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Graphical abstract 

 

A combined AUROC classifying patients with NAFLD cirrhosis and healthy control subjects 

 

Lay Summary 

Breath malodor in failing liver is well known since the ancient Greeks. Analytical chemistry has 

provided us an insight into ubiquitous volatile organic compounds in liver and other diseases. 

This has vastly improved our understanding of mechanistic processes of liver damage. Our study 

aims to identify volatile organic compounds which are specific to nonalcoholic fatty liver disease 

which can be exploited for rapid diagnostics.  
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Abstract 

Background: Analysis of volatile organic compounds (VOCs) in exhaled breath, ‘volatomics’, 

provides opportunities for non-invasive biomarker discovery and novel mechanistic insights into 

a variety of diseases.  

Aim: The purpose of this pilot study was to compare breath VOCs in an initial cohort of non-

alcoholic fatty liver disease (NAFLD) patients and healthy controls. 

Methods: Breath samples were collected from 15 participants with Child-Pugh Class A NAFLD 

cirrhosis, 14 with non-cirrhotic NAFLD and 14 healthy volunteers. Exhaled breath samples were 

collected using an established methodology and VOC profiles were analysed by gas 

chromatography-mass spectrometry. The levels of 19 VOCs previously associated with cirrhosis 

were assessed. Peaks of the VOCs were confirmed and integrated using Xcalibur® software, 

normalized to an internal standard. Receiver Operating Characteristic (ROC) curves were used to 

determine the diagnostic accuracy of candidate VOCs. 

Results: Terpinene, dimethyl sulfide (DMS) and D-limonene provided the highest predictive 

accuracy to discriminate between study groups. Combining DMS with D-limonene led to even 

better discrimination of NAFLD cirrhosis from healthy volunteers (AUROC 0.98, 95% 

confidence interval (CI) 0.93 -1.00, p<0.001) and NAFLD cirrhosis from non-cirrhotic NAFLD 

(AUROC 0.91, 95% CI 0.82 – 1.00, p<0.001). Breath terpinene concentrations discriminated 

between non-cirrhotic NAFLD and healthy volunteers (AUROC 0.84, 95% CI 0.68 – 0.99, 

p=0.002). 

Conclusion: Breath terpinene, dimethyl sulfide and D-limonene are potentially useful volatomic 

markers for stratifying NAFLD; and a two-stage approach allows differentiation of non-cirrhotic 

and cirrhotic patients. These observations require validation in a larger NAFLD population. 

(ClinicalTrials.gov Identifier: NCT02950610) 
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver 

disease worldwide affecting up to 25% of the global population. Its prevalence is expected to 

escalate in parallel with the inexorable rise of obesity and diabetes. It is estimated that nearly 35% 

among those with steatosis will progress to non-alcoholic steatohepatitis (NASH) and, in turn, a 

considerable proportion of those with NASH will advance insidiously to advanced liver disease. 

The severity of hepatic fibrosis has been shown to correlate with all-cause and disease-specific 

mortality in NAFLD[1]. 

Given the potential burden associated with NAFLD, identifying those at high risk of adverse 

outcomes is crucial. Various imaging techniques and biomarkers have been employed to monitor 

NAFLD progression, but none can match the sensitivity and specificity achieved with a 

percutaneous liver biopsy for detection of early stages of liver disease. However, liver biopsy is 

invasive, prone to sampling error and impractical for disease monitoring[2]. Thus, there is a need 

to develop a sensitive, specific and non-invasive diagnostic tool that can accurately characterize 

patients across the entire spectrum of NAFLD.  

In recent years, several studies have explored the use of volatile organic compounds (VOCs) in 

exhaled breath as a non-invasive diagnostic tool in chronic liver disease[3-8]. The underpinning 

concept is that perturbed metabolic pathways can alter the pattern of breath VOC composition. 

An example commonly encountered in a clinical setting is fetor hepaticus that can occur with 

metabolic derangements in cirrhosis. Similarly, NAFLD is associated with a myriad of metabolic 

changes that can influence the composition and concentration of VOCs. Studies have shown 

changes in VOC composition in obese individuals with NAFLD, however correlations with the 

different stages of NAFLD have not been established[4]. Alterations in gut microbiota have 

been shown to contribute to the pathogenesis of NAFLD through metabolic mediators[9]. More 
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recently, a mechanistic study implicated high-alcohol-producing Klebsiella pneumoniae (so called 

‘auto-brewery’) as a potential causative factor in some patients with NAFLD[10]. 

In this pilot study, we examined the pattern of exhaled breath VOCs in patients with cirrhosis 

and non-cirrhotic NAFLD to identify specific biomarker signals with potential utility for the 

stratification of NAFLD.  

