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Abstract
Aim: The aim was to test whether species distribution models (SDMs) can reproduce 
major macroecological patterns in a species-rich, tropical region and provide recom-
mendations for using SDMs in areas with sparse biotic inventory data.
Location: North-east Brazil, including Minas Gerais.
Time period: Present.
Major taxa studied: Flowering plants.
Methods: Species composition estimates derived from stacked SDMs (s-SDMs) were 
compared with data from 1,506 inventories of 933 woody plant species from north-
east Brazil. Both datasets were used in hierarchical clustering analyses to delimit flo-
ristic units that correspond to biomes. The ability of s-SDMs to predict the identity, 
functional composition and floristic composition of biomes was compared across 
geographical and environmental space.
Results: The s-SDMs and inventory data both resolved four major biomes that largely 
corresponded in terms of their distribution, floristics and function. The s-SDMs 
proved excellent at identifying broad-scale biomes and their function, but misas-
signed many individual sites in complex savanna–forest mosaics.
Main conclusions: Our results show that s-SDMs have a unique role to play in de-
scribing macroecological patterns in areas lacking inventory data and for poorly 
known taxa. s-SDMs accurately predict floristic and functional macroecological pat-
terns but struggle in areas where non-climatic factors, such as fire or soil, play key 
roles in governing distributions.
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1  | INTRODUC TION

Macroecology is the study of large-scale patterns of biological 
diversity across space and time and the underlying community 
assembly processes that determine these patterns. The descrip-
tion of macroecological patterns is of paramount importance in 
addressing the global, societal need for planet-wide ecosystem 
models, which have the potential to transform our understand-
ing of the biosphere (Purves et al., 2013; Socolar, Gilroy, Kunin, & 
Edwards, 2016). As a science, macroecology relies upon accurate 
and comprehensive data of species distributions through time and 
space. Distribution data for mammals, birds and amphibians are 
becoming increasingly available (Castro-Insua, Gomez-Rodrıguez, 
& Baselga, 2016; McKnight et al., 2007; Melo, Rangel, & Diniz-
Filho, 2009), but distribution data for most lineages in the tree of 
life are still poor (Scheffers, Joppa, Pimm, & Laurance, 2012). This 
is known as the Wallacean shortfall.

A suite of methods has been developed to extrapolate our lim-
ited knowledge of species distributions to complete mapping of bio-
diversity patterns. These methods fall into two categories: stacked 
species distribution models (s-SDMs) and macroecological models 
(MEMs). Macroecological models relate emergent ecosystem prop-
erties, such as species richness or functional diversity, to environ-
mental variables statistically (Gould, 2000). A significant limitation 
of macroecological models is, however, that they cannot predict 
species identity; hence, they are used primarily for exploring mac-
roecological phenomena relying on emergent ecosystem properties, 
such as species richness. s-SDMs, on the contrary, permit the explo-
ration of diversity patterns whose investigation relies upon species 
identity.

If s-SDMs are to be used in macroecological studies with con-
fidence, their capacity to predict patterns should be evaluated 
critically to gain a better understanding of their strengths and 
weaknesses. Testing s-SDMs against known macroecological pat-
terns has focused primarily upon reproducing species richness 
patterns. s-SDMs typically over-predict species richness com-
pared with both MEMs (Dubuis et al., 2011) and independent 
data (Cooper & Soberón, 2017; Pineda & Lobo, 2009; Pottier 
et al., 2013), although this pattern is not universal (D’Amen, 
Pradervand, & Guisan, 2015). The general overestimation of spe-
cies richness in s-SDMs has been attributed to individual species 
distribution models (SDMs) being unable to account for the full 
spectrum of community assembly processes that limit species 
distributions, including biotic interactions, dispersal limitation 
and ecological carrying capacity (Dubuis et al., 2011; Guisan 
& Rahbek, 2011; Matteo, Felicísimo, Pottier, Guisan, & Muñoz, 
2012), and methodological issues, such as biases in thresholding 
(Calabrese, Certain, Kraan, & Dormann, 2013).

Stacked SDMs have been used to study macroecological pat-
terns, including the investigation of abundance patterns (Gomes 
et al., 2018), biogeographical regions (Amaral, Munhoz, Walter, 
Aguirre-Gutiérrez, & Raes, 2017; Hazzi, Moreno, Ortiz-Movliav, 
& Palacio, 2018; Zhang, Slik, & Ma, 2016), variation in latitudinal 

range size (Garcia-Rosello et al., 2014) and distributional shifts 
under climate change scenarios (e.g., VanDerWal et al., 2013; 
Warren et al., 2013). Only a few studies have tested the accuracy 
of s-SDMs in reproducing these patterns against independent 
data. The majority of comparisons have investigated the relative 
prevalence of commission and omission errors at the individual 
pixel level (e.g., Cooper & Soberón, 2017; Feria & Peterson, 2002; 
Pineda & Lobo, 2009). Pottier et al. (2013) and D’Amen, Rahbek, 
Zimmerman, and Guisan (2017) expanded upon this to investigate 
the distribution of commission and omission errors across geo-
graphical and environmental space. However, it is unclear whether 
omission and commission errors have an effect on downstream 
macroecological analyses or whether the inclusion of hundreds of 
SDMs provides a strong enough signal to override errors in some 
individual models.

