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Optimal Photon Counting Receiver for
Sub-Dead-Time Signal Transmission

Shenjie Huang, Sarrah M. Patanwala, John Kosman, Robert K. Henderson, and Majid Safari

Abstract—In many practical scenarios, single-photon
avalanche diodes (SPADs) are good solutions to improve the
performance of optical communication systems due to their high
sensitivity to photon arrival. SPAD receivers can be implemented
in large arrays to achieve higher data rates and additional
protection against background light; however, they suffer
from a significant intersymbol interference (ISI) if the SPAD
dead time is comparable or larger than the symbol duration,
i.e., sub-dead-time signal transmission. This work proposes a
novel detection scheme designed for high-speed SPAD-based
systems to effectively mitigate the degradation induced by ISI.
Different from traditional receivers, in the proposed scheme,
the information extracted from both the counts and arrival
times of photons are utilised for the optimal symbol detection
in the presence of the non-linear and random ISI effect due
to dead time. Our extensive numerical and experimental
results demonstrate the superiority of the proposed photon
time information based detection (PTID) scheme in terms of
both BER performance and background light tolerance of the
communication link. In addition, a linear approximation of
the SPAD-based channel is investigated, which illustrates that
the traditional equalization methods are effective under some
specific circumstances.

I. INTRODUCTION

In recent decades, there has been a growing interest in
employing photon counting detectors in both fiber [2] and
optical wireless communication (OWC) systems [3], [4] to im-
prove the sensitivity of receivers. To realize a photon counting
receiver, the commonly used avalanche photodiode (APD) can
be biased above the breakdown voltage so that it operates at
Geiger mode. By doing so, a single-photon counting avalanche
diode (SPAD) can be achieved which has the advantages of
single photon sensitivity and picosecond temporal resolution.
Large arrays of SPADs that can be employed for imaging and
high-speed communication applications are now commercially
available. In [3], A reconfigurable SPAD receiver is designed
for OWC systems with a sensitivity of −31.7 dBm at 100
Mbit/s and 450 nm. In [2], the experimental results of a SPAD-
based optical fiber receiver are presented and a measurement
of -55.7 dBm and -51.6 dBm sensitivities at a data rate
of 50 Mbit/s and 100 Mbit/s for a BER of 2 × 10−3 is
achieved. However, the corresponding quantum limits are -73
dBm and -70 dBm, respectively. Therefore, the sensitivities
of the currently available SPAD receivers are still far away
from the quantum limit, which is mainly due to the limited
fill-factor and photon detection probability (PDP). In addition,
the achievable data rate of the SPAD-based communication
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systems is strongly limited by the signal nonlinearity caused by
dead time when SPADs become inactive for a period of several
nanoseconds [5]. The dead time typically happens following
the avalanche caused by each photon detection when the SPAD
is getting quenched. There are two types of quenching circuits
in SPAD receivers, i.e., active quenching (AQ) and passive
quenching (PQ). The dead time of AQ SPADs is constant,
whereas for PQ SPADs the photons arriving during the dead
time can extend its duration [6].

In the literature, the performance degradation of SPAD-
based communication systems introduced by dead time is
not well investigated. Some studies assume that the received
photon count is an ideal Poisson distributed random variable
(RV) with the incident photon rate as its mean. However,
this model completely ignores the dead time effect and as a
result the BER performance is significantly overestimated as
shown in [4]. Some other works employ the effects of dead
time by assuming that the detected photon count is a Poisson
random variable with an effective average rate defined based
on the dead time [7], [8]. There are two issues regarding this
assumption. Firstly, these effective rates are derived based on
the renewal theory assuming that the incident photon rate is
fixed [9], therefore they are approximately accurate only when
the symbol duration is much longer than dead time. For high
speed sub-dead-time data transmission where the symbol time
is even less than the dead time, such approximation is not
valid [10]. Secondly, by using this assumption, the intersymbol
interference (ISI) caused by dead time is ignored. In practical
high speed SPAD-based systems, the effect of dead time is
more crucial particularly when the dead time started in a
symbol extends to the subsequent symbols causing an ISI
effect that cannot be ignored.

In [10], the accurate probability mass functions (PMFs)
of the detected photon counts for both PQ and AQ SPADs
have been derived; however, in this work the ISI effect is
also ignored by assuming that the SPAD is always active
at the beginning of each symbol duration to simplify the
mathematical derivations. To mitigate the ISI induced by
dead time, the SPAD receivers are usually operated under the
condition that the symbol time is longer than or approximately
equal to the dead time [11]. For high-speed sub-dead-time
SPAD-based systems, some equalization methods, e.g., linear
equalizer [5] and decision-feedback (DFE) equalizer [11],
[12], originally designed for RF systems with linear channel
expressions have been applied to SPAD-based OWC systems;
however, SPAD-based channels are inherently nonlinear and
require novel detection techniques to reduce the impacts of
ISI based on the special characteristics of SPADs, which is



2

Fig. 1. The photon arrival sequence where TL is the last photon arrival time
before the considered symbol, Tst and Tst + Tc denote the start and the end
of the symbol, respectively, Tc refers to the symbol duration, and TF is the
end of the avalanche caused by the photon arrives at TL.

still a research gap in the literature to the best of authors’
knowledge.