 

METHODS 

Study population 

This study was conducted as a substudy of a larger study: Breath analysis using an electronic 

nose in non-alcoholic fatty liver disease (‘BEN’; ClinicalTrials.gov Identifier: NCT02950610), a 

single-centre prospective observational study which aimed to examine exhaled VOC patterns in 

NAFLD using an electronic nose (eNose). Of the total 90 participants, exhaled breath for gas 

chromatography mass spectrometry (GC-MS) was collected from the first 45 consecutive 

participants. This included 30 NAFLD participants with or without cirrhosis (based on 

histological or clinical criteria) and 15 healthy volunteer controls.  

The sample size was based on the following consideration: if molecular compounds are to be 

used in clinical practice, their association should be considerable. We defined the association to 

be potentially useful if the correlation coefficient was larger than 0.6/0.7. For correlations to be 

statistically significant (p<0.05) with 80% power, approximately 15 participants in each group 

were required. Due to contamination issues, one sample each from the non-cirrhotic NAFLD 

and healthy volunteer groups was excluded. Male and female adult participants were recruited 

from the liver outpatient clinics at the Royal Infirmary of Edinburgh (Edinburgh, UK) between 

March 2016 and February 2017. Exclusion criteria were: known respiratory disease, severe 

obesity (body mass index (BMI) >40), use of antibiotics for preceding 4 weeks, ongoing alcohol 
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use of more than 21 units for men and 14 units for women, inability to give informed consent, 

and NAFLD cirrhosis with Child-Pugh score >7.  

Participants with NAFLD were divided into: NAFLD without cirrhosis or NAFLD Child-Pugh 

Class A cirrhosis. This was based on the most recent liver biopsy and/or gastroscopy (performed 

at least within 1 year of breath test and other investigations); ultrasound, transient elastography 

(Fibroscan®, Echosens, France), and/or Acoustic Radiation Force Impulse (AFRI) using 

Siemens ultrasound system (Siemens AG, Erlangen, Germany) and serum hyaluronic acid 

measured using a radiometric assay (Pharmacia, Uppsala, Sweden), performed within 6 months 

of breath test.  

NAFLD cirrhosis was diagnosed by liver biopsy in two participants, endoscopic features of 

portal hypertension in 12 participants and radiological features in one participant. 

Non-cirrhotic NAFLD was diagnosed by liver biopsy (in five participants) and the remaining 

nine participants were diagnosed by clinical and radiological features, non-invasive scores – such 

as Fibrosis -4 (Fib-4) score, aspartate aminotransferase to platelet ratio index (APRI), NAFLD 

fibrosis score and BARD, serum hyaluronic acid and transient elastography measurements[11-

14]. 

Greater diagnostic weight was given to histological or endoscopic diagnoses (in the case of 

cirrhosis); and in patients who had a definitive diagnosis of cirrhosis, the non-invasive markers 

were not considered. The healthy control group consisted of self-declared healthy participants. 

They were recruited through word-of-mouth and advertising posters in the institution. They 

were screened using questionnaire, physical examination, reported absence of any medical illness 

and use of any regular medication.   

Measures were taken to mitigate against the effect of dietary, environmental and medication. All 

participants attended a single study visit at Edinburgh Clinical Research Facility after an 
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overnight fast. Written informed consent was taken from all participants. Although no strict diet 

was enforced, both overnight fasting and careful oral hygiene with unchlorinated water 

preparation was undertaken. Participants refrained from using any perfumes or deodorants on 

the day of the visit. Smoking and alcohol consumption were restricted for 48 hours. 

Reconciliation of concomitant medication was ascertained at screening. Drugs were categorised 

as inducers, inhibitors and substrates[15]. Participants taking enzyme inducing drugs were 

excluded. A dedicated room was used for breath sample collection. Only the participant and the 

investigator were allowed to enter the room for the purpose of breath collection. Upon breath 

collection, the room was again secured. The interval between two consecutive subjects was at 

least 4 hours. 

Anthropometric measurement and venous sample collection were completed prior to the breath 

sample collection. Central obesity was defined as waist circumference of >94 cm for men and 

>78 cm for women taken midway between the lowest rib and the iliac crest[16]. Homeostatic 

Model Assessment (HOMA) was performed in participants without a known diagnosis of 

diabetes.[17]  

 

Exhaled breath collection 

Participants were given chlorinated water to rinse their mouth before breathing through a 

mouthpiece with their nose clipped into a 2-way non-rebreathing valve (Hans Rudolph 1410, 

Hans Rudolph, Kansas City, USA) with an inspiratory VOC filter (A2, North Safety, 

Middelburg, NL) and an expiratory silica reservoir to dry the expired air. The breathing 

manoeuvres have been previously described[18].  After 5 minutes of equilibration by tidal 

breathing with VOC-filtered air, the expiratory port was connected to a 10 L Tedlar sampling 

bag (SKC Inc., PA, USA). Participants then performed an inspiratory capacity manoeuvre and 
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exhaled the full expiratory vital capacity into the bag with an expiratory resistance of 20 cmH2O 

to close the soft palate and to obtain an expiratory flow of 0.1 to 0.2 L/s. 