More conventional species composition data, for example, in the 
form of plant species inventories, can be used to delimit biomes, at 
least in contiguous geographical areas without historical biogeo-
graphical barriers that would cause divergent species composition 
(Mucina, 2019). An advantage of these data relative to s-SDM data 
is that they are not the output from a model but represent ground 
truth data. It is possible to fit models to biome classifications ob-
tained through inventory data using environmental data and proj-
ect these models into areas lacking inventory data (e.g., through the 
randomForest approach; Breiman, 2001), but this requires a training 
dataset. This approach can also be used to assess whether environ-
mental data alone can be used to delimit biomes. Inventory data are 
limited to areas where surveys have taken place and, typically, to 
woody taxa. Although woody taxa dominate biomass and can be the 
main component of biome structure, they represent <50% of spe-
cies richness in all biomes, and their distribution patterns are not 
representative of non-woody taxa (Droissart et al., 2018).

Here, we test the utility of s-SDMs trained with herbarium spec-
imen data for reproducing macroecological patterns relying upon 
predictions of species’ distributions, focusing on north-east Brazil 
(NE Brazil). This represents an ideal test case because of the high 
heterogeneity of the area and the spatial interdigitation of biomes 
(Silva de Miranda et al., 2018). If the approach can work here, we 
predict that it will work even better in less biologically complex re-
gions. We test s-SDM performance through comparison with analy-
ses using 1,506 inventories of woody plants. We ask:

1. Can s-SDMs be used to delimit biomes?
2. Are these biomes the same as those identified using inventory 

data?
3. Are biomes delimited by s-SDMs more accurate than those delim-

ited by environmental data alone?
4. Are biomes delimited by s-SDMs floristically and functionally 

similar to biomes delimited by inventory data?

Finally, we present a biome map for NE Brazil representing the 
distributions of 6,134 angiosperm species of diverse growth form to 
show the potential of s-SDMs in biome delimitation.
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2  | METHODS

A full methodological pipeline, showing all input data, analytical 
steps and results, is shown in Figure 1.

2.1 | Study area

The study area is the political NE of Brazil and Minas Gerais 
(>2.1 million km2, referred to here as NE Brazil; Figure 2) and 

F I G U R E  1   Analytical pipeline used in the study. Input data are shown in coloured boxes: red = inventory data; green = herbarium data; 
blue = environmental data; and yellow = attribute data. Analytical steps are shown in grey boxes. Arrows between boxes indicate the 
passage of data and are coloured according to the primary source of that data. Results are shown in coloured boxes with italics (headings 
correspond to those used in the main text). The number of species, sites or layers used in analyses is indicated by arrows where appropriate. 
Figures 2–6 are provided to aid orientation through the manuscript
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was chosen because it encompasses a minimum of three or 
four major biomes that occur across large climatic gradients. 
The lowland biomes in NE Brazil include dry forest (or season-
ally dry tropical forest; SDTF), savanna, semi-deciduous forest 
and humid forest (Queiroz, Cardoso, Fernandes, & Moro, 2017; 
Silva de Miranda et al., 2018). Semi-deciduous forest is interme-
diate in physiognomy between dry and evergreen humid forest 
(Dexter et al., 2018), while being floristically closer to humid for-
est (Bueno et al., 2018; Silva de Miranda et al., 2018). We retain it 
as a distinct unit, but it could be combined with either dry forest 
(sensu Pennington, Prado, & Pendry, 2000) or humid forest (sensu 
Oliveira-Filho & Fontes, 2000) should greater biome simplicity 
be desired. Unlike the geographically simple representation of 
these biomes in the current biogeopolitical map by the Brazilian 
Institute of Geography and Statistics (IBGE, 2012; Figure 2a), 
these biomes occur in a complex mosaic across the study region, 
and their distributions are not yet fully understood at fine spatial 
scales (Queiroz et al., 2017). This is largely because distinguish-
ing between dry biomes (SDTF and savanna) in remotely sensed 
land-use maps is challenging because of their superficially simi-
lar physiognomy as seen by satellite (mapbiomas.org; Beuchle 
et al., 2015) and because non-climatic factors, such as fire and 
small-scale edaphic variation, may control their distribution 
(Dexter et al., 2018).

2.2 | Data collection

2.2.1 | Inventory data

Inventory data were obtained from the NeoTropTree (NTT) data-
base (Oliveira-Filho, 2017), which includes 1,506 sites in NE Brazil 
(Figure 2a). NTT data contain presence-only records for trees (de-
fined as freestanding woody plants potentially reaching > 3 m in 
height), typically based on published ecological inventory or floristic 
survey data extracted from the literature. NTT data are not system-
atically collected and do not represent exhaustive surveys, and some 
sites include as few as eight species. Species records at each NTT 
site have been supplemented with herbarium records within a 5 km 
radius of the original inventories (Oliveira-Filho, 2017), and it is not 
possible to separate these methods. NTT data represent inventories 
of a single type of vegetation per site, meaning that species and her-
barium records found in patches other than the main physiognomy 
within each site have been excluded (e.g., forest patches within 
savanna sites) and were used to create a new site that overlaps in 
geographical space. The latest version of Reflora 2020 (http://flora 
dobra sil.jbrj.gov.br/reflo ra/lista Brasi l/) was used to harmonize the 
taxonomy with the herbarium data (see Section 2.2.2). About 173 
species were excluded from the analysis, most because they are 
not recorded in the study area according to Reflora 2020 or are not 