SPADs can provide not only the photon count but also the
accurate photon arrival time information, which we term as
photon time information (PTI) [13], [14]. However, most of
the works investigating the application of SPAD in communi-
cation only focus on its photon counting capability [3], [11].
Inspired by time-correlated single photon counting (TCSPC)
techniques, a time correlation encoding method is considered
in [14] which explores SPAD’s capability of recording photon
arrival times. Although such system has good resilience to
background light, its achievable data rate is quite limited. In
our recent work [1], a novel detection technique for SPAD-
based sub-dead-time communication systems using both the
photon count and the PTI is proposed and through the nu-
merical results, the effectiveness of the proposed detection
method is demonstrated. In this work, we extend the work [1]
by further investigating the application of the proposed tech-
nique in the systems with large SPAD array. In addition, the
effectiveness of the traditional equalization methods in SPAD-
based systems is also discussed. Furthermore, using the SPAD
receiver presented in [15], the performance improvement of the
proposed technique is also demonstrated experimentally.

The rest of this paper is organized as follows. The effect
of ISI is shown in Section II. The proposed ISI mitigation
method is presented in Section III. The linear approximation
of the SPAD channel is investigated in Section IV. Later, the
numerical results and discussion are presented in Section V
and the experimental results are shown in Section VI. Finally,
we conclude this paper in Section VII.

II. PHOTON COUNTING IN THE PRESENCE OF ISI

Since SPAD is extremely sensitive to photon arrivals, when
a photon triggers an avalanche event, an electrical pulse signal
at the output of SPAD can be detected. However, due to
the existence of dead time, the SPAD remains blind to the
incident photons for a short period of time after a photon is
detected. An example of the detected photon arrival sequence
is plotted in Fig. 1, where each pulse is generated by a photon
detection. The AQ SPAD has a fixed dead time τd and hence
the output pulse width is fixed; whereas, the dead time of the
PQ SPAD extends when extra photons arrive during the dead
time. Therefore, for PQ SPAD, the pulse width is not fixed
but the minimum pulse width would be still equivalent to τd.
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Fig. 2. The conditional PMF of the detected photon count for an AQ
SPAD array with N = 16 in the presence and absence of ISI. OOK signal
is transmitted. The symbol period is normalized and the photon rates (for
each individual SPAD) for bit ‘1’ and bit ‘0’ transmission are 2 and 0.1,
respectively.

Consider a symbol of counting period of length Tc that starts
at the time Tst as shown in Fig. 1. In the presence of ISI,
the SPAD is inactive at the beginning of the counting duration
until the end of the pulse generated by the last photon arrived
in the previous symbol. We denote this inactive period at the
beginning of the current counting period as the block time TB.
For AQ SPADs, TB can be expressed as

TB = max {τd − (Tst − TL) , 0} , (1)

where TL is the last photon arrival time before the start
of the counting period. Equation (1) indicates that with the
information of the last photon arrival time available, the block
time of the current symbol can be determined. On the other
hand, for PQ SPADs, where the dead time is not fixed, TB
can be written only based on the falling edge, TF , of the last
pulse initiated in the previous counting period as

TB = max {TF − Tst, 0} . (2)

In the presence of ISI, the SPAD is actually only active
from Tst + TB rather than Tst. Since both TL and TF are
random variables, the ISI introduces a random inactive time
which changes the statistics of the photon count during the
considered symbol duration. In practical systems, SPAD arrays
are commonly employed to improve the dynamic range and
mitigate the saturation issue of such sensitive receivers at the
expense of a lower fill-factor and hence less photon detection
efficiency (PDE). Similar to the case of single SPAD, ISI
also influences the statistics of the total photon counts in
an array. In Fig. 2, the effect of ISI can be observed by
comparing the conditional PMFs of the received photon count
in the presence and absence of ISI when NRZ OOK signals
are transmitted. This simulation result is achieved by firstly
generating a relatively long photon arrival sequence based on
the theory of Poisson process. When dead time induced ISI is
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Fig. 3. The schematic of the proposed PTI-based detection technique.

considered, which is the case in practical scenario, this photon
arrival sequence is filtered by dead time from the beginning
to the end and the detected photon for each symbol is then
counted. In contrast, when the dead time induced ISI is not
considered, it is assumed that the SPAD is ready to collect
photon at the beginning of each symbol. The original photon
arrival sequence is filtered under this assumption and then
counted. One can observe that with relatively small dead time,
e.g., τd = 0.5Tc, the PMFs of photon count in the presence of
ISI deviate slightly from those in the absence of ISI. However,
for a relatively large dead time, e.g., τd = Tc, a significant
mismatch between them are observed. This mismatch of PMFs
is due to the fact that for longer dead time, the probability that
the number of SPADs being inactive at the beginning of the
current symbol increases. As a result, the ISI effect becomes
more severe and the probability of detecting smaller photon
counts increases. It is also demonstrated in Fig. 2 that the
ISI results in smaller average value and larger variance of the
detected photon count. These effects of ISI on the statistics
of the detected photon count can significantly increase error
probability in communication systems. Although large arrays
of SPADs can be effective in combating ISI effects [3]–[5],
ISI would still remain significant especially when the incident
photon rate is high and/or when the dead time is comparable or
longer than the symbol time. This is because the ISI induced
by dead time is not only related to the dead time but also to
the incident photon rate (both signal and background photon
rates).

III. OPTIMAL DETECTION USING PHOTON TIME
INFORMATION (PTI)

A. Receiver with Small SPAD Array

SPADs can provide both photon counts and accurate photon
arrival times [13], [14]. Inspired by this capability, in this
work we propose a new detection technique using both photon
counts and their arrival times. We consider OOK modulation
as an example, although the proposed idea can also be applied
to systems with other modulation schemes.

