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Extensive efforts have been made to explore how the activities of multiple brain cells combine to 

alter physiology through imaging and cell-specific manipulation in different animal models. 

However, the temporal regulation of peripheral organs by the neuroendocrine factors released 

by the brain is poorly understood. We have established a suite of adaptable methodologies to 

interrogate in vivo the relationship of hypothalamic regulation with the secretory output of the 

pituitary gland, which has complex functional networks of multiple cell types intermingled with 

the vasculature. These allow imaging and optogenetic manipulation of cell activities in the 

pituitary gland in awake mouse models, in which both neuronal regulatory activity and 

hormonal output are preserved. This methodology is now readily applicable for longitudinal 

studies of short-lived events (e.g. calcium signals controlling hormone exocytosis) and slowly-

evolving processes such as tissue remodelling in health and disease over a period of days to 

weeks.  
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Introduction 

In the past decade, there has been an exponential increase in the technical development of novel tools 

allowing interrogation of the functional interactions of the complex architecture of the mammalian 

brain in health and disease. These have principally been developed in mouse models, where both 

organisation and function of the brain largely recapitulates that of higher mammals including humans 

(1). The availability of a wide-range of genetically-modified mice, combined with novel virus-based 

approaches to infect specific mouse brain regions, has allowed identification of specific cell-types, 

manipulation of neuronal circuits with optogenetic techniques and in vivo monitoring of cell activity. 

Combining these with recently developed optical techniques, such as the use of a gradient-index 

(GRIN) lens for imaging deep brain regions (2), has resulted in rapid mapping of the activity and 

connectivity of neuronal networks (3). Although the mammalian brain is exceptionally complex, the 

increasing prevalence of neurological and neuropsychiatric defects has recently inspired large-scale 

research programmes, such as the NIH Brain Research through Advancing Innovative Neuro-

technologies (BRAIN) Initiative (4, 5), to meet this challenge. 

The brain does not simply work as an isolated unit but forms a functional continuum with other 

physiological processes (6), especially with the endocrine systems that control basic body functions (7, 

8). These endocrine systems share complex functional features with the brain, such as hierarchal 

multi-cellular organization (e.g. presence of “hub” cells which control neighbours (9, 10)), adaptive 

plasticity (11) and long-term memory (9), suggesting that studies of their function would benefit from 

application of the novel tools and techniques developed for neuroscience. This is exemplified by the 

pituitary gland, which acts as an intermediate between the brain and periphery, with endocrine and 

neural lobes (nerve terminals emanating from hypothalamic vasopressin and oxytocin neurons) 

connected to the brain by the pituitary stalk and surrounded by brain meninges (see Fig. 1). Interest in 

monitoring the in vivo function of this gland has recently been increased by large-scale ex vivo 

imaging, which has revealed 3D cell networks that are structurally and functionally organised within 

the endocrine anterior pituitary (also called the pars distalis); this cell network connectivity is essential 

for normal gland development (12), coordination of gene expression (13) and pulsatile release of 
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hormones to the periphery (8). To date, in vivo studies have been limited by the location of the 

pituitary on the ventral side of the brain, with extensive microsurgery required to expose the gland 

through the palate bone in terminally-anaesthetised mice to record and manipulate cell function (14). 

These surgical procedures preclude both longitudinal studies and functional investigation in awake 

mice.   

Here, we describe a toolkit for imaging and manipulating pituitary cells in vivo over periods of days to 

weeks in awake mouse models. We have used these tools to: image the dynamics of pituitary 

microvascular function and cell signalling (calcium events); locally express exogenous proteins 

through injection of viral constructs within the parenchyma; and, optogenetically manipulate specific 

cell networks while monitoring their secretory outputs into the bloodstream. This range of techniques 

allows analysis of the pituitary gland in awake mammalian models in unparalleled detail, 

complementing large-scale studies of the brain to further understand neural control of complex 

physiological systems via endocrine signals. 

Materials and Methods 

Animals 

 

Tg(Gh1-cre)bKnmn (called GH-Cre) (R Kineman, Jesse Brown Veterans Administration Medical 

Center, Chicago, USA) (15),  ROSA26-fl/fl-ChR2-dtTomato and wild-type C57BL/6 mice (6–12 wk 

old) as indicated in figure legends, were housed in a 12-h light/12-h dark cycle (lights on at 0800 

hours and off at 2000 hours) with food and water available ad libitum. All animal procedures were 

approved by the local ethical committee under agreement CEEA-LR-12185 according to EU Directive 

2010/63/EU. Since this study included only one experimental group of animals, no randomization or 

blinding were required.  

