transfer (FRET)-based phosphorylated AKT (pAKT) detection strategy for profiling
intracellular AKT protein kinase activity based on the dual coupling of two probes: a rhodamine-cy(GSQTH) peptide targeting the K386-S398
epitope (probe 1, blue) and a cyanine5-cy(YYTYT) peptide targeting the phosphorylated site of Ser474 of AKT (probe 2, red). The resulting
construct displayed the red fluorescent signal of probe 2 only upon AKT phosphorylation. All images in part A were reproduced with permission
from ref. [91], Springer Nature Limited [publisher of ref. 91], the image in part B was reproduced with permission from ref. [56], published by The
Royal Society of Chemistry, and all images in part C were reprinted (adapted) with permission from (S. Shao, Z. Li, H. Cheng, S. Wang, N. G.
Perkins, P. Sarkar, W. Wei, M. Xue. J Am Chem Soc. 2018; 140, 13586-13 589), copyright (2018) American Chemical Society
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imaging acidic tumor lysosomes in an orthotopic breast tumor mouse

model.[114] The groups of Vahrmeijer and Frangioni reported zwitter-

ionic NIR fluorophores which were incorporated into cRGD peptides

for tumor imaging (Figure 4A).[85,115] These peptides were compatible

with protocols used during surgery and showed potential for real-

time imaging of cancer cells with low background fluorescent signals.

In another approach, fluorescent magnetic nanoparticles were conju-

gated to the cyclic RGDyE peptide for hybrid magnetic resonance

and optical in vivo imaging of human breast tumors, showing no acute

toxicity.[116]

In addition to the use of sophisticated fluorophores, another

strategy to improve the in vivo imaging performance of fluorescent

cyclic peptides relies on the modification of the conjugated peptides,

such as structures with dual targeting capabilities, minimal in vivo tox-

icity and enhanced biodistribution. For instance, Lou, Xia and

coworkers designed a fluorescent construct composed of cNGR

and cRGD peptides for dual targeting of CD13 aminopeptidase and

integrin receptors, respectively.[117] In another example, Boturyn et al.

designed a fluorescent probe containing the sequences cRGD and

ATWLPPR, a peptide that behaves as a specific ligand for the

F IGURE 4 Examples of in vivo imaging applications with fluorescent cyclic peptide probes. A, Near-infrared fluorescent c(RGDyK)-based
probes I to III for tumor imaging. Probe I displaying a zwitterionic structure maintains the net charge of the original c(RGDyK) molecule at
physiological pH, avoiding disruption of local protein folding, nonspecific binding and lowering the background fluorescence. Real-time

intraoperative liver (left) and lung (right) tumor detection using NIR-fluorescent probes I to III (10 nmol each) which were injected intravenously
into each mouse 4 hours before imaging. Shown are representative (n = 5 mice per group) NIR fluorescence images and a pseudocoloured merge
with color images. Open arrows indicate tumors. B, Activatable NIR-AZA fluorescent probes sensitive to intracellular acidic environments bearing
c(RGDfK) (I) or c(CRGDKGPDC) (II) cyclopeptides. (right). In vivo fluorescence imaging of probes I (13.2 nmol, upper panel) and II (10.5 nmol, lower
panel) in MDA-MB 231 human breast tumor models at different time points (left). First image of each panel shows selected tumor region of
interest (ROI) (solid circle) and three background ROIs (dashed circles). Fluorescence remained silent within the vasculature until 60 minutes
post injection, when probes began to accumulate at the tumor region. Color scale bar shows epifluorescence quantified in radiant efficiency units
[(p/sec/cm2/sr)/(μW/cm2)], min = 2�108, max = 6�108. FL, fluorophore. All images in part A were reproduced with permission from ref. [115],
Springer Nature Limited [publisher of ref. 115] and all images in part B were reproduced with permission from ref. [123], published by The Royal
Society of Chemistry
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neuropilin-1 protein receptor which is over-expressed in the extracel-

lular plasma membrane of tumor cells.[118] Notably, the authored com-

pared the biological effects of injecting the dual fluorescent construct

as well as the separate injection of the two peptide sequences and

found a faster and more specific accumulation in tumors of the pep-

tide conjugate, which was attributed to the stabilization of NRP1 at

the cell membrane surface. Larger constructs have been also devel-

oped, such as poly(amidoamine) dendrimers, which were modified by

incorporation of the NIR dye cypate and the iRGD peptide and used

to visualize accumulation in tumors as a potential strategy to test

delivery of anticancer drugs using dendrimers.[70]

