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RESEARCH ARTICLE Open Access

Epigenomics and genotype-phenotype
association analyses reveal conserved
genetic architecture of complex traits in
cattle and human
Shuli Liu1,2, Ying Yu2, Shengli Zhang2, John B. Cole1, Albert Tenesa3,4, Ting Wang5, Tara G. McDaneld6, Li Ma7*,
George E. Liu1* and Lingzhao Fang1,3,7*

Abstract

Background: Lack of comprehensive functional annotations across a wide range of tissues and cell types severely
hinders the biological interpretations of phenotypic variation, adaptive evolution, and domestication in livestock.
Here we used a combination of comparative epigenomics, genome-wide association study (GWAS), and selection
signature analysis, to shed light on potential adaptive evolution in cattle.

Results: We cross-mapped 8 histone marks of 1300 samples from human to cattle, covering 178 unique tissues/cell
types. By uniformly analyzing 723 RNA-seq and 40 whole genome bisulfite sequencing (WGBS) datasets in cattle,
we validated that cross-mapped histone marks captured tissue-specific expression and methylation, reflecting
tissue-relevant biology. Through integrating cross-mapped tissue-specific histone marks with large-scale GWAS and
selection signature results, we for the first time detected relevant tissues and cell types for 45 economically
important traits and artificial selection in cattle. For instance, immune tissues are significantly associated with health
and reproduction traits, multiple tissues for milk production and body conformation traits (reflecting their highly
polygenic architecture), and thyroid for the different selection between beef and dairy cattle. Similarly, we detected
relevant tissues for 58 complex traits and diseases in humans and observed that immune and fertility traits in
humans significantly correlated with those in cattle in terms of relevant tissues, which facilitated the identification
of causal genes for such traits. For instance, PIK3CG, a gene highly specifically expressed in mononuclear cells, was
significantly associated with both age-at-menopause in human and daughter-still-birth in cattle. ICAM, a T cell-
specific gene, was significantly associated with both allergic diseases in human and metritis in cattle.
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Conclusion: Collectively, our results highlighted that comparative epigenomics in conjunction with GWAS and
selection signature analyses could provide biological insights into the phenotypic variation and adaptive evolution.
Cattle may serve as a model for human complex traits, by providing additional information beyond laboratory
model organisms, particularly when more novel phenotypes become available in the near future.

Keywords: Comparative epigenomics, GWAS enrichment, Trait-relevant tissues, Human-cattle comparison

Background
Understanding genetic and biological mechanisms under-
lying complex traits (e.g., causal variants and their corre-
sponding tissues at specific physiological stages) is a main
theme of research in the field of genetics and biology. In
the past decade, genome-wide association studies (GWAS)
have revealed thousands of genomic regions associated
with a wide range of complex traits and diseases in human
and other species [1–3]. However, the vast majority of
GWAS hits locate outside protein-coding regions, hinder-
ing their biological interpretations and medical applica-
tions [4], while reflecting the important roles of regulatory
regions in phenotypic diversity and adaptive evolution [5–
7]. Therefore, researchers have put great efforts into the
annotation of regulatory elements (e.g., promoters and en-
hancers) across multiple tissues and cell types in human
and model organisms, such as ENCODE projects in hu-
man, mouse, and Drosophila [8–10] and human Roadmap
Epigenomics Project [11]. By integrating such functional
annotations with GWAS from large cohorts (e.g., UK bio-
bank), investigators gained novel biological insights into
the genetic architecture underlying complex traits and dis-
eases in human [12–14]. For instance, Finucane et al. ob-
served a significant association of central nervous system
cells with body mass index and smoking behavior, through
estimating the heritability enrichment of cell type-specific
elements across multiple complex phenotypes [12]. Road-
map Epigenomics Consortium demonstrated that GWAS
signals of late-onset Alzheimer’s disease were unexpect-
edly and significantly enriched in enhancers of immune
cell types rather than brain tissues [11]. However, in live-
stock and other non-model organisms, lack of com-
prehensive functional annotations across multiple
tissues and cell types severely limits our biological in-
terpretations for their phenotypic diversity and adap-
tive evolution, although numerous genomic variants
have been detected for thousands of complex pheno-
types and positive selection in those animals [3]. The
Functional Annotation of Animal Genomes consor-
tium (FAANG), still in its early phase, aims to gener-
ate a comprehensive catalogue of regulatory elements
for domestic and non-model organism species [15].
By constructing the first map of regulatory elements
in the livestock species, we recently showed that
GWAS signals of multiple complex traits were

significantly enriched in active promoters and en-
hancers in bovine rumen epithelial primary cells [16].
The observation that epigenomes are generally conserved

across species [17–21] facilitated the emergence of com-
parative epigenomics. This opened a new avenue to explore
the biological basis of complex outcomes and adaptive evo-
lution in the target species (e.g., cattle and swine) by bor-
rowing functional annotations from well-studied species
such as humans and mice. For example, Zhou et al. re-
ported that the primary sequence conservation drove the
conservation of tissue-specific DNA methylation among
human, mouse, and rat [22]. Ebert et al. showed that pre-
dicted epigenomes by cross-species mapping could identify
tissue-specific expression in the target species [23]. We
thereby hypothesized that comparative epigenomics in con-
junction with large-scale GWAS could enable us to explore
the biological basis underlying complex traits of economic
importance and positive selection in cattle. In addition,
Holstein cattle has a unique population structure (e.g.,
strong selection and high inbreeding) and a large amount
of phenotypic records measured with high accuracy [24,
25], including growth, health, and fertility traits. These may
make Holstein cattle a potential animal model for studying
certain human complex traits and diseases. Recently, by
comparing sperm methylomes between human and Hol-
stein cattle, we demonstrated that genomic variants of
morphology-relevant traits were consistently and signifi-
cantly enriched in the evolutionarily conserved hypomethy-
lated regions in human and cattle [26]. Furthermore, the
rapidly reduced immune and reproductive capacity of dairy
cattle has been observed during the strong selection for
milk production over the past decades [27]. Using these
cattle resources, it is possible to extrapolate genomic
changes associated with immune and reproduction in cattle
to further advance human biomedical researches.
In this study (Fig. 1), we first cross-mapped 1300 epi-

