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Abstract 

To deal with the huge number of novel protein-coding variants identified by genome and exome 

sequencing studies, many computational variant effect predictors (VEPs) have been developed. Such 

predictors are often trained and evaluated using different variant datasets, making a direct comparison 

between VEPs difficult. In this study, we use 31 previously published deep mutational scanning 

(DMS) experiments, which provide quantitative, independent phenotypic measurements for large 

numbers of single amino acid substitutions, in order to benchmark and compare 46 different VEPs. 

We also evaluate the ability of DMS measurements and VEPs to discriminate between pathogenic and 

benign missense variants. We find that DMS experiments tend to be superior to the top-ranking 

predictors, demonstrating the tremendous potential of DMS for identifying novel human disease 

mutations. Among the VEPs, DeepSequence clearly stood out, showing both the strongest correlations 

with DMS data and having the best ability to predict pathogenic mutations, which is especially 

remarkable given that it is an unsupervised method. We further recommend SNAP2, DEOGEN2, 

SNPs&GO, SuSPect and REVEL based upon their performance in these analyses. 

Keywords: missense mutations; multiplexed assays of variant effect; saturation mutagenesis; protein 

structure; computational phenotype prediction 
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Introduction 

Many genetic disorders can be attributed to sequence changes in protein-coding regions of DNA, yet 

pathogenic mutations account for only a tiny fraction of the overall genetic variation seen in humans. 

A typical pair of unrelated individuals will differ by approximately one nonsynonymous single 

nucleotide variant (SNV) per protein-coding gene (Rauch et al, 2012), while de novo mutations lead 

to roughly one new nonsynonymous SNV per child not observed in either parent (de Ligt et al, 2012; 

Epi4K Consortium et al, 2013; Fitzgerald et al, 2015; Neale et al, 2012). The vast majority of 

mutations identified by sequencing are of unknown phenotypic consequence, i.e. we are unsure if they 

have significant phenotypic effects or are functionally neutral. Thus, the ability to distinguish 

damaging variants from those that are benign is of tremendous importance for the diagnosis and 

treatment of human genetic disease. 

In order to prioritise potentially pathogenic variants, many different computational variant effect 

predictors (VEPs) have been developed. These predictors make use of various protein sequence, 

structural, evolutionary and biophysical features to produce an effect score for the variant. By far the 

most commonly used feature is evolutionary sequence conservation and known variation (Table 

EV1). This is the only information used by several methods such as SIFT (Sim et al, 2012) and 

DeepSequence (Riesselman et al, 2018). Other predictors integrate additional features including 

biophysical properties of amino acids, protein functional annotations and epigenetic data (Rentzsch et 

al, 2019). Protein structural information, derived from experimentally determined models, is also used 

by several methods (Adzhubei et al, 2010; Capriotti & Altman, 2011), although there is conflicting 

information regarding whether its inclusion significantly improves predictor performance (Carraro et 

al, 2017). 

While many of these approaches are able to make impressive predictions on test datasets, and are 

widely applied in both clinical and research environments, there remain a number of unresolved 

sources of biases and inaccuracies. For example, when employing a supervised machine-learning 

method, overfitting of the training set can become an issue. Instead of learning general rules, the 

predictor learns the niche peculiarities and noise of its training set (Srivastava et al, 2014). For this 

reason, machine-learning techniques are usually subject to out-of-sample validation, whereby data not 

present in the training set is used to verify that the predictor has learned how to classify the data. 

Furthermore, when benchmarking these predictors with alternative datasets, they should contain as 

few mutations used during training and validation as possible. Biased representation within these data 

sets will skew the reported accuracy of methods trained and benchmarked with them (Schaafsma & 

Vihinen, 2018). 

Grimm et al. describe two types of data circularity that can bias the assessment of predictor accuracy 

(Grimm et al, 2015). Type 1 circularity occurs when the data from the training set is re-used for 
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assessing predictor performance. This can occur due to overlap between commonly used variant 

databases. The result is a better apparent performance than if a more appropriate validation set were 

used. Metapredictors (trained using the outputs of other predictors) amplify this issue, as the methods 

they are built from often use different overlapping training sets. Type 2 circularity results in the 

weighting of predictor output by biases in the training examples. This can come about in VEPs due to 

ascertainment biases in the training set (long-studied proteins will have more annotated mutations 

than recently analysed ones). Another source is the association of certain genes with pathogenicity 

(e.g. many mutations in P53 will be damaging, while other genes may have no pathogenic mutations). 

Tools that use this information to weight their predictions can achieve excellent results on proteins 

with annotated pathogenic or benign mutations, but perform poorly when faced with unannotated 

proteins. 

An alternative to computational predictions is experimental characterisation of mutation phenotypes. 

While this can be extremely time consuming if a separate experiment is required for each mutation, in 

recent years, an assortment of approaches have been developed for the high-throughput 

characterisation of mutation phenotypes. Deep mutational scanning (DMS) experiments combine 

saturation mutagenesis of a protein with a high-throughput functional test and deep sequencing 

(Fowler & Fields, 2014). The result is a framework, allowing the design of experiments to quantify 

the functional impact of a huge number of mutations at the same time. DMS experiments could 

potentially be hugely valuable for variant prioritisation, allowing direct identification of damaging 

human variants on a large scale (Majithia et al, 2016; Matreyek et al, 2018). DMS experiments can 

also be tailored to the specific definition of protein fitness required - something which computational 

methods are not able to account for (Harris et al, 2016). Even the best performing predictors struggle 

with more complex biological concepts such as allosteric regulation (Xu et al, 2017). 

