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Abstract 1 

 2 

The nature of population structure in microbial eukaryotes has long been debated. Competing models 3 

have argued that microbial species are either ubiquitous, with high dispersal and low rates of 4 

speciation, or that for many species gene flow between populations is limited, resulting in 5 

evolutionary histories similar to those of macroorganisms. However, population genomics approaches 6 

have seldom been applied to this question. Here, we analyse whole-genome re-sequencing data for all 7 

36 confirmed field isolates of the green alga Chlamydomonas reinhardtii. At a continental scale, we 8 

report evidence for putative allopatric divergence, between both North American and Japanese 9 

isolates, and two highly differentiated lineages within N. America. Conversely, at a local scale within 10 

the most densely sampled lineage, we find little evidence for either spatial or temporal structure. 11 

Taken together with evidence for ongoing admixture between the two N. American lineages, this lack 12 

of structure supports a role for substantial dispersal in C. reinhardtii and implies that between-lineage 13 

differentiation may be maintained by reproductive isolation and/or local adaptation. Our results 14 

therefore support a role for allopatric divergence in microbial eukaryotes, while also indicating that 15 

species may be ubiquitous at local scales. Despite the high genetic diversity observed within the most 16 

well-sampled lineage, we find that pairs of isolates share on average ~9% of their genomes in long 17 

haplotypes, even when isolates were sampled decades apart and from different locations. This 18 

proportion is several orders of magnitude higher than the Wright-Fisher expectation, raising many 19 

further questions concerning the evolutionary genetics of C. reinhardtii and microbial eukaryotes 20 

generally. 21 

 22 

 23 

 24 

 25 

 26 

 27 



 3 

Introduction 28 

 29 

‘Everything is everywhere: but the environment selects’ (Baas Becking, 1934) has been a long-30 

standing tenet of microbiology (O'Malley, 2008). Under this paradigm, dispersal is considered to be 31 

effectively unlimited, and the biogeography and evolutionary histories of microbial species should 32 

therefore be determined by ecology, rather than geography. For microbial eukaryotes (i.e. protists and 33 

other unicellular/colonial eukaryotes), this has been extended to the ubiquity model (Fenchel & 34 

Finlay, 2004; Finlay, 2002; Finlay & Fenchel, 1999), which predicts both cosmopolitan distributions 35 

and low rates of speciation, due to the extremely large population sizes and high dispersal of species. 36 

This view has been countered by the moderate endemicity model (Foissner, 1999, 2006, 2008), which 37 

posits that dispersal is limited for many species, and as such the taxonomic diversity, biogeography, 38 

and evolution of microbial eukaryotes is generally expected to be more similar to that of 39 

macroorganisms. Exploring the validity of these opposing models is thus crucial for determining 40 

microbial eukaryotic biodiversity, for understanding the rate and mode of speciation in understudied 41 

lineages, and for providing insights into the ecology and evolutionary histories of individual species 42 

of interest. 43 

 44 

Empirical tests of the two competing models have, however, largely been based on morphology, and 45 

their interpretation has been highly dependent on the species concept employed (Caron, 2009). DNA 46 

sequence-based studies of microbial eukaryotes are therefore of great importance, primarily to 47 

broadly delineate species (due to the prevalence of cryptic speciation (Lahr, Laughinghouse, Oliverio, 48 

Gao, & Katz, 2014)), but more specifically to characterise the nature of population structure within 49 

species. Genetic structure can arise as a result of barriers to gene flow formed by limited dispersal 50 

(allopatry or isolation by distance), reduced establishment of migrants (‘isolation by adaptation’), or 51 

more complex patterns caused by founder events (‘isolation by colonisation’) (Orsini, Vanoverbeke, 52 

Swillen, Mergeay, & De Meester, 2013). Exploring the extent of population structure and its causes 53 

can be used to test between the ubiquity and moderate endemicity models, as the former predicts a 54 
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lack of divergence in allopatry or isolation by distance, and little evidence for recent speciation 55 

events, in contrast to what is observed in many plants and animals. Evidence for genetically structured 56 

populations has recently been reported across a variety of taxa and habitats, including examples from 57 

ciliates (Zufall, Dimond, & Doerder, 2013), amoebae (Douglas, Kronforst, Queller, & Strassmann, 58 

2011; Heger, Mitchell, & Leander, 2013), diatoms (Casteleyn et al., 2010; Sjöqvist, Godhe, Jonsson, 59 

Sundqvist, & Kremp, 2015; Vanormelingen et al., 2015; Whittaker & Rynearson, 2017), 60 

dinoflagellates (Lowe, Martin, Montagnes, & Watts, 2012; Rengefors, Logares, & Laybourn-Parry, 61 

2012), raphidophytes (Lebret, Tesson, Kritzberg, Tomas, & Rengefors, 2015), and fungi (Carriconde 62 

et al., 2008; Ellison et al., 2011). While many of these studies showed clear evidence for geographical 63 

structure (supporting the moderate endemicity model), the majority were limited in resolution due to 64 

the small number of marker loci used. Microbial eukaryotes remain severely understudied relative to 65 

their abundance and phylogenetic diversity (Pawlowski et al., 2012), and currently very few 66 

population genomics datasets exist for free-living species (Johri et al., 2017). Such datasets are 67 

required to fully capture patterns of genetic diversity within and between populations, to reveal 68 

complex patterns of migration and gene flow, and to identify loci putatively contributing to local 69 

adaptation and speciation. 70 

 71 

Here, we analyse whole-genome re-sequencing data for all currently available Chlamydomonas 72 

reinhardtii field isolates. C. reinhardtii is a soil-dwelling unicellular green alga that is used 73 

extensively as a model organism for plant physiology, molecular and cell biology (Blaby et al., 2014; 74 

Harris, 2001, 2008), experimental evolution (Bell, 1997; Colegrave, 2002; Collins & Bell, 2004), and 75 

biofuel research (Scranton, Ostrand, Fields, & Mayfield, 2015). Despite its importance as a model 76 

system, very little is known about the ecology and evolutionary history of the species (Sasso, Stibor, 77 

Mittag, & Grossman, 2018). For many years C. reinhardtii had only been isolated from eastern North 78 

America, suggesting that the species may be endemic (Pröschold, Harris, & Coleman, 2005). 79 

However, isolates that are interfertile with N. American laboratory strains have since been discovered 80 

in Japan, implying a more cosmopolitan distribution (Nakada, Shinkawa, Ito, & Tomita, 2010; 81 

Nakada, Tsuchida, Arakawa, Ito, & Tomita, 2014). Two previous studies have reported evidence for 82 



 5 

population structure in field isolates of C. reinhardtii (Flowers et al., 2015; Jang & Ehrenreich, 2012), 83 

but sampling was limited to N. America, and between the studies a total of only 12 isolates were 84 

analysed, limiting the inferences that could be drawn. Furthermore, although there are excellent 85 

genomic resources available for C. reinhardtii (Blaby et al., 2014; Merchant et al., 2007), the low 86 

number of sequenced isolates has hindered the study of the population genetics of the species. C. 87 

reinhardtii has several attributes that make it a particularly interesting model for population genetics. 88 

Synonymous genetic diversity (~3%) and the estimated effective population size (~108) are amongst 89 

the highest reported in eukaryotes (Flowers et al., 2015), and its haploid state makes it highly 90 

amenable to studying recombination and evolutionary phenomena that would otherwise require 91 

haplotype phasing.  92 

 93 

In this study we explore patterns of population structure inferred from 36 C. reinhardtii isolates 94 

sampled at three scales, (i) local, both between and within sites and time points in Quebec, (ii) within 95 

continent, between N. American isolates, and (iii) between continent, specifically between N. 96 