genomes (i.e., eight distinct histone marks) from human
to cattle, including 178 tissues and cell types. We then val-
idated cross-mapped epigenomes by analyzing experimen-
tally generated ChIP-seq data of histone marks (n = 4),
RNA-seq (n = 723) and whole genome bisulfite sequen-
cing (WGBS; n = 40) in cattle. Through integrating cross-
mapped epigenomes with 45 GWAS datasets (n = 27,214)
and selection signature (Run 6 of the 1000 Bull Genome
Project) in cattle [28], we for the first time identified

Liu et al. BMC Biology           (2020) 18:80 Page 2 of 16



relevant tissues or cell types for economically important
traits and artificial selection in cattle. We further explored
the shared genetic and biological basis of complex traits
and diseases between cattle and human by similarly exam-
ining GWAS of 58 complex traits and diseases (n = 128,
848) in human. Our results highlight that comparative
epigenomics together with GWAS and selection signature
provides novel biological insights into the phenotypic vari-
ation and adaptive selection in cattle. The large-scale
genotype-phenotype associations in cattle could in turn
contribute to biomedical researches in human, which may
provide additional information beyond laboratory model
organisms, particularly when more novel phenotypes be-
come available in the near future.

Results
Cross-species mapping of epigenomes from human to
cattle
To predict epigenomic states in cattle, we retrieved a total
of 1300 human epigenomic datasets from public resources

(i.e., ENCODE project [8] and the Epigenomic RoadMap
[11]), covering 178 unique tissues and cell types. The ana-
lyzed data included ChIP-seq of eight histone modification
marks: H3K4me3 (transcriptionally active promoters),
H3K9ac (actively transcribed promoters), H3K27ac (active
promoters or enhancers), H3K4me2 (active promoters or
enhancers), H3K4me1 (active or primed enhancers),
H3K36me3 (actively transcribed regions), H3K27me3
(polycomb repression), and H3K9me3 (heterochromatin).
We observed that distributions of all predicted histone
marks around transcription start sites (TSS) and transcrip-
tion terminal sites (TTS) in cattle were similar to those
originally observed in humans, providing evidences for the
conservation of epigenomes between human and cattle
(Additional file 1: Fig. S1A). Among these histone marks,
H3K4me3 showed the highest transferring efficiency, of
which an average of 79.2% was transferred from human to
cattle, followed by H3K27ac (74.2%), while H3K9me3 had
the lowest transferring efficiency, of which only 26.8% was
transferred on average (Fig. 2a). These findings support

Fig. 1 Schematic overview of current study. We retrieved human epigenome data, including eight histone marks (H3K4me1, H3K4me2, H3K4me3,
H3K9me3, H3K9ac, H3K27ac, H3K27me3, and H3K36me3), from Encode and Roadmap, covering more than 100 tissues and cell types. We
transferred the epigenome data from human to cattle using crossMap (1). We then validated the predicted epigenomes using measured ChIP-
seq, 723 RNA-seq samples, and 40 whole genome bisulfite sequencing (WGBS) data in cattle (2). We detected relevant tissues for 45 complex
traits and selection signature by integrating predicted tissue-specific histone marks with large-scale genome-wide association study (GWAS) in
cattle. We further detected relevant tissues for the 58 matched complex traits/diseases in human (3) and explored the shared genetic architecture
underlying complex traits between cattle and human (4)
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that since the divergence of human and cattle from their
common ancestor, their genome sequences of active regu-
latory elements (e.g., promoters and enhancers) have been
evolutionarily conserved, whereas repeat-rich regions of
constitutive heterochromatin have evolved rapidly. In
the subsequent analyses, we thus focused on three
evolutionarily conserved histone marks that have

distinct functions on transcriptional activation, includ-
ing H3K4me3, H3K27ac, and H3K36me3.
By clustering tissues and cell types with predicted his-

tone marks in cattle, we identified similar patterns as
those obtained from the original data in human studies
(Additional file 1: Fig. S1B), suggesting that the trans-
ferred histone peaks were proper for subsequent

