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ABSTRACT
Higher moment a priori estimates for solutions to nonlinear SPDEs
governed by locally-monotone operators are obtained under appro-
priate coercivity condition. These are then used to extend known
existence and uniqueness results for nonlinear SPDEs under local
monotonicity conditions to allow derivatives in the operator acting
on the solution under the stochastic integral.
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1. Introduction

Let T>0 be given (�,F , (Ft)t∈[0,T],P) be a stochastic basis and W := (Wt)t∈[0,T] be
an infinite dimensional Wiener martingale with respect to (Ft)t∈[0,T], i.e. the coordinate
processes (Wj

t)t∈[0,T], j ∈ N are independent Ft-adapted Wiener processes andWt − Ws
is independent of Fs for s ≤ t. Further assume that H is a separable Hilbert space, V is a
separable, reflexive Banach space embedded continuously and densely in H and V∗ is the
dual of V. Identifying H with H∗ using the Riesz representation and the inner product in
H one obtains the Gelfand triple

V ↪→ H ≡ H∗ ↪→ V∗,

where ↪→ denotes continuous and dense embeddings.
Consider the stochastic evolution equation

ut = u0 +
∫ t

0
As(us) ds +

∞∑
j=1

∫ t

0
Bjs(us) dW

j
s, t ∈ [0,T], (1)

where the initial condition u0 is an H-valued F0-measurable random variable. Moreover,
A and Bj, j ∈ N, are progressively measurable non-linear operators mapping [0,T] ×�×
V into V∗ and H respectively. The exact assumptions will be given in Section 2. Further
note that the formulation of (1) is equivalent to considering the analogous equation driven
by a cylindrical Wiener process, see Appendix 1.
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The nonlinear stochastic evolution equation (1) has been initially studied in Par-
doux [14] and Krylov and Rozovskii [9], where a priori estimates are proved, giving
the second moment estimates under what are now classical monotonicity, coercivity and
growth assumptions. This then allows the authors to obtain existence and uniqueness of
solutions to (1). One of the key results in [9] is the theorem about Itô’s formula for the
square of the norm of a continuous semimartingale in a Gelfand triple obtained separately
from the related stochastic evolution equation. This theorem provides the continuity of
the solution in the pivot space of the Gelfand triple and is key to obtaining the a pri-
ori estimates and in proving the existence and uniqueness of the solution. These, now
classical results, have been generalized in a number of directions. Of those one notes the
inclusion of general càdlàg semimartingales as the driving process in stochastic integral,
see Gyöngy and Krylov [6] and Gyöngy [5]. Closely related to the results in this paper
is the work by Liu and Röckner [11] (or [13]). They extended the framework of Krylov
and Rozovskii [9] to stochastic evolution equations when the operators are only locally
monotone and the operator A, which is the operator acting in the bounded variation term,
satisfies a less restrictive growth condition. To obtain a generalization in this direction Liu
and Röckner [11] need higher-order moment estimates and to obtain them they place
a restrictive assumption on the growth of the operator B (i.e. (5)), which is the opera-
tor acting on the solution under the stochastic integral. As a consequence one may not
have derivatives appearing in this operator. The local monotonicity and coercivity condi-
tions are further weakened in Liu and Röckner [12] but again at the expense of having
a growth restriction on the operator B. Moreover, Brzeźniak, Liu and Zhu [2] extend the
results in [11] to include equations driven by Lévy noise but again with suboptimal growth
restrictions on the operators appearing under the stochastic integrals (see also Remark 6.1).
Fully deterministic equations under local monotonicity assumptions are considered in
Liu [10].

The main contribution of this paper is to identify appropriate coercivity assumption
which allows one to obtain higher-order moment estimates and to prove existence and
uniqueness of solutions to (1) without the need to explicitly restrict the growth of the oper-
atorB. To be exact, we prove our results without requiring the first inequality in (1.2) in [11]
or equivalently in (5.2) in [13] or (1.2) in [2].

Examples of stochastic partial differential equations which do not fit the framework of
Krylov and Rozovskii [9] or Liu and Röckner [11,13] or Brzeźniak et al. [2] but which
fit into the setting of this paper are given. See also Remark 2.1. Finally, an example is
considered that, together with results from Brzeźniak and Veraar [3], shows that the
coercivity assumption identified in this paper is, in this context, the optimal one. See
Example 6.5.

This article is organized as follows. In Section 2 the main results about higher-order
moment estimates as well as existence and uniqueness of solutions are stated, together
with the assumptions required. Section 3 is devoted to proving the a priori estimates and
uniqueness of the solution. Galerkin discretization is used to obtain a finite-dimensional
approximation to (1) in Section 4.Moreover,moment bounds for the solutions of the finite-
dimensional equations, uniform in the discretization parameter, are established. These are
used in Section 5 to prove existence of solution to (1). Finally, Section 6 is devoted to exam-
ples of quasi-linear and semi-linear stochastic partial differential equations which fit into
the framework of this article.
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2. Assumptions andmain results

Let (�,F , (Ft)t∈[0,T],P) be a filtered probability space satisfying the usual conditions,
i.e. the probability space (�,F ,P) is complete, F0 contains all the P-null sets that are
in F and (Ft)t∈[0,T] is right continuous. LetW := (Wt)t∈[0,T] be an infinite dimensional
Wiener martingale with respect to (Ft)t∈[0,T].

Let (X, | · |X) be a separable and reflexive Banach Space. For a given constant p ∈ [1,∞),
Lp(�;X) denotes the Bochner–Lebesgue space of equivalence classes of random variables
x taking values in X such that the norm

|x|Lp(�;X) := (E|x|pX)1/p

is finite. Again, Lp(0,T;X) denotes the Bochner–Lebesgue space of equivalence classes of
X-valued measurable functions such that the norm

|x|Lp(0,T;X) :=
(∫ T

0
|xt|pX dt

)1/p

is finite while L∞(0,T;X) denotes the Bochner–Lebesgue space of X-valued measurable
functions which are essentially bounded, i.e.

|x|L∞(0,T;X) := ess supt∈(0,T)|xt|X < ∞.

Finally, Lp((0,T)×�;X) denotes the Bochner–Lebesgue space of equivalence classes of
X-valued stochastic processes which are progressively measurable and the norm

|x|Lp((0,T)×�;X) :=
(

E

∫ T

0
|xt|pX dt

)1/p

is finite.
Moreover, let (H, (·, ·), | · |H) be a separable Hilbert space, identifiedwith its dual and let

(V , | · |V) denote a separable, reflexive Banach space embedded continuously and densely
in H with (V∗, | · |V∗) denoting its dual and 〈·, ·〉 the duality pairing between V and V∗.
Thus one has

V ↪→ H ≡ H∗ ↪→ V∗

with continuous and dense embeddings.
Let A and Bj, j ∈ N, be non-linear operators mapping [0,T] ×�× V into V∗

and H respectively. Assume that for all v,w ∈ V , the processes (〈At(v),w〉)t∈[0,T] and
((Bjt(v),w))t∈[0,T] are progressively measurable. Since the concept of weak measurability
and strong measurability of a mapping coincide if the codomain is separable, one gets that
for all v ∈ V , j ∈ N, (At(v))t∈[0,T] and (B

j
t(v))t∈[0,T] are progressively measurable. Finally,

u0 is assumed to be a given H-valued F0-measurable random variable.
The following assumptions aremade on the operators. There exist constants α > 1,β ≥

0, p0 ≥ β + 2, θ > 0,K, L and a nonnegative f ∈ Lp0/2((0,T)×�;R) such that, almost
surely, the following conditions hold for all t ∈ [0,T].
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A- 1 (Hemicontinuity): For all y, x, x̄ in V, the map

ε �→ 〈At(x + εx̄), y〉

is continuous.

A- 2 (Local Monotonicity): For all x, x̄ in V,

2〈At(x)− At(x̄), x − x̄〉 +
∞∑
j=1

|Bjt(x)− Bjt(x̄)|2H ≤ L(1 + |x̄|αV)(1 + |x̄|βH)|x − x̄|2H .

A- 3 (Coercivity): For all x in V,

2〈At(x), x〉 + (p0 − 1)
∞∑
j=1

|Bjt(x)|2H + θ |x|αV ≤ ft + K|x|2H .

A- 4 (Growth of A): For all x in V,

|At(x)|α/(α−1)
V∗ ≤ (ft + K|x|αV)(1 + |x|βH).

Note that, if p0 = 2, i.e. β = 0 and L=0, then the conditions A-1 to A-4 reduce to
corresponding ones used in Krylov and Rozovskii [9].

Throughout the article, a generic constant C will be used and it may change from line
to line.

Remark 2.1: From Assumptions A-3 and A-4, one obtains

∞∑
j=1

|Bjt(x)|2H ≤ C
(
1 + f p0/2t + |x|p0H + |x|αV + |x|αV |x|βH

)

almost surely for all t ∈ [0,T] and x ∈ V . Indeed, using Hölder’s inequality, Young’s
inequality and Assumption A-4, one obtains that almost surely for all x ∈ V and t ∈ [0,T],

|〈At(x), x〉| ≤ α − 1
α

|At(x)|α/(α−1)
V∗ + 1

α
|x|αV

≤ α − 1
α

(
(ft + K|x|αV)(1 + |x|βH)

)
+ 1
α

|x|αV
≤ C

(
ft + |x|αV + |x|αV |x|βH + f p0/2t + (1 + |x|H)p0

)
.

The above inequality along with Assumption A-3 gives the result.

Remark 2.2: From Assumptions A-1, A-2 and A-4 one obtains that almost surely for all
t ∈ [0,T], the operatorAt is demicontinuous, i.e. vn → v inV implies thatAt(vn) ⇀ At(v)
in V∗. This follows using similar arguments as in the proof of Lemma 2.1 in Krylov and
Rozovskii [9].
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One consequence of this remark is that progressive measurability of some process
(vt)t∈[0,T] implies the progressive measurability of the process (At(vt))t∈[0,T].