In addition to directly identifying damaging variants, another major benefit of DMS experiments is 

that they produce large variant-effect datasets that can be used to benchmark and assess the 

performance of VEPs. These are fully independent from any training and testing data used by the 

predictors (with one exception (Gray et al, 2018)). Previous studies have found that using DMS 

datasets to benchmark computational predictors resulted in reduced predictive power compared to 

other commonly used datasets, suggesting that these predictors may not be as accurate for human 

variants as previously reported (Mahmood et al, 2017). The Critical Assessment of Genome 

Interpretation (CAGI) experiment, which aims to drive innovations in VEPs frequently assesses 

predictors against novel unseen datasets (Hoskins et al, 2017) including those derived from DMS 

experiments. 

In this study, we have taken advantage of the large number of DMS experiments that have now been 

published for a variety of diverse proteins from different organisms. First, we have used these datasets 
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to perform an independent assessment and comparison of many different VEPs. Second, we have 

compared the ability of DMS experiments and VEPs to directly identify pathogenic human mutations. 

Results  

Overview of DMS datasets and variant effect predictors used in this study 

To identify DMS datasets, we performed a literature search for papers presenting such experiments 

with available data. Using search terms such as ‘deep mutational scan’, ‘fitness landscape’, 

‘massively parallel mutagenesis’ and ‘saturation mutagenesis’, we identified 31 viable DMS datasets 

(Table EV2). As shown in Fig 1, human proteins were the most numerous targets for these DMS 

experiments. Saccharomyces cerevisiae and Escherichia coli were also highly represented as they 

endogenously produce a number of model proteins, are easy to culture and maintain, and are 

amenable to several effective assays for protein activity (e.g. growth rate and two hybrid). Proteins 

from viruses were also represented from studies investigating viral adaptation through massively 

parallel mutagenesis techniques. 

There was considerable variation in functional assays applied between the DMS studies. Growth rate 

of yeast was the most common technique, and was applied to several human proteins by knocking out 

the yeast orthologue and replacing it with the human gene that is capable of rescuing the null strain 

(Weile et al, 2017). Viral replication assays, performed by quantitative sequencing after a certain time 

point, were applied to all of the viral proteins (Haddox et al, 2016; Doud & Bloom, 2016; Lee et al, 

2018; Wu et al, 2015). Survival assays involved placing the organism in hostile conditions where the 

target protein confers an advantage such as antibiotic resistance (Dandage et al, 2018; Firnberg et al, 

2014; Stiffler et al, 2015; Jacquier et al, 2013; Deng et al, 2012). Two-hybrid assays allow protein-

protein interactions to be analysed, while fluorescence can be used to investigate enzyme activity, 

protein stability or transcriptional pathway activation (Starita et al, 2015; Bandaru et al, 2017; 

Kitzman et al, 2015). Phage-display assays allow a number of protein attributes to be tested ex vivo by 

externalising the protein of interest followed by selection based on its attributes (Starita et al, 2015). 

The E. coli toxin ccdB was assayed by reverse survival, investigating its ability to restrict cell growth 

(Adkar et al, 2012). 

Each study also varied in the coverage of possible single amino acid substitutions across the entire 

protein (Fig 1). Many of the studies included only those mutations that were possible by introducing a 

single nucleotide change, reducing potential coverage of all possible amino acid substitutions by 

around 70%. Some studies focused on specific regions of the target protein. In addition, most studies 

excluded low confidence mutants from their data, i.e. those with exceptionally low sequencing counts. 

For inclusion in this analysis, we required at least 5% coverage of all possible mutations in order to 

prevent unrepresentative low coverage data from skewing the results.  
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The computational VEPs used in this study were found using a number of approaches, including the 

OMICtools database (Henry et al, 2014), identifying tools tagged with ‘variant effect prediction’ and 

searching for ‘protein variant effect prediction’ and ‘protein phenotype predictor’ using standard 

internet search engines. Priority was given to tools that featured either a web interface or an API that 

could be queried for thousands of mutations simultaneously. We also made use of the dbNSFP (Liu et 

al, 2016) database of pre-calculated predictions from multiple VEPs for the human genome 

(downloaded 2020-02-12). We split the predictors into four broad categories, based on the features 

that they use to make predictions: 

1. Supervised predictors. These predictors use a machine learning technique that relies on 

learning from labelled examples, in particular datasets of known or suspected pathogenic and 

benign variants. Different predictors make use of a variety of different machine learning 

approaches e.g. support vector machines and random forest algorithms.  

2. Unsupervised predictors. These predictors make use of an unsupervised machine learning 

technique, i.e. they are not trained using labelled pathogenic and benign variants. Instead they 

rely mostly on evolutionary conservation from multiple sequence alignments. This includes 

unsupervised clustering techniques, hidden Markov models and generative models. 

3. Empirical predictors. These predictors do not make use of any machine learning techniques, 

instead making an empirical calculation using the input data. This category also includes 

amino acid substitution matrices and many evolutionary conservation metrics. Along with the 

unsupervised predictors, they should be free from any training bias. 

4. Metapredictors. These predictors integrate other VEP results as input features, although many 

also use additional features. The metapredictors used in our study are nearly all trained using 

a supervised learning approach, with one exception (Ionita-Laza et al, 2016). To qualify for 

this category in our classification a predictor must include at least two other VEPs as input 

features, not including substitution matrices or simple conservation metrics (such as GERP, 

PhyloP or SiPhy). 