The schematic of the proposed PTI-based detection scheme
(PTID) is plotted in Fig. 3. The photon arrival sequences of
the SPAD array are sent to the FPGA for extracting the total
photon count and PTI. Using the PTI, the block time can
be calculated based on (1) and (2) for AQ and PQ SPADs,
respectively. Note that for the array-based receiver, the block
times of SPAD elements are different from each other and

hence a block time vector, TB, including the block times of
individual SPADs, is required. The block time information
is then used to calculate the decision threshold kth and the
signal is demodulated by comparing the photon count with
kth. Different from the traditional system in the literature
in which only photon count information is employed for
communication and the decoding threshold is fixed, in our
system the threshold for each symbol is calculated using the
instantaneous block time information and is adapted to the
instantaneous ISI status. Hence the degradation introduced by
ISI effects can be minimized using such adaptive decision
threshold. The proposed detection scheme requires that the
receiver can provide the photon arrival pulse signals from each
SPAD in the array. It is worth noting that such SPAD receiver
has been practically realised as presented in [15].

For high-speed optical communication systems, in order
to achieve higher data rates, it is very likely that the links
are operated in the sub-dead-time regime where the symbol
duration is equal or less than the dead time. In such sub-
dead-time regime, a SPAD can at most detect one photon in
a symbol duration. Therefore, the photon counting process
becomes a Bernoulli process. For an array receiver, in the
absence of ISI, the total photon count can be modeled as a
Binomial distributed RV because of the identical probability
of detecting a photon in every SPAD [16]. However, this is not
the case in the presence of ISI, since each SPAD has different
probability of detecting a photon. Considering the nth SPAD
in the array, the conditional PMF of the photon count is given
by

pk(k|TB,n, λ)=

{
exp [−λ (Tc − TB,n)] , k = 0,

1− exp [−λ (Tc − TB,n)] , k = 1,
(3)

where λ refers to the average received photon rate per SPAD.
Thus, the total photon count of the SPAD array i.e.,

K =

N∑
n=1

kn, (4)

is the sum of Bernoulli RVs with different probabilities of
success which are defined by the block time vector TB =
{TB,1, TB,2, · · · , TB,N}T . The total photon count K hence
should follow the Poisson Binomial distribution with PMF

pK(K|TB, λ) = (5)∑
ϑ∈FK

∏
i∈ϑ

1− exp[−λ (Tc − TB,i)]
∏
j∈ϑc

exp [−λ (Tc − TB,j)] ,

where Fk is the set of all subsets of K integers that can
be chosen from {1, 2, · · · , N}, N denotes the number of
SPADs in the array, and ϑc is the complement of the
subset ϑ. Note that the effect of ISI generally relates the
likelihood statistics of each symbol to previous symbols.
However, as explained earlier, the ISI effect due to dead
time can be fully characterized by the vector TB; that is,
pK(K|TB, λ, λ

(−1), λ(−2) · · · , λ(−i)) = pK(K|TB, λ) where
λ(−i) denotes the photon rate of the symbol sent i symbol
period before. Considering the Maximum-likelihood (ML)
decoding, the system would decode the transmitted bit as ‘1’
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when
pK(K|TB, λ0) < pK(K|TB, λ1), (6)

holds where λ0 and λ1 denote the received photon rates per
SPAD when bit ‘0’ and bit ‘1’ are transmitted, respectively,
and decode the transmitted bit as ‘0’ otherwise. The above
ML decoding strategy can be simplified to a comparison
between the detected photon count and a threshold. This
optimal decision threshold kth is given by the crosspoint of
pK(K|TB, λ0) and pK(K|TB, λ1), which can be calculated
numerically. Note that for data transmission with equiprobable
messages the ML detector minimizes the probability of error
[17]. The error probability conditioned on TB can then be
expressed as

Pr(e|TB) =
1

2

kth∑
k=0

pK(K|TB, λ1) +
1

2

+∞∑
kth

pK(K|TB, λ0).

(7)
The threshold kth is adaptively determined by the instanta-
neous block time TB. This is similar to the signal detection
in a fading channel where the detection threshold can be
adaptively changed to minimise the BER performance based
on the instantaneous fading status [18]. The average BER can
be achieved by averaging the instantaneous error probability
Pr(e|TB) over the random TB.

B. Receiver with Large SPAD Array

Since the computational complexity of the Poisson Binomial
PMF (5) increases dramatically with the increase of the array
size N [19], the ML decoding based on this exact PMF is
only applicable to small SPAD array. For those systems with
large SPAD arrays, the approximation of the total photon count
statistics based on the moment matching should be applied so
that the decoding threshold kth can be efficiently calculated.
Invoking the PMF of the total photon count given in (5), the
first two moments can be calculated as

µK(TB, λ)=

N∑
n=1

1− e−λ(Tc−TB,n), (8)

σ2
K(TB, λ)=

N∑
n=1

[
1− e−λ(Tc−TB,n)

]
e−λ(Tc−TB,n). (9)

In the literature, different approximations of the Poisson
Binomial distribution have been investigated such as Gaussian
[19] and Binomial approximations [20]. Based on the moments
given in (9), both of these two distributions can be employed
to give analytical expressions of threshold kth which signifi-
cantly reduces the computational complexity. In the practical
implementation, people can try both approximations and se-
lect the one with better performance. For OOK transmission
considered in this work, the photon rate when bit ‘0’ is sent
is usually low due to the low background light intensity when
proper optical filters are employed. In effect, the probabilities
of receiving one photon at different SPADs of the array for
bit ‘0’ are small and are close to each other although not
exactly equal due to ISI. It is known that when the probabilities
of success are close to each other, the sum of the Bernoulli

random variables can be accurately approximated as Binomial
distribution [20]. As a result, Binomial distribution is a more
suitable approximation to model the photon counts of bit ‘0’
and hence is employed in the following discussion.