The sampling method for VOCs has been described previously[18-21]. This sampling procedure 

incorporates inspiratory VOC filtering to minimise any external influence on the VOCs[22]. The 

combination of targeted analyses concerning 19 VOCs and additional stable factor of a dedicated 

climate-controlled room, reduces the change of a false discovery dramatically. Every conceivable 

effort was undertaken to minimise contamination and external influence. 

We did not capture consecutive breath samples for the same group of participants to monitor 

variation in VOCs over time, however authors have previously studied variations within a study 

group and found little variation[23]. 

 

Gas Chromatography and Mass Spectrometry (GC-MS) sample analysis 

GC-MS analysis was performed as previously described[22].  Briefly, the content of the Tedlar 

bags were transferred into stainless-steel adsorption tubes (Gerstel Steel Tenax® GR Sorbent 

Tubes, closed by Teflon Ferrules and Swagelok Stainless Steel Tube Caps, Philips, Eindhoven, 

The Netherlands) by a peristaltic pump (flow rate of 200 mL/min) within 30 min of collection. 

Adsorption tubes were stored in an airtight package at 4oC and transported to Philips Innovation 

Services (Eindhoven, The Netherlands) for analysis using methodology previously described[20] 

(Supplementary data). 

 

 GC-MS Quality Control (QC) 

The GCMS was performed by an established commercial laboratory 

(https://www.philips.com/a-w/research/locations/eindhoven.html) with a strong reputation in 
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Europe as a reference measurement centre. Accordingly, our commercial collaborators 

confirmed through their internal analyses and QC, that the signals had not changed within 28 

days of storage. Furthermore, they also confirmed that there was negligible background signal 

from the Tedlar bags (it can add N,N-dimethylacetamide and phenol to the breath signal). After 

receipt of the Tenax tubes, the tubes were dried and stored in the fridge until analysis. 

 

Chemical Identification 

Owing to the complex nature of untargeted GC-MS data we performed a semi-targeted non-

quantitative ubiquity analysis of VOCs in the study groups of 19 VOCs. This set of 19 

compounds were selected based on previous supportive literature and biological plausibility in 

our study population. The studied VOCs and IUPAC (International Union of Pure and Applied 

Chemistry) are thus listed: butane, 2-butanone, 3-methylpentane, octane, styrene, decane, 

acetone, isoprene, dimethyl sulfide, cyclopentane, methyl vinyl ketone (3-buten-2-one), dimethyl 

sulfoxide, benzaldehyde, phenol (hydroxybenzene), D-limonene, acetophenone, undecane (n-

undecane), tetradecane and alfa-terpinene (terpinene).  

We used Xcalibur version 3.0 (Thermo Fisher Scientific, MA, USA) to assess the data. Files were 

converted to .raw files. Reconstructed ion chromatograms of each of the 19 compounds were 

generated. The mass spectra of each discernible peak were assessed using the National Institute 

of Science and Technology (NIST) library database in the Thermo Library manager section of 

Xcalibur 3.0. The putative chemical identity was determined by examining representative mass 

spectral data and m/z ion patterns. A match with a probability greater than 80% according to the 

NIST library was used to confirm the compound. This was further confirmed using AMDIS 

freeware (Automated Mass Spectral Deconvolutional & Identification System, 

http://www.amdis.net/index.html).  
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In our experience general automated peak picking is much faster than manual peak selection and 

integration, especially for large data sets. Our previous published work has been performed using 

this technique, where all data analysis was done automatically, but tailored to the specific data[21, 

24].  

These compounds have been previously shown to be associated with cirrhosis[6],[8]. Within the 

samples we identified these compounds based on the mass spectra and an identifiable peak at 

consistent retention time. The peak of the extracted ion chromatograms of each compound were 

integrated using Xcalibur 3.0 (Thermo Fisher Scientific, USA). The peak was recorded as not 

detected if the ion count was below 500 ion counts at the assigned retention time. All compound 

peak areas were normalised to the peak area of toluene-d8 in each sample, as this was added to 

all samples when analysed by GC-MS as an internal standard.  