Fig. 2 Cross-species mapping of epigenome data and validation of predicted epigenomes. a Transferring efficiency of eight histone marks from
human to cattle using CrossMap. b Enriched Gene Ontology (GO) terms for genes that are not transferred from human (H3K4me3) to cattle
(human-specific) and genes that are not covered by transferred epigenome (H3K4me3) in cattle (cattle-specific). c Venn plots for overlaps
between length of transferred H3K4me3 peaks and that of measured ones in liver and muscle, respectively. d Enriched GO terms for genes with
tissue-specific histone marks (H3K4me3) in six tissues. e Heat-map plot for correlations of t-statistics of genes based on expression and H3K4me3
signals (Methods). X-axis: tissues for gene expression. Y-axis: tissues for H3K4me3 signals. “*” denotes significant positive correlations after FDR
correction (FDR < 0.001). f Heat-map plot for correlation of t-statistics of genes based on promoter DNA methylation and H3K4me3 signals. X-axis:
tissues for promoter DNA methylation. Y-axis: tissues for H3K4me3 signals. “*” denotes significant positive correlations after FDR correction (FDR <
0.001). g An example of gene (INHBC) with liver-specific H3K4me3 signal. UCSC tracks included transferred H3K27ac, H3K4me3, H3K9ac,
H3K36me3, and measured DNA methylation (Meth) data in cattle. Bottom is the gene expression (FPKM) of INHBC across 91 bovine tissues
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analyses. The transferred histone peaks covered the ma-
jority of bovine genes (79.5%, 80.9%, and 86.9% for
H3K4me3, H3K27ac, and H3K36me3, respectively) in at
least one tissue or cell type. We found that genes, which
were covered by transferred histone peaks in cattle, were
more evolutionarily conserved (i.e., lower dN/dS ratio)
than “species-specific genes,” defined as human-specific
genes (n = 2163) that were not aligned to cattle, and cattle-
specific genes (n = 3573) that were not covered by trans-
ferred peaks (Additional file 1: Fig. S1C). Based on gene
functional analysis, human-specific genes were significantly
(FDR < 0.05) engaged in olfactory reception, sensory per-
ception, nervous system process, keratinization, and
fertilization (Fig. 2b), which was consistent across all three
histone marks (Additional file 1: Fig. S1D). In contrast,
cattle-specific genes were significantly enriched in the
regulation of signaling receptor activity, sensory perception
of light stimulus, reproduction, and defense in response to
other organisms (Fig. 2b, Additional file 1: Fig. S1D). These
observations were in line with [29], which proposed that
cattle-specific genes were involved in innate immunity,
partially due to the substantial load of microorganisms
present in the rumen of cattle. These genes also regulate
ruminant-specific aspects of fetal growth, maternal adapta-
tions to pregnancy, and the coordination of parturition
[29]. In summary, these results may reflect the differences
in adaptive evolution between human and cattle after their
divergence of ~ 90 million years ago.

Validation of predicted epigenome using experimentally
generated epigenome, transcriptome, and methylome in
cattle
ChiP-seq validation
By overlapping two predicted histone marks (H3K4me3
and H3K27ac) with their actual ChIP-seq data measured
in the corresponding bovine tissues (i.e., liver and
muscle) [30, 31], we validated 65.2%, 48.2%, and 64% of
predicted H3K4me3 using measured data from one liver
and two muscle samples, which covered 1.2%, 1.1%, and
1.2% of the cattle genome, respectively (Fig. 2c, Add-
itional file 2: Fig. S2A), as more than expected (P value
< 0.0001; 10,000 times permutation tests using R pack-
age: GAT [32]). In addition, we validated 34% of pre-
dicted H3K27ac using a measured dataset, which
covered 3.7% of the cattle genome (P value < 0.0001)
(Additional file 2: Fig. S2A). These findings reveal the
ranges of sensitivity and specificity for our comparative
epigenomic approaches between human and cattle.

RNA-seq validation
By grouping 1300 samples into 34 distinct categories
based on their tissue similarity and known biology (Add-
itional file 3: Table S1–3), we detected histone marks
that were highly specifically enriched in each of these

tissue categories. Our functional enrichment analysis
showed that genes with tissue-specific histone marks
were functionally concordant with the biology of target
tissues (Fig. 2d). For instance, genes with B cell-specific
H3K4me3 were significantly (FDR < 0.05) engaged in im-
mune responses, while genes with brain-specific
H3K4me3 were significant for nervous system develop-
ment, heart for cardiac muscle tissue development, liver
for the negative regulation of hydrolase activity, testes
for reproduction, and muscle for striated muscle tissue
development (Fig. 2d). More importantly, we observed
that predicted tissue-specific epigenomes were signifi-
cantly and positively correlated with tissue-specific gene
expression in the corresponding tissues obtained from
723 RNA-seq data in cattle [33] (Fig. 2e). We used liver
as an example in Additional file 2: Fig. S2B, which
showed a significant correlation (Pearson’s correlation
r = 0.57; P < 2.2e−16) between t-statistics (measurements
of tissue specificity) of gene expression and those of pre-
dicted H3K4me3. Similar patterns were observed for
H3K27ac and H3K36me3 (Additional file 2: Fig. S2C
and D). These findings suggest that cross-species
mapped histone marks are predictive for tissue-specific
gene expression.

WGBS validation
We detected genes with tissue-specific hypomethylated
promoters from 40 bovine WGBS datasets, including 20
tissues, and observed that they were significantly and
positively correlated with predicted tissue-specific
H3K4me3 and H3K27ac in the same or similar tissues
(Fig. 2f, Additional file 2: Fig. S2F), supporting that
hypomethylated promoters were associated with tran-
scriptional activation. For instance, we observed that
genes with liver-specific H3K4me3 showed the lowest
DNA methylation levels in their promoters in liver as
compared to all other 19 tissues (Additional file 2: Fig.
S2E). We took INHBC gene as an example in Fig. 2g,
which encodes a member of transforming growth factor-
beta (TGF-β) protein superfamily and plays a role in
hepatocyte proliferation [34]. INHBC highly and specific-
ally expressed in cattle liver, and its promoter showed
specifically high signal intensities of three predicted ac-
tive histone marks (H3K4me3, H3K27ac, and H3K9ac)
in liver as well. Correspondingly, we observed the low
methylation level in its promoter region in liver (Fig. 2g).
In contrast, we did not observe clear patterns between
DNA methylation and H3K36me3 in gene bodies (Add-
itional file 2: Fig. S2G), which was consistent with the
fact that roles of DNA methylation in gene body remains
elusive [35]. Collectively, these results suggest that cross-
species mapped histone marks can predict tissue-specific
DNA methylation, at least in promoters.
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Detection of trait- and selection-relevant tissues in cattle
By conducting GWAS signal enrichment analyses with
the detected tissue-specific histone marks for 45 com-
plex traits of economic importance and selection signa-
tures of beef vs. dairy cattle, we observed that tissue-
specific H3K4me3 and H3K27ac showed a significantly
higher enrichment (i.e., − log10 P) of GWAS signals and
selection signatures than tissue-specific H3K36me3
(Fig. 3a). This finding demonstrates that genomic vari-
ants associated with economic traits and adaptive evolu-
tion are more likely enriched in regulatory regions than
protein-coding regions in cattle, which validates previous
observations in human [36].