F I G U R E  2   The study area of north-east Brazil, including the state of Minas Gerais. (a) NeoTropTree (NTT) sites, showing 
phytogeographical domains as defined by IBGE (2012). (b) Number of species recorded from herbarium data per 0.05° grid cell after 
data cleaning (log10 scale), showing state boundaries on the background (AL = Alagoas; BA = Bahia; CE = Ceará; MA = Maranhão; MG 
= Minas Gerais; PB = Paraíba; PE = Pernambuco; PI = Piauí; RN = Rio Grande do Norte; SE = Sergipe)

http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/
http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/
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angiosperms (Supporting Information Appendix S1). The final inven-
tory dataset included 3,790 angiosperm tree species.

The NTT database contains metadata on vegetation physiog-
nomy and other attributes (e.g., phenology) that can aid in classifi-
cation of sites to biome. For example, it distinguishes savanna from 
forest sites, whereas dry forests, semi-deciduous forests and humid 
forests can be distinguished based on their level of deciduousness. 
However, these metadata are gleaned from the original sources for 
the inventory data, and these original sources can be inconsistent 
in their application of vegetation attribute terminology. Meanwhile, 
the tree species composition data themselves can be used to classify 
sites into biomes, which allows for a repeatable, data-driven means 
of classifying all sites (Silva de Miranda et al., 2018). In practice, these 
floristically delimited biomes show a strong correspondence to site 

metadata related to the form and function of vegetation (Dexter 
et al., 2018). For these reasons, we use floristically delimited biomes 
for the NTT sites as our baseline for the comparative analyses (see 
below, Section 2.4).

2.2.2 | Species distribution data

Herbarium data were used as the input for our SDMs. All Brazilian 
flowering plant occurrence data with original coordinates (i.e., no mu-
nicipality centroids) and no suspected coordinate issues were down-
loaded from CRIA Species Link (http://splink.cria.org.br/, October 
2017) and the Reflora specimen database (http://flora dobra sil.jbrj.
gov.br/reflo ra/herba rioVi rtual/, October 2017). The latest version 

F I G U R E  3   Biome classification from inventory data and stacked species distribution models (s-SDMs) across 1,506 NeoTropTree (NTT) 
sites. (a) Major clusters from the cluster analysis based upon inventory checklists. (b) Major clusters from the cluster analysis based upon 
s-SDM analysis. (c) Map of major clusters based on checklists. (d) Map of major clusters based on s-SDM analysis. (e) Comparison of checklist 
and s-SDM results, showing sites that are classified under the same and different biomes in the two analyses in blue and red, respectively. 
Colours in panels a–d are as follows: green = humid forest; red = dry forest; yellow = savanna; and blue = semi-deciduous forest

http://splink.cria.org.br/
http://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/
http://floradobrasil.jbrj.gov.br/reflora/herbarioVirtual/
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of Reflora 2020 was used to harmonize the taxonomy with the in-
ventory data. Data were cleaned in six stages designed to remove 
records with georeferencing or identification errors (Supporting 
Information Appendix S2). Environmental bias in occurrence data 
was addressed through scale correction (also known as spatial fil-
tering) by retaining only a single occurrence record within a 10 km 
radius for each species, following Kramer-Schadt et al. (2013). Note 
that although some species have populations outside of Brazil, we 
chose not to include these records because (a) species distribution 
data of the quality and quantity available for Brazil typically do not 
exist for other Neotropical countries, and (b) there are substantial 
difficulties in matching taxonomic backbones across these datasets. 
Species with fewer than five records were excluded, and the dataset 
included 296,439 unique records for 9,134 species.

2.3 | Species distribution modelling

Two sets of SDMs were run using the same settings but based upon 
different species distribution data. All input data for species with 
five or more records were used in the all-species analysis (296,439 

records for 9,134 species). The comparative s-SDM analysis was 
designed to be independent of the comparative inventory analysis; 
therefore, we removed all records that might have been included in 
the NeoTropTree dataset (i.e., those within 5 km of inventory site 
centroids). Species with fewer than five records were excluded, and 
the input data for the comparative s-SDM analysis included 83,509 
unique records for 3,934 species. In both analyses, data from across 
the whole of Brazil were used (i.e., including data from outside of the 
study area) to minimize niche truncation, which is caused by model-
ling only a subset of a species range (Austin, 2007). The majority 
(52%) of species in our analyses are endemic to Brazil; therefore, the 
entirety of their ranges was modelled.

Climatic and edaphic predictors were used at a 0.05° resolu-
tion (c. 5.5 km2; Supporting Information Appendix S3). Climate pre-
dictors were derived from remotely sensed temperature (MODIS; 
Wan, 2014; Wan & Dozier, 1996), rainfall (CHIRPS; Funk et al., 2014) 
and cloud cover (MODCF; Wilson & Jetz, 2016) data calibrated with 
ground weather station readings. These climatic data layers outper-
form those extrapolated from weather stations in modelling plant 
species distributions (Deblauwe et al., 2016). Edaphic variables from 
the SoilGrids 250 m database (https://soilg rids.org, February 2017) 
were used to incorporate edaphic factors expected to be important 
in controlling species distributions in the study area and which have 
been found to increase SDM performance in analyses of Neotropical 
lowland taxa (Figueiredo et al., 2017; Moulatlet et al., 2017).