Definition2.1 (Solution): Anadapted, continuous,H-valued processu is called a solution
of the stochastic evolution equation (1) if

(i) dt × P almost everywhere u ∈ V and

E

∫ T

0
(|ut|αV + |ut|2H) dt < ∞,

(ii) for every t ∈ [0,T] and φ ∈ V

(ut ,φ) = (u0,φ)+
∫ t

0
〈As(us),φ〉 ds +

∞∑
j=1

∫ t

0
(φ,Bjs(us)) dW

j
s a.s.

Note that the fact that u is a continuous, H-valued process and (i) in Definition 2.1
implies that almost surely

∫ T

0

(
|ut|βH + |ut|αV |ut|βH

)
dt < ∞.

The following are the main results of this article.

Theorem 2.2 (A priori estimates): If u is a solution of (1) and Assumptions A-3 and A-4
hold, then

sup
t∈[0,T]

E|ut|p0H + E

∫ T

0
|ut|p0−2

H |ut|αV dt ≤ CE

(
|u0|p0H +

∫ T

0
f p0/2s ds

)
for p0 > 2,

sup
t∈[0,T]

E|ut|2H + E

∫ T

0
|ut|αV dt ≤ CE

(
|u0|2H +

∫ T

0
fs ds

)
. (2)

Moreover,

E sup
t∈[0,T]

|ut|2H ≤ CE

(
|u0|2H +

∫ T

0
fs ds

)

and E sup
t∈[0,T]

|ut|p0rH ≤ CE

(
|u0|p0H +

∫ T

0
f p0/2s ds

)r

, (3)

for any r ∈ (0, 1), where C depends only on p0,K,T, r and θ .

Note that if p0 > 2 then one cannotmake use of the Burkholder–Davis–Gundy inequal-
ity to prove (3). Indeed, in this case, one would end up with a higher moment on the
right-hand side than on the left when trying to prove the a priori estimate. One avoids
this problem by using Lenglart’s inequality (see, e.g. Lemma 3.2 in Gyöngy and Krylov [7])
but this means one can only get (3) for 2 ≤ p < p0.
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Theorem 2.3 (Uniqueness of solution): Let Assumptions A-2 to A-4 hold and u0 ∈
Lp0(�;H). If u and ū are two solutions of (1), then the processes u and ū are indistinguishable,
i.e.

P

(
sup

t∈[0,T]
|ut − ūt|H = 0

)
= 1.

Theorem 2.4 (Existence of solution): If Assumptions A-1 to A-4 hold and u0 ∈ Lp0(�;H),
then the stochastic evolution equation (1) has a unique solution.

At first glance Assumption A-3 (equivalently Ã-3, see the Appendix) seems to be more
restrictive than the one used in Liu and Röckner [11] and the readermay conclude that our
results do not cover some SPDEs that can be treated by [11]. However this is not the case.
Given the growth condition on operator B that has been assumed in [11, Theorem 1.1,
inequality (1.2)], Assumption Ã-3 follows immediately from their coercivity condition.
Indeed, below we recall the coercivity condition (H3) and growth condition (1.2) used by
Liu and Röckner [11]: for all (t,ω) ∈ [0,T] ×� and x ∈ V ,

2〈At(x), x〉 + |Bt(x)|2L2(U,H) + θ |x|αV ≤ ft + K|x|2H (4)

and

|Bt(x)|2L2(U,H) ≤ C(ft + |x|2H). (5)

Then multiplying (5) by (p0 − 2) and adding the equation obtained to (4), one obtains

2〈At(x), x〉 + (p0 − 1)|Bt(x)|2L2(U,H) + θ |x|αV ≤ f̃t + K̃|x|2H ,
where f̃t = ft + C(p0 − 2)ft with f̃ ∈ Lp0/2((0,T)×�;R) and K̃ = K + C(p0 − 2) which
implies Ã-3 holds. Examples 6.1–6.4 show that the converse does not hold. Moreover,
Example 6.5 shows that our assumption A-3 (which is equivalent to Ã-3) is sharp.

3. A priori estimates and uniqueness of solution

Proof of Theorem 2.2.: Let u be a solution to Equation (1) in the sense of Definition 2.1.
Then, applying the Itô’s formula for the square of the norm (see, e.g. Theorem 3.2 in [9] or
Theorem 4.2.5 in [15]), one obtains

|ut|2H = |u0|2H +
∫ t

0

⎛
⎝2〈As(us), us〉 +

∞∑
j=1

|Bjs(us)|2H

⎞
⎠ ds + 2

∞∑
j=1

∫ t

0
(us,B

j
s(us)) dW

j
s

(6)

almost surely for all t ∈ [0,T]. Notice that this is a real-valued Itô process. Thus, by Itô’s
formula,

d|ut|p0H = p0
2

|ut|p0−2
H

⎛
⎝2〈At(ut), ut〉 +

∞∑
j=1

|Bjt(ut)|2H

⎞
⎠ dt

+ p0|ut|p0−2
H

∞∑
j=1
(ut ,B

j
t(ut)) dW

j
t + p0(p0 − 2)

2
|ut|p0−4

H

∞∑
j=1

|(ut ,Bjt(ut))|2 dt
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almost surely for all t ∈ [0,T], which on using Cauchy–Schwarz inequality gives

d|ut|p0H ≤ p0
2

|ut|p0−2
H

⎛
⎝2〈At(ut), ut〉 + (p0 − 1)

∞∑
j=1

|Bjt(ut)|2H

⎞
⎠ dt

+ p0|ut|p0−2
H

∞∑
j=1
(ut ,B

j
t(ut)) dW

j
t . (7)

One aims to apply Lenglart’s inequality (see, e.g. Lemma 3.2 and Remark 3.3 in [7]). To that
end let τ be some stopping time. Moreover, to estimate the term containing the stochastic
integral in (7), one needs a sequence (σn)n∈N of stopping times converging toT as n → ∞,
defined by

σn := inf{t ∈ [0,T] : |ut|H > n} ∧ T. (8)

By using Assumption A-3 and Young’s inequality in (7), one obtains

|ut∧σn∧τ |p0H ≤ |u0|p0H + p0
2

∫ t∧σn∧τ

0
|us|p0−2

H
(
fs + K|us|2H − θ |us|αV

)
ds

+ p0
∞∑
j=1

∫ t∧σn∧τ

0
|us|p0−2

H (us,B
j
s(us)) dW

j
s

≤ |u0|p0H +
∫ t∧σn∧τ

0
f p0/2s ds + p0 − 2

2

∫ t∧σn∧τ

0
|us|p0H ds

+ p0
2
K

∫ t∧σn∧τ

0
|us|p0H ds − θ

p0
2

∫ t∧σn∧τ

0
|us|p0−2

H |us|αV ds

+ p0
∞∑
j=1

∫ t∧σn∧τ

0
|us|p0−2

H (us,B
j
s(us)) dW

j
s.

Thus,

|ut∧σn∧τ |p0H + θ
p0
2

∫ t∧σn∧τ

0
|us|p0−2

H |us|αV ds ≤ |u0|p0H +
∫ t∧σn∧τ

0
f p0/2s ds

+ p0(K + 1)− 2
2

∫ t

0
1{s≤σn∧τ } |us|p0H ds

+ p0
∞∑
j=1

∫ t∧σn

0
1{s≤τ }|us|p0−2

H

× (us,B
j
s(us)) dW

j
s. (9)

Then in view of Remark 2.1 and the fact that u is a solution of equation (1), it follows that

E

∞∑
j=1

∫ t∧σn

0
1{s≤τ }|us|p0−2

H (us,B
j
s(us)) dW

j
s = 0.
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Therefore, taking expectation in (9), one obtains

E|ut∧σn∧τ |p0H + θ
p0
2

E

∫ t∧σn∧τ

0
|us|p0−2

H |us|αV ds

≤ E|u0|p0H + E

∫ T

0
f p0/2s ds + p0(K + 1)− 2

2
E

∫ t

0
|us∧σn∧τ |p0H ds. (10)

From this Gronwall’s lemma yields

E|ut∧σn∧τ |p0H ≤ e((p0(K+1)−2)/2)T
E

(
|u0|p0H +

∫ T

0
f p0/2s ds

)
(11)

for all t ∈ [0,T]. Letting n → ∞ and using Fatou’s lemma, one obtains

E|ut∧τ |p0H ≤ e((p0(K+1)−2)/2)T
E

(
|u0|p0H +

∫ T

0
f p0/2s ds

)
(12)

for all t ∈ [0,T]. Using Lenglart’s inequality, with the process (|uT∧t|p0H )t≥0, one gets

E sup
t∈[0,T]

|ut|p0rH ≤ r
1 − r

e((p0(K+1)−2)/2)T
E

(
|u0|p0H +

∫ T

0
f p0/2s ds

)

for any r ∈ (0, 1), which proves second inequality in (3).
In order to prove (2), the estimate (11) is used on the right-hand side of (10) with τ = T

and with n → ∞. One thus obtains

E|ut|p0H + θ
p0
2

E

∫ t

0
|us|p0−2

H |us|αV ds ≤ CE

(
|u0|p0H +

∫ T

0
f p0/2s ds

)

for all t ∈ [0,T]. If Assumption A-3 holds for some p0 ≥ β + 2, then it holds for p0 = 2
as well. Thus, using the stopping times (σn)n∈N in (6) and taking expectation, one obtains,
using the same localizing argument as before, that

E|ut|2H + θE

∫ t

0
|us|αV ds ≤ E

(
|u0|2H +

∫ T

0
fs ds

)
+ E

∫ t

0
K|us|2H ds

for all t ∈ [0,T]. Application of Gronwall’s lemma yields,

sup
t∈[0,T]

E|ut|2H ≤ CE

(
|u0|2H +

∫ T

0
fs ds

)

which in turn gives

θE

∫ T

0
|us|αV ds ≤ CE

(
|u0|2H +

∫ T

0
fs ds

)

and hence (2) holds.
To complete the proof it remains to show first inequality in (3). This is done using the

same argument as in Krylov and Rozovskii [9]. It is included here for convenience of the
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reader. Considering the sequence of stopping times σn defined in (8) and using Remark 2.1
along with Definition 2.1, one observes that the stochastic integral on the right-hand side
of (6) is a local martingale. Thus invoking the Burkholder–Davis–Gundy inequality, one
gets

E sup
t∈[0,T]

∣∣∣∣∣∣
∞∑
j=1

∫ t∧σn

0
(us,B

j
s(us)) dW

j
s

∣∣∣∣∣∣ ≤ 4E

⎛
⎝ ∞∑

j=1

∫ T∧σn

0
|(us,Bjs(us))|2 ds

⎞
⎠

1/2

.