Trait-relevant tissues
Using a sum-based marker-set test (methods), we found
that, among the 45 GWAS traits, most of them (n = 43)
had at least one relevant-tissue (FDR < 0.05) (Fig. 3b).
Production and body conformation traits were signifi-
cantly associated with multiple tissues, reflecting their
highly polygenic inheritance [37]. For instance, protein
and milk yields were significantly associated with B cells,
parathyroid, liver, stomach (rumen in cattle), lung, and

vagina. Stature was significantly associated with aorta,
muscle, foreskin, and multiple digestive tissues (e.g.,
esophagus, stomach, small intestine, large intestine),
which was in line with human height that was proposed
to associate with multiple tissues, including muscle, car-
diovascular, and digestive tissues [12, 14, 38]. Of interest,
all health traits and most of reproduction traits had sig-
nificant enrichments in placenta and immune/blood-re-
lated cell types/tissues, such as B cell, T cell, spleen, and
thymus (Fig. 3b). This is in agreement with previous
findings in human that reproduction traits have been
linked with immunological processes such as allergic re-
sponse to sperm and immunological tolerance of the
embryo [39]. We observed that mammary is the top sig-
nificant tissue for somatic cell score (SCS, an indicator
of mastitis), consistent with prior knowledge that an in-
fection of the udder is the main cause for increased som-
atic cell counts in milk [40]. Vagina is another tissue
significantly associated with SCS, which might suggest a
shared molecular mechanism underlying host responses
to bacterial infection between vagina and mammary. Of
special interest were brain and nerve, which were the
relevant tissues for five fertility traits, including sire

Fig. 3 Enrichment analysis for 45 complex traits and selection signature in cattle. a Comparisons of GWAS (up) and selection signature (down)
enrichments among tissue-specific H3K4me3, H3K27ac, and H3K36me3 (top 5%). Student t test was used to compare the enrichments between
H3K4me3/H3K27ac and H3K36me3. Blue line denotes P < 0.05; red line denotes FDR < 0.05. b Association of tissues with complex traits based on
GWAS signal enrichment analyses using tissue-specific H3K4me3 (top 5%). Blue boxes contain associations of health and reproduction traits with
immune related tissues. “*” denotes FDR < 0.05
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calving ease, daughter calving ease, cow conception rate,
daughter pregnancy rate, and gestation length. This
might reflect that the brain plays a role in the regulation
of hormonal complexity during pregnancy [41]. For in-
stance, the pituitary gland, a brain region, is one of the
most affected organs and enlarged due to lactotroph
hyperplasia [42].

Selection-relevant tissues
We retrieved selection signatures from [43]. They were
detected between 8 dairy and 7 beef cattle breeds with a
linear mixed-model approach using Run 6 of the 1000
Bull Genomes Project. We observed significant enrich-
ments of selection signatures of beef vs. dairy cattle in
tissue-specific H3K4me3 of thyroid, vagina, esophagus,

and bladder (Fig. 4a). Gestation length was the top sig-
nificant trait for thyroid, which agreed with that
Holstein-Friesian cows have shorter gestation length
than continental beef breeds like Charolais, Limousin,
and Simmental and British beef breeds like Angus, Here-
ford, and Shorthorns [44]. In addition, this finding indi-
cates the importance of thyroid hormone on pregnancy
and embryonic development, as the maternal thyroxine
(T4) and triiodothyronine (T3) play key roles in normal
growth and development of the fetus [45, 46]. For va-
gina, SCS was the top significant trait, consistent with
that intensive selection for milk production in dairy cat-
tle has dramatically reduced their immune ability as
compared to beef cattle [47]. For esophagus, stature was
the top significant trait, in line with the inverse

Fig. 4 Enrichment of selection signature across multiple tissues. a The first bar plot is for enrichment of selection signature in tissue-specific
H3K4me3 across multiple tissues. The second, third, and fourth ones are for associations of traits with thyroid, vagina, and esophagus,
respectively, based on GWAS signal enrichments of tissue-specific H3K4me3. The red line denotes FDR < 0.05. b An example of shared peaks
between selection signature (SS) and GWAS of somatic cell scores (SCS). ESR1 gene, which shows tissue-specific H3K4me3 signals in vagina,
locates within the peak. c Gene expression of ESR1 in 91 bovine tissues
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association between height and the risk for esophagus
diseases [48]. This may partially explain the deviation of
body size between beef and dairy cattle [49]. We identi-
fied a gene of interest, estrogen receptor 1 (ESR1), which
showed tissue-specific H3K4me3 peaks in promoter for
vagina. ESR1 was associated with both SCS and selection
of beef vs. dairy cattle (Fig. 4b), which were highly
expressed in female reproductive tissues (vagina, ovary,
uterus) and moderately expressed in milk cell and mam-
mary gland (Fig. 4c). We observed concordant regions
near the ESR1 gene for both SCS GWAS signals and se-
lection signature (SS) signals. Significant signals outside
the gene may be in LD with the signals inside the gene.
Estrogen receptor plays a role in regulation of inflamma-
tory response [50] and is associated with udder infection

[51]. All these findings imply that ESR1 might be under
divergent selection between beef and dairy cattle and it
may drive the SCS divergence, due to its regulation of
the estradiol level in response to inflammatory infection.