 

Stereotaxic injections of AAV 

Adult GH-Cre mice and wild-type C57BL/6 were anesthetized with Ketamine/Xylazine (0.1/0.02 

mg/g), placed in a stereotaxic apparatus, and given bilateral 1µL injections of AAV5-CAG-dflox-
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GCaMP6s-WPRE-SV40 (2.52 × 10^13 GC/mL; Penn Vector Core), AAV5-CAG-GCaMP6s-WPRE-

SV40 (2.23 × 10^13 GC/mL; Penn Vector Core), AAV2-CAG-GFP (gift from Margarita Arango, 

IGF, Montpellier), rAAV5/sspEMBOL-CBA-GFP (8 x 10^12 GC/mL; UNC Vector Core), 

rAAV8/sspEMBOL-CAG-GFP (8 x 10^12 GC/mL; UNC Vector Core) or rAAV9/sspEMBOL-CAG-

GFP (9.2 x 10^12 GC/mL; UNC Vector Core)  into the pituitary gland at a rate of 100 nL/min. 

Coordinates were -2.5mm antero-posterior, ±0.4mm lateral to midline, pointed as zero at the superior 

sagittal sinus. Two dorso-ventral positions were used for injection, 50µm and 400µm over the sella 

turca -6.15/5.75 mm for ventral injection and -5.6/5.3 mm for dorsal injection. Experiments were 

conducted from 4 weeks on after injection. 

 

Optical imaging through a GRIN lens in awake head-fixed mice 

Adult mice were anesthetized with Ketamine/Xylazine (0.1/0.02 mg/g) and placed in a stereotaxic 

apparatus to implant a GRIN lens (0.6 mm diameter, 1.5 pitch, 7.5mm length and 150µm working 

distance, GRINTECH Germany) immediately above the pituitary gland. After a large part of skull was 

exposed, the GRIN lens was placed in 20G1/2 Gauge needle (Ultra-Thin wall, Terumo, USA), with 

movement restricted by placing a metal rod above it. The needle was inserted at the coordinates -

2.5mm antero-posterior, ±0.4mm lateral to midline pointed as zero at the superior sagittal sinus  

-5.5/5.1 mm dorso-ventral. Then, the needle was removed with the metal rod kept in place so that the 

GRIN lens stayed in place at the dorsal side of the pituitary. Finally, the metal rod was removed. The 

GRIN lens and a head-plate were fixed with UV-retractable cement. Prior to and starting from two 

weeks after surgery, mice were habituated to the wheel and the head-plate fixation system under the 

microscope every two to three days. Four weeks after surgery, mice were placed on the wheel, the 

head-plate fixed, and fluorescence imaging was performed using a stereomicroscope (Zeiss Discovery 

V.12, Germany), which was fitted with a fluorescence lamp (Lambda LS, Sutter Instrument company, 

USA), a shutter (Lambda 10-B Smart Shutter, Sutter Instrument Company) and a CMOS ORCA Flash 

4.0 camera (C11440 Hamamatsu, Japan), all controlled with MetaMorph 7.8.9 software (Molecular 

Devices, USA). 
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In vivo imaging in terminally-anesthetized mice 

Details of the methods can be found in Lafont et al. (2010) (14). In brief, male, 2- to 4-month-old 

transgenic GH-Cre mice and GH-ROSA26-fl/fl-ChR2-dtTomato mice on a C57Bl6 background were 

anesthetized by inhalation of isoflurane (1.5% in O2). After dividing the mandibular symphysis, the 

mucosa overlying the hard palate was parted by blunt dissection under a stereomicroscope to expose 

an area of palatal periosteal bone. This was thinned with a felt polisher (drill; World Precision 

Instruments, USA) and then removed with a hook and forceps. The exposed surface of the pituitary 

gland, visible through the hole in the bone, was continuously superfused with a physiological solution.  

