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Synopsis Pyridine phase III, which forms at 1.69 GPa is tetragonal, and related to the previously-

characterised orthorhombic form II by a displacive phase transition.  Phase III is similar to a high-

pressure form of benzene.  The soft mode governing the III  II transition has been identified using a 

combination of symmetry mode analysis and periodic density functional theory.  A combination of 

single-crystal X-ray diffraction and Raman spectroscopy is used to resolve ambiguities in previous work 

on pyridine. 

Abstract   Single crystals of the high-pressure phases II and III of pyridine have been obtained by in 

situ crystallisation at 1.09 and 1.69 GPa, revealing the crystal structure of phase III for the first time 

using X-ray diffraction. Phase II crystallizes in P212121 with Z’=1 and phase III in P41212 with Z’= ½. 

Neutron powder diffraction experiments using pyridine-d5 establish approximate equations of state of 

both phases. The space group and unit cell dimensions of phase III are similar to the structures of other 

simple compounds with C2v molecular symmetry, and the phase becomes stable at high pressure because 
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it is topologically close-packed, giving it lower molar volume than topologically body-centred cubic 

phase II. Phases II and III have been observed previously by Raman spectroscopy, but the phases have 

been mis-identified or inconsistently named. Raman spectra collected on the same samples as used in 

the X-ray experiments establish the vibrational characteristics of both phases unambiguously.  The 

pyridine molecules interact in both phases through CH···π and CH···N interactions. The nature of 

individual contacts is preserved through the phase transition between phases III and II, which occurs on 

decompression. A combination of rigid-body symmetry mode analysis and density functional theory 

calculations enables the soft vibrational lattice mode which governs the transformation to be identified.   

Keywords: polymorphism; pressure; in situ crystallization; phase transitions  

1. Introduction 

Pyridine (C5H5N) is one of the simplest organic compounds, but its crystal structure at ambient 

pressure (phase I, Pna21), determined by Mootz & Wussow (Mootz & Wussow, 1981), is unusually 

complicated, with four molecules in the asymmetric unit (Z’ = 4).   A further unusual feature is that it 

exhibits isotopic polymorphism (Merz & Kupka, 2015, Crawford et al., 2009, Castellucci et al., 1969). 

Phase I is the thermodynamically stable form of isotopically normal pyridine (pyridine-h5) between the 

melting point (231 K) and 5 K, and it can be cooled or heated within this range of temperature without 

undergoing any phase transitions.  The same phase is formed by pyridine-d5 on cooling the liquid below 

the melting point, and the phase can also be cooled to 5 K. However, on warming from 5 K the structure 

transforms to the simpler phase II (P212121, Z’ = 1) at 170 K.  This phase can also be cooled to 5 K, but 

on warming above 215 K it transforms back to phase I.  These observations, combined with calorimetry 

data, indicate that the thermodynamically stable form of pyridine-d5 below 215 K is phase II.  When 

phase I persists below this temperature it is metastable, the result of the sluggishness of the I-II 

transition. 

Phase II has never been observed for pyridine-h5 at ambient pressure, but because it has a 

smaller molar volume than phase I, it can be formed at high pressure (Crawford et al., 2009).  We have 

shown that crystal growth of pyridine-h5 yields phase I at 0.80 and 1.03 GPa, but phase II at 1.09 GPa.  

In these experiments, single crystals of pyridine were grown by first compressing the liquid into a 

polycrystalline mass at the desired pressure using a diamond anvil cell. The sample was then heated to 

melt-back the sample to a single crystallite which was then allowed to grow as the cell cooled back to 

room temperature (RT).    These conditions are, at least approximately, isochoric, i.e. pressure is 

constant during crystal growth.  

By contrast, (Podsiadło et al., 2010) obtained phase I at 1.23 GPa by high pressure isothermal 

crystal growth.  In these experiments, a stable crystal-liquid equilibrium was established at 1.00 GPa 

and 295 K. The crystal was then allowed to grow by carefully increasing the pressure, but holding the 
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temperature constant at 295 K.  The sample was found to undergo a phase transition on increasing the 

pressure to 2.00 GPa which destroyed the integrity of the single crystal. 

The apparent difference between our and Podsiadło et al.’s pressure conditions is quite small 

in the context of the precision of the pressure measurements, typically 0.05 GPa, but the difference in 

the phases obtained is presumably a reflection of the isochoric versus isothermal crystal growth 

conditions.  The crystal formed at 1.00 GPa in the isothermal experiment would have been phase I. Its 

persistence to 1.23 GPa is likely to be the result of the sluggishness of the phase I to II transition, which 

is referred to by Podsiadło et al., and also seen in the low temperature behaviour of pyridine-d5 where 

phase I can be supercooled below the I-II transition temperature (Crawford et al., 2009).  

The discoveries of isotopic polymorphism of pyridine at ambient pressure and formation of 

high-pressure phases were first made using vibrational spectroscopy (Castellucci et al., 1969), and the 

response of pyridine to high pressure has been the subject of a number of more recent infra-red and 

Raman studies. However, the overall picture that has emerged from these studies is a somewhat 

confusing one partly because of inconsistent phase numbering.   

In their original high-pressure Raman study (Heyns & Venter, 1985) obtained a phase which 

they referred to as ‘phase I’ for both the h5 and d5 isotopologues at ca. 1 GPa.  On increasing the pressure 

they observed discontinuities in the trend of band frequencies versus pressure and the appearance of 

one new band in pyridine-h5 and two in pyridine-d5 which were taken to indicate that this phase 

transforms to a ‘phase II’ at 2 GPa.   

Heyns & Venter argued that the spectra they obtained for their ‘phase I’ were too simple to be 

compatible with the Z’ = 4, Pna21 crystal structure of pyridine which had been determined by (Mootz 

& Wussow, 1981) a few years previously. They do not assign a number to Mootz’s Z’ = 4 phase, and 

they do not claim that any of their spectra are consistent with it.  In short, Heyns & Venter’s paper 

mentions three crystalline phases: a low-temperature/ambient pressure form, another forming on 

crystallisation at 1 GPa which transforms to a third phase just below 2 GPa. They also mention a glassy 

form which is characterised by broader Raman peaks.  It seems likely that Heyns & Venter’s ‘phase I’ 

was what is referred to as ‘phase II’ in the crystallographic work described above, meaning that their 

‘phase II’ is a higher pressure form for which the crystal structure has yet to be determined.  

In a later study, (Fanetti et al., 2011) describe an investigation of pyridine to 25 GPa, showing 

that above 18 GPa the compound begins to undergo a rearrangement of the primary covalent bonds in 

which the carbon atoms become sp3 hybridised.  The same behaviour was noted by (Zhuravlev et al., 

2010) above 22 GPa.  At lower pressures, the phase Fanetti et al. reproducibly obtained at between 1.2 

and 1.3 GPa, which they label ‘phase II’, could be compressed up to 18 GPa (Fanetti et al., 2011).  