American and Japanese isolates. Overall, we report evidence for allopatric divergence, both between 97 

N. American and Japanese isolates, and putatively between two highly differentiated lineages in N. 98 

America, supporting the moderate endemicity model for the species. We find evidence for substantial 99 

admixture between the N. American lineages, providing some of the first insights into the ecology and 100 

dispersal capability of C. reinhardtii. Furthermore, within Quebec we find little signature of strong 101 

geographic or temporal structure. Finally, we report the extensive sharing of unexpectedly long 102 

genomic tracts likely to have been inherited identical by descent between pairs of isolates at local 103 

scales, and discuss several potential causes of this surprising result. 104 

 105 

 106 

 107 

 108 

 109 
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Materials and methods 110 

 111 

Sampling and whole-genome re-sequencing 112 

 113 

Sampling and whole-genome re-sequencing of the field isolates available from the Chlamydomonas 114 

Resource Centre (https://www.chlamycollection.org) has mostly been described previously. Briefly, 115 

sequencing data for 11 isolates sampled at eight locations between 1945 and 1994 were produced by 116 

Flowers et al. (2015), with the exception of CC-2932 (Jang & Ehrenreich, 2012). We obtained and 117 

sequenced the isolate CC-3268, since it was not included in previous studies. A total of 31 isolates 118 

(CC-3059 – CC-3089 in the collection), sampled in 1993/94 from two sets of fields ~80 km apart in 119 

Quebec (Farnham and MacDonald College), were first screened by Sanger sequencing of introns VI 120 

and VII of the YPT4 gene, which are species-specific markers in volvocine algae (Liss, Kirk, Beyser, 121 

& Fabry, 1997). Eighteen isolates were confirmed as authentic C. reinhardtii, sequencing of which 122 

was described by Ness, Kraemer, Colegrave, and Keightley (2016). A further eight previously 123 

undescribed isolates (referred to as GB# in this study) were sampled from Farnham in 2016, using the 124 

protocol of Sack et al. (1994).  125 

 126 

Data produced by Gallaher, Fitz-Gibbon, Glaesener, Pellegrini, and Merchant (2015) for the 127 

laboratory strains CC-1009 and CC-1010, which are descendants of the original isolation of C. 128 

reinhardtii in Massachusetts 1945, were also included. As all laboratory strains are hypothesised to 129 

have been derived from a single zygospore, the genomes of these strains consist of two parental 130 

haplotypes, although across all strains ~75% of the genome appears to have originated from one 131 

parent (Gallaher et al., 2015). CC-1009 and CC-1010 have inherited opposite parental haplotypes, and 132 

so together maximise the genetic variation present amongst the laboratory strains. Both strains were 133 

included in the analyses of population structure and admixture, where they can be analysed as 134 

genetically distinct at ~25% of genomic sites. For analyses where the independence of isolates was 135 
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required (i.e. the calculation of population genetics statistics and the identification of identity by 136 

descent tracts), CC-1009 was excluded. 137 

 138 

For the 2016 Farnham isolates and CC-3268, DNA was extracted by phenol-chloroform extraction 139 

following Ness, Morgan, Colegrave, and Keightley (2012). Whole-genome re-sequencing was 140 

performed on the Illumina HiSeq 2000 platform (100 bp paired-end reads) for the Farnham isolates, 141 

and on the Illumina Hiseq 4000 platform (150 bp paired-end) for CC-3268, both at BGI Hong Kong. 142 

The modified PCR conditions of Aird et al. (2011) were used during library preparation to 143 

accommodate the high GC-content of C. reinhardtii (mean nuclear GC = 64.1%). The Japanese 144 

isolates NIES-2463 and NIES-2464 were sequenced using the Illumina MiSeq platform (300 bp 145 

paired-end), full details of which will be presented elsewhere (Arakawa et al., manuscript in 146 

preparation). 147 

 148 

Read mapping and variant calling 149 

 150 

Read mapping and variant calling were performed as described by Ness et al. (2016). Briefly, reads 151 

were mapped to version 5.3 of the C. reinhardtii reference genome (Merchant et al., 2007) using the 152 

Burrows-Wheeler Aligner (BWA) v0.7.5a-r405 (Li & Durbin, 2009), using BWA-MEM with default 153 

settings. The plastid (NCBI accession NC_005353) and mitochondrial (NCBI accession NC_001638) 154 

genomes were appended to the reference, as was the minus mating type (mt-) locus (NCBI accession 155 

GU814015), since the reference genome isolate is mt+. Genotypes were called using the GATK v3.5 156 

(DePristo et al., 2011) tool HaplotypeCaller, and the resulting per isolate Genomic Variant Call Files 157 

(gVCF) were combined to a species-wide Variant Call File (VCF) using GenotpyeGVCFs with the 158 

following non-default settings: sample_ploidy=1, includeNonVariantSites=true, heterozygosity=0.02, 159 

indel_heterozygosity=0.002. 160 

 161 

Only invariant and biallelic sites were considered for analyses. Filters were applied independently on 162 

the genotype calls of each isolate, as opposed to per site. Retained genotypes required a minimum of 163 
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three mapped reads, with the total depth not exceeding the average depth for the isolate in question 164 

plus four times the square root of the average depth (to remove regions with copy number variation 165 

(Li (2014)). Genotypes flanking 5 bp either side of an INDEL were filtered, to avoid false positives 166 

due to misaligned reads. Single nucleotide polymorphisms (SNPs) with a genotype quality (GQ) <20, 167 

or with <90% of the informative reads supporting the called genotype, were filtered. All sites from the 168 

~600kb mt+ (between the NIC7 and THI10 genes (De Hoff et al., 2013)) and mt- loci were filtered. 169 

For the population structure analyses no missing genotype data were allowed, resulting in the analysis 170 

of 1.44 million SNPs. For analyses comparing the different identified C. reinhardtii lineages (see 171 

Results), to maximise the number of callable sites a minimum of 50% of isolates within each lineage 172 

were required to have genotypes that passed filtering (with the exception of the Japanese isolates, 173 

where both were required), resulting in the analysis of 58.0% of sites genome-wide (61.77 Mb) and 174 

74.4% of 4-fold degenerate sites (6.18 Mb). 175 

 176 

Genomic site class annotations 177 

 178 

Genomic coordinates for coding sequence (CDS) were downloaded for the C. reinhardtii genome 179 

annotation v5.3 from Phytozome (https://phytozome.jgi.doe.gov/pz/). Within CDS, 0-fold (0D) and 4-180 

fold degenerate sites (4D) were defined relative to the reference genome. All “N” bases in the 181 

reference genome (~4 Mb) were removed. Any codons that overlapped more than one reading frame, 182 

or that contained more than one SNP, were filtered due to the difficulty in determining the degeneracy 183 

of sites in such cases.  184 

 185 

Population structure analyses 186 

 187 

To characterise patterns of species-wide populations structure, we used the haplotype-based method 188 

fineSTRUCTURE (Lawson, Hellenthal, Myers, & Falush, 2012). This approach utilises all variant 189 

sites, first using the Chromopainter algorithm to “paint” the chromosomes of every individual (the 190 

recipients) as a combination of haplotypes from all other individuals (the donors), so that the sites 191 
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within each recipient haplotype coalesce most recently with the donor. This information can be 192 

plotted as a highly informative coancestry matrix (a heatmap summarising the number of haplotypes 193 

shared between all donor-recipient pairs), and is also used to probabilistically assign individuals to 194 

populations. fineSTRUCTURE v2.1.3 was run in “linked” mode, using the flag “-ploidy 1”, and 195 

otherwise default parameters. Genetic distances between each SNP were calculated assuming a 196 

uniform recombination rate, based on the genome-wide estimate of 1.2 x 10-5 cM/bp obtained by Liu 197 

et al. (2018) from whole-genome re-sequencing of the progeny of crosses between the field isolates 198 