Among the DMS datasets, there are several instances of the same protein being investigated in 

different studies by different groups. Specifically, there are four independent datasets for β-lactamase 

(bla) and two each for UBI4, PTEN and BRCA1. There are also two datasets for the influenza protein 

HA, but these were from different strains, so not directly comparable. To assess the reproducibility of 

DMS and its viability as a benchmark, we calculated the Spearman’s correlation coefficient between 

the functional scores of each DMS set in the same protein. Our results (Table EV3) demonstrate a 

range of correlations from 0.94 (bla(a)/(b)) to 0.34 (PTEN(a)/(b)). The average correlations observed 

over all pairs of analyses was 0.66. Some level of variance is expected due to differences in 
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experimental method, fitness assays and conditions between experiments. Overall, the moderately 

high correlations suggest that DMS scores constitute a reasonably robust benchmark despite differing 

experimental conditions. We can also treat this correlation as a rough guide for how well we could 

expect a ‘perfect’ computational predictor to perform against DMS data from these experiments. 

We also assessed the correlation between different DMS datasets generated by the same studies. The 

purposes of these assays varied and included controls with no selection pressure, biological replicates, 

incrementally differing conditions and different fitness assays (Table EV4). Incremental changes in 

conditions tended to result in high correlations while larger alterations to conditions, assay type or 

protein partners resulted in much lower correlations between the datasets. Nonselective controls 

produced low correlations while comparison of positive to negative selection assays produced a 

negative correlation. These results indicate that interpretation of DMS results depends to some extent 

on the exact fitness assay. However certain mutations (e.g. those that destabilise the protein) are likely 

to always have an impact on fitness if a selection pressure is present. 

Assessment of variant effect predictors using DMS data 

Where possible, we applied every computational predictor to each protein in the DMS datasets, 

substituting every possible amino acid at all positions. Some predictors failed to generate results for 

some proteins; this can occur due to an insufficiently deep multiple sequence alignment, mapping 

errors or other causes depending on the predictor. In order to get a measure of relative performance 

for each predictor, we calculated the Spearman’s rank correlation between the independent DMS 

scores for each protein and the predictions of every VEP (Fig 2). We also performed the same 

analysis using Kendall’s tau (Fig EV1) which produced only minor changes in predictor ranking and 

lower average correlations. 

Given the large number of predictors that are specific to humans, we split this analysis up into human 

(Fig 2A) and non-human (Fig 2B) proteins. The top-performing predictor for each protein is labelled 

on the plot, while the full set of correlations are provided in Tables EV5-6. Table EV7 shows the 

relative ranking of each predictor using a rank score that combines the rankings for all proteins in the 

human, yeast, bacterial and viral datasets (Table EV8 shows the same using Kendall’s tau instead). 

DeepSequence was the overall top performing method for predicting DMS results in the human 

proteins, showing the highest correlations out of all predictors for ADRB2, CALM1 and PTEN(b), 

and ranking within the top five predictors for 7 of the 13 DMS datasets. It also had by far the highest 

rank score. To assess the statistical significance of this, we used a bootstrapping approach and re-

calculated the ranking by re-sampling all DMS datasets with replacement 1000 times. Strikingly we 

found that DeepSequence always ranked the highest, showing that it is statistically better than all 

other predictors (p<0.001). DeepSequence also ranked best for bacterial proteins, being the top 
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predictor for six proteins: infA, bla(b), bla(c), ccdB, haeIIIM and GmR. In contrast, DeepSequence 

produced only a moderate rank score for yeast proteins, with a high coefficient of variation. This was 

largely due to poor performance on the ubiquitin (UBI4) datasets, which reduced the overall rank 

score considerably. If the UBI4 datasets are excluded from the analysis, then DeepSequence becomes 

the second-highest ranked predictor for yeast proteins. Interestingly, DeepSequence performs poorly 

for viral proteins, ranking second to last out of all predictors tested. This is consistent with the original 

publication, where the creators report poor performance on viral proteins due to insufficient sequence 

diversity within the alignments used (Riesselman et al, 2018).  

The authors of DeepSequence tested their method using DMS datasets, including many that are 

included in our study, so it is conceivable that method hyperparameters may have been optimised to 

provide an advantage predicting data from these specific proteins. To address this potential, we 

repeated the ranking process using only DMS datasets from proteins that were not included in the 

original DeepSequence study (Table EV9). Importantly, DeepSequence still ranks top among all 

predictors, suggesting that its apparent success is not simply due to hyperparameter optimisation. 

Among the other predictors, certain supervised approaches were particularly notable. SNPs&GO 

(Capriotti et al, 2013) ranked 2nd for human and 1st for yeast proteins, although its predictions were 

relatively poor for non-eukaryotic (bacterial and viral) proteins. SNAP2 (Hecht et al, 2015) also 

performed well, ranking 3rd for human proteins and 2nd for yeast. DEOGEN2 (Raimondi et al, 2017), 

a human-specific predictor came 4th. SuSPect (Yates et al, 2014) showed good performance across 

most groups, ranking 5th for humans 3rd for bacteria and 2nd for viral proteins. REVEL was the only 

metapredictor to show notable performance, ranking 6th overall and having the highest correlation 

with the SUMO1 DMS data.  