Careful peak deconvolution enabled frequencies and intensities to be extracted for 20 out of 21 external 
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modes. The smooth trends in the frequencies of these modes with pressure do not support the phase 

transitions that had been proposed at 8, 11 and 16 GPa in (Zhuravlev et al., 2010).  

On decompression to around 1 GPa  (Fanetti et al., 2011) found that ‘phase II’ transformed to 

‘phase I’. However, although they define phases I and II to be the same as in the crystallographic work, 

they also say that the phases they studied had Raman spectra which closely resemble those of (Heyns 

& Venter, 1985).  Therefore it seems the phases they were in fact studying must have been the two 

high-pressure forms of Heyns & Venter, i.e. the crystallographers’ phase II and the structurally 

uncharacterised form.  

We now describe the crystal structure of a second high-pressure form of pyridine, which we, 

and hopefully everyone else, will refer to as phase III.  We go on to show that this phase was the one 

obtained along with phase II in the high-pressure Raman studies summarised above.  

2. Experimental 

2.1. Pyridine-h5-III: Single-crystal X-ray diffraction at 1.69 GPa 

Pyridine-h5 (≥99%, Sigma Aldrich, used a received) was loaded into a Merrill-Bassett diamond 

anvil cell (Merrill & Bassett, 1974) along with a ruby sphere.  The cell contained 0.6 mm Boehler-

Almax cut diamonds (Moggach et al., 2008) and a pre-indented rhenium gasket with a laser-drilled hole 

of diameter 0.35 mm and height 0.10 mm. Pressures were determined by the ruby fluorescence method 

(Forman et al., 1972). 

Phase III was obtained by isochoric in situ crystallization. The DAC was pressurized to 1.55 

GPa, the sample forming a polycrystalline solid. The cell was then heated using a hot plate to ca. 400 

K and slowly cooled to room temperature. This process was repeated until only large single crystals 

filled the sample chamber (Fig. 1). The crystal used for data collection, marked domain 1 in Fig. 1a, 

accounted for about half of the sample volume. The pressure was allowed to equilibrate to 1.69 GPa 

prior to data collection. 

Pyridine-III can also be grown from methanol.   The solution used for crystallization consisted 

of a 1:1 molar ratio of pyridine (6 ml) and methanol (3 ml). A drop of this solution was placed in a 

diamond anvil cell, and crystals were found to form on standing at room temperature and 1.98 GPa over 

the course of two days.  The crystals were melted back to one seed at 423 K and the temperature then 

reduced to 403 K at a rate of 2 K min−1 to initiate crystal growth. The temperature was then decreased 

to room temperature at the rate of 0.5 K min−1.  The heating and cooling cycles were accomplished 

using a Cambridge Reactor Design Polar Bear heater that had been adapted to accommodate a diamond 

anvil cell. 
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Figure 1 Images of the in situ single crystals: a) phase III at 1.69 GPa; and b) phase II 1.09 GPa. 

The diameter of the gasket hole is 350 μm in (a) and 260 μm in (b). 

  

2.2. Pyridine-h5-II: Single-crystal X-ray diffraction at 1.09 GPa 

Pyridine-h5 was loaded into a Merrill-Bassett diamond anvil cell as described in Section 2.1. 

The cell design was similar, except that the gasket hole (diameter 0.26 mm) was formed by spark-

erosion.  The cavity height was 0.10 mm.  The sample solidified spontaneously into large single crystal 

domains on application of a pressure of 1.09 GPa at 293 K.  X-ray diffraction data were collected on 

domain 2 shown in Fig. 1b.  

2.3. Data collection, processing and structure refinement 

High-pressure single-crystal X-ray diffraction data were collected at 293 K on Beamline 12.2.2 

at the Advanced Light Source (Kunz et al., 2005, McCormick et al., 2017) on a custom-built 

diffractometer with silicon (111) monochromated synchrotron radiation, wavelength 0.49594 Å (E = 

25 keV) and a Perkin Elmer amorphous silicon detector.  Shutterless ϕ-scans were performed at narrow 

step widths of 0.25° and wide step widths of 1° in order to minimize overloads and optimize the number 

of reflections collected across the dynamic range of the detector. The incident beam spot size was 30 

μm. Beamline calibrations were performed using a NIST single crystal ruby standard prior to high-

pressure experiments. 

Data were processed using the Bruker Apex suite of programs. Dynamic masks, generated by 

ECLIPSE (Dawson et al., 2004), were used to mask shaded areas of the detector and peaks integrated 

to 0.8 Å using SAINT (Bruker, 2012). Systematic errors, including scaling, cell and sample absorption 

and gasket shading were treated using the multi-scan procedure SADABS (Sheldrick, 2015c). 

Structures were solved using dual space methods (SHELXT, (Sheldrick, 2015a)) and refined by full-

matrix least-squares on F2 (SHELXL, (Sheldrick, 2015b)) using the Olex2 graphical user interface 

(Dolomanov et al., 2009).  The C and N atoms were modelled with anisotropic displacement parameters. 

H atoms were located in Fourier difference maps, enabling the nitrogen atoms to be identified 
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unambiguously, and constrained to geometrically reasonable positions during subsequent refinement. 

The (Flack, 1983) parameter  could not be reliably determined due to low completeness of the high-

pressure diffraction experiments and the very small dispersion effects at the X-ray energy used for data 

collection.  Molecular geometries were checked using MOGUL (Bruno et al., 2004) and structures were 

visualised using MERCURY (Macrae et al., 2008), DIAMOND (Bradenburg, 1999) and XP (Sheldrick, 

2001); application of geometric restraints was found to be unnecessary. Geometric calculations were 

carried out using PLATON (Spek, 2009).  Crystal and refinement data are listed in Table 1. 

Crystallographic Information Files (CIF) are available in the electronic supporting information (ESI). 

2.4. Raman Spectroscopy.  

High-pressure Raman spectra were collected on the same samples as used for the single crystal 

data collections of pyridine-h5 phases II and III using a Horiba LabRAM HR Evolution Raman 

Spectrometer equipped with a CCD detector. Raman spectra were measured using a 633 nm excitation 

laser, with 1200 lines mm−1 grating and a spectrometer focal length of 800 mm. Spectra were collected 

between 50 and 3400 cm−1, with a resolution of 1 cm−1. Raman spectra were collected from a ca. 2 

micron spot size on static pressure samples at 293 K.  Spectra plotted over the complete range collected 

are shown in Figs. S1-S4 in the ESI.  Spectra extracted from the literature were analysed using GetData 

Graph Digitizer. v2.26. 