 

Statistical analysis 

Statistical analyses were performed using IBM SPSS Statistics for Macintosh version 21.0 (IBM 

Corp., Armonk, NY) and GraphPad Prism version 5.0a (SanDiego, CA, USA). Data were 

presented as mean (standard deviation (SD)) or median (interquartile range (IQR)) for 

continuous variables. Categorical variables were presented as frequency and percentage. Data 

were analysed using ANOVA with Bonferroni correction to minimize false discovery. 

Multivariable logistic regression analysis was performed to build a model for prediction of 

cirrhosis and non-cirrhotic liver disease; all breath compounds were considered for inclusion. 

Discrimination was used for internal model validation; measuring the ability to rank patients by 

risk of cirrhosis such that patients with a higher predicted risk are more likely to have cirrhosis. 

Discrimination was measured by the Area Under the Receiver Operating Characteristics curve 

(AUROC). All individual compounds with AUROCs of 0.80 or above were further assessed to 
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find the combination of any two that provided the highest AUROC. After choosing the final 

model, Harrell’s method was used to compute the validation metric with over-fitting bias 

correction through bootstrap resampling[25]. A thousand bootstrap samples (B = 1,000) were 

drawn from the original data set and a new model with the same model settings was built on 

each bootstrap resample. Prediction on patients that were not chosen in the resample was 

calculated. An optimism factor was calculated over the 1,000 new models and the bias-corrected 

validation metric was obtained by subtracting this optimism value from the AUROC directly 

measured from the original model. Bonferroni correction was applied to decrease the false 

discovery rate and a p value <0.01 was considered significant. AUROC curves were used to 

calculate the performance of diagnostic tests and for calculating the best point of separation 

between sensitivity and specificity. Given the sample size and to reduce any possibility of beta 

error, a p-value lower than 0.01 was considered significant and clinically valuable. 

 

Ethics permission 

The clinical study was conducted according to the ethical principles of the Declaration of 

Helsinki 2013 and following approval from the East of Scotland Research Ethics Committee 

(REC reference: 15/ES/0207) and the NHS Lothian Research and Development department 

(Ref: E151593).  

 

RESULTS 

Baseline characteristics 

Baseline characteristics of the study population are summarised in Table 1. Two samples (one 

non-cirrhotic NAFLD and one healthy control participant) had to be excluded for technical 

reasons. Participants in the healthy control group were significantly younger (median 39 (IQR 
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20-59) years) than those with NAFLD without cirrhosis (median 60 (IQR 29-75) years) or with 

cirrhosis (median 69 (IQR 44 -76) years). Similarly, BMI and waist circumference were lower in 

healthy controls compared with those with NAFLD.  

Among participants with NAFLD cirrhosis, 80% had endoscopic evidence of portal 

hypertension (six (40%) varices, four (27%) portal hypertensive gastropathy (PHG) and one 

(6%) each for gastric antral vascular ectasia (GAVE) and dilated azygous vein on endoscopic 

ultrasound). Of the remaining four (20%) who did not have endoscopic evidence of portal 

hypertension, two had coarse liver echotexture with splenomegaly on ultrasound and two had 

coarse liver echotexture alone. 

 

Quantification of exhaled VOCs in the study population 

Of the 19 VOCs studied in the exhaled breath samples, seven compounds (styrene, acetone, 

isoprene, DMS, D-limonene, acetophenone and terpinene) were significantly different between 

the groups (Figure 1). There was no correlation between age and VOCs in line with previous 

findings[7, 8, 26]. However, acetone, isoprene, DMS and D-limonene were correlated with BMI. 

Given the lower BMI in the control group than those with NAFLD, and because some 

compounds such as breath acetone have been shown to correlate with body weight, we adjusted 

each compound for BMI[27]. This was achieved by dividing the intensity of VOC by the 

corresponding BMI, before the inclusion into the statistical modelling[27]. Significant differences 

persisted between the cirrhotic and healthy control groups for styrene, acetone, isoprene, DMS, 

D-limonene, acetophenone and terpinene. Isoprene is a by-product of cholesterol biosynthesis. 

However, similar to other authors, we found no correlation between the serum cholesterol and 

isoprene (rho=0.87 (-0.32, 0.48) p=0.654)[3]. 

In our study, D-limonene was inversely correlated with serum albumin (Pearson’s r=0.7, 

p<0.001). In contrast, APRI score correlated positively with D-limonene (Pearson’s r=0.6, 
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p<0.01). No significant correlation was found between the detected VOCs and serum hyaluronic 

acid or transient elastography data (data not shown). 

Effect of diabetes on VOCs production  

In the cirrhotic group, 13 participants (87%) had Type 2 diabetes mellitus with HbA1c (IFCC) 

ranging between 44 mmol/mol to 103 mmol/mol measured within 3 months of breath 

sampling. Two participants had insulin resistance as evidenced by HOMA-IR score (2.7 and 6.2). 