Some predictors incorporate features derived from experimentally determined protein structures into 

their predictions. Specifically, SNP&GOs3D and S3D-PROF (Capriotti & Altman, 2011) require a 

PDB structure to be provided in order to make their predictions and use features representing the 3D 

environment of the mutation. Other predictors such as PolyPhen-2 (Adzhubei et al, 2010), DEOGEN2 

and MPC derive some features from experimental structures, but are still capable of making 

predictions without them. While these methods ranked average-to-high and achieved a number of top 

correlations with the DMS data, overall they do not perform better than the top-performing sequence-

based methods. We also find that, in proteins with partial coverage of high-resolution structures, the 

difference in performance between areas of structural coverage and areas with no coverage is 

comparable between structural methods and pure sequence-based methods (Fig EV 2). This may be 

due to regions without structures being more likely to be disordered and less conserved, and thus 

harder to characterise by conservation metrics. 
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Of all predictors, FATHMM (Shihab et al, 2013) produced the most significant outlier, generating 

predictions with by far the highest correlation for P53, but having low correlations for all other 

proteins, resulting in an overall low rank score with a high coefficient of variation. The explanation 

for this is unclear, but it may be due to overfitting of the predictor for specific proteins, given the 

enrichment of P53 mutations in human disease databases compared to many of the other proteins in 

this study. 

Different DMS datasets varied greatly in their correlations with the computational predictors. In 

particular, BRCA1, CALM1 and TPK1 among the human proteins and ccdB, Cas9 and env among the 

non-human proteins showed low correlations, even from the best predictors. As far as we can tell, this 

effect appears to be unrelated to protein coverage, dataset size or experimental methodology. For 

example, UBE2I, SUMO1, TPK1 and CALM1 were all studied by the same group using the same 

approach (growth rate in yeast) (Weile et al, 2017), yet UBE2I and SUMO1 show markedly higher 

correlations with all predictors than the others. Viral proteins also showed low correlations, and in 

fact, the simple BLOSUM62 substitution matrix (Henikoff & Henikoff, 1992) was the most highly 

correlated with the env dataset when using Kendall’s Tau (second highest when using Spearman’s). 

This indicates that the inclusion of typical training features are of less use when predicting the fitness 

of viral proteins, likely due to lack of viral representation in training sets and lack of viral sequence 

diversity in many databases used to generate multiple sequence alignments. Viral proteins may also be 

more likely to undergo adaptive evolution, thus potentially confounding conservation-based 

approaches. 

It is also interesting to note that, despite the fact that most of the predictors used in this study are 

human-specific, the top-ranking predictors for the human DMS datasets tend to be general predictors 

applicable to proteins from all species. For example, for the human DMS datasets, only one of the top 

five predictors is specific to humans whereas many of the lowest ranked predictors are human-

specific. An important contributing factor to this is may be overfitting against human mutation 

datasets for some predictors, which causes them to perform poorly against independent experimental 

phenotype measurements. In addition several of the worst predictors are also based upon nucleotide-

level constraint (GERP++ (Davydov et al, 2010), SiPhy (Garber et al, 2009), phastCons (Siepel & 

Haussler, 2005) and fitCons (Gulko et al, 2015)). These predictors ranked even lower than the simple 

BLOSUM62 and Grantham (Grantham, 1974) substitution matrices, suggesting that such approaches 

are poorly suited to predicting the protein-level effects of mutations. 

Many DMS experiments included amino acid substitutions that are not possible by single nucleotide 

changes, i.e. they are technically not missense variants. Some VEPs do not produce predictions for 

these mutations, particularly those that take nucleotide-level substitutions into consideration. 

Therefore we repeated our analysis, limiting our predictions to only those amino acid substitutions 
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that are possible by single nucleotide changes (Table EV10). The rankings remain broadly similar and 

the top-ranking method did not change for any group. 

Identification of pathogenic human mutations using DMS data and computational 

variant effect predictors 

We next investigated the ability of both DMS experiments and VEPs to distinguish pathogenic human 

missense mutations, taken from the ClinVar database (Landrum et al, 2014), from missense variants 

observed in the human population, taken from gnomAD (Karczewski et al, 2019). While some 

gnomAD variants may be damaging under certain circumstances (e.g. if associated with recessive, 

late-onset or incomplete penetrance disease), we assume that the vast majority of them should be non-

pathogenic, and therefore refer to them as “putatively benign”. Of the 11 human proteins with DMS 

datasets, 7 have known pathogenic or likely pathogenic missense variants in ClinVar as of 2019-10-25 

(93 for BRCA1, 31 for HRAS, 189 for P53, 108 for PTEN, 9 for CALM1, 5 for TPK1 and 2 for 

MAPK1). For CALM1 and TPK1, we identified additional pathogenic missense mutations in the 

literature (Banka et al, 2014; Crotti Lia et al, 2013; Jensen et al, 2018; Nomikos et al, 2018; Zhu et al, 

2019), leading to a total of 19 for CALM1 and 8 for TPK1. MAPK1 has too few recorded pathogenic 

missense variants to include in this analysis. 

For each predictor, we plotted a receiver operating characteristic (ROC) curve for classification 

performance on every protein, identifying pathogenic ClinVar mutations as true positives and the 

putatively benign gnomAD mutations as true negatives (removing any ClinVar mutations from the 

gnomAD set). We then calculated the area under the curve (AUC) for each plot as a measure of that 

predictor’s performance in classifying the data (Fig 3). We also calculated the precision recall AUCs 

(Fig EV3). Descriptions of each DMS dataset displayed in Fig 3 are provided in Table EV11. 