2.5. Decompression of pyridine-III studied by Raman spectroscopy 

A single crystal of pyridine III was grown in situ at 2.50 GPa from a methanol solution and its 

Raman spectra collected at room temperature as the sample was decompressed to 2.44, 2.28, 1.97, 1.69 

and 1.55 GPa. Pressure dependent Raman spectra were acquired between 0 and 500 cm−1 using a 

custom-built micro-focused Raman system, using a 514 nm Argon laser as the excitation line. Raman 

scattering radiation was collected in back–scattering configuration. The device was equipped with a 

20x Mitutoyo long working distance objective, three optigrate notch filters and focused onto the slit of 

a Princeton monochromator with a grating of 1800 grooves mm−1 and a CCD detector (1340 × 400 

pixels). Spectra were measured with a spectral resolution of about 1-2 cm−1 and calibrated with a neon 

emission lamp. 

2.6. Equation of state determinations by neutron powder diffraction.  

A sample of pyridine-d5 was loaded into a null-scattering TiZr capsule together with a 1:1 by 

volume mixture of CaF2 and powdered silica.  Pressure was applied at ambient temperature using a type 

V3b Paris-Edinburgh (P-E) press (Besson & Nelmes, 1995, Besson et al., 1992) in which the ram 

pressure was monitored and adjusted by means of a computer-controlled hydraulic system. The 

experiment was carried out on the PEARL instrument at the ISIS neutron spallation facility (Bull et al., 

2016). Pyridine is prone to texture effects, and the silica powder was included with the sample with the 
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aim of minimizing these.  A phase-pure sample of pyridine-II was obtained by forming an amorphous 

solid at 2.7 GPa and then reducing the pressure to 0.942(9) GPa. Further neutron powder diffraction 

data sets were collected at pressures of 1.09(2), 1.22(3), 1.59(3), 1.83(6) and 2.52(5) GPa. The pattern 

was much weaker for the last two points, possibly because of the on-set of partial amorphisation. The 

load was reduced and further patterns collected at 1.38(9) and 1.03(2) GPa, the original intensity of the 

pattern being re-established at the second of these points. Reduction of the pressure to 0.62(6) GPa 

produced a mixture of phases I and II, becoming pure phase I at 0.45(4) GPa. The contributions of the 

pyridine phases to the patterns obtained were modelled with the Pawley method, while those of CaF2 

and the WC and Ni components of the anvils were modelled with the Rietveld method (TOPAS-

Academic, (Coelho, 2018)) The refinements yielded unit cell volumes of CaF2, which were used to 

determine the pressures quoted above by applying a third-order Birch-Murnaghan equation of state with 

values for the bulk modulus (K0) and its pressure derivative (K’) of 81.00 GPa and 5.220, respectively 

(Angel, 1993).   

A sample consisting of pyridine-d5 (CDN Isotopes), a small quantity of ground silica wool and 

a pellet of lead as a pressure marker was loaded into a TiZr capsule and pressure applied as described 

above on the POLARIS instrument at ISIS. A pattern of phase III was observed at 1.599(19) GPa. 

Patterns were then measured at 1.914(18), 2.202(14), 2.436(18) and 2.670(16) GPa. The sample was 

decompressed, with further patterns measured at 1.340(15) and 1.229(15) GPa. A pattern collected at 

1.159(20) GPa was a mixture of phases II and III. Data processing was as described in Section 2.6, the 

K0 and K’ for Pb were taken to be 41.966 GPa and 5.7167. These parameters were derived by Fortes 

(Fortes et al., 2007, 2012) by refitting data obtained in three earlier studies (Kuznetsov et al., 2002, 

Miller & Schuele, 1969, Waldorf & Alers, 1962).  

2.7. PIXEL, Hirshfeld Surface and symmetry-adapted perturbation theory calculations  

Molecular electron densities were obtained using the program GAUSSIAN09 revision A.02 

(Frisch et al., 2016) at the MP2 level of theory with the 6-31G** basis set. The electron density was 

then analysed using the PIXELc module of CLP program package which allows the calculation of dimer 

and lattice energies (Gavezzotti, 2005, Gavezzotti, 2007, Gavezzotti, 2011).  Hirshfeld surface 

calculations were carried out with CrystalExplorer (Turner et al., 2017) using the same level of theory 

and basis set as the PIXEL calculations.  Symmetry-adapted perturbation theory calculations were 

carried out with the PSI-4 code (version Beta5) using the SAPT2+3 method (Hohenstein & Sherrill, 

2010a, b) with the aug-cc-pVDZ basis set. δEHF
 (Gonze et al., 1994) corrections were applied to 

induction energies in all cases.  In each case the C-H distances were reset to 1.089 Å to correct for the 

systematic shortening of bonds to hydrogen in crystal structures determined from X-ray data. 
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Table 1 Crystal and refinement data. 

 For all structures: C5H5N, Mr = 79.10. Experiments were carried out at 293 K with synchrotron radiation, λ = 

0.49594 Å using a Perkin-Elmer a-Si Detector. H-atom parameters were constrained. 

 Pyridine II at 1.09 GPa Pyridine III at 1.69 GPa 

Crystal data 

Crystal system, space 
group 

Orthorhombic, P212121 Tetragonal, P41212 

a, b, c (Å) 5.392 (3), 6.806 (3), 11.261 (5) 5.4053 (4), 5.4053 (4), 13.4853 (14) 

α, β, γ (°) 90, 90, 90 90, 90, 90 

V (Å3) 413.2 (3) 394.00 (7) 
Z , Z’ 4, 1 4, ½  

µ (mm-1) 0.04 0.04 

Crystal size (mm) 0.26 × 0.26 × 0.1 0.35 × 0.35 × 0.1 

 
Data collection 

Absorption correction Multi-scan  Multi-scan  
 Tmin, Tmax 0.484, 0.744 0.585, 0.745 

No. of measured, 
independent and 
 observed [I > 2σ(I)] 
reflections 

1324, 411, 291   1328, 326, 297   

Rint 0.033 0.061 

(sin θ/λ)max (Å-1) 0.625 0.625 

 

Refinement 

R[F2 > 2σ(F2)], 
wR(F2), S 

0.029,  0.060,  0.88 0.076,  0.196,  1.14 

No. of parameters 56 30 
Completeness 52% 77% 

∆ρmax, ∆ρmin (e Å-3) 0.04, -0.05 0.25, -0.30 

Absolute structure 
parameter 

10.0 (10) [inconclusive] -10.0 (10) [inconclusive] 

  

2.8. Periodic density functional theory (DFT) calculations 

Geometry optimisations were carried-out using the plane-wave pseudopotential method in the 

CASTEP code (Clark et al., 2005) as incorporated into Materials Studio (Dassault Systèmes BIOVIA, 

2017). The PBE exchange-correlation functional was used with norm-conserving pseudopotentials and 

a basis set cut-off energy of 920 eV (Perdew et al., 1996). Brillouin zone integrations were performed 

with a Monkhorst-Pack k-point grid spacing of 0.07 Å−1 (Monkhorst & Pack, 1976).   The starting 

coordinates were taken from the single-crystal diffraction studies of Sections 2.1 and 2.2 and optimised 
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using the Tkatchenko-Scheffler correction for dispersion (DFT-D) (Tkatchenko & Scheffler, 2009). 