Furthermore, on usingCauchy–Schwarz inequality, Remark 2.1 andYoung’s inequality one
obtains

E sup
t∈[0,T]

∣∣∣∣∣∣
∞∑
j=1

∫ t∧σn

0
(us,B

j
s(us))dW

j
s

∣∣∣∣∣∣ ≤ 4E

⎛
⎝ ∞∑

j=1

∫ T∧σn

0
|us|2H|Bjs(us)|2H ds

⎞
⎠

1/2

≤ 4E

(
sup

t∈[0,T]
|ut∧σn |2H

∫ T∧σn

0

(
fs + |us|2H + |us|αV

)
ds

)1/2

≤ εE sup
t∈[0,T]

|ut∧σn |2H + CE

∫ T∧σn

0

(
fs + |us|2H + |us|αV

)
ds. (13)

Moreover, taking supremum and then expectation in (6) and using Assumption A-3 along
with (13), one obtains

E sup
t∈[0,T]

|ut∧σn |2H ≤ εE sup
t∈[0,T]

|ut∧σn |2H + C
(

E|u0|2H + E

∫ T

0
fs ds

+ E

∫ T

0
|us|αV ds + sup

t∈[0,T]
E|ut|2H

)
.

Finally, by choosing ε small and using (2) for p0 = 2, one obtains

E sup
t∈[0,T]

|ut∧σn |2H ≤ C
(

E|u0|2H + E

∫ T

0
fs ds

)

which on allowing n → ∞ and using Fatou’s lemma finishes the proof. �

Definition 3.1: Let� be defined as the collection of V -valued andFt-adapted processes
ψ satisfying ∫ T

0
ρ(ψs) ds < ∞ a.s.,

where

ρ(x) := L(1 + |x|αV)(1 + |x|βH) (14)

for all x ∈ V .

Note that if u is a solution to (1) then u ∈ � .
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Remark 3.1: For any ψ ∈ � and v ∈ L2(�,C([0,T];H)),

E

[∫ t

0
e−

∫ s
0 ρ(ψr) drρ(ψs)|vs|2H ds

]
≤ E sup

s∈[0,t]
|vs|2H

∫ t

0
e−

∫ s
0 ρ(ψr) drρ(ψs) ds

= E sup
s∈[0,t]

|vs|2H
[
1 − e−

∫ t
0 ρ(ψr) dr

]

≤ E sup
s∈[0,t]

|vs|2H < ∞.

This remark justifies the existence of the bounded variation integrals appearing in the
proof of uniqueness that follows.

Proof of Theorem 2.3.: Consider two solutions u and ū of (1). Thus,

ut − ūt =
∫ t

0
(As(us)− As(ūs)) ds +

∞∑
j=1

∫ t

0

(
Bjs(us)− Bjs(ūs)

)
dWj

s (15)

almost surely for all t ∈ [0,T]. Using the Itô’s formula and the product rule one obtains

d
(
e−

∫ t
0 ρ(ūs) ds|ut − ūt|2H

)
= e−

∫ t
0 ρ(ūs) ds

[
d|ut − ūt|2H − ρ(ūt)|ut − ūt|2H dt

]

= e−
∫ t
0 ρ(ūs) ds

⎡
⎣

⎛
⎝2〈At(ut)− At(ūt), ut − ūt〉 +

∞∑
j=1

|Bjt(ut)− Bjt(ūt)|2H

⎞
⎠ dt

+
∞∑
j=1

2
(
ut − ūt ,B

j
t(ut)− Bjt(ūt)

)
dWj

t − ρ(ūt)|ut − ūt|2H dt

⎤
⎦

almost surely for all t ∈ [0,T]. With Assumption A-2 one sees that, with tn := t ∧ σn and
σn := inf{t ∈ [0,T] : |ut|H > n} ∧ inf{t ∈ [0,T] : |ūt|H > n} ∧ T,

e−
∫ tn
0 ρ(ūs) ds|utn − ūtn |2H ≤ 2

∞∑
j=1

∫ tn

0
e−

∫ s
0 ρ(ūr) dr

(
us − ūs,B

j
s(us)−Bjs(ūs)

)
dWj

s.

Then,

E

[
e−

∫ tn
0 ρ(ūs) ds|utn − ūtn |2H

]
≤ 0.

Letting n → ∞ and using Fatou’s lemma one concludes that for all t ∈ [0,T] one has
P(|ut − ūt|2H = 0) = 1. This, together with the continuity of u − ū in H, concludes the
proof. �

4. A priori estimates for Galerkin discretization

Existence of solution to stochastic evolution equation (1) will now be shown using the
Galerkin method. Consider a Galerkin scheme (Vm)m∈N for V, i.e. for eachm ∈ N, Vm is
an m-dimensional subspace of V such that Vm ⊂ Vm+1 ⊂ V and ∪m∈NVm is dense in V.
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Let {φi : i = 1, 2, . . .m} be a basis of Vm. Assume that for each m ∈ N, um0 is a Vm-valued
F0-measurable random variable satisfying

sup
m∈N

E|um0 |p0H < ∞ and E|um0 − u0|2H → 0 asm → ∞. (16)

It is always possible to obtain such an approximating sequence. For example, consider
{φi}i∈N ⊂ V forming an orthonormal basis in H and for each m ∈ N, take um0 = �mu0
where�m : H → Vm are the projection operators.

For each m ∈ N and φi ∈ Vm, i = 1, 2, . . . ,m, consider the stochastic differential
equation:

(umt ,φi) = (um0 ,φi)+
∫ t

0
〈As(ums ),φi〉 ds +

m∑
j=1

∫ t

0
(φi,B

j
s(ums )) dW

j
s (17)

almost surely for all t ∈ [0,T]. Using the results on solvability of stochastic differential
equations in finite dimensional space (see, e.g. Theorem 3.1 in [9]), together with Assump-
tions A-1 to A-4 and Remark 2.2, there exists a unique adapted and continuous (and thus
progressively measurable) Vm-valued process um satisfying (17).

Lemma 4.1 (A priori estimates for Galerkin discretization): Suppose that (16) and
Assumptions A-3 and A-4 hold. Then there is C independent of m, such that

sup
t∈[0,T]

E|umt |p0H + E

∫ T

0
|umt |αV dt + E

∫ T

0
|umt |p0−2

H |umt |αV dt ≤ C, (18)

E sup
t∈[0,T]

|umt |pH ≤ C, (19)

with p=2 in case p0 = 2 (i.e. β = 0) and p ∈ [2, p0) if p0 > 2,

E

∫ T

0
|As(ums )|α/(α−1)

V∗ ds ≤ C, (20)

E

∞∑
j=1

∫ T

0
|Bjs(ums )|2H ds ≤ C. (21)

Proof: Proof of (18) and (19) is almost a repetition of the proof of analogous results in
Theorem 2.2. Indeed, for eachm ∈ N, one can define a sequence of stopping times

σm
n := inf{t ∈ [0,T] : |umt |H > n} ∧ T

and repeat the steps of Theorem 2.2 by replacing ut with umt and σn with σm
n . There are two

main points to be noted. The first is that the stochastic integral appearing on the right-hand
side of (6), with ut replaced by umt , is a local martingale for eachm ∈ N. Indeed, on a finite
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dimensional space, all norms are equivalent and hence

E

∫ T∧σmn

0
|umt |αV dt ≤ CmE

∫ T∧σmn

0
nα dt < ∞

with some constant Cm. The second point is that, since

sup
m∈N

E|um0 |p0 < ∞,

one can take a constant independent ofm to obtain (18) and (19).
The estimates (20) and (21) can be proved as below. One obtains from Assumption A-4

that

I := E

∫ T

0
|As(ums )|α/(α−1)

V∗ ds ≤ E

∫ T

0
(fs + K|ums |αV)(1 + |ums |βH) ds

= E

∫ T

0
fs ds + E

∫ T

0
fs|ums |βH ds + KE

∫ T

0
|ums |αV ds + KE

∫ T

0
|ums |αV |ums |βH ds.

Using Young’s inequality one can see that

fs + fs|ums |βH ≤ 4
p0

f p0/2s + p0 − 2
p0

+ p0 − 2
p0

|ums |β(p0/(p0−2))
H .

Moreover, |ums |βH ≤ (1 + |ums |H)p0−2, since p0 ≥ β + 2. Hence

I ≤ 4
p0

E

∫ T

0
f p0/2s ds + p0 − 2

p0
T + p0 − 2

p0
E

∫ T

0
|ums |β(p0/(p0−2))

H ds + KE

∫ T

0
|ums |αV ds

+ KE

∫ T

0
|ums |αV(1 + |ums |H)p0−2 ds.