Climatic (35) and edaphic (55) predictor variables were converted 
separately into principal components analysis (PCA) axes to reduce 
the number of predictor variables to four and five, respectively, 
which in each case explained > 80% of the variation (Supporting 
Information Appendix S4). This process maximized the inclusion of 
potentially explanatory data while reducing the number of variables, 
therefore avoiding issues with collinearity (Dormann et al., 2013) 
and model overfitting (Peterson, Papeș, & Eaton, 2007).

The SDMs were run in MaxEnt v.3.3.3 using the R package 
“dismo” (Hijmans, Phillips, Leathwick, & Elith, 2017). We used the 
MaxEnt default settings, with all feature classes allowed, and with 
5-fold cross-validation. Background data were sampled across ter-
restrial NE Brazil plus circles of 250 km around each species’ occur-
rence points in order to create a biologically realistic model extent, 
to avoid predicting into areas too far beyond known occurrences and 
to avoid inflation of model performance metrics through the incor-
poration of a large number of highly unsuitable background points 
(Anderson & Raza, 2010). Controlling for bias in sampling effort has 
been shown to increase the accuracy of SDMs (Stolar & Neilsen, 
2015); hence, SDMs were trained with 10,000 background points 
sampled using an Epanechnikov kernel, following Wiegand and 
Moloney (2013), and calculated from all angiosperm data for Brazil.

Model performance was evaluated using the continuous Boyce 
index (CBI; Hirzel, Le Lay, Helfer, Randin, & Guisan, 2006), a pres-
ence-only evaluation index based upon the Boyce index (Boyce, 
Vernier, Nielsen, & Schmiegelow, 2002), calculated with code avail-
able at https://rdrr.io/githu b/adaml ilith/ enmSd m/man/contB oyce.
html. Prediction rasters are split into 10 moving window classes, and 

F I G U R E  4   Consistency of hierarchical clustering analysis results 
from inventory and stacked species distribution models (s-SDMs) 
across 1,483 NeoTropTree (NTT) sites. Four major clusters were 
recovered in both analyses, corresponding to humid forest (green), 
dry forest (red), savanna (yellow) and semi-deciduous forest (blue). 
The size of the grey circle around each biome corresponds to 
the proportion of sites miscategorized in the s-SDM analysis per 
biome. The total number of sites is shown within each biome circle, 
with the number of miscategorized sites in the s-SDM analysis 
shown in parentheses. Arrows indicate where these sites were 
miscategorized in the s-SDM analysis. For example, of the 169 
miscategorized dry forest sites, the majority (135) were mislabelled 
as savanna in the s-SDM analysis

https://soilgrids.org
https://rdrr.io/github/adamlilith/enmSdm/man/contBoyce.html
https://rdrr.io/github/adamlilith/enmSdm/man/contBoyce.html
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F I G U R E  5   (a–d) Floristic and functional similarity of biomes delimited by analyses of stacked species distribution model (s-SDM) data 
compared with biomes delimited using inventory data. Floristic similarity was measured using Simpson's beta diversity (β-sim) and functional 
similarity using the Euclidean distance (unitless). (a) Savanna. (b) Humid forest. (c) Semi-deciduous forest. (d) Dry forest. (e,f) Position of 
assemblages in functional principal components analysis (PCA) space. (e) Inventory data assemblages. (f) s-SDM assemblages. Colours 
correspond to the following biomes: yellow = savanna; green = humid forest; blue = semi-deciduous forest; and red = dry forests. In each 
panel, black represents the biome being compared
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the CBI is the correlation of the ratio of predicted to expected pres-
ence evaluation points in each class. The CBI is resistant to stochastic 
variation at low numbers of presence points (Hirzel et al., 2006). The 
CBI was calculated for each of the five model replicates, and species 
with a mean CBI < 0.25 were discounted from further analyses. This 

is a relatively conservative criterion, because models with a CBI > 0 
perform better than random.

Robust SDMs with CBIs ≥ 0.25 were produced for 6,834 species 
for the models produced for the all-species analysis (75%). A slightly 
lower percentage of the SDMs produced for the comparative s-SDM 

F I G U R E  6   Biome classification across 
north-east Brazil based upon hierarchical 
clustering analyses of 6,134 species 
(including trees and other life-forms) at 
all raster cells in the study area. (a) Major 
clusters. (b) Map of major clusters
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analysis were deemed acceptable, totalling 2,867 species (73%). 
SDMs were converted from probability distributions to binary maps 
with a 10 percentile training presence logistic threshold, which was 
chosen because it is the most strict of the commonly used threshold 
values. A posteriori accessible area limitation was used to exclude 
areas likely to represent commission areas (Supporting Information 
Appendix S5). Predicted species lists were estimated for every ras-
ter cell in NE Brazil for the all-species analysis. For the comparative 
s-SDM analysis, species lists were estimated for the 1,506 NTT sites.