 

In vivo monitoring of blood flow and calcium signals 

Mice underwent surgery (see above) to visualize either the ventral (terminally-anesthetized animals) 

or the dorsal side (awake animals) of the pituitary gland. Using the ventral approach 100µl of  

tetramethylrhodamine isocyonate 150kDa dextran (Sigma Aldrich, USA) was injected into the jugular 

vein or in the retro-orbital sinus for GRIN lens approach. Imaging of blood flow was performed at 150 

to 200 frames/sec using 545nm excitation and 570nm emission filters. When calcium signals were 

recorded in vivo, experiments were performed as described as above four weeks after stereotaxic 

injection of GCAMP6s-expressing AAV5. Multi-cellular calcium imaging was typically performed at 

2-4 frames/sec, using 480nm excitation and 520nm emission filters. 

 

Optogenetic photostimulation in awake mice 

GH Cre x ROSA26-fl/fl-ChR2-dtTomato mice were anesthetized with Ketamine/Xylazine (0.1/0.02 

mg/g) and placed in a stereotaxic apparatus to implant an optical fiber (diameter: 200µm, Doric 

Lenses, Canada) immediately above the pituitary gland (stereotaxic coordinates described above). The 

optical fiber was fixed using UV-retractable cement. Two weeks later, an optical fiber was connected 

to the one previously implanted, and laser stimulation (488nm) was delivered at 10mW and using 
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various patterns (frequency: 1Hz, exposure time: 300ms) while blood samples were collected as 

described below. 

 

GH pulse profiling in mice and GH ELISA 

A tail-tip  blood collection procedure was used to sample blood from C57BL/6 adult mice or 

transgenic GH-Cre mice; 3µl blood samples were analyzed for GH content by ELISA (16). 

 

iDISCO+ 

Pituitary glands were removed and fixed by overnight immersion in 4% paraformaldehyde. For the 

immunoflurescence labelling and clearing, an iDISCO+ clearing protocol was used as described in 

detail elsewhere(17). Primary antibodies were rat anti-Meca32 (1:100, BD Biosciences Cat# 550563, 

RRID:AB_393754)(18), guinea pig anti-GH (1:2500, NIDDK-NHPP Cat# AFP12121390, 

RRID:AB_2756840)(19), rabbit anti-GFP (1:250, Molecular Probes Cat# A-6455, 

RRID:AB_221570)(20) and secondary antibodies were anti-rat Alexa 647 (Jackson ImmunoResearch 

Labs Cat# 712-606-150, RRID:AB_2340695)(21), anti-guinea pig Alexa 510 (Jackson 

ImmunoResearch Labs Cat# 706-166-148, RRID:AB_2340461)(22) and anti-rabbit Alexa 488 

(Molecular Probes Cat# A-21206, RRID:AB_141708)(23) (dilution: 1:2000). After clearing, 

transparent pituitary glands were mounted in well glass slides (065230, Dominique Dutscher) in 

DiBenzyl Ether (Sigma Aldrich). Coverslips were sealed with nail varnish. 

 

Immunofluorescence staining in fixed pituitary slices 

Pituitary glands were collected from terminally-anesthetized mice and fixed by overnight immersion 

in 4% paraformaldehyde at 4°C, serial cuts were done at 40µm-thick tissue sections using a vibratome 

(Leica, Germany). Combinations of the following antibodies were used: guinea pig anti- GH (NIDDK-

NHPP Cat# AFP12121390, RRID:AB_2756840)(19), LH (NIDDK-NHPP Cat# rLHb, also 

AFP571292393, RRID:AB_2665511)(24), PRL (NIDDK-NHPP Cat# AFP65191, 

RRID:AB_2756841)(25), TSH (NIDDK-NHPP Cat# AFP9370793, RRID:AB_2756856)(26) or 
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ACTH (NIDDK-NHPP Cat# AFP71111591, RRID:AB_2756855)(27) (dilution: 1:2500), rabbit anti-

GFP (1:250, Molecular Probes Cat# A-6455, RRID:AB_221570)(20) and rabbit anti-RFP (1:500, 

Rockland Cat# 600-401-379, RRID:AB_2209751)(28). Primary antibody incubation was performed in 

PBS, 0.1% Triton X-100, 2% BSA at 4 °C for 48 h. Sections were then incubated with secondary 

antibodies for 2h at room temperature. Secondary antibodies were anti-rabbit Alexa 488 (Molecular 

Probes Cat# A-21206, RRID:AB_141708)(23), anti-guinea pig Alexa 510 (Jackson ImmunoResearch 

Labs Cat# 706-166-148, RRID:AB_2340461)(22), Anti-Rat Alexa 647 (Jackson ImmunoResearch 

Labs Cat# 712-606-150, RRID:AB_2340695)(21), Anti-Guinea Pig Alexa 488 (Jackson 

ImmunoResearch Labs Cat# 706-545-148, RRID:AB_2340472)(29) and anti-rabbit 510 (Jackson 

ImmunoResearch Labs Cat# 711-166-152, RRID:AB_2313568)(30) (1:2000 in PBS, 0.1% Triton X-

100, 2%BSA). 