Furthermore, applying Hölder’s inequality,

I ≤ 4
p0

E

∫ T

0
f p0/2s ds + p0 − 2

p0
T + p0 − 2

p0
T((p0−2−β)/(p0−2))

(
E

∫ T

0
|ums |p0H ds

)β/(p0−2)

+ (2p0−3 + 1)KE

∫ T

0
|ums |αV ds + 2p0−3K

∫ T

0
|ums |αV |ums |p0−2

H ds

≤ 4
p0

E

∫ T

0
f p0/2s ds + p0 − 2

p0
T + p0 − 2

p0
T sup

0≤s≤T
E|ums |p0H

+ (2p0−3 + 1)KE

∫ T

0
|ums |αV ds + 2p0−3K

∫ T

0
|ums |αV |ums |p0−2

H ds, (22)
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where one has used the fact p0 ≥ β + 2. By using (18) in (22), one obtains (20). Further-
more, by Remark 2.1, one gets

E

∫ T

0

∞∑
j=1

|Bjs(ums )|2H ds ≤ C
[
T + E

∫ T

0
f p0/2t ds + E

∫ T

0
|ums |p0H ds

+E

∫ T

0
|ums |αV ds + E

∫ T

0
|ums |αV(1 + |ums |H)p0−2 ds

]

≤ C

[
T + E

∫ T

0
f p0/2t ds + T sup

s∈[0,T]
E|ums |p0H

+E

∫ T

0
|ums |αV ds + E

∫ T

0
|ums |αV |ums |p0−2

H ds
]

and hence by using (18), one gets (21). �

5. Existence of solution

Having obtained the necessary a priori estimates, weakly convergent subsequences are
extracted using the compactness argument. After that the local monotonicity condition
is used to establish the existence of a solution to (1).

Lemma 5.1: Let Assumptions A-2, A-3, A-4 and (16) hold. Then there is a subsequence
(mk)k∈N and

(i) there exists a progressively measurable process u ∈ Lα((0,T)×�;V) such that

umk ⇀ u in Lα((0,T)×�;V),

(ii) there exists a progressively measurable process a ∈ Lα/(α−1)((0,T)×�;V∗) such that

A(umk) ⇀ a in Lα/(α−1)((0,T)×�;V∗),

(iii) there exists a progressively measurable process b ∈ L2((0,T)×�; �2(H)) such that

B(umk) ⇀ b in L2((0,T)×�; �2(H)).

Proof: TheBanach spaces Lα((0,T)×�;V), Lα/(α−1)((0,T)×�;V∗) and L2((0,T)×
�; �2(H)) are reflexive. Thus, due to Lemma 4.1, there exists a subsequence mk (see, e.g.
Theorem 3.18 in [1]) such that

(i) umk ⇀ v in Lα((0,T)×�;V),
(ii) A(umk) ⇀ a in Lα/(α−1)((0,T)×�;V∗),
(iii) (Bj(umk))

mk
j=1 ⇀ (bj)∞j=1 in L2((0,T)×�; �2(H)).

�
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Whilst not needed to prove results in this article, it is also possible to show that there is
a subsequence of (mk), again denoted by mk such that umk converges weakly star to u in
Lp(�; L∞(0,T;H)). This is a consequence of Lemmas 4.1 and A.6.

Lemma 5.2: Let Assumptions A-2, A-3 and A-4 together with (16) hold. Then,

(i) for dt × P almost everywhere,

ut = u0 +
∫ t

0
as ds +

∞∑
j=1

∫ t

0
bjs dW

j
s

and moreover almost surely u ∈ C([0,T];H) and for all t

|ut|2H = |u0|2H +
∫ t

0

⎡
⎣2〈as, us〉 +

∞∑
j=1

|bjs|2H

⎤
⎦ ds + 2

∞∑
j=1

∫ t

0
(us, b

j
s) dW

j
s. (23)

(ii) Finally, u ∈ L2(�;C([0,T];H)).

Proof: Using Itô’s isometry, it can be shown that the stochastic integral is a bounded lin-
ear operator from L2((0,T)×�; �2(H)) to L2((0,T)×�;H) and hence maps a weakly
convergent sequence to a weakly convergent sequence. Thus, one obtains

mk∑
j=1

∫ ·

0
Bjs(u

mk
s ) dWj

s ⇀

∞∑
j=1

∫ ·

0
bjs dW

j
s

in L2((0,T)×�;H), i.e. for any ψ ∈ L2((0,T)×�;H),

E

∫ T

0

⎛
⎝ mk∑

j=1

∫ t

0
Bjs(u

mk
s ) dWj

s,ψ(t)

⎞
⎠ dt → E

∫ T

0

⎛
⎝ ∞∑

j=1

∫ t

0
bjs dW

j
s,ψ(t)

⎞
⎠ dt. (24)

Similarly, using Holder’s inequality it can be shown that the Bochner integral is a bounded
linear operator from Lα/(α−1)((0,T)×�;V∗) to Lα/(α−1)((0,T)× �;V∗) and is thus
continuous with respect to weak topologies. Therefore, for any ψ ∈ Lα((0,T)×�;V),

E

∫ T

0

〈∫ t

0
As(u

mk
s ) ds,ψ(t)

〉
dt → E

∫ T

0

〈∫ t

0
as ds,ψ(t)

〉
dt. (25)

Fix n ∈ N. Then for any φ ∈ Vn and an adapted real valued process ηt bounded by a
constant C, one has, for any k ≥ n,

E

∫ T

0
ηt(u

mk
t ,φ) dt = E

∫ T

0
ηt

⎛
⎝(umk

0 ,φ)+
∫ t

0
〈As(u

mk
s ),φ〉 ds

+
mk∑
j=1

∫ t

0
(φ,Bjs(u

mk
s )) dW

j
s

⎞
⎠ dt.
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Taking the limit k → ∞ and using (16), (24) and (25), one obtains

E

∫ T

0
ηt(vt ,φ) dt = E

∫ T

0
ηt

⎛
⎝(u0,φ)+

∫ t

0
〈as,φ〉 ds +

∞∑
j=1

∫ t

0
(φ, bjs) dW

j
s

⎞
⎠ dt

with any φ ∈ Vn and any adapted real valued process ηt bounded by a constant C. Since
∪n∈NVn is dense in V, one obtains

vt = u0 +
∫ t

0
as ds +

∞∑
j=1

∫ t

0
bjs dW

j
s (26)

dt × P almost everywhere. Now, using Theorem 3.2 on Itô’s formula from [9], there exists
an H-valued continuous modification u of v which is equal to the right-hand side of (26)
almost surely for all t ∈ [0,T]. Moreover, (23) holds almost surely for all t ∈ [0,T]. This
completes the proof of part (i) of the lemma. It remains to prove part (ii) of the lemma. To
that end, consider the sequence of stopping times σn defined for each n ∈ N by

σn := inf{t ∈ [0,T] : |ut|H > n} ∧ T.

From the Burkholder–Davis–Gundy inequality, one obtains

E sup
t∈[0,T]

∣∣∣∣∣∣
∞∑
j=1

∫ t∧σn

0
(us, b

j
s)dW

j
s

∣∣∣∣∣∣ ≤ 4E

⎛
⎝ ∞∑

j=1

∫ T∧σn

0
|(us, bjs)|2H ds

⎞
⎠

1/2

.

Using Cauchy–Schwarz’s and Young’s inequalities leads to

E sup
t∈[0,T]

∣∣∣∣∣∣
∞∑
j=1

∫ t∧σn

0
(us, b

j
s) dW

j
s

∣∣∣∣∣∣ ≤ 4E

⎛
⎝ ∞∑

j=1

∫ T∧σn

0
|us|2H|bjs|2H ds

⎞
⎠

1/2

≤ 4E

⎛
⎝ sup

t∈[0,T]
|ut∧σn |2H

∞∑
j=1

∫ T∧σn

0
|bjs|2H ds

⎞
⎠

1/2

≤ εE sup
t∈[0,T]

|ut∧σn |2H + CE

∞∑
j=1

∫ T∧σn

0
|bjs|2H ds. (27)

Taking supremum and then expectation in (23) and using Hölder’s inequality along
with (27), one obtains

E sup
t∈[0,T]

|ut∧σn |2H ≤ E|u0|2H + 2
(

E

∫ T

0
|as|α/(α−1) ds

)(α−1)/α (
E

∫ T

0
|us|αV ds

)1/α

+ εE sup
t∈[0,T]

|ut∧σn |2H + CE

∞∑
j=1

∫ T

0
|bjs|2H ds
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which on choosing ε small enough gives

E sup
t∈[0,T]

|ut∧σn |2H ≤ C

[
E|u0|2H +

(
E

∫ T

0
|as|α/(α−1) ds

)(α−1)/α (
E

∫ T

0
|us|αV ds

)1/α

+ E

∞∑
j=1

∫ T

0
|bjs|2H ds

⎤
⎦ .

Finally taking n → ∞ and using Fatou’s lemma, one obtains

E sup
t∈[0,T]

|ut|2H < ∞.

This concludes the proof. �

From now onwards, the processes v and u will be denoted by u for notational conve-
nience. In order to prove that the process u is the solution of equation (1), it remains to
show that dt × P almost everywhere A(v) = a and Bj(v) = bj for all j ∈ N. Recall that �
and ρ were given in Definition 3.1.

Proof of Theorem 2.4.: For ψ ∈ Lα((0,T)×�;V) ∩� ∩ L2(�;C([0,T];H)), using the
product rule and Itô’s formula one obtains

E

(
e−

∫ t
0 ρ(ψs) ds|ut|2H

)
− E(|u0|2H)

= E

⎡
⎣ ∫ t

0
e−

∫ s
0 ρ(ψr)dr

⎛
⎝2〈as, us〉 +

∞∑
j=1

|bjs|2H − ρ(ψs)|us|2H

⎞
⎠ ds

⎤
⎦ (28)

and

E

(
e−

∫ t
0 ρ(ψs) ds|umk

t |2H
)

− E(|umk
0 |2H)

= E

⎡
⎣∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈As(u

mk
s ), umk

s 〉 +
mk∑
j=1

|Bjs(umk
s )|2H − ρ(ψs)|umk

s |2H

⎞
⎠ ds

⎤
⎦
(29)

for all t ∈ [0,T]. Note that in view of Remark 3.1, all the integrals are well defined in what
follows. Moreover,

E

⎡
⎣∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈As(u

mk
s ), u

mk
s 〉 +

mk∑
j=1

|Bjs(umk
s )|2H − ρ(ψs)|umk

s |2H

⎞
⎠ ds

⎤
⎦

= E

⎡
⎣∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈As(u

mk
s )− As(ψs), u

mk
s − ψs〉 + 2〈As(ψs), u

mk
s 〉
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+ 2〈As(u
mk
s )− As(ψs),ψs〉 +

mk∑
j=1

∣∣∣Bjs(umk
s )− Bjs(ψs)

∣∣∣2
H

−
mk∑
j=1

|Bjs(ψs)|2H

+2
mk∑
j=1

(
Bjs(u

mk
s ),Bjs(ψs)

)
− ρ(ψs)

[|umk
s − ψs|2H − |ψs|2H + 2(umk

s ,ψs)
] ⎞

⎠ ds

⎤
⎦ .