Although the most common cyclic peptides for in vivo imaging of

tumors are based on the RGD motif due to its high binding affinity for

integrin receptors, some other cyclic peptides have shown interesting

applications. For example, Ge and coworkers reported novel cyclic

peptides bearing the RKD motif as proapoptotic ligands[119] of the

glucose-regulated protein 78 kDa (GRP78) which is over-expressed

on the cell surface of several types of cancer.[120] Similarly, and con-

sidering the high levels of endothelial growth factor receptors (EGFR)

in colorectal cancer cells, Jois et al. reported a highly stable cyclic

derivative based on the EGFR-specific peptide ligand LARLLT.[121] In

another example, a cyclic peptide including the RPMC motif and a

fluorescein reporter was described to specifically detect colon cancer

cells by targeting integrin-type receptors.[122] This peptide was

applied for real-time endoscopic tumor detection in an orthotopic

colon mouse model, even when tumors were submucosal and with

prolonged fluorescence signals after systemic injection.

Finally, one of the main translational applications of in vivo fluo-

rescence imaging is its potential use for intraoperative imaging given

the emerging interest in fluorescence-guided surgery to improve the

identification of tumor margins and optimize the outcomes of tumor

resection. In this context, O'Shea et al. recently reported a chemical

approach to enhance the signal-to-noise ratios of fluorescent cyclic

peptides by conjugating them to NIR activatable fluorophores that

preferentially emit in acidic microenvironments (Figure 4B).[123] The

authors prepared activatable constructs containing the acid-sensitive

NIR-AZA fluorophore and iRGD or cRGD peptides. The peptides were

tested in vivo in mouse models with subcutaneous tumors and showed

higher signal-to-noise ratios to the cyclic peptides that were conju-

gated to always-on NIR fluorophores.

4 | CONCLUSIONS

The notable physicochemical and biological properties of cyclic pep-

tides make them interesting scaffolds for the preparation of molecular

imaging agents. Multiple approaches for the synthesis, characteriza-

tion and validation of fluorescent cyclic peptides in biological systems

have been reported and reviewed in this article. These strategies

include the optimization of peptide constructs with unique biochemi-

cal features (e.g., improved permeability and proteolytic stability, sta-

pled peptides, high binding affinity to specific receptors or enzymes)

as well as the introduction of fluorescent labels with suitable optical

properties (e.g., from fluorogenic amino acids that turn-on upon target

recognition to bespoke NIR dyes). With a rapidly growing molecular

toolbox and well-established synthetic methodologies in place, the

applications for fluorescent cyclic peptides in biological studies will

steadily increase over the coming years. Their proven compatibility

with a broad range of imaging modalities (i.e., high-throughput

screens, multiphoton microscopy, and intravital imaging) will enable

their use in drug discovery programs for cell reprogramming[124,125] as

well as in mechanistic studies to characterize cells in tissue microenvi-

ronments[126] and in clinical applications,[127] where novel and highly

specific probes are required. We anticipate that fluorescent cyclic

peptides will also facilitate the construction of dual probes with multi-

modal character, that is, compatible with different imaging modalities

and also theranostic probes able to deliver imaging reporters as well

as therapeutic loads. Their integration into current strategies for the

preparation of activatable fluorescent prodrugs[106,128] or smart

molecular imaging agents[129] will likely produce the next generation

of smart probes able to address complex biological questions and

to assist in the development of new therapies for personalized

medicine.
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