The cell dimensions were fixed to the experimental values, and the space group symmetry was retained.  

The energy convergence criterion was 1×10−8 eV atom−1, with a maximum force tolerance of 0.001 eV 

Å−1 and a maximum displacement of 1×10−5 Å; the SCF convergence criterion was 1×10−10 eV atom−1. 

Frequencies were calculated (Refson et al., 2006) at the Γ-point only for the h5 isotopologues as the 

results were intended for comparison with the experimental Raman spectra.   

2.9. Symmetry-mode analysis with ISODISTORT 

The ISODISTORT software (Stokes et al., 2019) from the ISOTROPY Software Suite 

(Campbell et al., 2006) was used to decompose the pattern of molecular translations and rotations that 

arise in the phase III to phase II transition into symmetry modes of the phase III space group (P41212).  

By symmetry modes, we mean basis functions of the irreducible matrix representations of the parent 

symmetry group, which are patterns that transform under the influence of each symmetry operation 

according to the coefficients within the corresponding representation matrix.  In general, one can always 

parameterize the symmetry-breaking order parameters of a phase transition into symmetry modes of the 

parent symmetry group. 

The amplitude of a mode is the root-summed-squared magnitude of the atomistic changes 

affected by the mode over the primitive unit cell of the low-symmetry phase (Å units for displacements, 

radian units for rotations).  A symmetry-mode vector in crystal-axis coordinates is obtained by 

multiplying its simplified form (e.g. 1 1 0) by the corresponding amplitude and normalization factor.  

The normalization factor ensures that the root-summed-squared magnitude will be 1 when the amplitude 

has a value of 1.  In the present case, where this sum runs over the four centroid positions of Z = 4 

copies of a single symmetry-unique molecule in the unit cell, a molecular displacement or rotation angle 

can be simply computed by dividing the corresponding mode amplitude by 2 = √4. 

In a phase transition that includes lattice strain, molecular motions can arise separately from 

displacive/rotational symmetry modes and from the lattice strain itself (assuming an inherently 

irrotational strain).  The displacive and rotational symmetry modes in ISODISTORT are defined purely 

in terms of the unstrained unit cell, and only contribute to the rotations that are not geometrically 

required by the changing shape of the unit cell.  During a lattice strain, fixing a symmetry-mode 

amplitude fixes the lattice-coordinate components (unitless for displacements, radians Å−1 for rotations) 

of the corresponding atomic displacement and rotation vectors, though the Cartesian components (Å 

for displacements, radians for rotations) may vary slightly with the strain at fixed mode amplitude. 

 

 

 



IUCrJ CHEMISTRY | CRYSTENG  research papers 

10 

 

3. Results and Discussion 

3.1. Formation of pyridine-III 

Prior to this work pyridine was acknowledged to form crystalline phases I (Pna21 Z’ = 4) and 

II (P212121 Z’=1) as well as an amorphous form (Castellucci et al., 1969, Fanetti et al., 2011, Heyns & 

Venter, 1985, Mootz & Wussow, 1981, Podsiadło et al., 2010, Zhuravlev et al., 2010).  The present 

results yield the structural and spectroscopic characterisation of a third crystalline form, designated 

phase III (P41212, Z’ = ½).  The Pearson symbols for these phases are oP16, oP4 and tP4.  Crystals of 

phases II and III were grown from pure pyridine-h5 by in situ crystallisation at 1.09 and 1.69 GPa, 

respectively, using the ‘approximately isochoric’ procedure described in Sections 1 and 2.  Phase III 

can also be obtained by crystallisation of pyridine from a solution in methanol, though this procedure 

can also lead to formation of a methanol solvate (Podsiadło et al., 2010).  

Dunitz & Schweizer (Dunitz & Schweizer, 2006, Dunitz & Schweizer, 2007)  have drawn 

attention to the tendency for approximately hexagonal molecules with C2v point symmetry to crystallise 

in space group P41212 (or equivalently P43212) with unit cell dimensions in the region of a = 6 Å and c 

= 14 Å.  Examples include alloxan (a = 5.84 Å, c = 13.85 Å) and fluorobenzene (a = 5.80 and c =14.51 

Å).  Pyridine-III conforms to this pattern, with a = 5.4053(4) and c = 13.44853(14) Å at 1.69 GPa.  The 

X-ray powder pattern for a polymorph of benzene which exists between 1.4 and 4 GPa (Thiery & Leger, 

1988), which seems somewhat experimentally elusive, but is discussed in computational studies (van 

Eijck et al., 1998, Wen et al., 2011), can be indexed with a tetragonal unit cell of dimensions a = 5.29 

and c = 14.29 Å at 3.1 GPa (van Eijck et al., 1998).   

The unusual characteristics of crystalline pyridine have inspired a number of crystal structure 

prediction studies (Aina et al., 2017, Anghel et al., 2002, Gavezzotti, 2003, van de Streek & Neumann, 

2011).  In the most recent of these, (Aina et al., 2017) generated a force field that was trained using 

energies calculated with symmetry adapted perturbation theory (SAPT) for gas-phase dimers. The 

results enabled them to identify the structure of phase III being reported here in an energy landscape 

calculated at 2 GPa.  

3.2. The crystal structure of pyridine-III and its relationship with pyridine-II 

In phase III the 2-fold axis of the pyridine molecule is constrained to lie along the ..2-fold axis 

of the space group (P41212), and only the orientation of the molecule about this axis is unconstrained 

by symmetry.  Relative to a Cartesian model with the 2-fold axis along z and the molecule in the xz 

plane, the orientation in the unit cell is obtained by rotations of 90°, 136.4° and −45° about a, b and c. 

Pyridine-II crystallises in P212121, which is a sub-group of P41212, with cell dimensions which are 

similar to phase III. The molecular orientation parameters at 1.09 GPa are also similar to those in phase 

III, 92.2°, 127.6° and −47.2°. The rings in phase II are more perpendicular to the c axis, which is 
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therefore shorter than in phase III.    There is no suggestion that pressure distorts the intramolecular 

geometry, as was the case in syn-1,6:8,13-biscarbonyl[14]annulene (Casati et al., 2016). 

An analysis of changes in the Cartesian-coordinate atom positions, calculated using the actual 

cell parameters of each phase, shows that the pyridine molecule rotation angle is 9.5° around an axis 

that is roughly 25° from the N1-C4 axis and 11° out of the plane of the molecule.  If the lattice strain 

(i.e. the change in the cell dimensions over the transition from phase III to II) is neglected by using the 

phase III cell parameters to calculate the Cartesian-coordinates of both phases, the pyridine rotation 

angle increases to 19.6° along roughly the same direction.  But if instead the changes to the internal 

lattice-coordinates of each atom are neglected by considering only the strain-induced changes to the 

Cartesian-coordinates, the pyridine rotation angle drops back to 8.9° but reverses its direction.  Thus, 

the internal and strain-induced contributions act in nearly opposite directions, so that roughly half of 

the internal rotation exists to maintain a regular internal geometry and to optimise intermolecular 

interactions throughout the strain. 