Now one can apply the local monotonicity Assumption A-2 to see that

E

(
e−

∫ t
0 ρ(ψs) ds|umk

t |2H
)

− E(|umk
0 |2H)

≤ E

⎡
⎣ ∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈As(ψs), u

mk
s 〉 + 2〈As(u

mk
s )− As(ψs),ψs〉

−
mk∑
j=1

|Bjs(ψs)|2H + 2
mk∑
j=1

(
Bjs(u

mk
s ),B

j
s(ψs)

)
+ ρ(ψs)

[|ψs|2H − 2(umk
s ,ψs)

]⎞
⎠ ds

⎤
⎦ .

Integrating over t from 0 to T, letting k → ∞ and using the weak lower semicontinuity of
the norm one obtains

E

[∫ T

0

(
e−

∫ t
0 ρ(ψs) ds|ut|2H − |u0|2H

)
dt

]

≤ lim inf
k→∞

E

[∫ T

0

(
e−

∫ t
0 ρ(ψs) ds|umk

t |2H − |umk
0 |2H

)
dt

]

≤ E

⎡
⎣∫ T

0

∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈As(ψs), us〉 + 2〈as − As(ψs),ψs〉 −

∞∑
j=1

|Bjs(ψs)|2H

+2
∞∑
j=1
(bjs,B

j
s(ψs))+ ρ(ψs)

[|ψs|2H − 2(us,ψs)
]⎞
⎠ ds dt

⎤
⎦ . (30)

Integrating from 0 to T in (28) and combining this with (30) leads to

E

⎡
⎣∫ T

0

∫ t

0
e−

∫ s
0 ρ(ψr) dr

⎛
⎝2〈as − As(ψs), us − ψs〉

+
∞∑
j=1

|Bjs(ψs)− bjs|2H − ρ(ψs)|us − ψs|2H

⎞
⎠ ds dt

⎤
⎦ ≤ 0. (31)

Furthermore, using Definition 3.1 and Lemma 5.1,

u ∈ Lα((0,T)×�;V) ∩� ∩ L2(�;C([0,T];H)).

Taking ψ = u in (31), one obtains that B(u) = b in L2((0,T)×�; �2(H)). Let η ∈
L∞((0,T)×�;R), φ ∈ V , ε ∈ (0, 1) and let ψ = u − εηφ. Then from (31) one obtains
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that

E

[∫ T

0

∫ t

0
e−

∫ s
0 ρ(ur−εηrφ) dr (2ε〈as − As(us − εηsφ), ηsφ〉

− ε2ρ(us − εηsφ)|ηsφ|2H
)
ds dt

]
≤ 0. (32)

Dividing by ε, letting ε → 0, using Lebesgue dominated convergence theorem and
Assumption A-1 leads to

E

[∫ T

0

∫ t

0
e−

∫ s
0 ρ(ur) dr2ηs〈as − As(us),φ〉 ds dt

]
≤ 0.

Since this holds for any η ∈ L∞((0,T)×�;R) and φ ∈ V , one gets that A(u) = a in
Lα/(α−1)((0,T)×�;V∗) which concludes the proof. �

6. Examples

In this section, some examples of stochastic evolution equations are presented which fit in
the framework of this article and yet do not satisfy the assumptions of [9,11].

Throughout the section, Rd denotes a d-dimensional Euclidean space. For x, y ∈ Rd,
the inner product is denoted by xy. LetD ⊆ Rd be an open bounded domain with smooth
boundary. Then for any p ≥ 1, Lp(D) is the Lebesgue space of equivalence classes of real
valued measurable functions u defined on D such that the norm

|u|Lp :=
(∫

D
|u(x)|p dx

)1/p

is finite. For i ∈ {1, 2, . . . , d}, let Di denote the distributional derivative along the i-th
coordinate in Rd. Furthermore, let ∇ := (D1,D2, . . . ,Dd) denote the gradient. Finally,
W1,p(D) is the Sobolev space of real valued functions u, defined onD , such that the norm

|u|1,p :=
(∫

D

(|u(x)|p + |∇u(x)|p) dx
)1/p

is finite.
Let C∞

0 (D) be the space of smooth functions with compact support in D . Then, the
closure of C∞

0 (D) in W1,p(D) with respect to the norm | · |1,p is denoted by W1,p
0 (D).

Friederichs’ inequality (see, e.g. Theorem 1.32 in [16]) implies that the norm

|u|W1,p
0

:=
(∫

D
|∇u(x)|p dx

)1/p

is equivalent to |u|1,p and this equivalent norm |u|W1,p
0

will be used throughout this section.

Moreover, letW−1,p(D) denotes the dual ofW1,p
0 (D) and let | · |W−1,p be the norm on this
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dual space. It is well known that

W1,p
0 (D) ↪→ L2(D) ≡ (L2(D))∗ ↪→ W−1,p(D),

where ↪→ denotes continuous and dense embeddings, is a Gelfand triple. Finally, define
� : W1,2

0 (D) → W−1,2(D) by

〈�u, v〉 := −
∫

D
∇u(x)∇v(x) dx ∀ v ∈ W1,2

0 (D).

Clearly

|�u|W−1,2 ≤ |u|W1,2
0

(33)

and so the operator is linear and bounded.
The following consequence of Gagliardo–Nirenberg inequality (see, e.g. Theorem 1.24

in [16])will be needed in the examples presented below. If d=2, then there exists a constant
C such that

|u|L4 ≤ C|u|1/2L2 |u|1/2
W1,2

0
. (34)

Furthermore, if d=1, then there exists a constant C such that

|u|L4 ≤ C|u|3/4L2 |u|1/4
W1,2

0
≤ C|u|1/2L2 |u|1/2

W1,2
0
.

Example 6.1 (Semi-linear equation): Let γ be a constant such that γ 2 < 1
3 . For

i = 1, 2, . . . , d, let gi : R → R be bounded and Lipschitz continuous and hi : R → R be
Lipschitz continuous. Let f : R → R be a continuous function such that

|f (x)| ≤ K(1 + |x|3) and (f (x)− f (y))(x − y) ≤ K(1 + |y|2)|x − y|2 ∀ x, y ∈ R.

Consider the stochastic partial differential equation

dut = (
�ut + g(ut)∇ut + f (ut)

)
dt + (γ∇ut + h(ut)) dWt on (0,T)× D , (35)

where ut = 0 on ∂D , u0 is a given F0-measurable random variable and � is the Laplace
operator. Moreover,W is an Rd-valuedWiener process. It will now be shown that such an
equation, in its weak form, fits the assumptions of the present article.

Let A : W1,2
0 (D) → W−1,2(D) and Bi : W1,2

0 (D) → L2(D) be given by

A(u) := �u + g(u)∇u + f (u) and Bi(u) := γDiu + hi(u)

for i = 1, 2, . . . d. The next step is to show that these operators satisfy Assumptions A-1 to
A-4. One immediately notices that A-1 holds, in particular, since g and f are continuous.

One now wishes to verify the local monotonicity condition. By using the assumptions
imposed on f and g one can see foru, v ∈ W1,2

0 (D), upon application ofHölder’s inequality,
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that

〈A(u)− A(v), u − v〉 = −|u − v|2
W1,2

0
+ 〈g(u)∇(u − v), u − v〉

+ 〈(∇v)(g(u)− g(v)), u − v〉 + 〈f (u)− f (v), u − v〉
≤ −|u − v|2

W1,2
0

+ C|u − v|W1,2
0

|u − v|L2 + C|v|W1,2
0

|u − v|2L4
+ C|u − v|2L2 + C|v|2L4 |u − v|2L4 .

Then (34) implies that

〈A(u)− A(v), u − v〉 ≤ −|u − v|2
W1,2

0
+ C|u − v|W1,2

0
|u − v|L2

+ C|v|W1,2
0

|u − v|L2 |u − v|W1,2
0

+ C|u − v|2L2 + C|v|2L4 |u − v|W1,2
0

|u − v|L2 .

Young’s inequality with some ε > 0 finally leads to

〈A(u)− A(v), u − v〉 ≤ (ε − 1)|u − v|2
W1,2

0
+ C(1 + |v|2

W1,2
0

+ |v|4L4)|u − v|2L2 . (36)

Moreover,

d∑
i=1

|Bi(u)− Bi(v)|2L2 ≤ 2γ 2|u − v|2
W1,2

0
+ C|u − v|2L2 .

Thus using (34) once again, one obtains

2〈A(u)− A(v), u − v〉 +
d∑

i=1
|Bi(u)− Bi(v)|2L2 ≤ (2ε + 2γ 2 − 2)|u − v|2

W1,2
0

+ C(1 + |v|2
W1,2

0
+ |v|2L2 |v|2W1,2

0
)|u − v|2L2 .

If γ ∈ (−1, 1), then one can get that for some θ > 0,

2〈A(u)− A(v), u − v〉 +
d∑

i=1
|Bi(u)− Bi(v)|2L2 + θ |u − v|2

W1,2
0

≤ C(1 + |v|2
W1,2

0
)(1 + |v|2L2)|u − v|2L2 ,

for all u, v ∈ W1,2
0 (D). Hence Assumption A-2 is satisfied with α := 2 and β := 2.