 

Confocal imaging 

Fluorescence images of both sliced pituitaries and whole clarified pituitaries were acquired on a Zeiss 

LSM 780 confocal microscope with 20x, 40x, 63x objectives. Images were analyzed using Imaris 

(Bitplane, UK). 

 

MRI image acquisition from mouse brain 

Animals were scanned on a 9.4T Agilent Varian MRI scanner. A volumic RF43 antenna (Rapid 

Biomedical) was used. For image acquisition, mice were anesthetized with isoflurane and their heads 

secured with bite and ear bars. Respiration rate and heart rate were monitored. Animals were scanned 

using a spin echo sequence with the following parameters: Repetition time 500ms, echo time 10ms, 1 

echo, averaging 16 times, matrix of 256 × 256 pixels in a FOV of 30x30mm, slices thickness 0.5mm. 

Total imaging time was 34 min. 

 

Analysis 
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Blood flow changes were estimated from red blood cell velocities as previously described (14) and 

analysed using a two-tailed variance ratio test followed by a Mann–Whitney U test for any differences 

directly attributable to treatment application. Estimation of decay time (τ = 5sec) from calcium signals 

(27 single calcium transients) recorded in vivo was used to generate simulated calcium rises due to 

trains of calcium spikes firing at frequencies of either 0.4 or 1Hz. Spike frequencies high enough 

(1Hz) to generate robust plateau rises in cytosolic calcium (Figure supplement 6)(31) then guided 

selection of appropriate frequencies of laser light pulses during optogenetic experiments. 

Results 

Longitudinal optical monitoring of pituitary blood flow in awake mice 

Unravelling the intricacies of pituitary function with cellular in vivo imaging studies lasting days to 

weeks requires optical access to the gland whilst maintaining both its integrity and that of surrounding 

tissue.  The location of the pituitary (Fig. 1A-C, sagittal and coronal MRI sections of mouse heads and 

relative schemas, respectively), suggested that the least invasive strategy would be insertion of a 

GRIN lens though the cortex towards the dorsal side of the pituitary using a stereotaxic frame in 

anesthetized animals. To overcome the major challenge of crossing the meninges covering the ventral 

brain without damaging the nearby pituitary tissue (Fig. 1B), the GRIN lens was inserted into the 

lumen of a needle which was then retracted once the GRIN lens was located correctly (Fig. 1D). The 

GRIN lens was then fixed to the cranium with UV-retractable cement and a titanium bar with a central 

opening for the lens was attached to the skull. After at least 3-4 weeks of mouse habituation to being 

head-fixed under a stereomicroscope fitted with a x20 objective, with the body and limbs being able to 

move on a treadmill (Fig. 1E), pituitary blood flow was imaged for 0.5 to 2 hours in animals pre-

injected in the retro-orbital sinus with fluorescent 150kDa dextran (Fig. 1F, video 1)(31). These in 

vivo imaging sessions were repeatable every 3-4 days and up to several months after GRIN lens 

implantation with no alteration in blood flow, assessed by measurements of red blood cell velocities 

(Fig. 1G). Imaging pituitary blood flow in awake mice using a GRIN lens with a numerical aperture of 

0.5 provided image resolution similar to that obtained in terminally-anesthetized animals with ventral 
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surgery and imaged with a long-range (2 cm working distance, N.A. 0.5) objective (Fig. 1H, I) (14). 

All imaging sessions were performed between one and six months after GRIN lens implantation 

without noticeable changes of pituitary function, based on preservation of endogenous hormone 

rhythms (Figure supplement 1)(31). Thus implantation of thin GRIN lenses through two layers of 

meninges, one at the level of the cortex and the other covering the ventral side of the brain, allowed 

long-lasting in vivo imaging of the dorsal side of the pituitary whilst preserving characteristic features 

of pituitary function. 