In the non-cirrhotic NAFLD group, eight participants (57%) had Type 2 diabetes mellitus with 

HbA1c (IFCC) ranging between 45 mmol/mol to 94 mmol/mol and six (43%) participants had 

insulin resistance with HOMA-IR ranging between 1.7 to 6.9. It is conceivable that insulin 

resistance and/or Type 2 diabetes had contributed to the high level of acetone, particularly in the 

cirrhotic group. We also noted that the actual differences in breath acetone were probably bigger 

than measured here since the concentration of acetone recorded was outside the linear range of 

the instrument.  

 

Differentiating patients with non-cirrhotic NAFLD from healthy control participants 

Levels of isoprene, acetophenone, and terpinene were significantly lower in non-cirrhotic 

NAFLD patients than in healthy controls. Of these, terpinene had the highest AUROC for 

predicting non-cirrhotic NAFLD (0.84 (95% CI 0.68 – 0.99, p=0.002)) (Table 2 and Figure 2). 

Combining terpinene with isoprene and/or acetophenone did not improve the diagnostic 

accuracy. 

 

Differentiating patients with NAFLD cirrhosis from healthy control participants 

Levels of styrene, isoprene, acetophenone and terpinene were significantly lower in participants 

with NAFLD cirrhosis compared with healthy individuals. In contrast, levels of DMS and D-

limonene were significantly higher in patients with NAFLD cirrhosis compared with healthy 
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controls. DMS and D-limonene had the highest predictive accuracy for predicting NAFLD 

cirrhosis with AUROCs of 0.94 (95% CI 0.86 – 1.00, p<0.001) and 0.91 (95% CI 0.79 – 1.00, 

p<0.001), respectively (Table 3). However, combining DMS and D-limonene had even higher 

predictive accuracy for diagnosing NAFLD cirrhosis with AUROC of 0.98 (95%CI 0.93 – 1.00, 

p<0.001) (Figure 3). 

 
 

Differentiating patients with non-cirrhotic NAFLD from NAFLD cirrhosis 

Levels of DMS and D-limonene were significantly higher in patients with NAFLD cirrhosis 

compared with non-cirrhotic NAFLD. DMS and D-limonene had the highest predictive 

accuracy for NAFLD cirrhosis with AUROCs of 0.88 (95% CI 0.74 – 1.00, p<0.001) and 0.83 

(95% CI 0.68 – 0.98, p=<0.002), respectively (Table 4). However, combining DMS and D-

limonene had even higher predictive accuracy for diagnosing NAFLD cirrhosis with AUROC of 

0.91 (95%CI 0.82 – 1.00, p<0.001) (Figure 4). 

 

DISCUSSION 

In this pilot study, we examined the concentration of VOCs in exhaled breath in adult NAFLD 

patients with cirrhosis and non-cirrhotic NAFLD. We highlighted three compounds (acetone, 

DMS and D-limonene) that differentiated between cirrhosis and healthy controls. More 

importantly, we have shown that DMS and D-limonene can discriminate between NAFLD 

patients with and without cirrhosis.  From a clinical standpoint, the findings are important as 

these compounds can potentially serve as biomarkers for the stratification of NAFLD.   

There have been previous studies that have shown differences in VOC concentrations between 

chronic liver disease and healthy liver[6, 8]. These differences were identified using GC-MS in 

patients with liver disease of various aetiologies. In our study, we focused solely on patients with 

NAFLD. Furthermore, we have adjusted the measured VOC to BMI to provide a more accurate 
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reflection of the metabolic profile as acetone, breath isoprene, 1-decene, 1-octene, ammonia and 

hydrogen sulfide have been found to be influenced by body weight[27]. 

Changes in cellular metabolism, insulin resistance and oxidative stress in NAFLD are dynamic 

processes. It is possible that there is a distinct VOC profile for the stages of NAFLD and that 

the pattern is influenced by a complex interaction between oxidative stress, mitochondrial 

impairment and metabolic pathways. Additionally, the onset of fibrosis can limit the capacity of 

metabolic and degradation pathways, which can potentially affect VOCs. It is also noteworthy 

that as NAFLD progresses, the presence of mitochondrial impairment can limit oxidative 

capacity thus promoting the diversion of acetyl-CoA towards non-oxidative pathways including 

ketogenesis - hence the higher formation of acetone in cirrhosis[28, 29]. This could also explain 

lower levels of isoprene in advanced liver disease. 