2.4 | Biome delimitation

Our approach relies upon the assumption that floristic patterns are a 
good proxy for functional patterns, because we lack sufficient func-
tional data at the subcontinental scale for use in biome delimitation. 
Three biome delimitation analyses were run using the same methods 
but based upon different species lists. For the comparative analyses, 
we used lists of the same 933 species at the 1,506 inventory sites. 
The 933 species were those for which we could produce acceptable 
SDMs and were found in the inventory data. Lists used in the com-
parative inventory analyses were based upon the presence of these 
species in the inventory data; lists used in the comparative s-SDM 
analysis were based upon their predicted presence in thresholded s-
SDMs. For the all-species analysis, we used predicted presence–ab-
sence lists for 6,834 species at each raster cell in NE Brazil estimated 
from thresholded s-SDMs. Owing to computational limitations, ras-
ter cells were aggregated to a resolution of 0.25°, and species were 
scored as present or absent in each cell based upon their predicted 
presence in any of the subcells at the original 0.05° resolution.

In each biome delimitation analysis, hierarchical cluster analysis 
based on β-diversity (Simpson's dissimilarity) was performed based 
upon the species lists. Unbiased cluster analysis was used, where each 
analysis was subjected to randomizing of the row order in matrices 
100 times using the “recluster” package in R (Dapporto et al., 2013, 
2015). RoguEnaRok was used to remove rogue sites responsible for 
reducing resolution in the resulting 50% majority rule consensus den-
drogram (19 sites in comparative inventory analysis, seven in compar-
ative s-SDM analysis and 61 cells in all-species analysis; Supporting 
Information Appendix S6; Aberer, Krompass, & Stamatakis, 2012).

Resultant clusters were split into biomes based upon a process of 
reciprocal illumination, by considering the overall shape (branching 
patterns) of the trees, our biological knowledge of vegetation pat-
terns in the study area and consultation with additional experts (M. F. 
Fernandes, M. Moro, D. Neves, F. Pezzini, L. P. Quieroz, R. M. Santos 
and DryFlor, pers. comm.). Other studies have taken a similar ap-
proach (Fayolle et al., ; Silva de Miranda et al., 2018). Alternative ap-
proaches, such as k-means methodologies (e.g., Amaral et al., 2017), 
also rely upon the knowledge of specialists to define an a priori 
number of biomes, and analytical workflows based on fully objective 
criteria still rely upon the authors checking their obtained biomes 
against specialists’ knowledge (e.g., Edler, Guedes, Zizha, Rosvall, 
& Antonelli, 2017). Our priorities were the generality of our results 

and maximizing the similarity of our mapped clusters to the IBGE 
(2012) classification, which recognizes four biomes in NE Brazil. We 
therefore focused on delimiting biomes in the broadest sense. For 
all groups, we considered further bifurcations, but these splits were 
rejected based upon expert knowledge.

2.5 | Biome naming and floristic identity

The names of recovered biomes were determined by their mapped 
distributions with reference to expert knowledge (ourselves and 
additional experts; see previous subsection), the IBGE (2012) clas-
sification and the NTT site metadata (Oliveira-Filho, 2017). To test 
whether inventory data and s-SDMs delimit similar biomes, we com-
pared the classification of individual sites between analyses of in-
ventory and s-SDM data.

To determine whether biomes delimited by s-SDMs were similar 
to their counterparts delimited by inventory data in terms of floris-
tic composition, we used an approach based upon Simpson's β-di-
versity (β-sim) implemented in the R package “betapart” (Baselga, 
2010; Baselga, Orme, Villéger, De Bortoli, & Leprieur, 2018). β-sim 
was used because it measures only floristic turnover between sites 
and does not incorporate nestedness. Nestedness was discounted 
because s-SDMs predicted more species per site (mean = 217.8) than 
found in inventory surveys (mean = 95.9), which represent non-ex-
haustive surveys with variable sampling effort (Oliveira-Filho, 2017). 
We calculated β-sim from each s-SDM assemblage to every inven-
tory data assemblage. We then carried out a Kruskal–Wallis test to 
determine whether within-biome β-sim values were smaller than 
across-biome comparisons.

2.6 | Environmental biome delimitation

To assess whether s-SDM data were able to identify biomes bet-
ter than environmental data alone, we used a random forest clas-
sification tree approach (Breiman, 2001) in the “randomForest” 
package in R (Liaw & Wiener, 2002). We used the same PCAs of en-
vironmental variables that we used as predictor variables for SDMs 
(Supporting Information Appendix S3). We carried out two random 
forest analyses: one based upon the edaphic and climatic PCA lay-
ers and one based upon the climatic PCA layers alone. The results 
of these analyses include an estimated error rate in prediction of 
the biome identity of sites given the imputed environmental data. 
In order to determine the success of the random forest classifica-
tion tree approach, we compared the error rates with those from the 
comparative inventory analysis.

2.7 | Biome functional identity

Presence or absence of six independent plant attributes was re-
corded for 931 species (latex, corky bark, spines, compound leaves, 
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nodulation and Crassulacean acid metabolis photosynthesis; 
Supporting Information Appendix S7). Attributes were chosen based 
upon (a) their hypothesized strong links to environmental and func-
tional differences among biomes in NE Brazil, and (b) ease of record-
ing from herbarium specimens, floristic treatments and taxonomic 
monographs (Supporting Information Appendix S7).