In the ROC analysis, an experimental DMS metric performed better than any of the 46 VEPs for four 

of the six human proteins (Fig 3 A,B,D and E), and ranked relatively high for the remaining two (Fig 

3 C and F: CALM1 and PTEN). To determine the significance of the performance of the DMS data, 

we used a bootstrapping approach and individually re-sampled the gnomAD and ClinVar datasets 

with replacement 10,000 times, re-calculating the AUC scores with the new data. DMS ranked first in 

9202 trials, while DeepSequence came top in 600 trials, REVEL in 154, MutPred in 34, SNPs&GO in 

7, SIFT4G in 2 and PhD-SNP in 1. Thus, while we cannot quite state at this point that DMS is 

significantly better than all computational predictors together (p=0.080), it clearly ranks higher than 

all VEPs in our analysis, and is significantly better than all except DeepSequence. Very similar results 

are observed for the precision recall AUCs (Fig EV3), except that the TPK1 DMS datasets changed 

from ranking 1st to 6th. 
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The DMS results for CALM1 and TPK1 were generated by the same group using the same method, 

assessing the effects of mutations on growth rate in a yeast system (Weile et al, 2017). The data 

processing pipeline used in this study penalised ‘hypercomplementing’ variants (i.e. those with fitness 

greater than the wild type) by setting the fitness to the reciprocal of the measured value. These are 

labelled as ‘flipped’ in Fig 3. Interestingly we found that while these ‘flipped’ DMS results show a 

better correlation with the outputs of VEPs than the raw DMS data (Tables EV12-13), the raw scores 

are better for directly identifying pathogenic variants (Fig 3). This suggests that VEPs in general tend 

to be predictive of a perturbation away from wild type activity (regardless of whether it is an increase 

or decrease), whereas only a decrease in activity is predictive of disease, at least for these two 

proteins. This is consistent with a recent observation that beneficial effects on protein function, as 

measured by DMS experiments, were predicted less well than detrimental effects for all four tested 

VEPs (Reeb et al, 2019). 

While the primary objective of this analysis is to compare the DMS datasets to the VEPs, it is also 

interesting to observe the relative performances of the different computational predictors in terms of 

directly identifying pathogenic mutations for the six human proteins in Fig 3. This comparison is 

limited by the fact that there is likely some overlap between the mutations used to evaluate the 

predictors here, and the mutations originally used to train some of the supervised predictors and 

metapredictors. In this regard it is especially interesting to see that the unsupervised predictor 

DeepSequence again stood out among VEPs, ranking 1st for TPK1 and CALM1, 2nd for HRAS, and 

within the top 11 predictors for all remaining proteins. This is considerably better and more consistent 

performance than any of the other computational predictors. A few other VEPs also performed well, 

but these are dominated by supervised predictors and metapredictors. Given that the training of these 

methods almost certainly included many of the mutations used in this analysis, ranking the relative 

performance of these methods will be heavily subject to any training bias and beyond the scope of this 

study to assess. 

We did notice that certain predictors performed particularly poorly on certain targets. For example, 

DEOGEN2 ranked last, by far, for BRCA1. Interestingly, however, the relative performance of 

DEOGEN2 improved markedly if only predictions of mutations with DMS measurements, which 

covers primarily just the RING domain of BRCA1 are considered (Fig EV4). This appears to be due 

to DEOGEN2 assigning extremely different weights to different domains in BRCA1, thus obscuring 

good predictions when analysing the entire protein. We also investigated other predictors with low 

AUCs for additional domain-specific effects. A further three datasets which showed a similar pattern 

were MPC on P53, VEST4 on BRCA1 and PROVEAN on BRCA1, which are all highlighted in Fig 

EV4. 

Discussion 
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The number of available genome and protein sequences has increased tremendously in the last decade 

due to advances in next-generation sequencing technologies. In this wealth of new data, we have 

discovered a large number of previously unseen coding variants of unknown functional significance. 

To assist us in analysing this new data, computational predictors have been developed, but the training 

and evaluation of these predictors often suffer from biases. DMS experiments provide an ideal 

benchmark for testing predictors, ensuring that none of the training data is included in the evaluation. 

The availability of a large number of such experimental DMS datasets has facilitated this study. 

We are aware that numerous technical and computational factors can impact the quality of data from 

DMS studies. These can stem from experimental procedure, and thus be assessed through 

reproducibility in biological replicates, or measurement uncertainty assessed by technical replicates. 

The largest source of error from DMS is encountered in the sequencing stage, where next-generation 

sequencing typically reads between 1/100 and 1/1000 bases incorrectly (Ma et al, 2019). Many groups 

adopt a barcoding strategy to address this issue, so that a multi-base unique artificial sequence is 

associated with each variant. In addition, reads below a certain quality threshold are rejected and 

variants which are present at a rate below a given detection threshold are removed. Several groups 

provide both their full fitness scores and a filter for high quality results (Mighell et al, 2018; Starita et 

al, 2015). In these cases, we find that the filtered high quality results have a higher average correlation 

with the VEPs (Tables EV12-13), as well as superior predictive power for disease mutations (Fig 3). 

Of the 46 different predictors evaluated in this study, we find that a single program, DeepSequence, 

clearly stands out from all of the others, both in terms of performance, and in terms of methodology. 

DeepSequence showed the strongest correlations with the DMS data in humans and bacteria and was 

the top computational predictor of human disease mutations. Most machine-learning methods make 

use of several features, often including some measure of sequence conservation at the site of interest, 

and then learn the patterns of these features that result in a mutation being classified as damaging or 

benign. DeepSequence makes use of deep generative models to integrate factors from the entire 

sequence at once, rather than only one or a few sites. This type of problem is largely intractable for 

traditional machine learning, given the number of parameters involved; however, DeepSequence 

overcomes this by learning the latent factors underlying the protein sequence. This approach also 

produces advantages in terms of the biases inherent in supervised methods. We can expect a machine 

learning method confronted with an example it was trained on to classify it correctly most of the time, 

producing an unrepresentative assessment of its accuracy. DeepSequence makes use of multiple 

sequence alignments and never sees labelled protein data, resulting in scores that are not biased by 

training examples. This is not to say that DeepSequence is a completely unbiased method, however. 