Detection of trait-relevant tissues in human
We utilized the same sum-based marker-set test to de-
tect relevant tissues for 58 complex traits and diseases in
human using tissue-specific histone marks (Fig. 5a). To
validate our method, we applied the commonly used
stratified LD score regression (LDSC) to detect trait-
relevant tissues in human as well [52]. Results from
sum-based marker-set test and LDSC were significantly
and positively correlated. For example, immune-related
diseases, like allergic disease and rheumatoid arthritis,

Fig. 5 Associations of 33 tissues with 58 complex traits and diseases in human. a The enrichments (− log10P) were obtained from GWAS
enrichment analysis with tissue-specific H3K4me3 (top 5%) using the sum-based marker-set test. “*” denotes FDR < 0.05. b–d Pearson correlations
of enrichments (− log10P) between the stratified LD score regression (LDSC) and sum-based marker-set test
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were highly and significantly correlated (r = 0.83 P = 2.6e
−09 and r = 0.78; P = 6.5e−08), between the two methods
(Fig. 5b, c). Another example is the estimated glomerular
filtration rate based on serum creatinine (eGFRcrea), of
which the top significant tissue is kidney from both
methods (r = 0.57; P = 4.7e−04) (Fig. 5d). Therefore, our
results from sum-based marker-set method were com-
parable to those from previous studies, shedding light on
trait-relevant tissues. For instance, kidney was the top
significant tissue for eGFRcrea, which is the best meas-
urement for kidney function [53]. Liver was the most
significant tissue for triglyceride levels, consistent with
that liver plays key roles in producing triglycerides. Ad-
renal gland was the most significant tissue for sleep dur-
ation, which corresponds to the essential role of cortisol
secreted by the adrenal gland in controlling circadian
rhythm [54]. For verbal numerical reasoning, brain was
the most relevant tissue, which is consistent with our
understanding for brain control of intelligence. Consist-
ent with previous studies [13, 38, 52], we observed that
blood/immune tissues were significantly relevant with
multiple immune diseases and a reproduction trait, age
at menopause. The involvement of age-at-menopause in
blood/immune tissues might suggest that sex steroids
play roles in immune responses [55], and the immune
system triggers a woman’s biological clock as well [56].
Additionally, we observed that muscle was significantly
associated with subjective well-being, which might sug-
gest the role of physical exercise in the promotion of
health and human well-being [57].

Comparison of complex traits and diseases between
cattle and human
To genetically compare complex traits/diseases between
human and cattle, we estimated 2610 trait correlations
by using their tissue-trait associations. We observed that
a fertility trait (age-at-menopause) and several immune
diseases in human, such as inflammatory bowel disease
(IBD), allergic disease, and rheumatoid arthritis, were
significantly (FDR < 0.05) correlated with multiple
reproduction and health traits in cattle (Fig. 6a). For in-
stance, the age-at-menopause in human was significantly
(r = 0.69; P = 7.41e−06) correlated with daughter-still-
birth in cattle (Fig. 6b), and blood/immune tissues were
the most relevant tissues for both traits. We found that
PIK3CG gene, which showed specific expression and his-
tone marks in blood/immune tissues, had significant
GWAS peaks (within 1Mb upstream) for both age-at-
menopause in human and daughter-still-birth in cattle
(Fig. 6d). PIK3CG mainly functions in immune, inflam-
matory, and allergic responses [58, 59]. In addition, a
previous study proposed that non-synonymous variants
of PIK3CG might regulate the fragile X-associated pri-
mary ovarian insufficiency associated with woman’s

reproductive life span [60]. Noticeably, the lead SNP was
located in a capture Hi-C contact (chr7: 105993268-
106000857) with promoter of PIK3CG in human. We
further validated that the lead SNP was located in the
enhancer region across multiple immune-relevant cell
types, such as primary monocytes from peripheral blood,
primary neutrophils from peripheral blood, and primary
B cells from cord blood [11]. All these indicated that the
causal variant within this QTL region physically interacts
with PIK3CG in a long-range enhancer-promoter means,
which further influences age-at-menopause by regulating
the activity of this particular gene. We found that the
Hi-C contact was conserved between human and cattle,
which also linked the lead SNP of daughter-still-birth
with PIK3CG in cattle (Fig. 6d). Furthermore, amino
acid sequence alignment in multi-species showed the
high conservation of PIK3CG protein (Additional file 4:
Fig. S3), indicating similar functions of this gene among
all mammals.
Another example of interest was two immune-relevant

traits, human allergic disease and cattle metritis, which
were significantly (r = 0.73; P = 1.29e−06) correlated with
each other (Fig. 6c). ICAM3 gene, which showed specific
expression and histone marks in blood/immune tissues,
had significant GWAS peaks for both allergic disease in
human and metritis in cattle (Fig. 6e), consistent with
the indispensable role of ICAM3 in immune response
and its association with lymphocyte, monocyte, neutro-
phil percentage, and rheumatoid arthritis in the UK Bio-
bank [61] (region PheWAS, set region ± 50 kb; P value
threshold 1e−8).
Furthermore, we noted that several reproduction traits

in cattle, such as sire-still-birth and heifer-conception-
rate, could be useful for studies in human fertility, be-
cause such traits were hard to measure in human popu-
lation. More interestingly, we observed several human
immune diseases significantly (FDR < 0.05) correlated
with such reproduction traits in cattle. The role of im-
mune system in the reproduction processes has been
discussed widely in human [62, 63]. For instance, the hu-
man female reproductive tract acts as an initial barrier
to foreign antigens, of which two common samples are
fetal allograft and semen/sperm [64]. Taken all together,
these suggested that the genetic architecture of complex
traits in cattle, particularly for health and reproduction
traits, could be a good model for understanding similar
traits in human.