The next condition that ought to be verified is coercivity. Taking v=0 in (36), one
obtains for all u ∈ W1,2

0 (D)

〈A(u), u〉 ≤ (ε − 1)|u|2
W1,2

0
+ C|u|2L2
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which implies, together with the assumptions on h, that

2〈A(u), u〉 + (p0 − 1)
d∑

i=1
|Bi(u)|2L2 ≤ (

2ε + 2γ 2(p0 − 1)− 2
) |u|2

W1,2
0

+ C
(
1 + |u|2L2

)
.

One can now take p0 := 4 and see that if γ 2 < 1/3, then Assumption A-3 holds with θ :=
2 − 2ε − 6γ 2 for ε > 0 sufficiently small.

Finally one wishes to verify the growth condition. Using the boundedness of g and
Hölder’s inequality one obtains, for u ∈ W1,2

0 (D), that

|g(u)∇u|W−1,2 ≤ C|u|W1,2
0
.

Moreover, due to Hölder’s inequality, one gets that for any 1 ≤ q < ∞ and u, v ∈ W1,2
0 (D)

〈f (u), v〉 ≤ C|v|Lq + C|u|3L3(q/(q−1)) |v|Lq ≤ C|v|W1,2
0

+ C|u|3L3(q/(q−1)) |v|W1,2
0
,

where the last inequality is consequence of the Sobolev embedding and the fact that d=1
or 2. Hence, with q=6 one obtains that

|f (u)|W−1,2 ≤ C
(
1 + |u|3L18/5

) ≤ C
(
1 + |u|L2 |u|2L6

)
,

where the last inequality follows from interpolation between spaces of integrable functions,
see e.g. [16, Theorem 1.24]. Finally, using the Sobolev embedding again, one can see that

|A(u)|2W−1,2 ≤ C
(
1 + |u|2

W1,2
0

) (
1 + |u|2L2

)

thus Assumption A-4 is satisfied with α = 2, β = 2.
If d=1 or 2, α = 2, β = 2, p0 = 4, γ 2 < 1/3 and u0 ∈ L4(�; L2(D)) isF0-measurable

then, in view of Theorems 2.2, 2.3 and 2.4, one can conclude that equation (35) has a unique
solution and moreover for any p<4 one has

E

(
sup

t∈[0,T]
|ut|pL2 +

∫ T

0
|ut|2W1,2

0
dt

)
< C

(
1 + E|u0|4L2

)
.

Example 6.2 (Stochastic p-Laplace equation): For α > 2, consider the stochastic partial
differential equation

dut =
( d∑

i=1
Di

(|Diut|α−2Diut
) + f (ut)

)
dt +

d∑
i=1

γ |Diut|α/2 dWi
t +

∑
i∈N

hi(ut) dWi
t

(37)

on (0,T)× D , where ut = 0 on ∂D and u0 is a given F0-measurable random variable.
Moreover, Wi are independent Wiener processes. Furthermore, assume that there are
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constants r, s, t ≥ 1 and continuous function f on R such that

f (x)x ≤ K(1 + |x|(α/2)+1); |f (x)| ≤ K(1 + |x|r)
and (f (x)− f (y))(x − y) ≤ K(1 + |y|s)|x − y|t ∀ x, y ∈ R.

Finally, for i ∈ N, let hi : R → R be Lipschitz continuous with Lipschitz constantsMi such
that the sequence (Mi)i∈N ∈ �2. Let A : W1,α

0 (D) → W−1,α(D) be given by

A(u) :=
d∑

i=1
Di

(|Diu|α−2Diu
) + f (u)

and Bi : W1,α
0 (D) → L2(D) be given by

Bi(u) :=
{
γ |Diu|α/2 + hi(u) for i = 1, 2, . . . , d,
hi(u) otherwise .

It will now be shown that these operators satisfy Assumptions A-1 to A-4 if any of the
following holds:

(1) d < α, r = α + 1, s ≤ α, t = 2 and u0 ∈ L6(�; L2(D)).
(2) d > α, r = 2α/d + α − 1, s ≤ min{((α2(t − 2))/((d − α)(α − 2))), ((α(α − t))

/(α − 2))}, 2 < t < α and u0 ∈ L6(�; L2(D)).

Case (1) One immediately notices that A-1 holds since f is continuous.
One now wishes to verify the local monotonicity condition. From standard calculations

for p-Laplace operators, one obtains for each i = 1, 2, . . . , d,

〈
Di

(|Diu|α−2Diu
) − Di

(|Div|α−2Div
)
, u − v

〉 + ∣∣γ |Diu|α/2 − γ |Div|α/2
∣∣2
L2 ≤ 0

provided γ 2 ≤ (4(α − 1))/α2. Further for d < α, one has W1,α
0 (D) ⊂ L∞(D) by the

Sobolev embedding and therefore using the assumptions imposed on f one obtains that
for u, v ∈ W1,α

0 (D),

〈f (u)− f (v), u − v〉 ≤ K
∫

D
(1 + |v(x)|s)|u(x)− v(x)|2 dx

≤ K(1 + |v|sL∞)|u − v|2L2
≤ C(1 + |v|s

W1,α
0
)|u − v|2L2

≤ C(1 + |v|α
W1,α

0
)|u − v|2L2

if s ≤ α. Moreover, using Lipschitz continuity of the functions hi

|hi(u)− hi(v)|2L2 ≤ M2
i |u − v|2L2 .
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Therefore, for all u, v ∈ W1,α
0 (D)

2〈A(u)− A(v), u − v〉 +
∑
i∈N

|Bi(u)− Bi(v)|2L2

≤ 2
d∑

i=1

[〈
Di

(|Diu|α−2Diu
) − Di

(|Div|α−2Div
)
, u − v

〉 + ∣∣γ |Diu|α/2 − γ |Div|α/2
∣∣2
L2

]

+ 2

[
〈f (u)− f (v), u − v〉 +

∑
i∈N

|hi(u)− hi(v)|2L2
]

≤ C
(
1 + |v|α

W1,α
0

)
|u − v|2L2 .

Hence Assumption A-2 is satisfied with β := 0. Again,

2
d∑

i=1

〈
Di

(|Diu|α−2Diu
)
, u

〉 = −2|u|α
W1,α

0
.

Using assumptions on f, Holder’s inequality and Sobolev embedding as above, one obtains

2〈f (u), u〉 ≤ 2K
∫

D
(1 + |u(x)|(α/2)+1) dx ≤ 2K(1 + |u|α/2L∞ |u|L2)

≤ C(1 + |u|α/2
W1,α

0
|u|L2) ≤ δ|u|α

W1,α
0

+ C(1 + |u|2L2),

where last inequality is obtained using Young’s inequality with sufficiently small δ > 0.
Furthermore, for any p0 > 2

(p0 − 1)
d∑

i=1
2

∣∣γ |Diu|α/2
∣∣2
L2 = (p0 − 1)2γ 2

d∑
i=1

∫
D

|Diu(x)|α dx = (p0 − 1)2γ 2|u|α
W1,α

0
.

Hence Assumptions A-3 is satisfied with θ := 2 − 2(p0 − 1)γ 2 − δ > 0. Note that using
Hölder’s inequality, one gets for u, v ∈ W1,α

0 (D),
∫

D
|Diu(x)|α−1|Div(x)| dx ≤

(∫
D

|Diu(x)|α dx
)(α−1)/α (∫

D
|Div(x)|α dx

)1/α

≤
( d∑

i=1

∫
D

|Diu(x)|α dx
)(α−1)/α ( d∑

i=1

∫
D

|Div(x)|αdx
)1/α

= |u|α−1
W1,α

0
|v|W1,α

0
.

Further using assumption on f taking r = α + 1,Hölder’s inequality, Gagliardo–Nirenberg
inequality and Sobolev embedding,∫

D
|f (u(x))||v(x)|dx ≤ K

∫
D

(
1 + |u(x)|α+1) |v(x)|dx

≤ K|v|L∞(1 + |u|α+1
Lα+1) ≤ K|v|W1,α

0
(1 + |u|α−1

L∞ |u|2L2)
≤ K|v|W1,α

0
(1 + |u|α−1

W1,α
0

|u|2L2)
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and hence

|A(u)|W−1,α ≤ K|u|α−1
W1,α

0
+ K(1 + |u|α−1

W1,α
0

|u|2L2) ≤ K(1 + |u|α−1
W1,α

0
)(1 + |u|2L2).

Thus Assumption A-4 holds with β = 2α/(α − 1) < 4 and in view of Theorems 2.2–2.4,
one can conclude that equation (37) has a unique solution and moreover for any p <
(4α − 2)/(α − 1) one has

E

(
sup

t∈[0,T]
|ut|pL2 +

∫ T

0
|ut|αW1,α

0
dt

)
< C

(
1 + E|u0|(4α−2)/(α−1)

L2

)
.

Case (2) In the case d > α, one can obtain the result using the Sobolev embedding
W1,α

0 (D) ⊂ L(dα/(d−α))(D) and following the same steps as in [2].

Example 6.3 (Stochastic Burgers equation): Let d=1 and D = (0, 1). Let γ ∈
(−√

1/3,
√
1/3) be a constant and let h : R → R be Lipschitz continuous. Consider the

stochastic partial differential equation

dut = (�ut + utDut) dt + (γDut + h(ut)) dWt on (0,T)× D , (38)

where ut = 0 on ∂D and an L2(D)-valued, F0-measurable u0 is a given initial condi-
tion. Here W is a real-valued Wiener process. Weak formulation of this equation can be
interpreted as a stochastic evolution equation as follows.

Define A : W1,2
0 (D) → W−1,2(D) and B : W1,2

0 (D) → L2(D) as

A(u) := �u + uDu and B(u) := γDu + h(u).

Note that Assumption A-1 is satisfied following the same arguments as in Example 6.1.
Next, one would like to check the local monotonicity assumption. Note that, if u, v ∈
W1,2

0 (D), then
1
2
D

[
u2 − v2

] = uDu − vDv

and so using integration by parts

〈uDu − vDv, u − v〉 = −1
2
〈u2 − v2,D(u − v)〉.