With Binomial approximation, the conditional PMF of the
photon count (5) can be rewritten as

pBK(K;TB,λ)=

(
N

k

)[
µK(TB, λ)

N

]k[
1−µK(TB, λ)

N

]N−k
. (10)

The analytical expression of the decoding threshold can be
achieved by calculating the crosspoint of the two conditional
PDF pBK(K;TB,λ0) and pBK(K;TB,λ1) which is given by

kBth =
N ln N−µK(TB,λ1)

N−µK(TB,λ0)

ln µK(TB,λ0)(N−µK(TB,λ1))
µK(TB,λ1)(N−µK(TB,λ0))

. (11)

The signal detected can then be decoded by comparing the
received photon count with the above threshold.

IV. LINEAR CHANNEL APPROXIMATION

The effects of dead-time induced ISI in SPAD-based system
is different from that in traditional communication systems. In
traditional systems, in the absence of noise the current received
symbol is simply the linear combination of the transmitted
symbols [17]. As a result, the effect of channels can be de-
scribed as a lowpass filter so that various equalization methods
can be employed to compensate the lowpass effects. However,
this is not the case in a SPAD based channel. As shown in
(5), for a SPAD based receiver, the statistics of the detected
photon count for each symbol duration is directly related to the
instantaneous block time TB rather than being linearly related
to the previous transmitted symbols. Due to the random effect
of block time TB, ISI acts as an additional source of noise.
Moreover, even the average effect of ISI is nonlinearly related
to the previous symbols due to the nature of dead time. Hence
the channel itself cannot be expressed in a lowpass form and
the commonly used equalizers designed for linear channels
cannot achieve optimal performance in SPAD-based systems.
In fact, they are only effective when the SPAD channel can
be approximated as a linear one. Some works in the literature
have shown the performance improvement of SPAD systems
by employing the equalizers designed for traditional linear
channels [5], [11], but none of them have investigated the
reason why traditional equalizers can improve the performance
of SPAD receiver. In this section, we discuss the conditions
under which the SPAD channel can be approximated as a
linear channel where the traditional equalization methods are
effective.

In the absence of shot noise, the received signal is defined
by the average detected photon count of the Poisson Binomial
distribution in a symbol duration given in (8) as

K =

N∑
n=1

1− exp [−λ (Tc − TB,n)] ,

= N −Ne−λTcX, (12)
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Fig. 4. The ARSD for systems with different SPAD array size and dead
time where the received photon rates when bit ‘0’ and bit ‘1’ are sent are
λ0 = 0.1/τd and λ1 = 1/τd + λ0, respectively.

where

X =
1

N

N∑
n=1

eλTB,n . (13)

considering that the block time TB,n in (13) is random in gen-
eral, K is a random variable. Therefore, even in the absence
of shot noise, the SPAD channel is neither deterministic nor
directly related to the transmitted symbols. However, in order
to ensure that a linear equalization is applicable, a necessary
condition is that K can be approximated as a deterministic
function of the transmitted symbols. The level of randomness
of K given the current and previous C transmitted symbols
can be quantified using the so-called average relative standard
deviation (ARSD). This metric is defined as the normalized
standard deviation of K averaged over the 2C+1 possible com-
binations of the current and previously transmitted symbols
and is given by

ARSD =
1

2C+1

2C+1∑
i=1

σK,i
µK,i

. (14)

where σK,i and µK,i refer to the standard deviation and
mean of K, respectively, for the ith combination. Smaller
ARSD indicates that K is more deterministic under the given
C + 1 transmitted symbols. Ideally, K can be expressed as
a deterministic function of transmitted symbols at relatively
large C where ARSD approaches zero.

An example of the ARSD for SPAD receivers with different
sizes of SPAD arrays and dead times is plotted in Fig. 4. One
can see that with the increase of C, ARSD firstly decreases
and then saturates but never equals to zero. This emphasizes
that K cannot be expressed as a fully deterministic function
of previous transmitted symbols and remains random while
its statistics would be related to a limited number of previous
transmitted symbols. It is also presented that ARSD reduces
with the increase of N . This is because with larger N , the
random block time is averaged over the SPADs which results
in less randomness of X and hence more deterministic K.
This is similar to the application of receiver diversity in faded

communication channels [18]. In addition, it is also shown
in Fig. 4 that with the increase of the dead time to symbol
duration (DTSD) ratio, the ARSD increases and larger value
of C is required for the ARSD to be saturated. This is because
for larger dead time or less symbol time, the effects of the
random ISI becomes more significant. In summary, the average
received photon count K can only be approximated as a
function of the transmitted symbols on the condition of large
SPAD array size and small DTSD ratio.

When K can be approximated as a deterministic function
of transmitted symbols, one can employ some equalization
techniques to mitigate the effect of ISI. The simplest and most
commonly used equalization is the linear equalizer. Here we
investigate the design of the linear equalizer in the SPAD based
system and discuss its performance. Note that as mentioned
above K is inherently not a linear deterministic function of the
transmitted symbols, hence a linear equalizer might only be
effective under some specific conditions. Denote the received
photon count in the jth symbol is Kj . Passing the received
signal through the equalizer with C ′ + 1 weight taps, the
estimation of the jth symbol is given by

Îj =

C′∑
i=0

αiKj−i, (15)

where {αi} with i = 0, · · · , C ′ are the tap weight coefficients.
Ignoring the noise and random ISI, the expected received
number of photons in the jth symbol duration is given by

Ij = N(1− e−λjTc). (16)

Hence the optimal weight coefficient {αi} of the linear equal-
izer can be determined by mean-square-error (MSE) criterion.
The MSE is expressed as

ψ = E
(
Ij − Îj

)2
= E

(
Ij −

C′∑
i=0

αiKj−i

)2

. (17)

It can be shown that ψ is a convex function with respect
to the weight coefficients. Therefore, the optimal coefficients
minimizing the MSE can be found by solving a set of linear
equations

∂ ψ

∂ αn
= 0, with n = 0, · · · , C ′. (18)

Based on (17) and after some algebraic manipulations, the
equation set can be expressed as

E
[(
Ij−

C′∑
i=0

αiKj−i
)
Kj−n

]
= 0, with n = 0, · · · , C ′. (19)

To solve the equation set, we can rewrite it in a matrix form
as [17]

Φα = ζ, (20)

where α = [α0, α1, · · · , αC′ ]T , Φ is the (C ′ + 1)× (C ′ + 1)
correlation matrix given by

Φ=

 E (KjKj) E (Kj−1Kj) . . . E (Kj−C′Kj)
...