Ketogenesis and levels of acetone can also be induced by fasting. In our study, breath sampling 

was obtained from all participants after overnight fasting to minimise the known physiological 

effects of food intake on exhaled VOC concentrations. Although fasting may have influenced 

the overall levels of acetone, we have shown that the levels of acetone are substantially higher in 

cirrhotic patients than in healthy controls. Furthermore, our finding is consistent with previous 

studies[8, 30] 

  

Similarly, a higher concentration of D-limonene in NAFLD cirrhosis could either reflect 

inefficient metabolism (reduced levels of Cytochrome P450 enzymes - CYP2C9 and CYP2C19) 

that results in bioaccumulation or represent an adaptation to insulin resistance[6, 7, 26, 31]. D-

limonene is a monoterpene that has been shown to have an antidiabetic effect and modulates 

lipid metabolism[32, 33]. Although elevated D-limonene levels has previously been reported in 

the context of cirrhosis, our study is first to confirm its presence in exhaled breath in the context 

of NAFLD cirrhosis[6, 8, 26],28.  D-limonene is also a major constituent in citrus essential oil, 
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which is used in various foods as a flavouring agent. Although food diary was not recorded in 

the present study, we applied strict environmental and participant preparation measures to 

minimise dietary influence or any other contamination. Additionally, previous work did not find 

any correlation between diet and breath limonene concentration[26]. Therefore, taken together, 

this suggests that our findings are specific for liver disease. 

It has long been considered that methyl-mercaptans and DMS are responsible for fetor hepaticus. 

DMS, being a derivative of methanethiol, has also been implicated in hepatic 

encephalopathy[34].  DMS breath levels are elevated in cirrhosis and correlate with the degree of 

porto-systemic shunting[34-36]. Our findings support this notion as 80% of the participants with 

NAFLD cirrhosis in our study had signs of portal hypertension on gastroscopy. All of the 

cirrhotic participants were Child-Pugh Class A without clinical signs of encephalopathy. We 

speculate that a probable source of DMS is microbiota as previous studies have linked this to 

oral as well as gut dysbiosis[37, 38]. Methanethiol may be converted to hydrogen sulfide and 

oxidized to sulphate for detoxification which can be utiltised by sulphate-reducing bacteria; a 

process predominantly occurring in caecal tissue[39]. Pyrosequencing or next-generation 

sequencing studies to establish an association of VOCs with microbiota would require a higher 

number of well-characterised participants with a specific preparation. This is beyond the scope 

of our present feasibility study.  

 

Another abundant isomeric monoterpene detected in the exhaled breath in our study was 

terpinene. Consistent with previous studies, terpinene was able to discriminate cirrhosis and non-

cirrhotic NAFLD from healthy controls [7]. There is very little in the published literature about 

terpinenes and their role in the NAFLD pathophysiology is unknown. Terpinenes have been 

implicated in the oxidative stress pathways[40]. Thus, it is possible that the differences in the 
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levels of alpha-terpinene between healthy and NAFLD participants reflect the presence of 

oxidative stress in NAFLD.  

Whilst we cannot totally exclude the possibility that medications may have influenced the breath 

concentrations of terpinenes, we mitigated this through medication reconciliation at screening. 

We speculate from the outset that Cytochrome (CYP) activity would be impaired and drug 

metabolism (and interactions) would be complex. Therefore, attempts were made to maintain 

homogeneity of medication use in our participants by careful selection. Drugs were categorised 

either as ‘inducers’, ‘inhibitors’ or ‘substrates’ as previously described. None of the participants 

were on enzyme inducers or inhibitors. Therefore, it is unlikely that any of concomitant 

medications used by the participants could have influenced the terpenes, either directly or 

indirectly.  

 

There were some limitations to our study. Firstly, the participants were primarily selected based 

on clinical characterisation rather than exclusively on histological criteria, as this was a pragmatic 

observational pilot study. As such, it is likely that the non-cirrhotic NAFLD group consisted of 

participants with a variable degree of disease activity and fibrosis. NAFLD is a dynamic process 

and compensated advanced chronic liver disease (cACLD) is a continuum. The mean annual 

fibrosis progression rate in patients with NASH is 0.14 stages, compared with 0.07 stages in 

patients with NAFLD[41]. Therefore, although our study groups were as well characterised as 

possible, it is feasible that there was some overlap between participants with Childs A cirrhosis 

and participants with advanced fibrosis in the non-cirrhotic group. Similarly, healthy controls in 

our study did not undergo clinical phenotyping. It is conceivable that some of the participants in 

this group may have hepatic steatosis or even NASH [42]. The small sample size and case 

selection limitations mean that the findings may not be generalisable to the wider NAFLD 

population.  
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Secondly, although the participants underwent an overnight fast, the potential impact of diet and 

dietary preferences on the breath VOCs cannot be completely excluded. Thirdly, our data are 

cross-sectional and derived from a single-centre. Our findings will require further validation in 

external (longitudinal) cohorts of NAFLD patients. Finally, we have performed semi-targeted 

analysis rather than untargeted, thus, selection bias cannot be completely excluded. However, 

there is a risk in ‘omics data that the lowest responders are lost as the sensitivity of untargeted 

analysis is not the strength of the technique. Our approach therefore was to principally focus on 

specific compounds, and we interrogated 19 different compounds that have previously been 

described in the literature as having an association with liver disease. However, as we studied a 

semi-targeted analysis of VOCs in the context of NAFLD, it is possible that some VOCs with a 

pathogenic role in the NAFLD may have been missed in our analysis.  