To examine the functional identity and similarity of biomes, we 
first calculated the proportion of species at each site with each at-
tribute. To determine whether biomes delimited by the comparative 
s-SDM analysis were different from each other in terms of attri-
butes, we performed a PCA upon these data. We repeated this with 
the assemblages in the inventory dataset. To determine whether the 
comparative s-SDM analysis biomes were functionally similar to cor-
responding biomes delimited by the comparative inventory analy-
sis, we grouped s-SDM assemblages by biomes. We then calculated 
the functional Euclidean distance from every s-SDM assemblage to 
every inventory data assemblage. We carried out a Kruskal–Wallis 
test to determine whether within-biome Euclidean distances were 
smaller than across-biome comparisons. The purpose of this test was 
to confirm whether the delimited biomes differ in functional attri-
bute space.

3  | RESULTS

3.1 | Species distribution modelling

The mean CBI value for the 933 SDMs used in the comparative 
s-SDM analysis was 0.51, indicating high model performance. The 
area under the curve and CBI were positively correlated with each 
other and with the number of specimens (Supporting Information 
Appendix S8). All model statistics and the contribution of each en-
vironmental PCA axis to the models are provided in the Supporting 
Information (Supplementary Information Appendix S8).

The mean number of species per site in inventories was 96 and 
the mean predicted per site by s-SDMs was 218. The mean number 
of species predicted present by s-SDMs but absent in inventory data 
was 160. The mean number of species predicted absent by s-SDMs 
but present in inventory data was 38 (omission errors). In total, 
s-SDMs correctly predicted the presence of 61% of species in the 
inventory data.

3.2 | Comparative analyses

3.2.1 | Biome delimitation

Hierarchical clustering analysis of the inventory data (the com-
parative inventory analysis) produced four higher level groups 
(Figure 3a). We identified an Amazon biome, here labelled as humid 
forest, encompassing 321 sites in northern Maranhão and Piauí 
states and the wetter elements of the Atlantic forest close to the 
eastern coast of NE Brazil. This grouping also includes some sites in 

southern Maranhão, Bahia and Paraíba (Figure 3c). The three other 
biomes are comparatively dry: dry forest, semi-deciduous forest and 
savanna (Figure 3c). These three biomes are distributed throughout 
the interior of north-east Brazil, largely overlapping with some of the 
extent of the Caatinga, Mata Atlantica and Cerrado biogeopolitical 
domains of IBGE (2012), respectively (Figure 2a). The error rate in 
assigning sites to these biomes was determined as 27% using cli-
matic data and 29% using climatic data in combination with edaphic 
data through randomForest analysis.

The comparative s-SDM analysis also identified four biomes 
(Figure 3b), which correspond to the same four biomes identi-
fied by inventory data based upon their geographical distributions 
(Figure 3d). However, the s-SDM results show more geographically 
aggregated biomes compared with the inventory data, which show 
more spatial interdigitation, particularly within the western part of 
the study area (Figure 3c).

The majority of sites were assigned to the same biome in both 
analyses (1,032 sites, 70%; Supporting Information Appendix S9), 
and levels of misclassification among three of the four biome types 
were low (Figure 4). We found very little error in classification be-
tween the humid forest biome and other biomes. Furthermore, 
s-SDMs were readily able to distinguish the semi-deciduous for-
est and dry forest biomes. The majority of site classification errors 
(335 sites, 75% of total errors) were between the savanna and the 
semi-deciduous or dry forest biomes. In other words, s-SDM analy-
ses can distinguish between wet and seasonally dry biomes and be-
tween dry and semi-deciduous forest, but not between the savanna 
and the two seasonally dry forest biomes.

3.2.2 | Biome floristic and functional identity

All four biomes as delimited by s-SDMs were significantly more flo-
ristically similar to their corresponding biome in analyses of inven-
tory data than to other biomes (Figure 5a–d). This was confirmed 
with a Kruskal-Wallis test for each biome, which in each case was 
highly significant (p < .0001).

The four biomes as delimited by inventory data showed varying 
degrees of functional differentiation in PCA space (Figure 5e). Semi-
deciduous forest and humid forest had the most overlap, whereas 
dry forest and savanna each displayed a unique and broad distri-
bution in PCA space. This pattern was replicated by the s-SDM bi-
omes (Figure 5f), but each biome had a narrower distribution in PCA 
space.

The biomes as delimited by inventory data were, for the most 
part, well differentiated in PCA space (Figure 5e). Savanna was dif-
ferentiated primarily by corky bark, whereas dry forest was differ-
entiated by a combination of spines and bipinnate leaves. The dry 
and humid forest biomes showed less differentiation and were cat-
egorized primarily by the low number of species with any of the six 
attributes examined. The biomes as delimited by s-SDMs trended 
in the same way in PCA space as the inventory data biomes, but in 
general were less functionally diverse (Figure 5f).
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Three of the four biomes as delimited by s-SDMs were signifi-
cantly more functionally similar to their corresponding biome than 
other biomes in analyses of inventory data (Figure 5a–d). These 
three biomes were the dry forest, semi-deciduous forest and the 
humid forest. However, the modelled savanna biome was signifi-
cantly less similar to the savanna in analyses of inventory data than 
all other biomes (Figure 5a).