Topological analysis indicates that phase II has 14 molecules in its first coordination sphere 

with 50 and 110 molecules in the second and third coordination spheres, respectively (calculated using 

TOPOS-PRO, (Blatov et al., 2014)). This ‘14-50-110’ coordination sequence is characteristic of body-

centred cubic packing topology (bcu-x in the notation of RCSR topological database) (Peresypkina & 

Blatov, 2000, O'Keeffe et al., 2008).  Phase III is characterised by a coordination sequence of 12-42-

92, which corresponds to face-centred cubic close packing (RCSR symbol fcu), indicating that the effect 

of higher pressure is to eject two molecules from the coordination sphere of phase II to generate a more 

close-packed topology.  

Intermolecular interaction energies were calculated using the PIXEL method and symmetry-

adapted perturbation theory at the SAPT2+3 level (Tables 2 and 3).  The total energies obtained in the 

two sets of calculations are in excellent agreement, with the maximum difference being 1.3 kJ mol-1 for 

a CH···π contact in phase III.  (Aina et al., 2017) identified eight pyridine dimers as potential energy 

minima in the gas phase. The dimers are linked by CH···N, CH···π or stacking interactions and have 

energies in the range −14.31 to −16.56 kJ mol−1.  These energies are systematically more negative (i.e. 

more stabilising) than those listed in Tables 2 and 3 because they represent optimised potential energy 

minima for isolated dimers. Both the PIXEL and SAPT methods break down the total energies into 

electrostatic, polarisation, dispersion and repulsion terms, and while there is more variation between 

PIXEL and SAPT in the component energies than in the total energies, it is clear from both calculations 

that dispersion is the dominant term in all contacts.  This finding is in agreement with Aina et al.’s and 

Gavezzotti’s previous results (Aina et al., 2017, Gavezzotti, 2003). 

The first coordination spheres of both phases II and III contain 12 molecules with centroid-

centroid distances between ca. 4.5 and 6 Å. An additional pair of contacts form at a distances of 6.8 Å 
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in phase II and 7.1 Å in phase III.  The increase in these longer contact distances for phase III is the 

reason the packing topology changes from bcu to fcu (see above). Equivalent contacts in the two phases 

are correlated in Figs. 2(a) and (b) and Tables 2 and 3, where molecules in related positions in the two 

phases carry the same label.  In Fig. 2(b) (phase III) the 12 contacts between 4.5 and 6 Å are labelled 

A-L, with the two longer (6.8 Å) interactions labelled M and N. In phase II (Fig. 2(a) the contacts to 

molecules I and L lengthen as molecules M and N move into the first coordination sphere.  Animations 

of the transition based on the symmetry-mode analysis in Section 3.5 are given in the ESI, which also 

contains plots of the individual dimers (Fig. S5).  

The total lattice energy of phase II at 1.09 GPa is calculated by the PIXEL method to be −60.0 

kJ mol−1, and that of phase III at 1.69 GPa is −56.3 kJ mol−1. These values can be compared to values 

of −64.94, −66.76 and −65.36 kJ mol−1 respectively calculated for the structures of phases I, II and III 

optimised at ambient pressure (Aina et al., 2017).  The twelve strongest contacts comprise six pairs of 

symmetry-related contacts in phase II and three sets of four in phase III.  The molecule-molecule 

energies range between −12.4 and −4.6 kJ mol−1 in phase II and −9.0 and −7.1 kJ mol−1 in phase III 

(SAPT values).  Three classes of contacts are formed.   

One class (contacts E-H) is characterised by intermolecular CH···N interactions with H···N 

distances of between 2.58 and 2.76 Å and centroid-centroid distances near 6 Å.    Contacts E-H are all 

related by symmetry in phase III (C2H2···N1 = 2.69 Å, <C2H2···N1 = 142°, −7.6 kJ mol−1), but split 

in phase II into two sets of two contacts E/H (C2H2···N1 = 2.58 Å, <C2H2···N1 = 135°, −10.8 kJ 

mol−1) and F/G (C2H2···N1 = 2.76 Å, <C2H2···N1 = 124°, −12.4 kJ mol−1).  Although dispersion is 

the largest term, changes in the coulombic contributions determine the energy differences between 

phases II and III, as the result of the more optimal alignment of positive and negative regions of the 

electrostatic potentials of the interacting molecules in phase II.  This is illustrated using Hirshfeld 

surfaces coloured using the molecular electrostatic potentials in Fig. 3 (Spackman et al., 2008, 

Spackman & Jayatilaka, 2009).  In general, high-pressure crystal structures can accommodate 

energetically weaker intermolecular interactions by minimising the PV contribution to free energy 

through more efficient packing (see Section 3.3). 

A second set of contact (A-D) consists of CH···π interactions with centroid-centroid distances 

of around 4.5 Å, CH···ring centroid distances of between 2.57 and 3.12 Å and energies between −9 and 

−10 kJ mol−1.  The magnitudes of the coulombic energies in these contacts are only about 20-30% of 

the dispersion energies.     A third set of interactions (I-L in phase III and J, K, M and N in phase II) 

with centroid-centroid distances of 5.39 to 5.86 Å, are dominated by dispersion with very little 

coulombic energy and a lack any distinctive atom-atom contacts. Note that the π···π contacts do not 

occur in any of the phases. 
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Both phases I and II contain CH···π and CH···N contacts, but over the course of the I  II 

transformation some CH···π contacts are converted into CH···N interactions as a result of molecular 

reorientations.  By contrast, the correlations shown in the animations (ESI) and in Table 3 show that 

nature of each interaction remains constant over the course of the transition between phases II and III, 

so that CH···N contacts in one phase transform in to CH···N contacts in the other etc., but the distances 

and energies change.  The lack of a characteristic geometric signature for contacts I-L gives them a 

degree of flexibility allowing them to accommodate the biggest changes during the transition. 

3.3. Equations of state of pyridine-II and -III 

The variation of unit cell volume with pressure for pyridine-II and III, as determined using 

neutron powder diffraction, were fitted to third-order Birch-Murnaghan equations of state (Fig. 4) using 

the EoSFIT7 code (Gonzalez-Platas et al., 2016). The number of points obtained is quite limited with 

pressures starting at ca 1 GPa, and it was not possible to refine values of the zero-pressure cell volume 

(V0), the bulk modulus (K0) and its pressure derivative (K’) simultaneously. V0 was therefore fixed at 

452 Å3, the volume of pyridine-II at 195 K.  K0 for phase II was found to be 6.4(3) GPa with K’ = 

8.7(10). Corresponding figures for phase III are 6.2(3) GPa and 8.1(9). The two sets of parameters are 

the same within their uncertainties. The consistently lower volume of phase III is consistent with its 

becoming the more stable phase at elevated pressure, while its higher density is consistent with its more 

close-packed topology.  