Discussion
In this study, we demonstrated and validated that cross-
species extrapolation of epigenome could capture tissue-
specific patterns of gene expression and DNA methyla-
tion in cattle. By integrating predicted tissue-specific his-
tone marks with large-scale GWAS and selection
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signature of beef vs. dairy, we identified relevant tissues
for 45 economically important traits and explored the
artificial selection in cattle. By investigating the genetic

similarities of complex traits between cattle and human,
we proposed that cattle could be a potential model or-
ganism to guide human biomedical researches beyond

Fig. 6 Shared genetic architecture between human diseases/traits and cattle traits. a Correlations of complex traits between human and cattle
based on GWAS signal enrichment of tissue-specific H3K4me3 (top 5%) across all tested tissues. “*” denotes FDR < 0.05. b Correlation between
age at menopause in human (Human_Age_at_menopause) and daughter still birth (Dtr_Still_Birth) in cattle. c Correlation between allergic
disease (Human_Allergic) in human and metritis (Cattle_METR) in cattle. d, e Examples of two genes, PIK3CG and ICAM3, with tissue-specific
H3K4me3 in mononuclear cells and T cells, respectively. Dots plots (up) are GWAS peaks within 1 Mb regions of the genes in cattle and human.
UCSC browser tracks of genes (down) include transferred H3K27ac, H3K4me3, H3K9ac, H3K36me3, and measured DNA methylation (Meth) data in
cattle. Below are the tracks for gene expressions of PIK3CG and ICAM3 in 91 bovine tissues. Green curve lines in d indicate a capture Hi-C contact
between PIK3CG and GWAS signal peaks (~ 610 kb upstream) in human and cattle
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laboratory model organisms (e.g., mice and fruit fly), espe-
cially for immune and reproduction traits. To our best
knowledge, this is the first publication to integrate com-
parative epigenomics with large-scale genotype-phenotype
associations to gain insights into the underlying molecular
mechanisms of complex traits and artificial selection in
animals and to explore their genetic similarities with hu-
man complex traits and diseases. Collectively, our results
demonstrate the potential of comparative epigenomics to
explore the biological and genetic basis of phenotypic di-
versity and adaptive evolution in non-model animals
through borrowing regulatory annotations from well-
established organisms.
Cross-species comparison has been widely used to ex-

plore epigenetic evolution. By comparing 13 distinct his-
tone marks and transcriptional regulators in pluripotent
stem cells among human, mouse and swine, Xiao et al.
showed that these epigenetic signals were largely con-
served across species [19], indicating that comparative
epigenomics could be a tool for annotation of regulatory
elements in other species that are lack of such informa-
tion. Zhou et al. reported that the conservation of tissue-
specific DNA methylation among human, mouse, and
rat were likely driven by their primary sequence conser-
vation [22]. Ebert et al. reported that the cross-species
mapping of epigenomes (i.e., H3K4me3, H3K27ac, and
H3K36me3) in six tissues/cell types from human and/or
mouse to other 13 species enabled them to predict gene
expression in the target species [23]. Here, through ana-
lyzing 723 transcriptomes and 40 methylomes, we com-
prehensively demonstrated that the cross-species
mapping of histone marks were not only predictive for
tissue-specific gene expression but also for tissue-
specific DNA methylation. Together, these findings sug-
gested the potential of utilizing the available epigenome
data from reference species to initiatively annotating a
range of target species.
In human, genomic variants associated with complex

traits have been widely reported to be concentrated in
regulatory elements rather than protein-coding regions
[36, 65]. In this study, we confirmed this in cattle by ob-
serving a higher enrichment of GWAS hits and selection
signals in tissue-specific promoters (i.e., H3K4me3 and
H3k27ac) than in tissue-specific gene body regions (i.e.,
H3K36me3). This was in agreement with our recent
study that found GWAS signals and selection signature
were significantly enriched in chromatin states relevant
with active promoters and enhancers in cattle [16]. A
previous study on sheep also reported that cis-regulatory
elements contributed to the adaptive evolution of mod-
ern breeds by mapping selection signatures to chromatin
states that were cross-species mapped from human [66].
Here, through integrating predicted tissue-specific his-
tone marks with GWAS and selection signature, we

systematically identified tissues and cell types that were
relevant with 45 complex traits and artificial selection in
cattle, providing novel insights into their biological un-
derpinnings. We thereby propose that cross-species
mapping of epigenomes from reference species (human
and mice) to a large number of target species could be a
powerful way to biologically explaining genotype-
phenotype associations and adaptive evolution in the tar-
get species, which is still lack of epigenomes across mul-
tiple tissues and cell types.
Over the past 100 years, diverse phenotypes and com-

prehensive pedigrees have been routinely and accurately
recorded in the cattle industry [24, 67]. Strong artificial
selection on economically important traits has been ob-
served in cattle, such as selection for growth rate and
milk production in beef and dairy cattle, respectively [68,
69]. Due to the negatively genetic correlation between
fitness traits (e.g., health and fertility) and production
traits (e.g., milk), the strong artificial selection on pro-
duction traits increase not only the beneficial alleles for
production but also the deleterious alleles for fitness
traits. Compared to nature populations, such as human,
where deleterious alleles of large effects are rare due to
strong natural purifying [70], this strong artificial selec-
tion in cattle could be useful for dissecting genetic vari-
ants underlying fitness traits, subsequently providing
valuable information for biomedical researches in human
[68, 69]. Furthermore, the strong artificial selection led
to a relatively small effective population size of cattle,
which much easily exposed recessive deleterious muta-
tions [25]. In addition, by thoroughly breaking down the
linkage disequilibrium (LD) blocks, cross-species com-
parison is more effective in targeting causal genes/vari-
ants than within species, given that similar complex
outcomes shared causal variants among species.
We noted several limitations in the current study.