3.3 | All-species analyses

The mean CBI for the 6,823 SDMs included in the analysis was 
0.54. Hierarchical clustering analysis of species lists for all raster 
cells for these analyses produced five higher level biome groups 
(Figure 6), after the removal of 61 sites through RoguEnaRok analy-
ses. These groups were largely concordant with those recognized 
above (Figure 3), with two principal differences. First, the evergreen 
coastal part of the humid forest biome, here referred to as Mata 
Atlantica, was recognized as its own group, separate from humid 
forest in the northwest of the study area (i.e., Amazonia; Figure 6). 
Second, savanna reached less far north, where it is replaced by the 
remainder of the humid forest biome (Amazonia; Figure 6).

4  | DISCUSSION

This study explored the power of s-SDMs relative to inventory 
data in recovering macroecological patterns and is the first attempt 
to test the utility of s-SDMs in delimiting biomes. Many previ-
ous studies have tested the performance of s-SDMs in predicting 
species richness per site (e.g., D’Amen et al., 2015, 2017; Feria & 
Peterson, 2002), but here we focused on testing the implication of 
these differences for downstream analyses of floristic composition 
and functional diversity patterns at large spatial scales.

4.1 | Biome delimitation and identity

The concept of biomes has varied through time, but all definitions 
have shared the aim to define broad-scale, ecologically meaningful 
units of vegetation. The approach taken to delimit these units has 
varied greatly, however, with emphasis on the floristic, structural 
or functional components of vegetation (Mucina, 2019). Given that 
global, continental or even regional scale datasets on these factors 
have been and remain rare, most existing biome maps have been 
based on expert views (e.g., IBGE, 2012) or the biome distributions 
have been estimated by their hypothesized environmental determi-
nants (e.g., Whittaker, 1970).

Stacked SDMs provide a potential solution for biome mapping by 
providing continuous floristic data at large spatial scales that can be 
linked to species functional traits and attributes. s-SDMs allow us to 
generate the spatially continuous estimates of species distributions 
from species distribution data. Spatially continuous distribution data 

are required for the production of data-driven, repeatable maps of 
biome distributions. Given that s-SDMs are known to both over- and 
under-predict species distributions, it has remained unclear whether 
data from s-SDMs are of sufficient quality to delimit ecologically 
meaningful biomes.

Here, we compared biomes delimited with s-SDM and inven-
tory data to test whether s-SDM can reproduce macroecological 
patterns at large spatial scales. Identical hierarchical clustering 
analyses were run on s-SDM and inventory data for the same 933 
species and 1,506 sites; therefore, all the difference between the 
results of these analyses must result from differences in the species 
lists derived from s-SDMs and inventory data. The species lists pro-
vided by the s-SDMs contain both commission and omission errors. 
There are a number of potential sources for these errors in both the 
NTT dataset and the s-SDM dataset. Those in the NTT data include 
misidentifications, the often-incomplete nature of NTT surveys 
and the exclusion of species found in patches other than the main 
physiognomy within each NTT site (see Section 2). There are numer-
ous causes of omission and commission errors (as described in the 
Section 1 and citations therein). Omission and commission errors are 
inevitable in any s-SDM study; therefore, their inclusion in the pres-
ent study aids in testing the efficacy of s-SDMs in biome delimitation 
in a real-world setting.

It is possible that our choice of SDM input data and the meth-
odological choices we made in producing our s-SDMs have had a 
significant impact upon the biomes identified by both the compar-
ative s-SDM analysis and the all-species analysis. Inherent in any 
SDM study are numerous methodological choices, including but 
not limited to: choice of input, environmental and background data; 
data-cleaning pipelines; methods for minimizing bias in input data 
(Kramer-Schadt et al., 2013; Wiegand & Moloney, 2013); model algo-
rithm and parameters (Hijmans et al., 2017); model extent (Anderson 
& Raza, 2010); model testing (Hirzel et al., 2006); and threshold val-
ues (Calabrese et al., 2013). No standard SDM pipeline exists, and it 
is beyond the scope of this paper to test the effect of our choices on 
our results. We have instead opted for a single pipeline that approx-
imates “best practice” given the limitations of our data and study 
area. This gives the comparative s-SDM analysis the best possible 
chance of reproducing the results of the comparative inventory 
analysis.

The comparative s-SDM analysis and comparative inventory 
analysis both resulted in the recognition of four biomes similar in 
geographical distributions and floristic composition to those de-
tected in previously published analyses (Queiroz et al., 2017; Silva 
de Miranda et al., 2018) and, in most cases, their functional iden-
tity. This indicates that s-SDMs are able to recover macroecolog-
ical patterns with accuracy. The majority of sites were assigned 
to the same biome in both analyses (1,032 sites, 70%), and levels 
of classification errors among the majority of biome types were 
low. We found little error in classification between the humid for-
est biome and other biomes. Furthermore, s-SDMs were readily 
able to distinguish semi-deciduous forest and dry forest biomes. 
The majority of classification errors (335 sites, 75% of the total) 
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were between the savanna biome and the two other seasonally 
dry biomes (semi-deciduous and dry forest). In other words, s-SDM 
analyses can predict the boundaries of humid and seasonally dry 
biomes but not the boundaries of the savanna versus seasonally 
dry forested biomes.

The overall site classification error rate in the comparative 
s-SDM analysis (30%) is similar to that when classifying sites based 
on climatic data alone (27%) or on climatic and edaphic data in com-
bination (29%) in the randomForest analyses. We note, however, 
that other methods of classifying biomes using environmental data 
might perform differently. A significant disadvantage of randomFor-
est analyses is that they require a training dataset (in this case, site 
classifications determined through analysis of inventory data) and 
are therefore not applicable to areas lacking inventory data.