...
. . .

...
E (KjKj−C′) E (Kj−1Kj−C′) . . . E (Kj−C′Kj−C′)
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and the vector ζ is given by

ζ = [E (IjKj) ,E (IjKj−1) , · · · ,E (IjKj−C′)]
T
. (21)

Note that both Φ and ζ can be achieved through numerical
simulation. As a result, the optimal equalizer tap weights can
be expressed as

α∗ = Φ−1ζ. (22)

Fig. 5 shows an example of the normalized MSE (NMSE)
denoted as ψ/E(Ij)2 versus the background photon rate under
different dead times and array sizes. One can observe that with
the increase of SPAD array size and the decrease of dead time,
lower NMSE can be achieved which means that the equalizer
can work more effectively under such conditions. This is
mainly due to the less randomness of K given the previous
transmitted symbols as mentioned above. In addition, it is also
shown in Fig. 5 that with the increase of background light
intensity, smaller NMSE is experienced as the SPAD channel
is quite sensitive to the background light. When background
light is small, the effect of the SPAD channel to bit ‘0’ differs
more from that to bit ‘1’ and hence the channel becomes more
non-linear. As a result, using a single linear filter to equalize
the channel effect becomes less effective.

In summary, Our numerical results show that the traditional
equalization methods designed for linear channel can be
most effective in SPAD-based systems under the following
conditions: the size of the SPAD array is large; the dead
time to symbol duration is small; and the background light
intensity is relatively large. It is worth noting that although the
performance of traditional equalization is worse than that of
the proposed detection technique (as shown later in Section V
ans Section VI), its advantage lies in its simplicity. Therefore,
when the SPAD channel can be approximated as a linear one,
applying such linear equalization techniques is more suitable.

V. NUMERICAL RESULTS

We first present some simulation results to show the ad-
vantage of our proposed detection scheme over the state of
the art. Four systems are considered in the simulation study.
The first system refers to the ideal system considering dead
time but ignoring the ISI effect. The second system (denoted
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Fig. 6. The BER versus the average received signal photon rate per SPAD for
the considered systems under various background photon rate where N = 8
and τd/Tc = 1.1.

as the system with ES) considers the ISI effect and uses
a fixed decision threshold, determined by exhaustive search
based on the histogram of the received photon count over
all possible symbol transmissions, to minimize the BER.
This demodulation method is widely used in experimental
works in the literature [4]. However, the drawback of such
system is that a long pilot signal should be transmitted to
establish the accurate photon count histogram. For a real-time
communication link with stochastic channel status (e.g., free-
space optical communication through turbulent atmosphere),
the histogram needs to be measured repeatedly every channel
coherence time which might significantly reduce the effective
transmission rate. The third system (denoted as linear EQ)
refers to the one employing the linear equalization discussed
in the last section. In this work, the tap weight coefficients
of the equalizer is calculated based on (22) with C ′ = 30.
Alternatively, some practically used adaptive linear equalizers
based on various algorithms such as least mean squares (LMS)
and recursive least squares (RLS), or DFE equalizer can also
be used although they demonstrate similar performances based
on our investigations. In Section VI, we demonstrate this
point by including the performance of a DFE equalizer as an
additional benchmark. Note that for system with linear EQ,
the decoding threshold is still determined through exhaustive
search which results in the minimal BER. However, different
from the system with ES where the exhaustive search is
directly applied to the histograms of the received photon
counts, for systems with linear EQ the search is applied to the
signals after equalization. The fourth system refers to the one
employs the proposed PTID technique using PTI as shown
in Fig. 3. The employed SPAD is assumed to be actively
quenched and the dead time τd is set as 10 ns.

Figure 6 shows the BER performance of the considered four
systems with respect to the average received signal photon rate
per SPAD λsn for a small SPAD array with N = 8. Note that
by definition the received photon rate is λ1 = 2λsn+λ0 and λ0
when bit ‘1’ and bit ‘0’ are sent, respectively, where λ0 denotes
the background light photon rate. It is clear that even under
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Fig. 7. The BER versus the average received signal photon rate per SPAD
for the considered systems where the background photon rate is λ0 = 103

kHz, N = 256 and τd/Tc = 10.

very weak background photon rate λ0 = 1 kHz, the system
operates in the absence of ISI outperforms the other three in
the presence of ISI, which reveals that the degradation caused
by ISI is non-negligible when the dead time increases just
beyond the symbol duration even under such weak background
light intensity. Also, it is shown that the system with ES is
similar to that with the proposed optimal detection technique
and both perform better than that with the linear equalization.
This is mainly due to the small SPAD array size and weak
background light intensity as mentioned in Section IV. When
significant background light is considered, e.g., λ0 = 104 kHz,
ISI effects become more severe and the performance of all
systems are degraded. Hence, the advantages of the system
with the proposed technique over the system with ES becomes
obvious now. One can see that under such background light
intensity, for the system with proposed scheme, an average
signal photon rate of 2 × 105 kHz (1.81 photons/bit/SPAD)
is required to achieve a BER of 1.3 × 10−3; whereas for
the system with ES, the corresponding required signal photon
rate increase to 106 kHz (9 photons/bit/SPAD). Hence a 7 dB
increase of receiver sensitivity can be achieved by using the
proposed scheme. With the increase of the signal photon rate,
higher sensitivities are expected to be achieved. In addition, the
performance of the system with traditional linear equalization
now becomes better than that of the ES; however, it is still
worse than that of the proposed system. This is because
although higher background light is considered here which
is beneficial to the linear approximation of the SPAD channel
as explained in the last section, the small size of the SPAD
array still prohibits the effectiveness of the linear equalization.