CC-2935 and CC-2936. Population structure was interpreted solely based on the coancestry matrix, as 199 

fineSTRUCTURE did not cluster isolates effectively into populations. This is likely due to extensive 200 

linkage disequilibrium (LD) and the low number of isolates, resulting in nearly all of the isolates 201 

exhibiting a unique relationship to each other in terms of genetic ancestry. As a secondary method, we 202 

also ran STRUCTURE (Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000), 203 

details of which are presented in the supplementary text.   204 

 205 

As a complementary approach to visualise multilocus patterns of genetic similarity between isolates, a 206 

principal component analysis (PCA) was performed on 4D SNPs subsampled every 20 kb, based on 207 

the average decay of LD in C. reinhardtii (Flowers et al., 2015), using the R packages SNPRelate 208 

v1.8.0 and gdsfmt v1.10.1 (Zheng et al., 2012). A neighbour joining tree was produced using MEGA 209 

v7.0.26 (Kumar, Stecher, & Tamura, 2016) from all 4D sites, using the Tamura-Nei substitution 210 

model, and 1000 bootstrap replicates. To test for the presence of isolation by distance within the two 211 

identified N. American lineages (NA1 and NA2), a Mantel test (n=999 permutations) was performed 212 

independently for each lineage on a pairwise matrix of 4D genetic distance (calculated using MEGA, 213 

Tamura-Nei model) and geographic distance, using vegan v2.4-5 (Oksanen et al., 2017).  214 

 215 

Mitochondrial and plastid haplotype networks 216 

 217 

To explore patterns of population structure using the C. reinhardtii organelle genomes, sites that 218 

passed filtering were extracted for the mitochondrial genome (7.39 kb) and plastid CDS (18.25 kb). 219 
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PopART (Leigh & Bryant, 2015) was used to produce haplotype networks for each organelle using 220 

the TCS algorithm (Clement, Snell, & Walker, 2002). As the plastid genome is known to recombine 221 

in C. reinhardtii (Dürrenberger, Thompson, Herrin, & Rochaix, 1996; Ness et al., 2016), a haplotype 222 

based approach is suboptimal. However, given the short length (~204 kb) and low genetic diversity of 223 

the plastid genome (Ness et al., 2016), there was insufficient power to perform similar population 224 

structure/admixture analyses to those performed on the nuclear genome. There is no evidence that the 225 

mitochondrial genome recombines in C. reinhardtii (Hasan, Duggal, & Ness, 2019).  226 

 227 

Admixture profiling and identification of putatively introgressed genomic regions 228 

 229 

Following the signatures of admixture observed from the population structure analyses, we applied an 230 

ad hoc approach to identify and visualise putatively introgressed genomic regions derived from 231 

admixture between NA1 and NA2 individuals. Marker SNPs were assigned to each lineage by 232 

identifying sites where the within-lineage consensus allele (defined as an allele with ≥ 60% 233 

frequency) differed between the two lineages. This resulted in a total of 758,420 marker SNPs, or on 234 

average ~135 SNPs per 20 kb. For each isolate, the proportions of marker SNPs matching the NA1 or 235 

NA2 consensus were then calculated in 20 kb sliding windows (with 4 kb increments). Intervals of at 236 

least five overlapping windows exhibiting a majority of marker SNPs for the alternate lineage to 237 

which the isolate belonged were then merged to form putatively introgressed genomic intervals. To 238 

visualise the admixture analysis, for each isolate in discrete 20 kb windows the proportions of SNPs 239 

with NA1 and NA2 identities were plotted as a heat map along each chromosome. 240 

 241 

Identification of genomic tracts inherited identical by descent 242 

 243 

To quantify relatedness between isolates, we identified genomic tracts that are likely to have been 244 

inherited without recombination from a common ancestor (i.e. identical by descent) using the haploid-245 

specific hidden Markov model hmmIBD (Schaffner, Taylor, Wong, Wirth, & Neafsey, 2018). This 246 

approach infers identical by descent tracts shared between pairs of individuals as genomic regions that 247 
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are identical by state (allowing for genotyping error), based on SNP allele frequencies, the distance 248 

between SNPs in bases, and a genome-wide recombination rate. Additionally, the program estimates 249 

the expected proportion of the genome inherited identical by descent between pairs (�̂�IBD) based on 250 

the average per-SNP probability of identity by descent, independent of the designation of tracts 251 

(Taylor et al., 2017). hmmIBD was run independently for each N. American lineage (NA1/NA2), 252 

assuming a recombination rate of 1.2 x 10-5 cM/bp (Liu et al., 2018) and otherwise default parameters. 253 

As we observed that the majority of identified tracts were within the range of the decay of LD in C. 254 

reinhardtii (~20 kb), tract length filters of >100 kb (~1.2 cM) and >500 kb (~6.0 cM) were applied. 255 

Identical by descent tracts have recently been defined using similar length cut-offs to explore 256 

population-level tract sharing (Wakeley & Wilton, 2016). Following Carmi et al. (2013), the cohort-257 

averaged sharing was calculated for each isolate as the mean proportion of the genome shared 258 

identical by descent between the isolate in question and all other isolates in the sample. 259 

 260 

Calculation of population genetics statistics within and between lineages 261 

 262 

Genetic diversity was calculated as the average number of pairwise differences per site (π, Nei and Li 263 

(1979)) for each of the lineages (NA1/NA2/JPN), and for each sampling site and time point 264 

containing two or more isolates. As a measure of differentiation, Fst was calculated between each 265 

lineage using the approach of Hudson, Slatkin, and Maddison (1992), where within-population π was 266 

calculated as an unweighted mean of π for the two lineages in the comparison. As a measure of 267 

genetic distance between-lineages, we calculated the number of pairwise differences between two 268 

random sequences drawn from each lineage (dxy Nei and Li (1979)).The proportions of fixed, shared 269 

and private polymorphisms were calculated for each between lineage comparison. All calculations 270 

were performed using custom Perl scripts. 271 

 272 

 273 

 274 
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Results 275 

 276 

Whole-genome re-sequencing of Chlamydomonas reinhardtii field isolates 277 

 278 

The species-wide sample consisted of 42 isolates, sampled from 11 sites/time points (fig. 1, detailed 279 

sampling and sequencing information table S1). Three isolate pairs and one isolate trio, all of which 280 

were sampled in Quebec, were found to be clonal (supplementary text, table S2). Although each 281 

isolate was derived from an independent soil sample, all identified clone mates were sampled at the 282 

same site and time, which has been observed previously in the case of the clonal pair CC-1952 and 283 

CC-2290 (Jang & Ehrenreich, 2012). Additionally, CC-3078 was found to be identical to the 284 

laboratory strain CC-1010, which was used in mating trials at the time of sampling (Sack et al., 1994) 285 

and therefore likely replaced the original isolate at that time. An additional 12 isolates, sampled in 286 