A small bulk modulus (<10 GPa) is typical of soft materials where dispersion forces dominate 

intermolecular interactions e.g. naphthalene and Ru3(CO)12 have values of 8.3(4) and 6.6 GPa, 

respectively (Likhacheva et al., 2014, Slebodnick et al., 2004).  Flexible intramolecular torsion angles 

can provide an additional mechanism for compression, as seen in the P and OP polymorphs of the 

prodigiously polymorphic compound ‘ROY’ (5-methyl-2-[(2-nitrophenyl)amino]-3-

thiophenecarbonitrile), for which K0 = 6.0(7) and 4.3(3) GPa, respectively (Harty et al., 2015, Funnell 

et al., 2019). It assumes a higher value if additional intermolecular interactions such as H-bonding is 

present, e.g. the value for hydroquinone-formic acid clathrate, melamine and L-alanine are 13.6(4) GPa, 

(Eikeland et al., 2016) 12.0(5) (Fortes et al., 2019) and 13.4(7) GPa (Funnell et al., 2010), respectively.  

Materials characterised by a mixture of dispersion and weaker H-bonds and have correspondingly lower 

bulk moduli, e.g. aniline (phase II) is 5.4(2)  (Funnell et al., 2013). 
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Figure 2 The first coordination spheres of (a) pyridine-II at 1.09 GPa and (b) pyridine-III at 1.69 

GPa. The molecules described in the text as making long interactions are shown in outline.  
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Figure 3 CH···N contacts in (a) phase II and (b) phase III depicted using Hirshfeld surfaces coloured 

according to electrostatic potential. Note the better alignment of the blue (positive) and red (negative) 

regions of the potentials in phase II. The potentials are mapped over the range ±0.05 au. 
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Table 2 Intermolecular contacts in pyridine-III. All energies are in kJ mol-1 and contact distances were calculated with C-H distances reset to 1.089 Å. 

Label Centroid Distance (Å) Symmetry  Coulombic Polarization Dispersion Repulsion Total Contacts 
A  4.466   x+1/2, -y+1/2, -z+3/4 PIXEL -5.3 -3.5 -18.2 19.3 -7.7 C3H3···π = 2.61 Å (< = 129°) 
B          -x+1/2, y-1/2, -z+5/4 SAPT2+3 -8.4 -3.2 -23.7 26.2 -9.0  
C     -x+1/2, y+1/2, -z+5/4        
D      x-1/2, -y+1/2, -z+3/4        
E  6.094    x-1/2, -y+3/2, -z+3/4 PIXEL -5.6 -3.8 -12.0 13.1 -8.3 C2H2···N1 = 2.69 Å (< = 142°) 
F     -x+3/2, y+1/2, -z+5/4 SAPT2+3 -6.8 -3.0 -13.8 16.0 -7.6  
G     -x+3/2, y-1/2, -z+5/4        
H    x+1/2, -y+3/2, -z+3/4        
I  5.410    x, y-1, z      PIXEL -2.2 -1.5 -10.0 6.9 -6.9 Non-specific dispersion: 
J           x+1, y, z      SAPT2+3 -4.7 -1.9 -13.4 12.9 -7.1 highly slipped stack, β=61°. 
K      x-1 , y, z            Interplane distance = 2.64 Å 
L      x, y+1, z             
M  7.111   -x+1, -y+1, z+1/2  PIXEL 0.0 -0.1 -1.0 0.0 -1.0 Long range dispersion, 
N     -x+1, -y+1, z-1/2  SAPT2+3 0.1 -0.1 -1.5 0.1 -1.4 H···H = 4.23 Å 
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Table 3 Intermolecular contacts in pyridine-II. All energies are in kJ mol-1 and contact distances were calculated with C-H distances reset to 1.089 Å. 

Label Centroid Distance (Å) Symmetry  Coulombic Polarization Dispersion Repulsion Total Contacts 
A 4.501 x+1/2, -y+1/2, -z PIXEL -3.5 -2.3 -15.1 12.9 -7.9         Long C3H3···π = 3.03 Å & 
D  x-1/2, -y+1/2, -z SAPT2+3 -6.4 -2.6 -20.3 21.1 -8.2 Long C4H4···π 3.12 Å  
          

B 4.696 -x, y-1/2, -z+1/2 PIXEL -5.0 -2.8 -15.7 13.7 -9.7 C5H5···π = 2.72 Å (< = 136°) 
C  -x , y+1/2, -z+1/2 SAPT2+3 -7.2 -2.6 -19.9 19.9 -9.8  
          

E 5.949 x-1/2, -y+3/2, -z PIXEL -7.9 -3.5 -12.2 12.5 -11.1    C2H2···N1 = 2.58 Å (< = 135°)  
H  x+1/2,  -y+3/2, -z SAPT2+3 -10.8 -3.5 -14.6 18.1 -10.8  
          

F 5.88 -x+1, y+1/2, -z+1/2 PIXEL -7.1 -2.8 -10.7 8.5 -12.2 C6H6···N1 =  2.76 Å (< = 124°) 
G  -x+1, y-1/2, -z+1/2 SAPT2+3 -10.0 -2.7 -13.5 13.8 -12.4  
          
I 6.806 x, y-1, z PIXEL 0.0 -0.1 -1.1 0.0 -1.2 Long range dispersion, 
L  x, y+1, z SAPT2+3 0.0 -0.1 -1.7 0.1 -1.8 H2···H5 = 4.75 Å  
          
J 5.392 x+1, y, z PIXEL -1.2 -1.3 -9.0 5.4 -6.2 Highly offset stack. No overlap. 
K  x-1, y , z SAPT2+3 -3.3 -1.7 -12.6 11.0 -6.6 Shortest contact, H4···H6 = 2.74 Å  
          

M 5.856 -x+1/2, -y+1, z+1/2 PIXEL -0.6 -0.9 -8.6 4.7 -5.4 Non-specific dispersion, H2···H5 2.51 Å, 
N  -x+1/2, -y+1, z-1/2 SAPT2+3 -1.0 -0.9 -9.6 6.9 -4.6 H6···H2 2.69 Å & H6···H3 2.62 Å  
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Figure 4 Variation of the unit cell volumes of pyridine-d5 phases II (open circles) and III (closed 

circles) with pressure fitted to third order Birch-Murnaghan equations of state.  

 

3.4. Raman spectra 

The inconsistencies in the literature regarding the assignment of Raman spectra of the different 

high-pressure forms of pyridine were described in Section 1. With the aim of resolving the ambiguities, 

Raman spectra were measured on the exactly same samples of phases II and III as had been used for X-

ray data collections. The region of the spectrum below 200 cm−1, which contains the external or ‘lattice’ 

modes, has been discussed in earlier work, and the data obtained in this region in the present study are 

shown in Fig. 5 and compared to each other and to those found in the literature in Table 4.  
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Figure 5 The Raman spectra in the lattice phonon region of (a) phase II at 1.09 GPa and (b) phase III 

at 1.69 GPa, collected on the same regions as the diffraction data. Observed data in black and DFT-

calculated data in red.  