Selective viral delivery and fluorescent protein expression in the pituitary parenchyma 

Local stereotaxic delivery for expression of specific genes, for example by viral transduction (2), has 

been an important tool for monitoring the activities of cells in selective brain regions. Whilst this 

approach has been applied to very large pituitary tumors by trans-auricular injection (32, 33), it has 

not been described in the pituitary of healthy mice. We developed stereotaxic delivery of viral 

particles that could easily be combined with in vivo imaging using GRIN lenses with minimal pituitary 

damage. We first inserted vertically the AAV-containing needle via the cortex and then positioned the 

needle tip to touch the palate bone. After waiting 5 min, the needle was retracted by 50µm and 400µm 

to target the ventral and dorsal regions of the pituitary, respectively (Fig. 2A). AAV particles were 

then injected using a controlled pneumatic pump to transduce cells with an expression cassette 

encoding the calcium sensor GCAMP6s (34) or GFP under the control of the strong ubiquitous CAG 

promoter. Virus was routinely injected in both pituitary “wings” (lateral regions are 500-700 µm 

thick). Pituitaries were then dissected and fixed 1, 14 and 28 days after viral injection (Fig. 2B-C). 

Although a small region of tissue damage was apparent one day after AAV injection using a needle 

with an outer diameter of 210µm diameter, this was markedly reduced or absent 2 weeks post-

injection and apparently fully repaired after 4 weeks. Pituitary tissues were immunostained for 

fenestrated vessel markers (MECA32), pituitary hormones (e.g. GH) and GCAMP6s  in thick pituitary 

sections (Fig. 2B, top left panels and tissue clarified with the iDISCO+ protocol (Fig. 2C, top right 

panel) (17). This showed that expression of AAV-CAG-expressed GCAMP6s could be detected 2 

weeks post-infection (Fig. 2B-C, middle panels) but was increased and more extensive after 4 weeks 
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(Fig. 2B-C, bottom panels). Consistent with the apparently complete tissue recovery one month after 

AAV infection (Fig. 2B-C), endogenous (Fig. 2D) and hormonal responses to hypothalamic agonists 

(Figure supplement 2)(31) were unaltered following stereotaxic injection of AAV.  

 As the pituitary gland contains five endocrine cell types secreting specific hormones (PRL, LH/FSH, 

GH, ACTH and TSH), we tested the efficiency of viral transduction in each of these by a range of 

AAV serotypes expressing CAG promoter driven GFP. All pituitary hormonal cell types were 

transduced with variable efficiency depending of AAV serotype (Fig. 3, Figures supplement 3-5)(31). 

For all AAV serotypes, expression of GFP could readily be detected by immunostaining from 

constructs utilizing a CAG promoter but not those with a CMV promoter (data not shown).  

 

Pituitary calcium signals in awake mice 

Having successfully transduced pituitary cells with constructs expressing GCAMP6s by stereotaxic 

injection of AAV5-CAG-GCAMP6s, we then explored whether this could be used to monitor 

multicellular calcium signals in awake mice following AAV injection. GRIN lenses were implanted 

above the dorsal pituitary at the site where AAVs had previously been injected stereotaxically. One 

month after GRIN lens implantation, it was possible to monitor a wide range of profiles of pituitary 

calcium transients in awake mice (Fig. 4A-G, video 2)(31), with evidence of cell-cell coordination 

(Fig. 4B-4E, video 3)(31) similar to that previously reported in ex vivo studies on pituitary slice 

preparations (9, 11, 35).  Of note, similar calcium activity was detected in vivo using a ventral imaging 

approach in anaesthetized mice (14) which had been injected with AAV5-CAG-GCAMP6s (Fig. 4H-

I), suggesting that the GRIN lens implantation does not affect calcium signaling.  