The scores which are generated depend entirely upon the database from which multiple sequence 

alignments are drawn. If certain sequences are under-represented, then predictions for those will be 

lower quality, such as the results we observe for viral proteins drawn from the UniRef100 database. 
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The success that DeepSequence has achieved in predicting mutation effects for human proteins show 

that deep generative models may well be the way forward in this field, removing the reliance on 

labelled datasets for making predictions. 

One of the VEPs we assessed, Envision is trained with a supervised learning approach using DMS 

data rather than labelled pathogenic and benign variants. This method uses a number of the same 

DMS sets we used in this analysis for training (BRCA1(a), HSP82, UBI4(a and b), PAB1 and bla(a)); 

thus, the ranking of this method in Table EV7 is almost certainly subject to training bias. It is 

interesting, however, that despite this advantage Envision only produces moderate overall 

performance for human DMS datasets (although it does rank 1st for TPK1). In terms of predicting 

pathogenic missense mutations, Envision performs well for BRCA1 ranking 3rd among the VEPs and 

P53, ranking 4th, but its performance is unremarkable for the other proteins. Notably, although 

Envision was not trained on a P53 dataset, it was evaluated using one (although not the same DMS 

dataset used in this study). While the approach used by Envision is innovative, assessing its 

performance with DMS has the same caveats as assessing performance of other supervised VEPs 

using pathogenic mutation databases. Thus it is notable that, despite this advantage, Envision showed 

only modest performance against the DMS data. 

Most predictors, supervised or otherwise, undergo hyperparameter optimisation, a process to tweak 

internal variables such as learning rate, network architecture or regularisation in order to obtain better 

performance. This process invariably involves repeatedly testing the predictor’s performance against a 

certain ‘test’ dataset and has potential to introduce another source of bias, even into unsupervised 

methods. Our use of DMS data to assess these methods should greatly reduce the impact of this effect 

for all methods except Envision and possibly DeepSequence, which could have conceivably been 

optimised against DMS data used in its original evaluation. Envision does not perform exceptionally 

regardless, and we show that DeepSequence still performs well when assessed using data it has 

definitely not seen (Table EV9). 

Certain DMS experiments appear to show outstanding performance at identifying disease mutations. 

It is interesting to compare performance with respect to the experimental phenotypes used, as the 

utility of an experimental phenotype for identifying pathogenic mutations should be related to the 

mechanism by which mutations cause disease. We note that those DMS experiments based upon 

competitive growth assays appear to perform particularly well, ranking above all computational 

predictors for three of the four proteins where they are available.  For BRCA1, where there are DMS 

datasets based upon three different experimental phenotypes, the growth-rate-based assay (Findlay et 

al, 2018) performs much better than those based upon yeast two-hybrid or E3 ubiquitin ligase activity 

(Starita et al, 2015). Growth rate is likely to be a very general experimental phenotype that will reflect 

any loss of function occurring at a molecular level. In contrast, if some of the pathogenic BRCA1 
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mutations acted by some mechanism other than perturbation of its interaction with specific binding 

partners (BARD1) or disrupting E3 activity, this could explain the underperformance of the DMS data 

based upon these alternate phenotypes. Interestingly, however, the HRAS DMS data, which is also 

superior to all computational predictors, is based upon a two-hybrid probe of its interaction with 

RasGAP (Bandaru et al, 2017), suggesting that disruption of this interaction is reflective of the 

molecular mechanisms underlying disease.  

PTEN is also noteworthy, as it too has different DMS datasets available based upon different 

experimental phenotypes. The screen for the PTEN(b) dataset assesses the disruption of an artificial 

gene circuit in yeast, essentially probing phosphatase activity. This dataset is superior to all but four 

VEPs, suggesting it is reasonably reflective of molecular disease mechanisms. In contrast, the 

phenotypic screen for PTEN(a) measures protein abundance in the cell by fluorescence of EGFP 

bound to the protein (Matreyek et al, 2018). This technique, called VAMP-seq, identifies 

thermodynamically unstable variants; however, this may fail to capture disease mechanisms acting 

through interaction disruption and loss or gain of function unrelated to destabilisation. Indeed, it was 

noted in this study that dominant-negative variants were not significantly different from wild type, 

consistent with our previous observation that dominant-negative mutations tend to be very mild at the 

protein structural level (McEntagart et al, 2016). Thus, great care must be taken when selecting an 

experimental phenotype. In the absence of a better phenotypic assay specifically related to a known 

disease mechanism, experiments based upon growth may be the most general way of probing loss of 

protein function, and thus the most useful for predicting disease. 

Our results in analysing the predictive capability of DMS datasets largely recapitulates the results 

presented in the original studies. The CALM1 dataset (Weile et al, 2017) is reported to have superior 

precision-recall performance than PolyPhen-2 and PROVEAN, which we also find (for the raw scores 

rather than the flipped scores). The TPK1 dataset (Weile et al, 2017) allowed complete separation of 

the neutral and disease alleles as did PolyPhen-2 and PROVEAN, but only after additional filtering 

for recessive disease alleles, which we did not perform. The BRCA1(a) dataset (Starita et al, 2015) is 

used by the authors to train a model to predict homology-direct DNA repair rescue, however 

predictions are primarily made outside of the region of DMS coverage which we are unable to assess. 