The Raman spectrum of phase II (P212121) has five bands below 200 cm−1 matching the 

spectrum collected at 1 GPa by (Heyns & Venter, 1985), shown at the far left of Fig. 1 in their paper.  

The spectrum of Phase III (P41212) is quite different, with two distinct bands matching the (quite broad) 

spectra measured at above 1.7 GPa by (Fanetti et al., 2011), at 2 GPa by (Zhuravlev et al., 2010) and at 

2.5 GPa by Heyns & Venter (far right spectrum of Fig. 1 in their paper).  The band below 50 cm−1, is 

discussed in Section 3.5. 

The frequencies of the Raman modes observed for phases II and III are reproduced to within 

10 cm−1 in periodic DFT calculations without any need for frequency scaling.  The intensities of the 

bands are more poorly reproduced; discrepancies between calculated and experimental Raman 

intensities have been noted previously, e.g. for tetracene (Mayami et al., 2015).  The calculations enable 

the modes to be assigned to oscillations about axes lying in the planes of the pyridine molecules. 

It is clear from these data that the ‘phase I’ of Heyns & Venter is actually the Z’ = 1, P212121 

phase II, while the ‘phase II’ of Fanetti et al. and Zhuravlev et al. is the Z’ = ½, P41212 phase III.  

Interestingly, the spectrum of pyridine-h5 recorded at 2.5 GPa by Heyns & Venter contains additional 

bands between 57 and 108 cm−1 which are neither seen in Fanetti’s and Zhuravlev’s spectra nor by us 

in our experimental or calculated spectra. It is anomalous that an increase in crystallographic symmetry 
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should give rise to a more complex Raman spectrum, and it seems possible that their sample was 

contaminated with phase II. 

Table 4 Comparison of the Raman lattice modes in pyridine-II and pyridine-III. 

Pressure/ 
GPa 

Reference Phase 
assignment 

Proposed 
phase 

Lattice modes/cm-1 

1.0 (Heyns & Venter, 1985) 
 

I II 60(-), 72(71), 85(89), 91(-), 
111(110), 153(152) 

1.09 This study, experimental II II 55, 70, 89, 111, 152 

1.09 This study, DFT  II II 56, 76, 93, 116, 136 (weak), 
156 

1.69 This study, experimental III III 123, 141 (sh), 154 

1.69 This study, DFT III III 33, 110, 148, 164 

1.7 (Fanetti et al., 2011)  II III 126, 163 

2.0 (Zhuravlev et al., 2010)   II III 130, 165 

2.5 (Heyns & Venter, 1985) II II/III 
mixture  

57(57), 69(69), 87(88), 96(-), 
108(108), 142(142), 187(187) 

 

  

3.5. Decompression of pyridine-III and symmetry mode analysis 

The unit cells of phase II and III characterise similar translational symmetry, but the structures 

differ in the relative orientations of the molecules (Section 3.2); the transition between phases III and 

II is therefore occurs at the Γ-point of reciprocal space.   Symmetry mode analysis (ISODISTORT) 

indicates that the motions affected by the transition can be concisely described in terms of molecular 

rotations and translations belonging to the totally symmetric Γ1 (A1 in Mulliken notation) and the Γ2 

irreducible representations. The Γ2 mode could correspond to either the Mulliken symbol B1 or B2 

depending on two-fold axis definitions; B2 will be used here. The A1 mode rotates the pyridine 

molecules about their two-fold axes, which does not lower the space group symmetry.  The B2 mode 

causes the two-fold molecular axes to deviate from the crystallographic ..2-fold axes (see Section 3.2), 

thereby reducing the space group symmetry of the crystal from P41212 to P212121 [note that the standard 

settings of these space groups also require an origin shift of (1/4, 0, 3/8)].   

Each A1 and B2 mode is capable of molecular translations parallel or antiparallel to the affected 

rotations.  A1 is seen to be responsible for most of the molecular translation, while B2 is responsible for 

approximately half the molecular rotation.  The intrinsic-rotational symmetry modes and their 

amplitudes are shown in Table 5, which are defined so as not to include the rather significant strain-

induced rotations; the overall strain-adjusted rotation angle is roughly half the value that can be inferred 
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from the Table (see Section 3.2). Details of the methods used to calculate the data in Table 5 will be 

published separately.  

 

Table 5: Displacive (Å) and rotational (radians) symmetry-modes and amplitudes for the phase III to 

phase II pyridine phase transition.  Divide by 2 to obtain corresponding molecular translation distances 

and rotation angles (see Section 2.9).  The first mode vector corresponds to the molecule with centroid 

near [0.37, 0.62, 0.625] in the unstrained child cell. 

Mode name Γ1(A1) Γ2(B2) Γ2(B2) 
Norm factor 1/√2 1/√2 1 
     
Molecular centroid Mode vectors 
(x,y,z)             1  1  0 1 -1  0 0  0  1 
(x+1/2,-y+3/2,-z+1) 1 -1  0 1  1  0 0  0 -1 
(-x+1,y-1/2,-z+3/2) -1  1  0 -1 -1  0 0  0 -1 
(-x+1/2,-y+1,z+1/2) -1 -1  0 -1  1  0 0  0  1 
        
Mode type Mode amplitudes 
displacive (per mode) -0.765 0.140 -0.045 
displacive (per irrep)  0.765 0.147 
displacive (overall) 0.779 
rotational (per mode) 0.550 0.239 -0.342 
rotational (per irrep) 0.550 0.417 
rotational (overall) 0.690 

 

The lowest Γ-point vibrational frequencies in pyridine-III have the same A1 and B2 symmetries 

that govern the movements and rotations of the molecules through the phase III-to-II transition. The 

calculations of Fig. 5 indicate that the A1 vibrational mode can be observed by Raman spectroscopy in 

phase III at 33 cm-1.  The B2 mode (calc. 52 cm−1), though formally Raman active, is predicted to have 

zero intensity. Neither mode is observable by infra-red spectroscopy.   

A single crystal of pyridine-III was grown by high-pressure in situ crystal growth from 

methanol and Raman measurements were performed in the region below 200 cm−1 on decompression 

from 2.50 to 1.69 GPa (Fig. 6).  All of the spectra have a high luminescence background, which becomes 

more prominent on decreasing pressure and is still present after background corrections and spectral 

averaging.  The spectrum collected at 2.50 GPa is that of pyridine-III.  There is a single strong band at 

57 cm−1, which, on the basis of the DFT calculations is assigned to the A1 mode described above.  The 

frequency is somewhat higher than had been calculated for the structure at 1.69 GPa (33 cm−1, Table 

4), but if the calculation is repeated with the cell dimensions measured at 2.67 GPa the agreement is 

much better (60 cm−1). 
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Figure 6 Raman spectra of the decompression of pyridine III to a pyridine III/II mixture. 