First, we focus on histone marks, while topologically as-
sociating domains (captured by Hi-C), chromatin acces-
sibility patterns (captured by ATAC-seq), and others
were widely conserved across species [71, 72]. It could
be of interest to explore them together with histone
marks in the near future, as the increasing availability of
such data sets across multiple tissues and cell types in
human. Second, the sequence conservation may not be
equivalent to functional conservation. In other words,
the signal intensities of epigenomes in the aligned se-
quence might be different between two species being
studied. In addition, the cross-species mapping of epi-
genomes only enabled us to explore the conserved re-
gions, ignoring species-specific regions and thus limiting
sensitivities and specificities of our approaches. With
more epigenomes becoming available from FAANG pro-
ject in the future [15], it could be possible to study other
regulatory elements, like enhancers which were often
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species-specific [31]. Third, the trait-relevant tissues de-
tected in this study are “proximal” tissues not exactly
causal tissues, similarly as significant GWAS hits, which
are often not the causal variants for the studied traits.
Further experimentally functional validations are re-
quired to confirm the causal tissues and cell types for a
particular casual variant of a complex outcome.

Conclusions
Collectively, our study “borrowed” histone marks in
multiple tissues from human to functionally annotate
the cattle genome. In combination of selection signa-
tures and GWAS datasets, our results reflect the adap-
tive evolution and trait-relevant tissues in cattle.
Comparative epigenomics between cattle and human
sheds light on the potential that cattle serves as a model
for human complex traits.

Methods
Cross-species mapping of large-scale epigenome data
from human to cattle
In total, we downloaded narrow-peak files (bed format)
of 8 histone marks from 1300 samples from ENCODE
and Roadmap projects (https://www.encodeproject.org/),
covering 178 unique tissues and cell types. We occasion-
ally grouped tissues from different parts of the same
organ into one category. For example, we consider heart
left ventricle, heart right ventricle, and cardiac atrium as
one tissue, heart. We excluded ESC, IPSC, and ES-
derived cell lines to focus on the somatic tissue/cell
types. Finally, we obtained 33 tissue categories and an
“other” category (details in Additional file 3: Table S1–
3). All the human epigenomic data are based on
GRCh38/hg38. We thus downloaded the whole genome
alignments between human (GRCh38/hg38) and cattle
(UMD3.1.1) from the UCSC Genome Browser in the
form of the chain files and processed as described in the
UCSC Genome Wiki website (http://genomewiki.ucsc.
edu/index.php/HowTo:_Syntenic_Net_or_Reciprocal_
Best) to derive reciprocal best chains. We further used
crossMap 0.3.0 [73] to build pairwise symmetric align-
ment blocks with default parameters.

Detecting tissue-specific histone marks
We obtained the annotation files for human (GRCh38/
hg38 and GRCh37/hg19) and cattle (UMD3.1.1) from
Ensembl database (https://www.ensembl.org). We only
kept protein-coding genes for subsequent analyses. We
defined promoter regions as 1.5 kb windows around the
transcriptional start site (from − 1000 bp to + 500 bp).
For gene body regions, we excluded genes with length
less than 750 bp. For H3K4me3 and H3K27ac, we ob-
tained their histone signal intensities in gene promoters.
For H3K36me3, we calculated histone signal intensities

in gene bodies by adjusting the length of transcribed re-
gion for each gene. We assigned 33 tissue categories into
23 categories based on the tissue similarity (Additional
file 3: Table S1–3). We excluded samples from the same
tissue class [52], when calculating the t-statistics of a his-
tone mark for a tissue category which measured the tis-
sue specificity for the particular histone mark. For
instance, when detecting B cell-specific histone marks,
we excluded all samples belonging to the immune-blood
system, such as T cell and thymus. We fitted the follow-
ing linear regression model to detect tissue-specific his-
tone marks.

y ¼ μþ Xbþ e

where y is the vector of histone signal intensities in gene
promoter (H3K4me3 and H3K27ac) or gene body
(H3K36me3); μ is the intercept; X is the dummy variable
for tissue, where we assigned “1” for samples from the
tissue categories being tested and “− 1” for the remaining
samples; b is the tissue effect; and e is the residual effect.
We fitted the model using the ordinary least-square ap-
proach implemented in R and calculated t-statistics as b
divided by its standard error. In each tissue category, we
considered top 3%, 5%, and 10% of histone marks as
tissue-specific, respectively, based on the ranking of t-
statistics.

Detecting tissue-specific genes using RNA-seq data in
cattle
We uniformly analyzed 723 RNA-seq datasets in cattle
as described in (http://cattlegeneatlas.roslin.ed.ac.uk/).
To detect tissue/cell type specific genes, we computed a
t-statistics of each gene in each of 91 tissue/cell types
after correcting for known batch effects. We scaled the
log2-transformed expression (i.e., log2FPKM) of genes to
have a mean of zero and variance of one within each tis-
sue and cell type.

y ¼ μþ Xbþ Zcþ e

where y is the vector of scaled log2FPKM; μ is the inter-
cept; X is the dummy variable for tissue, where samples
of the tested tissue (e.g., CD4 cells) were denoted as “1,”
while samples outside the same category (e.g., non-
blood/immune tissues and cell types) as “− 1”; b is the
tissue effect; Z is the matrix for co-variables, including
age, sex, and study effects; c is the effects for co-vari-
ables; and e is the residual effect. We fitted this
model for each gene in each tissue using the ordinary
least-square approach, as implemented in R [74], and
then obtained the t-statistics for each gene to meas-
ure its expression specificity in the corresponding tis-
sue. To obtain relationships between predicted tissue-
specific histone marks and measured tissue-specific
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expression, we correlated their t-statistics across
shared genes (n = 19,746).

Bioinformatics analysis of DNA methylation data
In total, we uniformly analyzed 40 WGBS datasets, includ-
ing 20 distinct tissues (Additional file 5: Table S4). Briefly,
we used FastQC v 0.11.2 and Trim Galore v 0.4.0 (--max_n
15) to check the read quality and filter the sequences, re-
spectively. We subsequently mapped clean reads to the ref-
erence genome (UMD3.1.1) using Bismark software
(0.14.5) with default parameters. We extracted the methyl-
cytosines using bismark_methylation_extractor (--ignore_r2
6) function after de-duplicating duplicated reads. For each
sample, we calculated DNA methylation level in gene pro-
moters using a weighted methylation method as described
in [75]. We computed t-statistics for tissue-specificity of
promoter methylation as described above. Because DNA
methylation in promoters was negatively correlated with
gene expression, we thus assigned “− 1” for samples from a
given tissue and “1” for the remaining samples to detect
genes with tissue-specific low methylation in promoters.