Quebec 1993/94, were found not to be C. reinhardtii (supplementary text, table S3). After retaining 287 

only one isolate for each clonal pair/trio, the final species-wide dataset comprised 36 isolates and 5.88 288 

million SNPs, with πgenome-wide = 0.0210, π4D = 0.0288, and π0D = 0.00657. To our knowledge, this 289 

dataset encompasses all genetically-unique field isolates of C. reinhardtii (supplementary text). 290 

 291 

Patterns of continental population structure 292 

 293 

The species-wide analyses of population structure indicated that genetic variation in C. reinhardtii is 294 

geographically partitioned both between N. America and Japan, and within N. America. The 295 

neighbour joining tree (fig. 2a) and PCA (fig. 2b) were consistent with all isolates clustering as three 296 

distinct lineages, (i) a north eastern N. American lineage (NA1, 27 isolates) comprising the 297 

Massachusetts isolates and all Quebec isolates except CC-3079, (ii) an approximately Midwest/Mid-298 

Atlantic/South USA lineage (NA2, eight isolates) comprising all isolates from Pennsylvania, North 299 

Carolina, Minnesota and Florida, as well as CC-3079, and (iii) a Japanese lineage (JPN) comprising 300 

both isolates from Kagoshima Prefecture, Japan. The N. American lineages were broadly consistent 301 
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with the two groups described by Jang and Ehrenreich (2012), and our designation of these as NA1 302 

and NA2 follows their previous labelling as group 1 and 2. The geographic distinction between NA1 303 

and NA2 was most clearly shown by the genetic similarity of the Massachusetts and Quebec isolates 304 

(sampled ~320-350 km north), relative to the larger genetic distances observed between the 305 

Massachusetts isolates and CC-2344 (isolated only ~380 km south west, site PA2 in figure 1). The 306 

grouping of a single Quebec isolate, CC-3079, with NA2, was the only anomaly between these 307 

geographic groups, potentially indicating a recent migration event (see below). 308 

 309 

The coancestry matrix produced by fineSTRUCTURE corroborated the above results, with all isolates 310 

sharing many more haplotypes in within-lineage recipient-donor pairs, than in between-lineage pairs 311 

(fig. 2c). However, the patterns of haplotype sharing in both between- and within-lineage comparisons 312 

were not homogenous. There was evident sub-structure within NA2, with the North Carolina isolates 313 

clearly more closely related to each other than to the remaining NA2 isolates. Similar patterns of close 314 

relatedness were also evident within NA1 for several Quebec pairs. The between-lineage 315 

heterogeneity was indicative of admixture between NA1 and NA2 isolates. Specifically, a subset of 316 

NA1 isolates, marked by the dashed blue square in figure 2c, were the recipients of a greater number 317 

of NA2 haplotypes than the remaining NA1 isolates. The NA2 isolates CC-2344 and CC-3079 were 318 

the most frequent donors to NA1 isolates, which is notable given that they were sampled in the closest 319 

geographic proximity to Massachusetts/Quebec. The STRUCTURE analysis was congruent with 320 

admixture, with the majority of NA1 isolates (and in particular the subset outlined above) and CC-321 

2344/CC-3079 appearing as admixed between the ancestral populations corresponding to NA1 and 322 

NA2 (fig. 2c/S1, supplementary text). Additionally, admixture potentially explained the variation on 323 

the first principal component of the PCA (fig. 2b), where NA1 axis coordinates were strongly 324 

correlated with the estimated proportion of introgressed genome from NA2 (see below) (R = 0.920, p 325 

< 0.01). A role for admixture was also supported by mitochondrial (fig. S2a) and plastid (fig. S2b) 326 

haplotype networks, although the patterns of population structure observed from the organelles were 327 

generally far less clear (supplementary text). 328 

 329 
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Finally, there was evidence for isolation by distance between NA2 isolates (Mantel’s r2 = 0.52, p = 330 

0.01), but no significant pattern between NA1 isolates (fig. 3). A pattern of isolation by distance is 331 

consistent with the larger geographic range of the NA2 lineage, and the population sub-structure 332 

indicated by the fineSTRUCTURE analysis. Given the sparsity of sampling for this group, little can 333 

currently be concluded about the extent to which these isolates can be treated as a single evolutionary 334 

lineage. 335 

 336 

Admixture profiling and identification of putatively introgressed genomic regions 337 

 338 

To further explore the possibility of ongoing admixture between NA1 and NA2, local ancestry was 339 

profiled for each isolate. The proportions of marker SNPs matching either the NA1 or NA2 consensus 340 

alleles for each isolate in 20 kb windows were plotted as a heat map along each chromosome 341 

(chromosome 3 fig. 4a, all chromosomes fig. S3). For all NA1 isolates, large haplotype blocks 342 

indicative of recent introgression from NA2 were observed, and the total proportion of introgressed 343 

genome per NA1 isolate ranged from 5.4% to 21.9% (mean 12.7%, fig. 4b). The NA1 isolates 344 

designated as highly admixed from the fineSTRUCTURE analysis were found to have significantly 345 

more introgressed sequence than the remaining NA1 isolates (means 17.3% and 9.0%, respectively; 346 

Wilcoxon rank sum test, W = 180, p = <0.01), and in practice this categorical division separated the 347 

isolates into two groups with less than or greater than 15 Mb of introgressed sequence (~14% of the 348 

genome). The mean proportion of introgressed genome for NA2 isolates was lower at 7.7%, with only 349 

CC-3079 (17.6%) and CC-2344 (14.9%) exhibiting similarly substantial signatures of admixture. 350 

However, this does not necessarily imply that introgression from NA2 to NA1 is more prevalent than 351 

in the opposite direction, given that the current sampling of NA2 isolates is so limited, and that 352 

highly-admixed NA2 populations in close proximity to Massachusetts/Quebec may exist. 353 

 354 

A mosaic pattern was observed across the genome of CC-3079, where on many chromosomes 355 

megabase-scale NA1 haplotypes were interspersed on an NA2 genomic background (e.g. 356 

chromosomes 3, 4, 6, 7, and 9) (fig. S4). However, far shorter transitions between NA1- and NA2-like 357 
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sequences were also observed, conceivably due to older admixture events. Given that CC-3079 was 358 

the only NA2 isolate sampled in Quebec, it is surprising that only 17.6% of the genome was identified 359 

as introgressed. Indeed, some chromosomes (e.g. 1, 8, 10 and 16) had no NA1 haplotypes of a size 360 

indicative of very recent admixture. Such a pattern of introgression is consistent with at least one 361 

admixture event a small number of sexual generations in the past, although assuming all 362 

chromosomes undergo at least one crossover per meiosis, the presence of entirely NA2-like 363 

chromosomes suggests further mating with NA2 individuals since the putative admixture event(s). 364 

From the fineSTRUCTURE analysis, CC-3079 was most closely related to the Minnesota and 365 

Pennsylvania isolates, potentially indicating a northern source population from which a migration 366 

event could have occurred. 367 

 368 

Identity by descent sharing and patterns of local population structure in the Quebec sample 369 

 370 

To further explore patterns of relatedness within our sample, we used hmmIBD (Schaffner et al., 371 