 

Optogenetic manipulation of pituitary hormone pulsatility in awake mice 

The ability to implant lenses and optical devices into the pituitary of awake mice also enables control 

of the secretory activity of pituitary cells. For this, we used a Cre-lox strategy by crossing GH-Cre and  
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R26-fl-fl-ChR2-dtTomato mice, resulting in expression of ChR2  specifically in somatotrophs (GH-

ChR2; Fig. 5A). To determine which blue laser illumination pattern was efficient at triggering 

hormone output from somatotrophs, we used the ventral imaging approach in anesthetized mice to 

stimulate the pituitary cells with a 400 µm diameter fiber optic positioned close to the pituitary surface 

(Fig. 5B) and measured GH in blood samples collected from the tail (Fig. 5C). The requirement for a 

1Hz stimulation for 300ms to elicit a robust output of GH agrees with simulations of the generation of 

sustained trains of calcium spikes based on from in vivo calcium spike kinetics (Figure supplement 

6)(31). Application of this pattern of laser light triggered GH pulses in awake GH-ChR2 mice 

chronically-implanted with an optical fiber which was located above the dorsal side of the pituitary 

(Fig. 5 D-E). 

 

Discussion 

By adapting approaches using stereotaxic to access the ventral side of the brain, we have successfully 

applied a wide range of tools and techniques for imaging and manipulating specific cell activities in 

the pituitary gland of awake mice. These technical developments now allow the study of the function 

of this gland and its intimate relationship with the brain in health and disease at a level hitherto not 

achievable in awake animal models. Analysis of dynamic pituitary function over periods of days to 

months in animals with intact interactions between multiple organs will provide important insight into 

a range of conditions with dysregulated physiological function which may occur at different level 

within an axis. For example, it is unclear to what extent altered pituitary, hypothalamic or ovarian 

function contributes to the dysregulated LH secretion which is a hallmark of the polycystic ovarian 

syndrome, the most common endocrine pathology in the reproductive age female (prevalence 7-15% 

of pre-menopausal women (36). 

Live imaging with multi-cellular resolution in awake GRIN lens implanted mice is well suited to real-

time studies of cell signals, as illustrated here with calcium signals that are essential for hormone 

exocytosis (8), and can be used to monitor cell-cell communication within the variety of intermingled 
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cell networks wiring the gland (12). As multi-cellular signal events can be directly combined with 

frequent blood microsamples and high-sensitive hormone ELISA (16), on-line monitoring of 

‘stimulus-secretion’ coupling (37, 38) is now achievable at the organ (pituitary) level in awake 

animals, avoiding the well-described blunting of hypothalamic inputs by anesthetics (14). In addition, 

these studies will be augmented by combining laser light-control of cell functions with monitoring cell 

activity within the same field of view of the GRIN lens, which is now possible given the efficiency of 

optogenetic tools for the control of pituitary cell networks. 

On-line monitoring and manipulation of in vivo stimulus-secretion coupling is now readily applicable 

to answer long-standing questions concerning pituitary gland integration of both brain and peripheral 

signals for the generation of pulsatile hormonal output.  For example, it is now clear that dynamic 

pulses of corticotroph ACTH output is generated by both a combination of both hypothalamic (CRF 

and vasopressin) inputs and negative cortisol feedback  (39). Future use of miniature imaging systems 

in GRIN lens-implanted animals (3) would allow monitoring and manipulation of corticotroph cell 

activity regulating the stress axis, with simultaneous modification of environmental conditions in 

freely-moving mouse models and study of behavioral effects. To date, such interrogation of the role of 

pituitary corticotrophs in the stress axis has been restricted to simpler animal models, such as larval 

zebrafish (40), which lack delivery of hypophysiotropic input via a portal blood system and thus may 

differ in important aspects to humans (8). An ability to manipulate pituitary cell output via optogenetic 

stimulation and/or inhibition will also allow dissection of the role of specific patterns of pituitary 

hormone output, for example the sexually dimorphic GH-dependent regulation liver gene expression 

(41). Male and female GH secretion patterns can now be optogenetically triggered irrespective of sex 

animal.  

A remarkable feature of this suite of tools is their capacity to allow long-term pituitary imaging and 

manipulation in awake animals. With the restriction of studying adult animals, both short-lived cell 

events (as discussed above) and slowly-evolving remodelling of the tissue, such as angiogenesis and 

expansion/shrinkage of a cell population can now be examined over weeks to months in individual 

animals, which act as their own controls (42). This will notably be relevant for visualizing and 
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studying on-line potential repopulation of the pituitary with stem cells/progenitors (43-45) (e.g. 

fluorescent cells locally injected in immune-suppressed mice), which have the potential to restore cell 

populations in the hypoplastic pituitary. It will also be possible to explore the function of either sick or 

healthy tissue zones within one pituitary by local injection of, for example, tumor cells or a virus 

encoding CRISPR-driven gene mutation in Cas9-expressing mice (46, 47). 