 

We intentionally did not study alcoholic liver disease as the pathogenesis and the difference in 

the impact of metabolic dysregulation would have introduced a substantial heterogeneity. 

However, it would be interesting to compare the VOC profiles of the two aetiologies to identify 

novel (and possibly shared) pathogenetic mechanisms, as indicated by intriguing observations in 

a murine NAFLD model[10]. 

In conclusion, our study shows that breath VOCs can be a potential non-invasive diagnostic tool 

in NAFLD. We have shown that VOCs such as DMS and D-limonene can differentiate NAFLD 

cirrhosis from healthy liver. Furthermore, isoprene and terpinene concentrations can distinguish 

between NAFLD patients with and without cirrhosis. Correlation of VOCs with histological 

stages of liver disease is now required, which can facilitate non-invasive stratification of NAFLD.  

It will also be of interest to perform a larger study to determine the contribution of portal 

hypertension to VOCs production. Through our pilot study, we highlight potential biomarkers 

which now require further external validation in larger populations of NAFLD patients with 
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histologically defined disease. In addition, a parallel study of VOCs and gut microbiome profiling 

can provide further mechanistic insights. The emerging artificial intelligence methodology with 

sophisticated algorithms may also generate new stage-specific breath signatures for diagnosis and 

monitoring of disease progression in NAFLD. 
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Characteristics NAFLD cirrhosis 
(n=15) 

Non-cirrhotic 
NAFLD (n=14) 

Healthy controls        
(n=14) 

p-value 

Women (%) 4 (27) 5 (36) 9 (64) 0.70 

Age 69 (44 -76) 60 (29 -75) 39 (20-59) <0.001*** 

Height (meters) 1.73 (1.56 -1.81) 1.72 (1.50 -1.87) 1.72 (1.54 -1.84) 0.93 

Weight (kilograms) 96.4 (76 -118) 103.8 (73.4 -126.8) 61.45 (48.7 -74.7) <0.001*** 

BMI (kg/m2) 34.2 (25.4 – 37.8) 35 (30.9 – 39.8) 21.6 (18.6 – 24.7) <0.001*** 

Waist circumference (cm) 

Women 

Men 

 

110 (100 – 119) 

110 (96 -130) 

 

106 (95 – 126) 

110 (106 -136) 

 

74 (64.5 – 80) 

80 (73 – 85) 

<0.001*** 

Smoking status (%) 

Current smoker 

Ex-smoker 

Non-smoker 

 

1 (7) 

5 (33) 

9 (60) 

 

2 (14) 

2 (14) 

10 (72) 

 

1 (7) 

0 (0) 

13 (93) 

0.16 

Alcohol (units/week) 0 (0 – 10) 1 (0-7) 2.5 (0-10) 0.20 

Coffee consumption(cups/day) 3 (0-7) 2 (0 -7) 2 (0-4) 0.15 

Modality of diagnosis 

     Histology 

     Non-invasive 

      Elastography 

         TE 

        ARFI 

    Hyaluronic acid (µg/L) 

    Fibrosis score 

         APRI score 

         NAFLD fibrosis score 

         Fib-4 score 

         BARD Score 

 

2 (13) 

13 (87) 

 

17 (8.6) † 

3.2 (1.3) ‡ 

200 (241) ± 

 

0.42 (0.33) 

1.54 (1.17) 

2.31 (1.15) 

4 (1) 

 

5 (35) 

9 (65) 

 

8.9 (5.1) 

- 

40 (30) 

 

0.24 (0.15) 

-0.38 (1.66) 

1.39 (0.77) 

3 (3) 

 

 

 

 

- 

- 

- 

0.16 

 

 

 

<0.001*** 

 

<0.001*** 

 

0.007** 

0.017** 

0.004** 

0.082 
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Laboratory parameters 

HbA1c (IFCC) 

HOMA 

GGT (U/L) 

Albumin (g/L) 

AST (U/L) 

ALT (U/L) 

Platelets (109/L) 

 

54 (36 – 103) 

 4.45 (2.7 -6.2) ˆ 

147 (44 -843) 

36 (31 - 40) 

32 (25 -71) 