2018) to identify identical by descent tracts shared between pairs of isolates. The proportion of the 372 

genome shared identical by descent between each isolate pair (i.e. the total sharing) was then 373 

estimated using three metrics (i) �̂�IBD, the total sharing estimated directly by hmmIBD from the 374 

average per-SNP probability of identity by descent, (ii) total sharing for tracts >100 kb, and (iii) total 375 

sharing for tracts >500 kb. The estimates differed substantially between metrics, since the absence of 376 

shorter tracts in the >100 kb and >500 kb datasets resulted in lower total sharing relative to �̂�IBD (table 377 

1, fig. 5a for NA1 only). However, all three metrics were significantly and highly correlated (R = 378 

0.848 – 0.968), and the interpretation of results was consistent across metrics, so the following results 379 

are given for tracts >100 kb.  380 

 381 

As indicated by the fineSTRUCTURE analysis, there was substantial variation in relatedness between 382 

pairs within both NA1 and NA2. Across all NA1 pairs, the distribution of total sharing for tracts >100 383 

kb was approximately normal, although a long tail of the distribution indicated the presence of pairs 384 

with a higher genomic fraction of shared tracts (fig. 5a). Total sharing was greater than zero for all 385 
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325 NA1 pairs (range 0.3% – 52.0%), and was 9.1% on average, an unexpectedly high figure given 386 

the very large effective population size of C. reinhardtii (see Discussion). The variation between 387 

isolate pairs may partly be explained by variation in admixture, since introgression is expected to 388 

reduce total sharing (Carmi et al., 2013). As expected under this scenario, the cohort-averaged sharing 389 

(a per isolate identity by descent summary statistic) for NA1 isolates was significantly negatively 390 

correlated with the inferred proportion of introgressed genome from NA2 (R = -0.675, p < 0.01). 391 

There was no signature that identical by descent tracts were highly concentrated in particular genomic 392 

regions, as ~99% of the genome was included in at least one pairwise tract, and the distribution of the 393 

average sharing across all NA1 pairs in 100 kb chromosomal windows was approximately normal 394 

(fig. 5b).  395 

 396 

Given the prevalence of identity by descent tracts in NA1, it is unclear to what extent total sharing can 397 

be used as a proxy for relatedness. Nonetheless, following the assumption that the total sharing is at 398 

least partially indicative of the relatedness between a pair of isolates, this relationship can be used to 399 

explore local population structure within NA1, and specifically within Quebec. If genetic diversity is 400 

spatially or temporally structured at local scales in C. reinhardtii, it is expected that total sharing 401 

would be higher for within-site isolate pairs (Farnham and MacDonald College, ~80 km apart) 402 

relative to between-site pairs, and for within-time point pairs at the same site (Farnham 1993 and 403 

2016) relative to between-time point pairs. There was, however, no support for either of these 404 

relationships, with no difference in total sharing for within-site pairs relative to between-site pairs 405 

(Wilcoxon rank sum test, W = 2228, p = 0.23), and no difference for within-time point pairs relative 406 

to between-time point pairs (Wilcoxon rank sum test, W = 5859, p = 0.40). Moreover, there was also 407 

no difference in total sharing for pairs within Quebec and Massachusetts, relative to pairs between 408 

Quebec and Massachusetts (Wilcoxon test rank sum test, W = 7054, p = 0.50), where the isolates were 409 

sampled ~320-350 km and ~50-70 years apart. Therefore, taken together with the lack of isolation by 410 

distance, there appears to be no strong signal of population structure within the current sampling of 411 

NA1.  412 

 413 
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Conversely, there were differences between the samples, with the average total sharing within 414 

MacDonald College 1994 (20.8%) and Farnham 2016 (17.3%) more than twice that of Farnham 1993 415 

(7.1%). Samples with greater average total sharing exhibited lower putatively neutral genetic diversity 416 

(π4D), resulting in the observation that diversity was marginally higher within a single sample 417 

(Farnham 1993 π4D = 0.0242) than within the entire sampled lineage (NA1 π4D = 0.0236, table 1). The 418 

lower average total sharing within Farnham 1993 may be explained by an increased rate of admixture 419 

within this sample, as the average proportion of introgressed genome was higher (14.8%) relative to 420 

MacDonald College 1994 (7.1%) and Farnham 2016 (12.8%) (fig. 4b). The Farnham 1993 isolate 421 

pairs make up the majority of the within-sample pairs in the above within vs between sample 422 

statistical comparisons, so the reduction in total sharing for this sample may explain the reported lack 423 

of significance. Regardless of this, the average total sharing between Farnham and MacDonald 424 

College (8.3%), and between Farnham 1993 and 2016 (8.0%), remain far greater than would be 425 

expected if there was strong spatial or temporal structure within Quebec.  426 

 427 

In contrast to NA1, there was very little signature of close relatedness between NA2 isolates from 428 

different locations. Total sharing for between-location NA2 pairs was only 0.2% on average (table 1), 429 

corroborating the presence of population sub-structure in the lineage. However, within the North 430 

Carolina sample (the only site with more than one NA2 isolate), the average total sharing was 23.2%. 431 

Taken together with the results for NA1, the independent finding of very high total sharing between 432 

North Carolina isolate pairs suggests that C. reinhardtii haploid individuals may generally share a 433 

substantial proportion of their genomes identical by descent at local scales. 434 

 435 

Genetic diversity within lineage, and genetic differentiation and divergence between lineages 436 

 437 

Genetic diversity varied substantially between lineages (fig. 6a), with π4D estimates of 0.0236, 0.0306, 438 

and 0.00123 for NA1, NA2, and JPN, respectively. Based on these estimates of putatively neutral 439 

diversity and a SNP mutation rate of 9.63 x 10-10 per site per generation estimated by re-sequencing of 440 

C. reinhardtii mutation accumulation lines by Ness, Morgan, Vasanthakrishnan, Colegrave, and 441 
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Keightley (2015), the estimated effective population sizes (Ne) for each lineage were 4.91 x 107 442 

(NA1), 6.35 x 107 (NA2), and 2.56 x 106 (JPN) (following π = 2Neµ.) Thus, at least for the N. 443 

American lineages, these estimates are consistent with C. reinhardtii genetic diversity being amongst 444 

the highest reported in eukaryotes (Leffler et al., 2012). It is difficult to conclude to what extent the 445 

higher diversity of NA2 relative to NA1 reflects the sampling history of the species, since the NA2 446 

isolates have been sampled over a far larger area with generally only one isolate per site (with the 447 

exception of the three NC isolates). Indeed, considering single sampling locations, π4D estimated for 448 

only the three North Carolina isolates was 0.0190, lower than that calculated for the Farnham 1993 449 

isolates (0.0242), and marginally lower than that for the three MacDonald College NA1 isolates 450 

(0.0193), which have a comparable incidence of identity by descent sharing as the North Carolina 451 

isolates (table 1). 452 

 453 

Strikingly, genetic diversity for JPN was an order of magnitude lower than that for the N. American 454 

lineages, with the estimated π4D of 0.00123 approximately 19 and 25 times lower than the estimated 455 

values for NA1 and NA2, respectively. Although based only on two isolates, this did not appear to be 456 

an artefact caused by high relatedness. Firstly, the isolates are of opposite mating types, and so are 457 

certainly not clonal. Secondly, genetic diversity appeared to be uniformly lower across the genome 458 

relative to N. American isolates, with no obvious long invariant tracts as observed for pairs of NA1 459 

isolates (fig. 6b). Indeed, even for the extreme of highly related isolate pairs (e.g. GB119 and GB141, 460 

sharing ~50% of their genomes), and for the laboratory strains CC-1009 and CC-1010 (sharing ~75% 461 

of their genomes), pairwise genetic distances greatly exceeded that observed between the two JPN 462 

isolates (as shown by the branch lengths of the neighbour joining tree, fig. 2a).  463 