In summary, the ability to image at multiple time scales and manipulate the pituitary gland enables the 

interrogation of pituitary gland function in awake mammalian models and study of how it delivers 

highly-ordered hormone pulses essential for controlling body functions such as reproduction, growth, 

stress and metabolism. Since endocrine cells can be photo-painted in situ (10), longitudinal in vivo 

studies would give access to the history of cells (48) and how they interact with neighbours in their 

native environment (9, 49). Single-cell multiomics which include transcriptomics, epigenomics and 

proteomics (50) would then be applicable to individual pituitary cells which have been monitored for 

days to months in awake mouse models. Together with these newly-developed single-cell level 

techniques, application of our cellular in vivo imaging and manipulation toolkit to longitudinal studies 

of awake animal models will provide a unique ability to explore the origin and development of 

pituitary hormone defects.  
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Figure legends 

Figure 1. In vivo imaging of pituitary blood flow in the awake mouse. (A) Sagittal MRI view of the 

mid-brain from a female mouse. Red rectangle indicates pituitary location below the ventral side of 

the brain. Scale bar, 3mm. (B) Drawing of a sagittal view of the hypothalamus-pituitary system. Ht, 

hypothalamus; tv, third ventrical; me, median eminence; ps, pituitary stalk; d, dura mater (in red); ar, 

arachnoid mater (in blue); pn, pars nervosa; pi, pars intermedia; pd, pars distalis; sb, sphenoidal bone. 

Scale bar, 300µm. (C) Coronal MRI view of the brain of a female mouse. Red rectangle indicates 

pituitary location. Scale bar, 3mm. (D) Schema showing the GRIN lens implantation in the arachnoid 

matter region above the dorsal side of the pituitary. Downward (1) and upward (2) arrows indicate the 
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sequential needle movements when the GRIN lens is positioned above the pituitary. Scale bar, 300µm. 

(E) Head-fixed in vivo imaging of an awake mouse implanted with a GRIN lens which provides an 

optical relay between the microscope and pituitary gland. (F) Head-fixed in vivo imaging of pituitary 

capillaries at low (left panel) and high magnification (right panel). Scale bar, 100µm; representative 

image of n = 5 female mice. (G) Example of longitudinal monitoring of red blood cell velocities in the 

same pituitary field viewed from one to six months after GRIN lens implantation; n = 21 to 43 vessels 

analyzed per animal, n= 4 female mice. (H) Schematic arrangement of the ventral in vivo imaging 

approach in terminally-anesthetized mice (14). (I) Ventral in vivo imaging of pituitary capillaries at 

the level of the pituitary parenchyma (left panel) and entrance (right panel) of different male mice. 

Scale bar, 100µm. See also Figure supplement 1(31). 

 

Figure 2. AAV injection into the pituitary. (A) Following bi-lateral AAV injection in anesthetized 

mice, pituitaries were dissected from terminally anesthetized animals from 1 to 28 days after 

GCAMP6s-expressing AAV5 injection, fixed and subjected to immunostaining and imaging. (B) and 

(C) pituitary sections and whole gland (iDISCO+ protocol), respectively. Immunostaining for GH 

(cells pseudo-coloured in white), GCAMP6s (green) and MECA32 (a marker of fenestrated 

capillaries, magenta); representative images of n = 2-4 male mice per condition. White arrows indicate 

presumed needle tissue damage. Scale bars, 50µm (left panels) and 300µm (right panels), respectively. 

(D) Endogenous GH pulses prior to and one month after AAV5 injection in the same animal. 3µl 

blood samples were collected every 5 min at the tail-tip and GH content was then measured using a 

high-sensitive Elisa assay. See also Figure supplement 2(31). 

 

Figure 3. Percentage of infected cells per pituitary cell type. (A) Infection efficiency by different 

AAV serotypes (2, 5, 8 and 9) of endocrine cell types (6 tissue sections/pituitary, n = 3 female mice). 

The percentage of infected cells was counted under microscopic observation within each field of 

infected cells. (B) Examples of co-labelling of endocrine pituitary cells infected by AAV5-CAG-GFP 



20 

 
particles (fixed pituitary sections followed by dual immunostaining against hormones and GFP). Scale 

bars, 20µm. See also Figures supplement 3-5(31). 