 

The onset of the pyridine III to II phase transition can been seen on decompression from 2.50 

to 1.97 GPa from the emergence of the phase II band at 71 cm−1 (cf. Table 4).  The intensity of this band 

increases at 1.69 GPa, with an additional band beginning to grow-in at 100 cm−1 also being consistent 

with the formation of phase II.  Further decompression (to 1.55 GPa) led to dissolution of the pyridine 

in the methanol and a noisy luminescence spectrum from which no Raman data could be extracted.  

These data show that the transition between phases III and II does not occur sharply, but gradually 

occurs as pressure is reduced, an observation that is consistent with the sluggishness of the transition 

between phases I and II in pyridine-d5 as a function of temperature.  

The symmetry-mode analysis suggests that the B2 vibration is expected to act as a soft mode.   

Since it is not observable by optical spectroscopy, its frequency was calculated using periodic DFT 

using cell dimensions observed for phase III at selected pressures, with three extra points at 0, 0.25 and 

0.50 GPa inferred from the equation of state.  The variation (Fig. 7) shows a rapid softening of the mode 

as pressure is reduced. The transition pressure calculated to occur at about 1 GPa lower than observed 

experimentally. The difference may of course be related to approximations in the calculations, for 

example the assumption of harmonic behaviour.  Alternatively, it may imply that the transition initiates 

at crystal defects, where the local pressure would be expected to be lower, and proceeds via the 

nucleation and growth mechanism usually associated with reconstructive transitions.  
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Figure 7 Variation of the frequency of the of the B2 symmetry-breaking lattice mode as a function of 

pressure. Frequencies calculated by periodic DFT; imaginary frequencies are shown as negative 

numbers. 

 

4. Conclusions 

The Cambridge Database (Groom et al., 2016) (established 1965) has just celebrated its 

millionth entry.  Of these about 5000 structures resemble pyridine I in having four molecules in the 

asymmetric unit. Only around 1200 have Z’ greater than this. (Steed & Steed, 2015) have identified a 

number of factors that may promote formation of crystal structures with more than one molecule in the 

asymmetric unit. While the phenomenon is slightly more common in small molecules than in larger 

ones (Anderson et al., 2011, Gavezzotti, 2008), in the case of pyridine-I it appears that the reason lies 

in the energetic competitiveness of CH···N and CH···π interactions (Aina et al., 2017, Crawford et al., 

2009). Chains of molecules in pyridine I are formed by a mixture of these interactions (Crawford et al., 

2009).  A small amount of pressure, of the order of 1 GPa, is enough to convert some of the CH···π into 

CH···N contacts, forming Z’ = 1 phase II. 

Phase II has a lower molar volume than phase I and the transition between the two is driven by 

the influence of the pressure × volume contribution to free energy, which favours efficient packing. A 

similar feature was observed in methyl 2-(carbazol-9-yl)benzoate, where a Z’ = 8 ambient pressure form 

converts to a Z’= 2 form at 5.3 GPa by selection of lower-volume molecular conformations (Johnstone 

et al., 2010).  In isopropanol the same factor applies, but in this case it leads to an increase in Z’ from 3 

to 4 at 1.1 GPa as the structure sacrifices H-bond linearity to improved packing efficiency (Ridout & 

Probert, 2014). 

Increasing the crystallisation pressure from 1.1 GPa to 1.7 GPa leads to the formation of 

pyridine-III. The underlying close-packed topology of this polymorph gives it a yet lower volume than 
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pyridine-II, which has a body-centred cubic topology.  Fanetti et al.’s Raman data show that phase III 

persists all the way to 18 GPa; the additional phases proposed by Zhuravlev et al. were not reproduced 

in Fanetti’s work. 

In the light of our combined crystallographic and Raman data obtained both Heyns & Venter’s, 

Fanetti et al.’s and Zhuravlev et al.’s phases I and II are phases II and III, respectively. Phase I does not 

feature in any of these papers.    

There is no rational geometric relationship between the crystal structures of pyridine I and II, 

and there is no group-subgroup relationship between their space groups (Pna21 and P212121).  The 

transition between the two can be studied thermally provided the perdeuterated isotopologue is used, 

but the transition causes a single crystal of phase I to break into fragments.  The only 

crystallographically verified report of phase I being formed at high pressure is in Podsiadło’s study, in 

which it was formed at room temperature on increasing pressure on the liquid from 1.0 and 1.2 GPa 

(Podsiadło et al., 2010).  Increasing the pressure on this sample to 2 GPa caused it to break up.  It was 

assumed at the time that phase II had formed, but the pressure implies that it could have been phase III.  

Phases II and III are geometrically much more closely related than phases I and II, and a group-

subgroup relationship exists between their space groups (P212121 and P41212).  The transition between 

phase III to II is displacive and governed by mode-softening.  The soft mode cannot be observed 

experimentally by Raman or infra-red spectroscopy, but it was inferred by a combination of symmetry 

mode analysis of the crystal structures and periodic DFT calculations.  However, the transition is not 

concerted, and it may proceed via nucleation at defects.  

The transition between phase III and II can be reproducibly observed by releasing pressure: in 

this work its onset was seen as pressure was reduced from 2.5 to 1.97 GPa (Fig. 6), in Fanetti’s work it 

was seen at 1 GPa.  The expected transition from phase II to phase III on pressure increase is less 

reproducibly observed, but both Heyns & Venter and Zhuravlev et al. observed it.  However, Fanetti et 

al. were able to compress phase II to 9.4 GPa, while in this work we compressed a sample of the 

deuterated isotopologue to 2.5 GPa, albeit with some reversible amorphisation.   

The variability of the transition pressures and sequences quoted above indicate that kinetics are 

an important factor in the phase behaviour of pyridine, and authors frequently remark on the 

sluggishness of its phase transitions. This even extends to the melting transition.  Although the melting 

pressure of pyridine is 0.55 GPa, crystallisation is only ever observed at around 1 GPa or above (Fanetti 

et al., 2011, Podsiadło et al., 2010).  Crystal growth often has to be induced by increasing pressure in 

small increments or with thermal annealing, and pyridine is highly susceptible to the formation of glassy 

or amorphous phases. Fanetti’s paper illustrates featureless Raman spectra up to 1.6 GPa, while we 

failed to see any evidence of crystalline diffraction at pressures as high as 2.7 GPa, the sample only 
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crystallising on release of pressure.  Similar features characterise the phase behaviour of benzene 

(Thiery & Leger, 1988, Podsiadło et al., 2010, Chanyshev et al., 2018, Cansell et al., 1993). 

To summarise, phase II and III can both be accessed reproducibly by crystal growth directly 

from the liquid phase.  Phase II can also be accessed by decompression of phase III or from 

decompression of a pressure-amorphised sample.  The sequence of phases I  II  III has never been 

observed at high pressure in a single sample.   
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