55 (14 – 69) 

210 (61- 271) 

 

49 (32 - 94) 

5.35 (1.7 -6.9) ˆˆ 

61 (22 -387) 

39 (35 - 44) 

27 (21 -78) 

44 (16 -115) 

229 (108 -289) 

 

- 

- 

- 

- 

- 

- 

- 

 

1.00 

0.91 

0.07 

 0.02** 

0.27 

0.14 

0.14 

Table 1: Baseline characteristics of study participants. Data presented as median and IQR or frequency (n) and 
percentage where appropriate. NAFLD, non-alcoholic fatty liver disease; BMI, body mass index; TE, transient 
elastography; ARFI, acoustic radiation force impulse; IFCC, International Federation of Clinical Chemistry); 
HOMA, Homeostatic Model Assessment; GGT, gamma-glutamyl transpeptidase; AST, aspartate aminotransferase; 
ALT, alanine aminotransaminase, † (n=10); ‡(n=3); ±(n=13), ˆ(n=2); ˆˆ(n=6) 

 

Figure 1: Levels of volatile organic compounds in exhaled breath in study participants. Healthy (healthy controls; 

n=14), non-cirrhotic NAFLD (NC NAFLD; n=14) and NAFLD cirrhosis (NAFLD C; n=15). Levels are adjusted 

for a unit toluene-d8 (internal standard reference) and body-mass index (BMI). Data expressed as mean with 
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standard error of mean. One-way analysis of variance (ANOVA) is performed with post-test Bonferroni correction. 

Significance is denoted as p<0.05 *, p<0.01** p<0.001*** 

 

Figure 2. Receiver operating characteristic (ROC) curve for breath terpinene in classifying patients with non-
cirrhotic NAFLD versus healthy participants. AUC, area under the ROC curve; NAFLD, non-alcoholic fatty liver 
disease; CI, confidence interval.  

 

 

 

 

 

 

 

Volatile organic compounds AUROC (95% 
confidence interval) 

p-value 

isoprene 0.75 (0.57 – 0.94) 0.022 

acetophenone 0.80 (0.63 – 0.97) 0.007 

terpinene 0.84 (0.68 -0.99) 0.002** 

 

Table 2: Area under receiver operating curves for different volatile organic compounds in classifying patients with 
non-cirrhotic NAFLD versus healthy participants. AUROC, area under receiver operating characteristic. 
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Figure 3. Receiver operating characteristic curve for a combination of D-limonene and dimethyl sulfide in 
classifying patients with NAFLD cirrhosis (n=15) versus control subjects (n=14). AUC, area under the ROC curve; 
NAFLD, non-alcoholic fatty liver disease; CI, confidence interval.  

 

 

 

 

 

 
Volatile organic compounds AUROC (95% 

confidence interval) 
p-value 

styrene 0.37 (0.16 -0.58) 0.239 

acetone 0.77 (0.58 -0.95) 0.015 

isoprene 0.49 (0.27 – 0.72) 0.965 

Dimethyl sulfide 0.94 (0.86 -1.00) <0.001*** 

D-limonene 0.91 (0.79 -1.00)  0.002*** 

acetophenone 0.40 (0.12 – 0.61) 0.36 

terpinene 0.34 (0.13 -0.54) 0.13 

  

Table 3: Area under receiver operating curves for different volatile organic compounds to in classifying patients with 
NAFLD cirrhosis versus control subjects. AUROC, area under receiver operating characteristic. 
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Figure 4: Receiver operating characteristic curve for a combination of D-limonene and dimethyl sulfide in 
classifying patients with NAFLD cirrhosis versus non-cirrhotic NAFLD. AUC, area under the ROC curve; 
NAFLD, non-alcoholic fatty liver disease; CI, confidence interval.  

 

 

 

 

 

Volatile organic compounds AUROC (95% 
confidence interval) 

p-value 

Dimethyl sulfide 0.87 (0.74 -1.00) <0.001*** 

D-limonene 0.83 (0.68 -0.98)  0.002** 

acetone 0.81 (0.63 -0.99) 0.005 

 

Table 4: Area under receiver operating curves for different volatile organic compounds for classifying patients with 
NAFLD cirrhosis versus differentiate NAFLD cirrhosis from non-cirrhotic NAFLD. AUROC, area under receiver 
operating characteristic. 
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Highlights 
 

 

• Metabolic dysfunction in liver disease is reflected in the bio-composition of exhaled 

breath 

• Specific volatile organic compounds can be measured in breath samples (volatomics) and 

have diagnostic potential in chronic liver disease 

• Levels of alfa-terpinene, dimethyl sulfide and D-limonene in exhaled breath may be used 

to stratify patients with non-alcoholic fatty liver disease 

 