 

Figure 4. In vivo calcium imaging in pituitary cells in the awake mouse. (A) Schematic arrangement 

of calcium imaging in head-fixed animals injected with AAV5-CAG-GCAMP6s particles into the 

pituitary. (B) Field of GCAMP6s cells viewed from the dorsal pituitary side with the selection of cells 

as ROIs shown in colored circles in A. Scale bar, 40µm; representative image of n=3 female mice. (C) 

Coordinated calcium spikes recorded in cells shown in B. (D) Calcium spikes recorded at 10 

frames/sec in cells shown in B. (E) Mosaic of GCAMP6s images (bottom right, recording time in sec) 

show a coordinated increase in calcium spike firing. Scale bar, 50µm (F) and (G). Two examples of 

calcium recordings in other female animals injected with AAV5-CAG-GCAMP6s particles. Scale bar, 

100µm. (H) and (I) Calcium signals in pituitary cells (I) imaged from the ventral side in a terminally-

anesthetized animal (H); representative image and trace of n = 2 male mice. 

 

Figure 5. Optogenetic stimulation of GH pulses in vivo. (A) Co-labelling of dtTomato and GH in the 

pituitary from a GH-Cre mouse injected with Cre-activated AAV5-GAG-ChR2-dtTomato particles. 

(B) Laser light illumination of the ventral pituitary side in terminally-anesthetized mice subjected to 

tail-tip blood sampling (3µl every 3 min). (C) In experimental conditions as in B, trains of blue laser 

light pulses (300 msec pulses at 1Hz) were able to trigger GH pulses (n = 5 male mice). (D) Laser 

light illumination of the pituitary in the awake mouse in which tail-tip blood sampling was carried out. 

(E) GH pulses triggered by a train of laser light pulses (300 msec pulses at 1Hz) in GH-Cre mice 

injected with Cre-selective AAV5-GAG-ChR2-dtTomato particles (n = 5 male mice). See also Figure 

supplement 6(31). 

 

Supplementary information 
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Figure supplement 1. Endogenous GH pulses in 3 male mice implanted with a GRIN-lens. Related to 

Figure 1. In awake animals, 3µl blood aliquots were tail-tip collected every 10min.   

 

Figure supplement 2. Prolactin secretion response in response to the D2 receptor antagonist 

domperidone (Dp) in mice. Related to Figure 2. In awake animals prior to (A) or one month after 

pituitary infection (B) with AAV5-CAG-GFP virus particles (about 80% of lactotrophs were infected), 

domperidone (20 mg/kg (Abcam Biochemicals) was injected i.p. and tail-tip blood samples were then 

processed using a high-sensitive mPRL Elisa; n = 4 female mice. 

 

Figure supplement 3. Representative examples of co-labelling of endocrine pituitary cells infected by 

AAV2-CAG-GFP particles (fixed pituitary sections) in 3 tissue sections /pituitary of 3 female mice. 

Related to Figure 3. Scale bars, 20µm. 

 

Figure supplement 4. Representative examples of co-labelling of endocrine pituitary cells infected by 

AAV8-CAG-GFP particles (fixed pituitary sections) in 3 tissue sections /pituitary of 3 female mice. 

Related to Figure 3. Scale bars, 20µm.  

 

Figure supplement 5. Representative examples of co-labelling of endocrine pituitary cells infected by 

AAV9-CAG-GFP particles (fixed pituitary sections) in 3 tissue sections /pituitary of 3 female mice. 

Related to Figure 3. Scale bars, 20µm.  

	
  

Figure supplement 6. Representation of simulated trains of in vivo calcium spikes from pituitary 

cells. Based on simulated calcium spikes with a 5sec decay time (see Materials and Methods for 
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details), stimulation at frequencies of 1Hz (A), but not 0.4 Hz (B) was efficient at eliciting a robust 

calcium plateau rise. Related to Figure 5.  

 

Video 1. Head-fixed in vivo imaging of pituitary blood flow (see Figure 1F, right panel). 100 
frames/sec. 

 

Video 2. Head-fixed in vivo imaging of pituitary cells expressing GCAMP6s (see Figure 4G). 10 
frames/sec. 

 

Video 3. Head-fixed in vivo imaging of pituitary cells expressing GCAMP6s, which display 
coordinated calcium signals (see Figures 4B-4E). 10 frames/sec. 
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