BRCA1(b) (Findlay et al, 2018) is reported by the authors to separate pathogenic and benign 

mutations in ClinVar almost perfectly, a result which we also see in our analysis. The PTEN(a) 

(Matreyek et al, 2018) dataset is stated to identify upwards of 90% of PTEN pathogenic variants, 

although no false positive rate is given since no PTEN variants were officially classified as benign. 

Again, our results are similar, given the high precision-recall AUC of the PTEN(a) dataset but the 

considerably lower-ranked ROC AUC indicates a significant false positive rate. Finally the PTEN(b) 

authors (Mighell et al, 2018) employed a similar approach to us, using gnomAD variants to stand-in 



15 

for benign substitutions. Their results indicate that their data has a superior positive predictive value 

than PROVEAN, SIFT and PolyPhen-2 which we also find. 

The two most commonly used VEPs are probably PolyPhen-2 and SIFT, which are both still very 

widely used in variant prioritisation. Neither showed exceptional performance in this study, ranking 

14th and 25th against the human DMS data (although SIFT4G, a genomic-conservation based 

implementation of the SIFT algorithm (Vaser et al, 2016) ranked 9th). Therefore, we recommend other 

VEPs based upon our analyses. Unfortunately, DeepSequence is very computationally intensive and 

could be quite difficult for a typical end user to run. It also does not have defined disease thresholds; 

these would need to be assessed on a protein-by-protein basis, likely by analysis of putatively benign 

(e.g. gnomAD) variants. We therefore highlight SNAP2, DEOGEN2, SNPs&GO and SuSPect, which 

also tended to perform well against the DMS datasets, and have simple-to-use web interfaces. We 

further recommend REVEL - although it lacks a web interface, it has been pre-calculated for all 

human chromosomes and is available online to download. We suggest that these methods would make 

good choices for routine variant prioritisation. Importantly, however, they all showed large variation 

in their performance between different proteins, suggesting that one should still not rely too much on 

the results of any single predictor. 

While evolutionary conservation is widely accepted to be the most predictive feature used in variant 

effect prediction, some VEPs also integrate features derived from experimentally determined protein 

structures (PolyPhen-2, S3D-PROF, SNP&GOs3D, DEOGEN2 and MPC). It is interesting that the 

inclusion of protein structural models did not appear to be particularly useful for the VEPs. In 

principle, since disease mechanisms can often be explained by protein structural effects (Steward et 

al, 2003) one might expect that protein structure should be useful. It may be that the value of 

evolutionary information simply dwarfs any contribution from the inclusion of structure, i.e. if a 

mutation is damaging at a structural level, this is likely to be reflected in the evolutionary 

conservation of that residue. Moreover, many pathogenic mutations are not highly damaging at a 

protein structural level, e.g. those associated with a dominant-negative effect in protein complexes 

(Bergendahl et al, 2019) or those that affect transcription factor binding specificity (Williamson et al, 

2019). It is possible that future strategies that take into consideration the diverse molecular 

mechanisms underlying human genetic disease and the unique structural properties of individual 

proteins will be able to make better use of the huge amount of protein structural data now available. 

 The value of DMS data for directly identifying pathogenic mutations is especially exciting, based on 

the results we observed here. Given the proper choice of experimental phenotype, DMS experiments 

are likely to be better than (or at the very least competitive with) the best computational VEPs. The 

applicability of DMS data for direct variant prioritisation is currently limited by the small fraction of 

human protein residues for which DMS experiments have been performed. In the coming years, as 
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more proteins are studied and experimental strategies are improved, we expect that the utilisation of 

such data for the identification of damaging variants will become routine. 

Methods 

Selecting DMS datasets for correlation analysis 

Most of the DMS studies analysed provided multiple fitness maps for the protein of interest. 

Depending on the study, this was due to replicates in differing conditions (e.g. multiple antibiotic 

concentrations), different functional assays or quality filtering of the results. As our interest was to see 

how well VEPs could replicate the results of DMS experiments, for proteins with multiple datasets 

available from a single study, we selected the fitness map with the highest average Spearman 

correlation to all predictors to assess in Fig 2 and Table EV7. Where a quality threshold was given, 

separating high and low quality results, we tested all results, and high quality filtered results. We did 

not investigate imputed results or those generated by predictive models trained on the DMS fitness 

maps. 

Structure selection 

The SNP&GOs3D VEP along with S3D-PROF require a protein structure to be provided in order to 

generate results. Where possible, we selected an X-ray crystallography structure with a resolution 

≤2.5Å and selected the structure with greatest coverage of the DMS results for that protein. Otherwise 

we selected the highest resolution structure available. A full list of the structures and chains used for 

these predictors is provided in Table EV14. 

Calculating rank scores 

Rank score is defined as the mean, normalised correlation over all proteins, given by the following 

formula: 

𝑅 =  
∑

𝑐 − 𝑐𝑚𝑖𝑛
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝑚

𝑚𝑥
 

where c is each correlation for a specific protein, cmin is the minimum correlation for each protein and 

cmax is the maximum correlation for each protein. This represents the correlation, normalised to a scale 

between 1 for the highest ranking method and 0 for the lowest. This is then summed across all 

proteins (m) for the same method, and divided by the number of proteins for which this method 

generated a result (mx), in order to normalise for instances where a predictor failed to generate results 

for a certain protein. Where multiple DMS datasets are present for a single protein, we averaged the 

normalised correlations of each predictor between these datasets, and treated the resulting values as 

scores from a single protein. 
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Coefficient of variation is calculated from the normalised correlations, before the mean is taken. It is 

the standard deviation of these values across all proteins, divided by the mean. This represents the 

variation in predictor rank between different proteins. 