 464 

The NA1 and NA2 lineages were highly differentiated, both genome-wide (Fst = 0.25) and at 465 

putatively neutral 4D sites (Fst = 0.24) (table 2). Only 30.6% of the 7.19 million SNPs segregating in 466 

the N. America sample were shared between the lineages, with 37.3% private to NA1, and 31.8% 467 

private to NA2. Results were similar for 4D SNPs, with a slightly higher percentage shared between 468 

the lineages (33.0%). Despite the majority of SNPs being private to either lineage, only 0.3% 469 
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(genome-wide) and 0.2% (4D) of SNPs were fixed, consistent both with admixture and the expected 470 

weak force of genetic drift due to the high effective population size of the species. The average 471 

number of pairwise differences between the lineages  (dxy) was estimated as 0.0274 (genome-wide) 472 

and 0.0364 (4D), and thus two sequences drawn randomly between NA1 and NA2 contained 54.2% 473 

more differences than two NA1 sequences, and 19.0% more differences than two NA2 sequences (for 474 

4D sites, based on comparison to within-lineage π4D). After masking introgressed regions for both 475 

lineages, the overall percentage of shared SNPs decreased to 19.8% and 22.6%, Fst increased to 0.34 476 

and 0.32, and dxy increased to 0.0281 and 0.0374 (all for genome-wide and 4D sites, respectively). 477 

Surprisingly, the JPN lineage was no more genetically distant from NA1 (4D dxy = 0.0343) and NA2 478 

(4D dxy = 0.0376), than NA1 and NA2 were from each other.  479 

 480 

Discussion 481 

 482 

In this study we have used genome-wide data to explore patterns of population structure across field 483 

isolates of C. reinhardtii. Taking advantage of the haploid state of the isolates, we have applied 484 

haplotype-based analyses to characterise structure at both continental and local scales, and to infer 485 

patterns of admixture between the two identified N. American lineages. In what follows, we 486 

contextualise these findings within the ongoing debate concerning the nature of biogeography and 487 

speciation in microbial eukaryotes, and discuss further insights concerning the evolutionary history 488 

and ecology of C. reinhardtii. Finally, we discuss the surprising prevalence of identity by descent 489 

sharing between isolates sampled at local scales. 490 

 491 

The North American biogeography of Chlamydomonas reinhardtii 492 

 493 

Based on current sampling, the evidence for three geographically distinct lineages of C. reinhardtii 494 

strongly contradicts the predictions of the ubiquity model, under which little geographic population 495 

structure is expected. Interestingly, there are notable similarities between the observed biogeography 496 
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of C. reinhardtii, and the best studied microbial eukaryote in this context, Saccharomyces paradoxus. 497 

This wild yeast has been shown to form a species complex, comprising highly differentiated lineages 498 

on different continents, suggesting allopatric divergence and speciation (Koufopanou, Hughes, Bell, 499 

& Burt, 2006; Kuehne, Murphy, Francis, & Sniegowski, 2007; Liti et al., 2009). Within N. America, 500 

two allopatric lineages of S. paradoxus have been described, which exhibit signatures of local 501 

adaptation and reproductive isolation characteristic of incipient species (Charron, Leducq, & Landry, 502 

2014; Leducq et al., 2014; Leducq et al., 2016). Similar to C. reinhardtii, one lineage has a more 503 

restricted range in the north east, while the other is widely distributed to the south and west, with a 504 

sympatric zone occurring along Lake Ontario and the St. Lawrence River (Charron et al., 2014). This 505 

biogeography is consistent with allopatric divergence in the Atlantic and Mississippian glacial refugia 506 

during the last glacial maximum (~110,000 – 12,000 year ago), which has been documented in 507 

numerous plants and animals (Charron et al., 2014). Thus, although as a morphological entity S. 508 

paradoxus fulfils the ‘everything is everywhere’ maxim, it in fact consists of several cryptic species 509 

that have undergone allopatric speciation events, including a putative event in glacial refugia 510 

contemporaneous with several plants and animals. 511 

 512 

Whether glacial refugia can explain the biogeography of the two N. American C. reinhardtii lineages 513 

will largely be contingent on further sampling, especially in what would be expected to be the north 514 

eastern limits of the NA2 range (i.e. south west of New England and the St. Lawrence River). 515 

However, the observed biogeography is consistent with such a scenario, under which NA1 would 516 

have persisted in the Atlantic regufium (located east of the Appalachians), before re-colonising 517 

Massachusetts and Quebec. This could also explain the sub-structure observed for NA2, which may 518 

have a markedly different evolutionary history to NA1, with the possibility of multiple refugia (e.g. 519 

Mississippian, Virginia/Carolinas Atlantic coast, and further south) connected by varying amounts of 520 

gene flow at different times. Furthermore, the two lineages cannot easily be explained by climate or 521 

other environmental factors, since NA2 includes both one of the most northerly (CC-1952, 522 

Minnesota) and the most southerly (CC-2343, Florida) isolates, and the Massachusetts and 523 
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Pennsylvania sites presumably share similar environments. However, we have not explicitly tested 524 

any environmental variables in this study, and this will form an important aspect of future research. 525 

 526 

That essentially all NA1 isolates exhibit signatures of admixture with NA2 individuals supports a role 527 

for substantial dispersal in C. reinhardtii. Given that the length of the observed introgressed 528 

haplotypes are considerably longer than the physical distance over which LD decays in the species, 529 

admixture is likely to have occurred in the relatively recent past. Furthermore, that a single highly-530 

admixed NA2 isolate (CC-3079) was present within our small Quebec sample suggests that both 531 

migration and gene flow are ongoing. Under such a scenario, that the two lineages remain so highly 532 

differentiated in the face of migration and gene flow potentially indicates the presence of reproductive 533 

isolation and/or local adaptation. However, there is currently no evidence for either reproductive 534 

isolation or local adaptation in C. reinhardtii, and isolates of all three identified lineages cross 535 

successfully in the laboratory (Nakada et al., 2014; Pröschold et al., 2005). Nonetheless, there are 536 

substantial phenotypic differences between isolates (Flowers et al., 2015), and it should be possible to 537 

re-visit such variation in the context of the two N. American lineages, and to further test for 538 

reproductive isolation in the laboratory (e.g. via fitness assays of ‘hybrid’ progeny).  539 

 540 

The mosaic genome of CC-3079 also provides further insights into the ecology of C. reinhardtii. The 541 

observed pattern cannot simply be explained by an NA2 migrant arriving in Quebec and subsequently 542 

mating with only NA1 individuals, as several chromosomes show no signature of recent introgression, 543 

implying that mating between other NA2 individuals occurred after the inferred admixture event(s). 544 

This could be explained if CC-3079 were itself a migrant from an unsampled location in which both 545 

NA1 and NA2 individuals occur in sympatry and hybridise. Alternatively, an NA2 ancestor of CC-546 

3079 may have migrated to Quebec, implying the presence of other NA2 individuals at the site. 547 