Fig. 7 and Fig. 8 plot the corresponding BER performance
for a SPAD receiver with a much larger array (N = 256) under
various background light intensities. With such a large SPAD
array, the receiver is more tolerant to the ISI introduced by
dead time. Therefore, we can select a large DTSD ratio, e.g.,
τd/Tc = 10, to boost the data rate. Considering a dead time
of 10 ns, this ratio indicates that the system operates at a data
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Fig. 8. The BER versus the average received signal photon rate per SPAD for
the considered systems where the background photon rate is λ0 = 3 × 104

kHz, N = 256 and τd/Tc = 10. The inset figure shows an example of the
decoding threshold histogram.

rate of 1 Gbit/s. However, in this scenario since calculating
the exact PMF of the Poisson Binomial distribution (5) is
computationally complicated, we employed the approximated
decoding threshold (11) to demodulate the signal. Note that
if the Poisson Binomial PMF can be efficiently calculated
based on which the optimal demodulation threshold can be
achieved, the BER performance using our proposed system
would be even better than the one shown in these two figures.
As presented in Fig. 7, with relatively weak background light
intensity, i.e, λ0 = 103 kHz, the performance of the proposed
system is comparable to that with ES in low average signal
photon rate regime; however, with the increase of average
signal photon rate, the proposed system outperforms that
with ES. In addition, the performance of the system with
equalization performs even worse than that with ES. This is
because although here a large SPAD array is considered, due
to the weak background light intensity, the SPAD channel
is far from linear and hence equalization is not effective as
mentioned in Section IV. Note that for all of the systems
considering ISI, with the increase of λsn, the BER firstly
decreases and then increases. This is because in small λsn
regime, increasing signal power increases average received
signal when pulse signal is sent which improves the BER
performance; however, large λsn also results in stronger ISI
and higher probability of complete blockage when pulse signal
is sent. As a result, the BER performance tends to increase
when signal photon rate increases beyond a specific threshold.
Similar behaviour can also be observed for systems with
small SPAD array. In practical systems, one should keep the
signal photon rates below such threshold to get a decent BER
performance whereas using less transmitted power. In fact, the
asymptomatic BER performance in high λsn for SPAD array
is close to that of the system with single SPAD.

Under stronger background light intensity, i.e., λ0 = 3×104
kHz, the performance of all the systems considered are de-
graded as shown in Fig. 8. However, in this scenario the system
with equalization outperforms that with ES in most of the
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Fig. 9. The BER versus the number of SPADs in the array for considered
systems under various background light intensities where λsn = 2×105 kHz
and τd/Tc = 10.

considered range of signal photon rate thanks to the stronger
background light intensities which makes the linear approx-
imation of the SPAD channel more accurate. For instance,
when λsn is 1.6×105 kHz (0.16 photons/bit/SPAD), the BER
of the system with equalization is 1.2 × 10−3 whereas the
corresponding BER for system with ES increases to 4×10−3.
In addition, the system with the proposed detection scheme
always outperforms its counterparts. For example, under the
aforementioned signal photon rate, the BER of the proposed
system is only 2.3 × 10−4. If a BER threshold of 10−3

is considered, both ES and linear EQ fail to achieve this
requirement and only the proposed detection scheme can
satisfy this requirement by choosing an average signal photon
rate of 105 kHz. Therefore, the proposed system can efficiently
improve the resilience of the receiver to the background light.
In addition, the inset of Fig. 8 plots an example of the decoding
threshold histogram for ES and the proposed scheme. One can
observe that ES method selects a fixed decoding threshold
determined by the photon counting statistics; however, in the
proposed method, by further involving the PTI, the optimal
decoding threshold can be calculated which changes symbol-
by-symbol.

Figure 9 shows the BER versus the size of array in a
AQ SPAD receiver for the considered systems under two
aforementioned background light intensities. It is presented
that with the increase of SPAD array size, better BER per-
formance can be achieved. For a specific target BER, the
proposed detection method requires a significantly smaller
SPAD array size than the benchmark schemes. For instance,
when λ0 = 103 kHz, in order to achieve a BER of 10−3, with
our proposed method only 96 SPADs is required; however, the
corresponding required SPAD sizes increase to 140 and 256
for systems with ES and linear EQ, respectively.
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Fig. 10. The BER versus the number of PQ SPADs in the array for considered
systems under various background light intensities where λsn = 7×104 kHz
and τd/Tc = 5.

Although all of the above numerical results are based on the
AQ SPAD receiver, the proposed method can also be applied
for the receiver with PQ SPADs by using (2) to determine
the block time vector. Accordingly, Fig. 10 shows the BER
performance of PQ SPAD receivers versus the size of the
receiver array. Note that because PQ SPAD is paralyzable
and hence performs worse than AQ SPAD, in this figure a
lower DTSD ratio 5 is considered to avoid excessive ISI
effect. Fig. 10 shows that, compared to the results of AQ
SPAD receiver, a relatively larger gain is observed for the
proposed method compared to its counterparts. This is because
PQ SPADs inherently experience more ISI induced by the dead
time, which can be more effectively mitigated by the proposed
detection method. In the next section, a more comprehensive
performance analysis of PQ SPAD receivers will be presented
using both numerical and experimental results.