GWAS enrichment analysis based on tissue-specific
histone marks
We collected GWAS summary statistics of 45 complex
traits in cattle [24, 76]. We generally grouped these 45 com-
plex traits into 5 categories, including reproduction (n =
12), production (milk-relevant; n = 6), body type (n = 17),
health (immune-relevant; n = 9), and feed efficiency (re-
sidual feed intake, RFI; n = 1) traits. Details of the single-
marker GWAS for body type, reproduction, and production
traits using 27,214 US Holstein bulls were presented previ-
ously [24]. GWAS for health traits using ~ 10,000 bulls
could be found in [76], while GWAS for feed efficiency
using 3947 Holstein cows (i.e., RFI) were described by Li
et al. [77]. For human GWAS data, we obtained the sum-
mary statistics for 58 complex traits with an average sample
size of 128,848 and an average SNP number of 5,905,874.
Details of human GWAS studies are summarized in [26].
We grouped these diseases and traits into 5 categories simi-
larly as in cattle: reproduction (n = 4), metabolic (n = 13),
mental (n = 22), immune (n = 8), and growth (n = 13).
When integrating tissue-specific histone marks with human
GWAS, we first transferred tissue-specific histone marks
from GRCh38 to GRCh37 using UCSC LiftOver tool (-min-
Match = 0.8), as coordinates of variants in GWAS were
based on GRCh37. Detailed procedures were presented in
[26]. We applied a sum-based marker-set test approach, im-
plemented in the QGG package [78], to determine whether
GWAS signals were enriched in tissue-specific histone
marks. This approach employed a 10,000-time circular
genotype permutation procedure and showed a better or at
least equal performance compared to most of commonly
used marker-set test methods in livestock [79–82], fruit fly

[83], and human [84]. We found that enrichment results of
GWAS signals and selection signatures were highly corre-
lated (Pearson’s r ranging from 0.64 to 0.83) among three
different cutoffs of tissue-specific histone marks, i.e., top
3%, 5%, and 10% (Additional file 6: Fig. S4A and B). In
addition, results of GWAS enrichment were significantly
correlated among all three histone marks across all tested
traits, and the highest correlation (Pearson correlation r =
0.48 and P < 2e−16 for GWAS) were observed between
H3K4me3 and H3K27ac (Additional file 6: Fig. S4C). We
observed similar results for selection signature (Additional
file 6: Fig. S4D). We thus showed results for top 5% of
H3K4me3 in the “Results” section.

Other downstream bioinformatics analyses
We used Genomic Association Tester (GAT) [32] to do the
permutation tests (10,000 times) for computing the signifi-
cance of overlaps between predicted epigenomes and
measured epigenomes. We conducted gene functional an-
notation analyses for a list of genes using R packages, clus-
terProfiler [85], and GO terms with threshold of FDR <
0.05 were considered as significant ones. To assess whether
GWAS peaks overlapped with chromosomal contact as
measured using Hi-C data, we used promoter-capture Hi-C
data with interaction score of contacts greater than 5 [86].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12915-020-00792-6.

Additional file 1: Figure S1. Summary of epigenome data and
predicted epigenomes. (A) Distributions of actual and predicted histone
peaks around transcription start sites (TSS) and transcription terminal sites
(TTS) in human and cattle. (B) Hierarchical clustering of tissues based on
H3K27ac signals in gene promoters. (C) The ratio of non-synonymous to
synonymous substitutions (dN/dS) of mapped histone mark peaks (Com-
mon), un-transferred regions in human (human-specific), and uncovered
sequences by transferred epigenome in cattle (Cattle-specific). (D)
Enriched GO terms for human-specific genes and cattle-specific genes.

Additional file 2: Figure S2. Cross-species extrapolation of epigenome
data and validation of predicted epigenomes. (A) Venn plots for length of
transferred and measured H3K27ac (H3K4me3) peaks in liver (muscle). (B)
Pearson correlation (r = 0.57) between t-statistics of genes for gene expres-
sion and H3K4me3 signals in liver. (C) and (D) Correlations of t-statistics of
genes based on RNA-seq and H3K27ac or H3K36me3 signals. X axis: tissues
for gene expression. Y axis: tissues for H3K27ac or H3K36me3 signals. “*” de-
notes significant positive correlations after FDR correction (FDR < 0.001). (E)
DNA methylation of the top 5% genes with liver-specific H3K4me3 in 20 tis-
sues. (F) and (G) Correlations of t-statistics of genes based on promoter DNA
methylation and H3K27ac or H3K36me3 signals. X axis: tissues for promoter
DNA methylation. Y axis: tissues for H3K27ac and H3K36me3 signals. “*” de-
notes significant positive correlations after FDR correction (FDR < 0.001).

Additional file 3: Table S1–3. The summary list of epigenome data
downloaded from ENCODE and RoadMap projects for H3K4me3 (Table
S1), H3K27ac (Table S2) and H3K36me3 (Table S3).

Additional file 4: Figure S3. Alignment of the protein sequences of
PIK3CG across different species.

Additional file 5: Table S4. The summary list of WGBS samples.

Additional file 6: Figure S4. Correlations of enrichments among three
criteria and three histone marks. Correlations of enrichments for GWAS
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signals (A) and selection signature (B) among top 3%, top 5%, and top
10% genes with tissue-specific H3K4me3, respectively. Correlations of en-
richments for GWAS signals (C) and selection signature (D) among three
histone marks (top 5%).
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