Almost nothing is known about the dispersal capability and mechanisms in C. reinhardtii, although 548 

there is abundant evidence for the passive dispersal of dormant propagules (such as the C. reinhardtii 549 

zygospore) of various species (De Meester, Gómez, Okamura, & Schwenk, 2002). As such 550 

propagules are resistant to environmental stresses, they can be transported over long distances via 551 
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biotic (e.g. birds and insects), abiotic (e.g. wind and water), or anthropomorphic vectors. Additionally, 552 

as C. reinhardtii zygospores adhere to each other (Harris, 2008), a single migration event may have 553 

the potential to introduce many migrant individuals of both mating types, which could explain the 554 

implied presence of other NA2 individuals at the sampling site.  555 

 556 

The Japanese isolates and the wider biogeography of Chlamydomonas reinhardtii 557 

 558 

Although the evolutionary history of the Japanese isolates is essentially unresolved based on current 559 

sampling, their inclusion in this study at least indicates that C. reinhardtii on different continents may 560 

be expected to form substantially divergent lineages. However, under a model of allopatric divergence 561 

between N. American and Japanese C. reinhardtii, it is surprising that the JPN lineage is no more 562 

genetically distinct from either NA1 or NA2, than NA1 and NA2 are from each other. One 563 

speculative explanation is that the Japanese isolates were derived from a third unsampled N. 564 

American lineage that underwent divergence from NA1 and NA2 simultaneously (e.g. in Pacific or 565 

Beringian refugia), before migration to Japan. Water birds are thought to be a major mechanism of 566 

algal dispersal (Kristiansen, 1996), and western N. America, and in particular Alaska, is linked to 567 

Japan by the flyways of several migratory bird species. Alternatively, gradual dispersal across the 568 

Bering land bridge could also give rise to a similar pattern, leading to the prediction that any East 569 

Asian and Alaskan C. reinhardtii may be genetically similar. The strikingly low genetic diversity of 570 

the two Japanese isolates relative to the N. American lineages is also surprising. If the lineage was 571 

established from a larger population by migration (which could in principal occur from a single 572 

zygospore), then such a founder effect would be expected to reduce diversity via a severe bottleneck 573 

(De Meester et al., 2002). Supporting this hypothesis, any population present in Kagoshima must be 574 

geologically young, as a result of the formation of the Aira Caldera ~30,000 years ago, and the 575 

Akahoya eruption ~7,000 years ago (Machida & Arai, 2003).  576 

 577 

As a result of the historic difficulty in isolating C. reinhardtii (Pröschold et al., 2005), it is likely that 578 

the current sampling primarily reflects the distribution of researchers. Intercontinental distributions of 579 
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more conspicuous Volvocalean algae have been documented (e.g. Kawasaki, Nakada, and Tomita 580 

(2015)), and given the geographic distance between eastern N. America and Japan, it would not be 581 

surprising if C. reinhardtii is shown to have a considerably wider distribution in the future. However, 582 

far more extensive sampling across multiple regions and habitats, alongside improvements in 583 

sampling methodology, will be required to address this.   584 

 585 

Patterns of population structure and genetic diversity at a local scale 586 

 587 

In facultatively sexual organisms, under certain conditions clonal erosion can generate population 588 

structure and reduce genetic diversity at local scales (Vanoverbeke & De Meester, 2010). Prior to this 589 

study, almost nothing was known about the local structure of genetic diversity in C. reinhardtii, and it 590 

was unknown whether a single site would be dominated by clonal lineages. Although our sample 591 

contained a small number of clonal pairs/trios, the majority of isolates sampled at single sites were 592 

genetically distinct, and diversity at single sites and time points was of the same magnitude as the 593 

total lineage diversity. Although the extent of identity by descent sharing appeared to vary between 594 

sites and time points in Quebec, we found no evidence for strong population structure at this scale. 595 

The lack of structure observed in space further supports the considerable dispersal potential of C. 596 

reinhardtii. The lack of structure observed in time could potentially be explained by long-term 597 

zygospore dormancy, which would result in isolates sampled many years apart being separated by far 598 

fewer sexual generations than would otherwise be expected. Such a phenomenon is known in other 599 

chlorophyte algae, where dormant zygospores are capable of forming propagule banks (Fryxell, 600 

1983), and it is known that C. reinhardtii zygospores are resistant to both long-term freezing and 601 

desiccation (Harris, 2008). Propagule banks have also been hypothesised to contribute to high levels 602 

of genetic diversity, as populations can be re-seeded with haplotypes present at previous time points 603 

(Rengefors, Kremp, Reusch, & Wood, 2017; Shoemaker & Lennon, 2018), and therefore long-term 604 

zygospore dormancy could be a contributing factor to the high diversity estimated for C. reinhardtii. 605 

 606 
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As detailed previously, C. reinhardtii population genetics analyses have been hindered by the absence 607 

of a suitable set of isolates, and the lack of understanding as to what constitutes a ‘population’ in the 608 

species. The high genetic diversity found at single sites in this study now presents the opportunity to 609 

use samples from single sites (e.g. Farnham 1993) for future analyses. Furthermore, given the lack of 610 

structure between sites/time points, the entire Quebec sample could conceivably be analysed together. 611 

Although the extent of identity by descent sharing between these isolates requires further explanation 612 

(see below), the delineation of a group of isolates suitable for population genetics analyses has the 613 

potential to greatly enhance the use of C. reinhardtii in evolutionary biology research. 614 

 615 

Broader perspectives on microbial biogeography and speciation 616 

 617 

Taken together with the evolutionary history of S. paradoxus, our interpretation of C. reinhardtii 618 

continental population structure supports a role for allopatric differentiation (and potentially 619 

speciation) in microbial eukaryotes. This permits the rejection of the ubiquity model in these cases, 620 

supporting the more similar rates of speciation between microbial eukaryotes and macroorganisms 621 

predicted by the moderate endemicity model, and implying that microbial species may be far more 622 

speciose than existing taxonomic descriptions suggest. It is worth noting, however, that the moderate 623 

endemicity model does not predict frequent allopatric speciation (instead favouring various forms of 624 

non-allopatric speciation) (Foissner, 2008), and in this sense the model may need to be revised. De 625 

Meester et al. (2002) detailed the role of glacial refugia in speciation events for various zooplankton, 626 

and it may be that similar allopatric events are also commonplace in microbial eukaryotes. However, 627 

it is unclear to what extent the results for two terrestrial species can be extrapolated, and the 628 

exploration of similar patterns across a far larger range of species is obviously required to fully 629 

address this question.  630 

 631 

 632 

 633 

 634 
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The extent of identity by descent sharing between Chlamydomonas reinhardtii isolates 635 

 636 

The original motivation for identifying identical by descent tracts was to quantify between-pair 637 

relatedness and explore patterns of local population structure. However, the most surprising result of 638 

these analyses was the finding that on average a pair of NA1 isolates share 9.1% of their genomes in 639 

tracts >100 kb, and that an even higher proportion was independently observed between the three 640 

isolates sampled in North Carolina. Even more unexpectedly, isolates from Massachusetts and 641 

Quebec (sampled ~50-70 years apart) share 8.6% of their genomes identical by descent on average. 642 

This highlights a striking dichotomy: how can essentially the entire sampled population appear to 643 

share recent ancestry, yet genetic diversity be maintained at a high level? Although much of our 644 

understanding of identity by descent in populations has been built upon pedigrees (Thompson, 2013), 645 

population-level theory has recently been developed for tracts defined based on arbitrary genetic 646 

length cut-offs (Carmi et al., 2013; Carmi, Wilton, Wakeley, & Pe'er, 2014; Palamara, Lencz, 647 