Finally, in order to provide some insights on the improve-
ment of achievable data rate by using the proposed PTI-
based detection scheme, the achievable data rate and maximum
DTSD ratio versus the number of SPADs in the array is plotted
in Fig. 11. In this figure, AQ SPAD is considered and a
relatively high background and signal light intensity is selected
so that the dead time induced ISI effect is significant. A
target BER of 10−3 is employed and the considered DTSD is
restricted to a range from 1 to 20 with small discrete steps. For
each SPAD array size, the maximum DTSD ratio satisfying
the BER target is recorded. From Fig. 11, it is shown that
for different considered detection methods, with the increase
of array size, larger DTSD (or equivalently larger data rate)
can be achieved. In addition, it is also presented that in order
to achieve higher DTSD ratio a larger array size is required,
as expected. The system with ES is strongly affected by the
excessive dead time induced ISI and the data rate improvement
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Fig. 11. The achievable data rate and maximum DTSD ratio versus the
number of SPADs in the array for considered systems under a target BER
of 10−3 where λ0 = 3× 104 kHz and λsn = 2× 105 kHz.

through the increase of array size is quite limited. Even with
the N = 256, the maximum DTSD ratio is only 1.74 which
corresponds to an achievable data rate of 174 Mbps for a
considered dead time τd = 10 ns. The achievable data rate
can be increased by using linear EQ or the proposed PTI-based
detection scheme. However, the proposed method significantly
outperforms linear EQ due to its better capability of mitigating
the dead time induced ISI. For instance, with N = 256 a
maximum DTSD ratio of 5.73 can be achieved by using linear
EQ which refers to a data rate of 573 Mbps, but by employing
the proposed method, the DTSD ratio can increase to 16.4
which corresponds to a data rate 1.64 Gbps.

VI. EXPERIMENTAL RESULTS

In this section, we implement our proposed detection
scheme experimentally using the passive-quenched SPAD re-
ceiver presented in [15]. In the test SPAD chip, the SPAD
pitches vary from 8 µm to 30 µm are available. A maximum
number of 128 SPAD digital outputs with 1 GHz sampling
rate connected to the Xilinx Kintex-7 FPGA can be read out
simultaneously. For each output signal, every rectangular pulse
refers to a detected photon arrival and the minimal pulse width
refers to the dead time under which the SPAD is inactive. In
this work, the SPAD array with pitch size 15 µm and fill factor
60% is considered and a sub-array of 112 SPADs is employed
for communication. The PDF of the pulse width of 112 outputs
under two different incident light intensities is shown in Fig.
12. It is presented that under weak light intensity (Fig. 12(a)),
the average pulse width is around 21 ns which indicates that
the considered SPAD array has an average dead time of 21
ns. For passive quenched SPAD, any photon arriving during
the dead time would extend the dead time, therefore longer
pulse width can be observed when the light intensity becomes
stronger as shown in Fig. 12(b).

The schematic diagram of the experiment setup is shown in
Fig. 13. A 635 nm red LED is driven by a Keysight 33600A
waveform generator which generates an analogue 60 Mbps
unipolar OOK signal with rectangular pulse shaping. The
SPAD photon detection probability (PDP) at this wavelength is
14.4% [21]. Considering that the symbol duration is Tc = 16.7
ns, the system is operated in the sub-dead-time regime with
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Fig. 12. The PDF of the pulse width under (a) weak light intensity and (b)
relatively stronger light intensity.

a DTSD ratio of 1.26. The experiment is operated in dark
condition. Besides the LED transmitting signal, another 635
nm LED is employed in the setup as a background light
source to provide variable ambient light intensity. Both signal
and ambient lights are received by the SPAD receiver and
the optical power is also measured by a power meter. The
112 digital output of the FPGA is sent to the computer for
the offline signal processing, where the rising edges of each
output can be extracted to get the photon count signal of
each SPAD. The aggregated photon count signal can then be
determined by combining all of the count signals together.
It is worth noting that the above method of achieving the
aggregated signal is equivalent to the OR tree combination
but with an ideal pulse shortener [22]. Since in this method
there is no loss of counts due to the combining network,
the achieved performance outperforms the other systems with
more practical combining techniques. By using the aggregated
photon count signal and after synchronisation, the detected
photon count within each symbol duration can be achieved
by summing the photon counts in each symbol time. The
BER performance of the considered traditional demodulation
schemes using either the exhaustive search or the equalization
can then be measured. To be in line with other SPAD-based
experimental works where the DFE equalization is employed
[11], [23], besides the linear equalizer the performance of the
DFE equalizer is also presented in this section as an additional
benchmark. The RLS algorithm is employed for the DFE
equalizer and the number of feedforward and feedback weights
are 41 and 15, respectively.

In order to measure the performance of the proposed
detection scheme for PQ SPADs, besides the rising edge
information, the falling edge information of the digital outputs
should be also extracted from which the block time vector
can then be obtained using (2). Since the LED used in the
setup is only with a 3-dB bandwidth of around 20 MHz, the
generated electrical OOK signal is strongly influenced by the
LED low-pass frequency response and the pulse shape of the
received signal at the SPAD receiver is far from the transmitted
rectangular pulse shape. As a result, when a pulse symbol
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Fig. 13. The schematic diagram of the experiment setup.

is sent, the photon rate λ1 is not fixed during each symbol
time and across different symbols as assumed in the previous
discussion. In this case, we can consider a range of λ1 and use
the λ1 in (6) that minimizes the BER based on an initial pilot
transmission before communication. Note that if the employed
light source is with relatively large bandwidth compared to the
signal bandwidth, e.g., laser source, this non-constant photon
rate issue is negligible and the searching of the optimal photon
rate for the calculation of threshold can be avoided.