It should be noted that rank scores are only comparable within the set of proteins that were used to 

calculate it, nor does it convey any information about predictor accuracy. The rank score metric can 

only be used for relative ranking within a set of proteins. 

Human mutation datasets 

Data was retrieved from gnomAD v2.1 by searching for each of the human genes at 

https://gnomad.broadinstitute.org. Because CALM1 had only 8 missense variants in gnomAD v2.1, 

we also included an additional 3 missense variants from gnomAD v3.0 (for CALM1 only). We did 

not filter for allele frequency. Each gene was also searched for in the ClinVar database at 

https://www.ncbi.nlm.nih.gov/clinvar. Data was filtered so that only missense mutations labelled as 

‘pathogenic’ or ‘likely pathogenic’ were present. 

Plotting ROC and precision recall curves 

To plot the ROC curves, mutations present in the gnomAD dataset were taken as true negatives, while 

mutations present in the ClinVar dataset were taken as true positives. Mutations present in both sets 

were removed from the gnomAD set. The ‘roc_curve’ and ‘auc’ functions for the sklearn python 

package were used to calculate the true positive rate (TPR) and false positive rate (FPR) and the 

AUC. As some predictors utilise inverse metrics and thus produce an AUC under 0.5, we multiplied 

the predictions of all such methods by -1 to bring the value above 0.5; this is equivalent to inverting 

the TPR and FPR. Precision-recall curves were calculated using the ‘precision_recall_curve’ and 

‘auc’ functions from the sklearn package. A list of methods with inverted scores was retained from the 

ROC calculations. The scores from these methods were deducted from one to retain comparability. As 

precision-recall curves are sensitive to class balance, we removed methods with less-than complete 

coverage of the DMS mutations within the ClinVar and gnomAD datasets from the analysis. We also 

plotted individual curves for DMS assays in the same protein with differing coverage of the available 

ClinVar and gnomAD mutations. 

Bootstrapping 

To calculate statistical significance, we utilised a bootstrapping methodology and applied it to both 

the VEP ranking analysis using DMS data and the ROC curve calculation. For the ranking analysis, 

we re-sampled mutations from each protein with replacement 1000 times and re-calculated the rank 

scores. Our p-value for the top-ranking method was therefore the number of times it did not produce 

the top rank score, divided by 1000. The ROC curve bootstrapping was carried out using the same 

https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar
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method with 10,000 replicates except the ClinVar and gnomAD mutations were sampled individually 

to retain class balance and ensure that there was no chance one class could be lost from the analysis. 

The p-value for one method performing significantly better than another was the number of times it 

underperformed the second method, divided by 10,000. 

Data Availability 

The datasets containing all variant effect predictions and DMS measurements used in this study are 

available at Figshare. 

Variants from all organisms: https://doi.org/10.6084/m9.figshare.12369359.v1   

Human pathogenic and putatively benign variants: https://doi.org/10.6084/m9.figshare.12369452.v1  
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Figure legends 

Figure 1. Coverage of possible mutations by DMS experiments. 

The percentage of all amino acid substitutions covered by each DMS experiment. The total number of 

mutations assessed by each DMS experiment is indicated on the right. Where multiple datasets exist 

for a single protein, sequential letters are used to identify them. 

Figure 2. Correlations between computational VEPs and DMS measurements. 
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Spearman’s correlation calculated between all variant effect predictions and DMS datasets. The top-

performing predictor for each protein is labelled on the plot. This analysis is split into (A) human and 

(B) non-human proteins. 

Figure 3. Identification of pathogenic missense variants by DMS datasets and VEPs. 

ROC AUC values for DMS datasets and VEPs in distinguishing between pathogenic missense 

variants from ClinVar and putatively benign variants from gnomAD for six human disease genes (A-

F). The numbers of variants in each class are indicated on the plot. The different DMS datasets for 

each protein are described in Table EV7. 

Expanded view figure legends 

Figure EV1. Correlations between computational VEPs and DMS measurements using 

Kendall’s Tau. 

Same as Fig 2, but using Kendall’s Tau instead of Spearman’s correlation. This analysis is split into 

(A) human and (B) non-human proteins. 

Figure EV2. Spearman’s correlation between DMS results and VEP predictions within and 

outside of areas covered by protein structures.  

We assess ADRB2 (77% DMS coverage), BRCA1(b) (64% DMS coverage) and P53 (68% DMS 

coverage) using three predictors that incorporate some structural information (DEOGEN2, MPC and 

PolyPhen2_HumDiv) and predictors that do not use structures (SIFT4G and SNPs&GO).  This figure 

shows that, while predictions tend to be much better for regions covered by known protein structures, 

a similar trend is observed for predictors that do and do not use structures, suggesting that the 

inclusion of structural information does not markedly improve the performance of VEPs.  

Figure EV3. Assessment of the identification of pathogenic missense variants by DMS datasets 

and VEPs using precision-recall curves. 

Precision-recall AUCs for DMS datasets and VEP predictions distinguishing between pathogenic 

missense variants from ClinVar and putatively benign missense variants from gnomAD. Separate 

plots have been drawn for DMS assays where they do not cover the same variants to maintain class 

balance. The sizes of both classes are indicated on the plot. The different DMS datasets for each 

protein are described in Table EV11. 

Figure EV4. Domain-specific effects observed in certain VEPs. 

The distribution of predictions made by VEPs that demonstrated different domain weightings within a 

single protein for ClinVar and gnomAD variants. (A) MPC scores for P53 variants. (B) DEOGEN2 
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scores for BRCA1 variants. (C) VEST4 scores for BRCA1 variants. (D) PROVEAN scores for 

BRCA1 variants. 
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