Thus,

〈A(u)− A(v), u − v〉 = −|u − v|2
W1,2

0
− 1

2
〈(u − v)2,D(u − v)〉 − 〈v(u − v),D(u − v)〉.

But using integration by parts again we see that 〈(u − v)2,D(u − v)〉 = 0 and so

〈A(u)− A(v), u − v〉 = −|u − v|2
W1,2

0
− 〈v(u − v),D(u − v)〉.

So from Hölder’s inequality one observes that

〈A(u)− A(v), u − v〉 ≤ −|u − v|2
W1,2

0
+ |v|L4 |u − v|L4 |u − v|W1,2

0
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and thus Gagliardo–Nirenberg inequality, see (34), and Young’s inequality imply that for
any ε > 0

〈A(u)− A(v), u − v〉 ≤ −|u − v|2
W1,2

0
+ ε|u − v|2

W1,2
0

+ C|v|2L2 |v|2W1,2
0

|u − v|2L2 . (39)

This, along with Lipschitz continuity of h, gives

2〈A(u)− A(v), u − v〉 + |B(u)− B(v)|2L2 ≤ (−2 + 2ε + 2γ 2)|u − v|2
W1,2

0

+ C(1 + |v|2L2)(1 + |v|2
W1,2

0
)|u − v|2L2

for all u, v ∈ W1,2
0 (D). As γ 2 ∈ (0, 1/3) one can take ε > 0 sufficiently small so that−1 +

ε + γ 2 < 0 and hence Assumption A-2 is satisfied with α := 2 and β := 2.
The next step is to show that the coercivity assumption holds with p0 = 4. Indeed,

substituting v=0 in (39), one obtains

〈A(u), u〉 ≤ (−1 + ε)|u|2
W1,2

0

which along with linear growth of h implies that

2〈A(u), u〉 + 3|B(u)|2L2 ≤ (−2 + 2ε + 6γ 2)|u|2
W1,2

0
+ C

(
1 + |u|2L2

)
.

Note that since γ 2 ∈ (0, 1/3) one can take ε > 0 sufficiently small so that θ := 2 − 2ε −
6γ 2 > 0. Then with f :=C, Assumption A-3 holds.

Finally, one should verify the growth assumption on A. Using integration by parts,
Hölder’s inequality and (34) one obtains for u, v ∈ W1,2

0 (D),

〈uDu, v〉 = −1
2
〈u,Dv〉 ≤ 1

2
|u|2L4 |v|W1,2

0
≤ C|u|L2 |u|W1,2

0
|v|W1,2

0

which then implies that

|uDu|W−1,2 ≤ C|u|L2 |u|W1,2
0
. (40)

Hence using (33), one obtains for all u ∈ W1,2
0 (D)

|A(u)|2W−1,2 ≤ C|u|2
W1,2

0
(1 + |u|2L2)

proving that Assumption A-4 is satisfied for α = 2,β = 2 and f =C.
Thus, in view of Theorems 2.2–2.4, if u0 ∈ L4(�; L2(D)), then equation (38) has a

unique solution (ut)t∈[0,T] and for any p<4

E

(
sup

t∈[0,T]
|ut|pL2 +

∫ T

0
|ut|2W1,2

0
dt

)
< C

(
1 + E|u0|4L2

)
,

where we recall in particular that C depends on T.
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Example 6.4: Let d=1 and D = (0, 1). Let γ ∈ (−√
2/5,

√
2/5) be a constant. Consider

the stochastic partial differential equation

dut = (
�ut + utDut − u3t

)
dt + γ u2t dWt on (0,T)× D , (41)

where ut = 0 on ∂D and an L2(D)-valued, F0-measurable u0 is a given initial condi-
tion. Here W is a real-valued Wiener process. Weak formulation of this equation can be
interpreted as a stochastic evolution equation as follows.

Define A : W1,2
0 (D) → W−1,2(D) and B : W1,2

0 (D) → L2(D) as

A(u) := �u + uDu − u3 and B(u) := γ u2.

whereA andB are well-defined using the Sobolev embeddingW1,2
0 (D) ⊂ L∞(D) and (34)

above. Clearly, Assumption A-1 is satisfied. Furthermore, using Mean value theorem it is
easy to observe that

〈−u3 + v3, u − v〉 + |γ (u2 − v2)|2L2 ≤ 0

since γ 2 < 2/5 and hence using (39), one obtains

2〈A(u)− A(v), u − v〉 + |B(u)− B(v)|2L2 ≤ (−2 + 2ε)|u − v|2
W1,2

0

+ C(1 + |v|2L2)(1 + |v|2
W1,2

0
)|u − v|2L2

≤ (−2 + 2ε)|u − v|2
W1,2

0

+ C(1 + |v|4L2)(1 + |v|2
W1,2

0
)|u − v|2L2

for any ε > 0 and for all u, v ∈ W1,2
0 (D). By choosing 0 < ε < 1, Assumption A-2 is

satisfied with α := 2 and β := 4.
Further Assumption A-3 holds with p0 = 6 and θ = 2 − 2ε. Indeed, one has

2〈A(u), u〉 + 5|B(u)|2L2 ≤ (−2 + 2ε)|u|2
W1,2

0
.

Finally, one should verify the growth assumption on A. Using Sobolev embedding one
obtains for u, v ∈ W1,2

0 (D),

|〈−u3, v〉| ≤ |u|∞|v|∞|u|2L2 ≤ C|u|W1,2
0

|v|W1,2
0

|u|2L2

which then implies that

| − u3|W−1,2 ≤ C|u|2L2 |u|W1,2
0
.

Hence using (33) and (40) one obtains for all u ∈ W1,2
0 (D)

|A(u)|2W−1,2 ≤ C|u|2
W1,2

0
(1 + |u|4L2)

proving that Assumption A-4 is satisfied for α = 2,β = 4 and f =C.
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Thus, in view of Theorems 2.2–2.4, if u0 ∈ L6(�; L2(D)), then equation (41) has a
unique solution (ut)t∈[0,T] and for any p<6

E

(
sup

t∈[0,T]
|ut|pL2 +

∫ T

0
|ut|2W1,2

0
dt

)
< C

(
1 + E|u0|6L2

)
,

where we recall in particular that C depends on T.

Remark 6.1: Note that taking h=0 in previous examples, one requires γ 2 < 2/3 in Exam-
ples 6.1, 6.3 and less than (8(α − 1))/α2 ∧ (2(α − 1))/(3α − 1) in Example 6.2.Here, γ 2 is
the coefficient of |v|αV appearing in the growth of the operator B. However, the correspond-
ing values required inmain theorem of [2] would be less than 2/5 for Examples 6.1, 6.3 and
less than (8(α − 1))/α2 ∧ (2(α − 1))/(5α − 1) for Example 6.2. Thus, the restriction on
γ appearing in the growth assumption of operator B is not optimal in [2]. Furthermore,
operators B having growth like in Example 6.4 cannot be covered by [2].

One should note that the restriction on the range of values γ may take is not surpris-
ing in view of known results for linear stochastic partial differential equations where the
‘stochastic parabolicity’ condition is needed. To see how this arises, consider the initial
value problem

dvt =
(
1 − 1

2
γ 2

)
�vt dt on (0,T)× R

d

with v0 ∈ L2(Rd) given as an initial value. This is well-posed if (1 − (1/2)γ 2) > 0. Let
ut(x) := v(t, x + γWt), whereW is R-valued Wiener process. Itô’s formula implies that

dut = �utdt +
d∑

i=1
γDiutdWt , on (0,T)× R

d, u0 = v0.

Hence one can only reasonably expect this stochastic partial differential equation to be
well-posed if (1 − (1/2)γ 2) > 0.

On the other hand, one can see that the range of values of γ one may take, so that
Assumption A-3 is satisfied, depends on p0. This may seem surprising in view of results in
Krylov [8] onLp-theory for stochastic partial differential equations. The following example,
which is not covered in [8], from Brzeźniak and Veraar [3], explores this question further.

Example 6.5: Consider the stochastic partial differential equation

dut = �utdt + 2γ (−�)1/2utdWt on (0,T)× T, (42)

where T is the one-dimensional torus R/(2πZ), γ ∈ R is a constant and F0-measurable
u0 is a given initial condition. HereW is a real-valued Wiener process.
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For γ 2 ∈ (0, 1/2) and u0 ∈ L2(�; L2(T)) the results in Krylov and Rozovskii [9] imply
existence and uniqueness of the solution to (42) and moreover the solution satisfies

E sup
t∈[0,T]

|ut|2L2(T) < CE

(
1 + |u0|2L2(T)

)
.

On the other hand, Brzeźniak and Veraar [3] have shown that if

2γ 2(p − 1) > 1,

then the problem (42) is not well-posed in Lp((0,T)×�; L2(T)). It will be shown that this
example fits in the framework considered in this paper and that the coercivity condition,
Assumption A-3, is satisfied as long as

2γ 2(p0 − 1) < 1. (43)

This shows that the coercivity condition in this paper is sharp, since (42) is ill-posed as
soon as Assumption A-3 does not hold.

Let the space L2(T) denote the Lebesgue space of equivalence classes of C-valued mea-
surable functions u defined on any interval of length 2π , which are 2π-periodic and the
norm

|u|L2(T) :=
(∫

T

|u(x)|2dx
)1/2

< ∞.

Furthermore, W1,2(T) denotes the closure of C∞(T), the space of smooth functions, in
L2(T) with respect to the norm | · |1,2 given by

|u|1,2 :=
(∫

T

(|u(x)|2 + |Du(x)|2) dx)1/2
.

Let F : L2(T) → �2(Z) be the Fourier transform given by

Fu := (ûk)k∈Z with ûk = 1√
2π

∫
T

u(x)e−ikxdx

and F−1 : �2(Z) → L2(T) its inverse which is given by

F−1(ûk)k∈Z =: u with u(x) = 1√
2π

∑
k∈Z

ûkeikx.