To justify the measured BER performance, the correspond-
ing simulation results with the same parameter settings should
be presented. To make sure that the LED low-pass frequency
response is also accurately involved in the simulation, a 50:50
non-polarizing beam splitter cube is utilised in this experiment
as shown in Fig. 13 to illuminate a Thorlabs APD 430A
with the signal light and a Keysight MSOX3102T scope is
employed to record the signal optical waveform. The recorded
signal optical waveform is sent to the computer to generate the
simulation result. Since the recorded optical waveform suffers
from the shot and thermal noise from the APD receiver, it is
averaged for 30 times before sending the computer to suppress
these noises. At the computer, the recorded waveform is then
properly scaled so that its average optical power matches with
that received by the SPAD receiver. With the estimated optical
waveform at hand, the Poisson process can be used to simulate
the photon arrival seen by the SPAD. It is worth noting
that if the accurate frequency response and the relationship
between the optical intensity and forward voltage of the LED
are available, it is possible to generate the optical waveform
received by the SPAD receiver through pure simulation rather
than using the above compromised method.

Fig. 14 plot the measured and simulated BER performance
for different systems versus the signal photon rate (bottom x-
axis) and the incident light intensity (top x-axis) when the
background light intensity is 15.36 µW/cm2 which corre-
sponds to a photon rate of 9.77 × 103 kHz to each SPAD.
The performances of the two systems with equalizers are
quite close. From both measured and simulated results, it is
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Fig. 14. The measured and simulated BER versus the average received signal
photon rate per SPAD (bottom x-axis) and the corresponding incident light
intensity (top x-axis) at a data rate of 60 Mbps. An array of 112 SPADs is
employed and the measured background light intensity is 15.36 µW/cm2

which refers to a photon rate of λ0 = 9.77× 103 kHz.

demonstrated that, comparing with the traditional schemes,
the proposed detection method can achieve a significant BER
improvement for PQ SPADs. For instance, based on the mea-
surement, although the systems with equalizers can achieve
better BER performance compared to the one with ES, their
minimum achievable BER is only around 10−2. However,
the proposed system can achieve a BER below 10−3 when
the signal photon rate (light intensity) is between 2.2 × 104

kHz (34.6 µW/cm2) and 5.54 × 104 kHz (87.1 µW/cm2).
One can also observe that generally the simulated results
outperform that of the measured ones. This is mainly due
to the limited FPGA sampling rate of the SPAD receiver
which is not considered in the simulation. Since the proposed
system utilises the photon arrival time for decoding, it is more
sensitive to the limited sampling rate. Therefore, a relatively
larger gap between the simulated and measured results can be
seen.

In Fig. 15 the measured BER performance under a weaker
background light intensity 8.06 µW/cm2 is also presented.
Due to the less background photon rate, better BER perfor-
mance for all systems compared to Fig. 14 can be observed.
This weaker background light also causes the SPAD channel
to become more non-linear which results in the performance
of linear EQ inferior to that of ES in high signal photon
rate regime. The experimental result shows that none of the
traditional schemes can achieve a BER below 10−3 over the
considered range of the signal photon rates; whereas, for
the proposed system when the signal photon rate is above
1.79 × 104 kHz (28.1 µW/cm2), a BER below 10−3 can
always be guaranteed and BER values as low as 1.6 × 10−5

can be achieved. From Fig. 14 and Fig. 15, the sensitivity
of the employed SPAD receiver with the proposed detection
technique can also be calculated. When the background light
intensity is 8.06 µW/cm2, considering a BER target of below
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Fig. 15. The measured and simulated BER versus the average received signal
photon rate per SPAD (bottom x-axis) and the corresponding incident light
intensity (top x-axis) at a data rate of 60 Mbps. An array of 112 SPADs
is employed and the measured background light intensity is 8.06 µW/cm2

which refers to a photon rate of λ0 = 5.13× 103 kHz.

10−3, a sensitivity of −51.42 dBm is achieved, which is
similar to the −51.2 dBm sensitivity reported in the work
[2] for 50 Mbit/s NRZ OOK signal transmission with a higher
BER target of 2×10−3 and in dark conditions. The sensitivity
of the considered system can be significantly improved by
operating the system in dark environment and by reducing the
dead time. Measuring the highest sensitivity and the achievable
data rate of the proposed SPAD based scheme will be the
subject of a future work.

VII. CONCLUSION

In this work, the effect of dead-time-induced ISI on SPAD-
based optical wireless communication systems is investigated.
A novel detection technique is designed to mitigate the
performance degradation caused by ISI in which the PTI
is incorporated to provide an optimal detection scheme. By
comparing the proposed PTI-based detection scheme with the
state-of-the-art schemes, it is demonstrated that the proposed
scheme significantly improves BER and achievable data rate,
which effectively enhances the tolerance of the SPAD-based
receiver to the background light. In particular, it is demon-
strated that when background and signal photon rates are
3× 104 kHz and 2× 105 kHz, respectively, with an array of
256 SPADs and a target BER of 10−3, the proposed PTI-based
scheme can achieve a data rate of 1.64 Gbps; whereas, the
corresponding data rate when the linear equalizer is employed
is only 573 Mbps. In addition, the linear approximation of
the SPAD channel is investigated. It is demonstrated that only
under some specific conditions, the channel can be effectively
equalized using a linear model. Finally, the superiority of
our proposed scheme is demonstrated through experimental
results.
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