4.2 | Modelling savannas

Our results show that analyses of s-SDM data struggle to identify 
the distribution and floristic and functional composition of savanna 
sites (Figures 2–4). Our SDMs are primarily based upon climatic data, 
and this therefore implies that savanna overlaps with both dry and 
semi-deciduous forest in climatic space; thus, climate cannot be used 
to predict the distributions of savanna. There is considerable debate 
over the primary factors governing the distributions of savannas, but 
climate is a poor predictor of South American savanna distributions 
(Lehmann et al., 2014). Rather, debate focuses on whether fire, dis-
turbance or soils are the primary factors governing the distributions 
of savannas (e.g., Hoffmann et al., 2012; Veenendaal et al., 2018), 
none of which can be captured well in SDMs in the Tropics at pre-
sent. Although we included soil layers coming from SoilGrids (Hengl 
et al., 2014) in our SDMs and these add statistical power to our 
models (Supporting Information Appendix 4. Table S4.1), such lay-
ers do not fully capture the edaphic complexity of our study area, 
unfortunately. No suitable fire layer currently exists for use in SDMs, 
although remotely sensed fire data might eventually fulfil this pur-
pose. Our s-SDMs lack the predictive variables required to capture 
the full spectrum and complexity of variables implicated in the as-
semblage of savanna communities.

Although s-SDMs are weak at distinguishing the distribution 
of the savanna biome, the modelled savanna biome is significantly 
more floristically similar to the savanna biome derived from inven-
tory data, but functionally more similar to both the humid and dry 
forest biome than the savanna biome derived from the inventory 
data (Figure 5a). The savanna biome differs functionally from the 
other three biomes primarily in its high proportion of species with 
corky bark (Figure 5e), but modelled savanna assemblages have 
much lower percentages of corky-barked species (Figure 5f). The 
functional differences between s-SDMs and inventory data in the 
fire-prone savanna assemblages are likely to be attributable to envi-
ronmental filtering for corky-barked species, which is not encapsu-
lated in SDMs lacking a fire layer, indicating that fire plays a strong 
role in the community assembly of savannas.

A further complication in modelling savanna distribution is that 
small patches of savanna, semi-deciduous forest and dry forest often 
occur in complex, interdigitated matrices (DryFlor, 2016; Silva de 
Miranda et al., 2018), and individual patches are often smaller than 
the c. 5.5 km2 resolution of our s-SDMs. This reduces the statistical 
power of s-SDMs to distinguish the environmental requirements of 
savanna species.

4.3 | All-species analyses

Perhaps the most compelling argument for using s-SDMs in macro-
ecological analyses is their ability to extend our knowledge of biodi-
versity patterns beyond trees. At present, inventory data are largely 
limited to trees. Consequently, our understanding of biodiversity 
patterns in plants is biased towards a single growth form that repre-
sents < 50% of all known plant species across all biomes (Cardoso 
et al., 2017; Droissart et al., 2018). Given that distribution patterns, 
range sizes and the spatial patterns of functional traits in relation-
ship to climate differ significantly among life-forms (Droissart et al., 
2018; Šímová et al., 2018; Xu et al., 2017), modelling of all growth 
forms with a more representative sample of species in s-SDMs is a 
significant advantage in analyses aiming to understand overall mac-
roecological patterns.

Our all-species biome map strongly supports this argument. 
Through the inclusion of non-tree species in s-SDM biome delimita-
tion analyses, we were able to distinguish two floristic units within 
the humid forest biome: the Evergreen Mata Atlantica and Amazonia 
(Figure 5a,b). Tree distributions are likely not to be a good proxy 
for the distributions of all macroecological patterns and processes, 
and by neglecting other life-forms, our views of macroecological 
patterns might be significantly biased. Floristic inventories of non-
woody taxa are in their infancy or limited in extent; thus, s-SDMs 
are currently the only way of investigating macroecological patterns 
for all life-forms while retaining species identity across large spatial 
scales. The output of s-SDM analyses, however, need to be treated 
with caution where biome distributions are not determined by cli-
mate alone.

4.4 | Conclusions

Stacked SDMs are an increasingly important tool in the investiga-
tion of macroecological patterns, but their efficacy remains largely 
untested. We investigated the utility of s-SDMs in predicting geo-
graphical, floristic and functional characteristics of biomes at 1,506 
sites across NE Brazil compared with an inventory dataset. The s-
SDMs recovered the same broad-scale biomes as inventory data, 
with similar geographical, floristic and functional characteristics, 
but they struggled in areas where non-climatic factors, such as fire 
or soil, play key roles in governing distributions. This is likely to be 
because s-SDMs do not include the most important variables gov-
erning community assembly processes for savanna systems, and we 
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thus recommend caution in macroecological analyses using s-SDMs 
in these areas. s-SDMs can, however, be used in areas with few or no 
floristic inventories and to study the distributions of taxa not usu-
ally included in such studies. Given these significant advantages and 
their generally low error rates, our study demonstrates that s-SDMs 
can be used to elucidate functional and floristic macroecological 
patterns with confidence even in the majority of complex, tropical 
settings.
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