For u ∈ W1,2(T), one has

|u|2W1,2(T) = |Fu|2
�2(Z) + |F(Du)|2

�2(Z) since |u|2L2(T) = |Fu|2
�2(Z). (44)

Furthermore, for each k ∈ Z,

[F(Du)](k) = ik(Fu)(k). (45)

Consider the operator (−�)1/2 : W1,2(T) → L2(T) defined by

(−�)1/2u := F−1 (
(|k|(Fu)(k))k∈Z

)
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and the operators A : W1,2(T) → W−1,2(T) and B : W1,2(T) → L2(T) defined by

A(u) = �u and B(u) = 2γ (−�)1/2u.
It will be shown that these satisfy Assumptions A-1 to A-4. Using the arguments given in
Example 1, the operator A satisfies Assumptions A-1 and A-4 with α = 2, β = 0, p0 = 2
and L=0. Then, using (44) and (45), one obtains

2〈A(u)− A(v), u − v〉 + |B(u)− B(v)|2L2(T)
= (−2 + 4γ 2)

∑
k∈Z

k2 |(Fu)(k)− (Fu)(k)|2 ≤ 0

provided 2γ 2 ≤ 1. Hence operators A and B satisfy Assumption A-2 if 2γ 2 ≤ 1. Further-
more, for any θ > 0 and p0 ≥ 2, one obtains

2〈A(u), u〉 + (p0 − 1)|Bu|2L2(T) + θ |u|2W1,2(T)

= (4γ 2(p0 − 1)− 2 + θ)
∑
k∈Z

k2|(Fu)(k)|2 + θ |u|2L2(T).

Note that there is θ > 0 such that (4γ 2(p0 − 1)− 2 + θ) ≤ 0 if and only if
2γ 2(p0 − 1) < 1. Hence Assumption A-3 holds if and only if (43) holds.

Thus from Theorem 2.2 one can see that the solution satisfies

E sup
t∈[0,T]

|ut|pL2(T) < CE

(
1 + |u0|p0L2(T)

)

for p ∈ [2, p0) if p0 > 2 and for p=2 otherwise.
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Appendices

Appendix 1. Hilbert-space valuedWiener process

Many authors consider stochastic evolution equations with respect to cylindrical Q-Wiener process
W taking values in a separable Hilbert space (U, (·, ·)U , | · |U). Here Q is a linear, symmetric, non-
negative definite and bounded operator on U. For an overview of stochastic integrals with respect
to Hilbert-space valued Wiener processes, one may refer to Dalang and Sardanyons [4] or [15].
The operator under the stochastic integral would be taking values in the space of Hilbert–Schmidt
operators, denoted by L2(U,H). The stochastic evolution equation considered is then written as

ut = u0 +
∫ t

0
As(us) ds +

∫ t

0
Bs(us)dWs, t ∈ [0,T], (A1)

instead of (1). The aim of this section is to show that these formulations are equivalent.
First we show that the stochastic Itô integral with respect to cylindrical Q-Wiener process on

a separable Hilbert space can be expressed in the form of infinite sum of stochastic Itô integrals
with respect to independent one-dimensional Wiener processes as considered in (1). Here W is
cylindrical Q-Wiener process in U with Q= I, the identity on U. Let (uj)j∈N be an orthonormal
basis ofU, which in this case are also the eigenvectors ofQ corresponding to the eigenvalues (λj)j∈N

where λj = 1 for each j ∈ N.
For t ∈ [0,T] and j ∈ N, define Wj

t := (Wt , uj)U . Then it can be seen that the processes
(Wj

t)t∈[0,T], j ∈ N are independent real-valuedWiener processes. However, the series
∑∞

j=1W
j
tuj =∑∞

j=1
√
λjWj

tuj does not converge in L2(�;U) as
∑∞

j=1 λ
j, i.e. trace of Q, is not finite. Consider the

linear map J : U → U given by

Ju :=
∞∑
j=1

1
j
(u, uj)Uuj ∀ u ∈ U.

Note that Juj = (1/j)uj for each j ∈ N. It can then be seen that J is an injective mapping satisfying
∞∑
j=1

|Juj|2U < ∞
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and for each t ∈ [0,T], the series
∞∑
j=1
(Wt , uj)UJuj =

∞∑
j=1

Wj
tJu

j

converges in L2(�;U). In fact, the series converges in L2(�;C([0,T];U)) and defines a Q1-Wiener
process on U where Q1 := JJ∗ is a bounded linear operator on U which is nonnegative definite,
symmetric and has finite trace. Moreover,Q1/2

1 (U) = J(U) and (Juj)j∈N forms an orthonormal basis
of J(U) where the norm on the space Q1/2

1 (U) = J(U) is given by

|Ju|Q1/2
1 (U) = |Q−1/2

1 Ju|U = |u|U ∀ u ∈ U.

For details, one may refer to Proposition 2.5.2 in [15].
Next we show that the two formulations of stochastic integral (with respect to cylindrical Q-

Wiener process, or written as an infinite sum) are equivalent. Consider a progressively measurable
process (Bt)t∈[0,T] taking values in L2(U;H), where L2(U;H) is the space of Hilbert Schmidt
operators from U to H. Note that

Bt(ω) ∈ L2(U;H) ⇐⇒ Bt(ω) ◦ J−1 ∈ L2(J(U);H) = L2(Q
1/2
1 (U);H)

and then the stochastic integral with respect to cylindrical Q-Wiener processes is defined by the
following ∫ t

0
Bs dWs :=

∫ t

0
Bs ◦ J−1 dWs, t ∈ [0,T]

where the integral on the right-hand side is with respect to Q1-Wiener process on U (see e.g.
Section 2.5.2 in [15]).

Now we show that the above stochastic integral with respect to a cylindrical Wiener process can
be expressed as an infinite sum of stochastic integrals of suitableH-valued processes with respect to
independent real-valued Wiener processes. Define Bjt := Bt(uj) = (Bt ◦ J−1)(Juj) for all t ∈ [0,T]
and j ∈ N. Then (Bjt)j∈N ∈ �2(H) since Bt ∈ L2(U;H). Further for u ∈ U, we have

Bt(u) = (Bt ◦ J−1)(Ju) =
∞∑
j=1
(u, uj)U(Bt ◦ J−1)(Juj) =

∞∑
j=1
(u, uj)UB

j
t

and hence ∫ t

0
Bs dWs =

∫ t

0
Bs ◦ J−1dWs =

∞∑
j=1

∫ t

0
Bjs dW

j
s . (A2)

Thus (A2) implies that u is a solution to (1) if and only if it is a solution to (A1).
Moreover, assumptions in this paper made on operators Bj : [0,T] ×�× V → H can be

equivalently replaced by assumptions on the operator B : [0,T] ×�× V → L2(U;H) as follows.
Assumption A-2 can be equivalently replaced by

Ã 2 (Local Monotonicity): Almost surely for all t ∈ [0,T] and x, x̄ ∈ V ,

2〈At(x)− At(x̄), x − x̄〉 + |Bt(x)− Bt(x̄)|2L2(U,H) ≤ L(1 + |x̄|αV)(1 + |x̄|βH)|x − x̄|2H .

Finally A-3 can be equivalently replaced by

Ã 3 (Coercivity): Almost surely for all t ∈ [0,T] and x ∈ V ,

2〈At(x), x〉 + (p0 − 1)|Bt(x)|2L2(U,H) + θ |x|αV ≤ ft + K|x|2H .
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Appendix 2. A compactness result

The following lemma is not new and is included for the convenience of reader. It allows one to obtain
weakly-star convergent subsequences, under appropriate assumptions.

Lemma A.6: Let X be a separable Banach space with dual X∗ and 〈·, ·〉 denotes the duality pairing
betweenX andX∗. If (S,�,μ) is ameasure space withμ(S) < ∞, and (un)n∈N is a sequence satisfying

sup
n

∫
S
|un|pX∗dμ < ∞ (A3)

for some p ≥ 2, then there exists a subsequence (nk) and u ∈ Lp(S,X∗) such that (unk) converges
weakly-star to u as nk → ∞, i.e.∫

S
〈unk ,ϕ〉dμ →

∫
S
〈u,ϕ〉dμ ∀ ϕ ∈ Lp/(p−1)(S,X).

Proof: Let (φi)i∈N be dense subset in X. Then, it is sufficient to show∫
S
〈unk ,φi〉ψdμ →

∫
S
〈u,φi〉ψdμ ∀ i ∈ N ∀ ψ ∈ Lp/(p−1)(S,R)

for some subsequence (nk) and u ∈ Lp(S,X∗). Observe that, in view of Hölder’s inequality and (A3),
we have ∫

S
|〈un,φi〉|pdμ ≤

∫
S
|un|pX∗ |φi|pXdμ < C|φi|pX

for some constant C independent of n. Thus, 〈un,φ1〉 is a uniformly bounded sequence in the
reflexive space Lp(S,R). Therefore, there exists a subsequence (n1) and ξ1 ∈ Lp(S,R) such that∫

S
〈un1 ,φ1〉ψ dμ →

∫
S
ξ1ψ dμ ∀ ψ ∈ Lp/(p−1)(S,R).

Repeating the above process with each φi and subsequence obtained from previous step, there exists
a subsequence (nk) and (ξi)i∈N such that∫

S
〈unk ,φi〉ψ dμ →

∫
S
ξiψ dμ ∀ i ∈ N ∀ ψ ∈ Lp/(p−1)(S,R).

Finally, one can define u ∈ Lp(S,X∗) by∫
S
〈u,φiψ〉 dμ :=

∫
S
ξiψ dμ ∀ i ∈ N ∀ ψ ∈ Lp/(p−1)(S,R)

and note that,∫
S
〈unk ,φi〉ψ dμ →

∫
S
ξiψ dμ =

∫
S
〈u,φi〉ψ dμ ∀ i ∈ N ∀ ψ ∈ Lp/(p−1)(S,R)

as desired. �
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