Darvasi, & Pe'er, 2012). Using equation 4 of Carmi et al. (2013), and based on the estimated Ne for 648 

NA1 and a minimum tract length of 100 kb (~1.2 cM), the average proportion of the genome shared 649 

identical by descent between a pair of individuals in a Wright-Fisher population is expected to be 650 

~0.00017%, four order of magnitude lower than observed.  651 

 652 

Although we currently lack an explanation for this discrepancy, there are a number of possibilities 653 

that can currently be considered. Firstly, C. reinhardtii evidently does not meet the assumptions of a 654 

Wright-Fisher population, and therefore a stochastic process may be responsible. Clonal reproduction 655 

is expected to result in a high variance in reproductive success (Tellier & Lemaire, 2014), and 656 

zygospore dormancy would result in overlapping generations, although further theoretical work will 657 

be needed to address the effects of such processes on identity by descent. Secondly, it is conceivable 658 

that many long shared genomic tracts could arise in a population as a result of pervasive positive 659 

selection combined with long-range effects of selection on linked sites. Frequent adaptive evolution 660 

and the resulting effects of hitchhiking on linked sites has recently been evoked to explain the low 661 

observed diversity in the ubiquitous phytoplankton species Emiliania huxleyi (Filatov, 2019). 662 
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Although C. reinhardtii obviously differs from this case with respect to genetic diversity, if pervasive 663 

positive selection acted mostly on standing variation in the species, it is possible that soft selective 664 

sweeps could result in multiple haplotypes rising to high frequency, while maintaining high genetic 665 

diversity. Thirdly, if there is a high diversity of structural variants segregating in C. reinhardtii 666 

populations there may be recombination suppression between certain haplotypes. Physical 667 

recombination has only been studied between a very small number of C. reinhardtii isolates (Kathir et 668 

al., 2003; Liu et al., 2018), and additional experimental work will be required to further explore 669 

recombination in the species. In a broader sense, empirical studies of other species with similar life 670 

cycles will also be crucial to determining the generality of this result. 671 

 672 

Conclusions 673 

 674 

C. reinhardtii is divided into three geographically distinct lineages based on current sampling, 675 

supporting the moderate endemicity model of microbial eukaryote biogeography. C. reinhardtii is 676 

likely to have substantial dispersal capability, implying that reproductive isolation and/or local 677 

adaptation may be maintaining genetic differentiation between the two N. American lineages in the 678 

face of ongoing migration and gene flow. High dispersal may also prevent the evolution of population 679 

structure at local geographic scales. Within two independent populations an extremely high incidence 680 

of identity by descent sharing was observed, raising several interesting questions regarding the 681 

evolutionary genetics of C. reinhardtii. 682 

 683 

Acknowledgements 684 

 685 

We thank Ahmed Hasan for useful discussions and comments on the manuscript, and Yuki Takai for 686 

technical assistance in sequencing. We thank three anonymous reviewers for their insightful 687 

comments on an earlier version of this manuscript. This project was funded by a grant 688 

(BB/H006109/1) from the UK Biotechnology and Biological Sciences Research Council (BBSRC), 689 



 27 

and has received funding from the European Research Council under the European Union’s Horizon 690 

2020 research and innovation programme (grant agreement no. 694212). This work was also 691 

supported in part by research funds from the Yamagata Prefectural Government and Tsuruoka City, 692 

Japan. Rory Craig is supported by a BBSRC EASTBIO Doctoral Training Partnership grant, and Rob 693 

Ness is supported by a Natural Sciences and Engineering Research Council Discovery grant and 694 

Canada Foundation for Innovation JELF. 695 

 696 

Data accessibility 697 

 698 

Sequencing reads for isolates sequenced in this study have been deposited under the accession 699 

numbers PRJEB33012 (ENA, N. American isolates) and PRJNA547760 (SRA, Japanese isolates). 700 

Code used to perform analyses is available at: 701 

https://github.com/rorycraig337/Chlamydomonas_reinhardtii_population_structure 702 

 703 

Author contributions 704 

 705 

R.J.C., N.C., P.D.K. & R.W.N. conceived the study. R.J.C., K.B.B. & R.W.N. performed analyses. 706 

K.A, T.N., T.I. & G.B. performed sampling. R.J.C., K.A. & R.W.N. performed sequencing. R.J.C. 707 

wrote the manuscript together with P.D.K & R.W.N.  All authors read and commented on the final 708 

version of the manuscript.709 



 28 

Figures and tables 

Table 1. Average proportions of the genome shared identical by descent between isolate pairs. 
 

Population/Comparison �̂�IBD   

Average total sharing 

>100 kb tracts (%) 

Average total sharing 

>500 kb tracts (%) π4D 

Number of 

isolate pairs 

NA1 23.6 9.11 2.64 0.0236 325 

Massachusetts 36.2 16.9 3.50 0.0188 1 

Quebec 23.4 9.18 2.78 0.0237 276 

Farnham 1993 22.2 7.13 1.18 0.0242 91 

MacDonald College 1994 35.2 20.8 10.2 0.0193 3 

Farnham 2016 29.3 17.3 9.04 0.0218 21 

Massachusetts – Quebec 24.3 8.55 1.76 / 48 

Farnham 1993 - 

MacDonald College 1994 23.2 8.31 2.52 / 42 

Farnham 1993 - Farnham 

2016 21.8 7.99 2.00 / 98 

            

NA2 9.41 2.77 0.959 0.0306 28 

North Carolina 32.6 23.2 8.95 0.0190 3 

NA2 between-locations 0.0595 0.217 0.00 / 12 
 

Proportions of the genome shared identical by descent (i.e. total sharing) are shown for the total 

predicted by hmmIBD (�̂�IBD), for tracts >100 kb, and for tracts > 500 kb. The number of isolate pairs 

refers to the total number of pairwise comparisons contributing to the average total sharing. For each 

lineage, average total sharing is shown for the subsets of isolates discussed in the main text (e.g. 

North Carolina for NA2), and comparisons between subsets are labelled as the two subsets separated 

by a hyphen (e.g. Farnham 1993 – Farnham 2016).  
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Table 2. Differentiation and divergence between the three lineages (NA1 26 isolates, NA2 eight 

isolates, JPN two isolates). 

 

For private SNPs, A is the first lineage in the comparison, and B the second. Introgression masked 

refers to the NA1 – NA2 comparison after removing genomic regions identified as introgressed for 

each individual.  

 

 

 

 

 

 

 

 

   NA1 - NA2 NA1- JPN NA2 - JPN 

NA1 - NA2 

(introgression masked) 

SNPs 

genome-wide 7,188,929 4,496,586 4,167,903 6,379,381 

4D 881,984 598,261 562,782 798,407 

shared (%) 

genome-wide 30.6 0.279 0.222 19.8 

4D 33.0 0.315 0.261 22.6 

private A (%) 

genome-wide 37.3 88.9 84.4 36.1 

4D 36.5 90.1 85.7 35.6 

private B (%) 

genome-wide 31.8 1.22 1.32 42.0 

4D 30.4 1.00 1.12 40.1 

fixed (%) 

genome-wide 0.301 9.67 14.0 2.21 

4D 0.194 8.60 12.9 1.64 

Fst 

genome-wide 0.25 0.64 0.59 0.34 

4D 0.24 0.63 0.58 0.32 

dxy 

genome-wide 0.0274 0.0256 0.0283 0.0281 

4D 0.0364 0.0343 0.0376 0.0374 
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Figure 1. Sampling locations and years for all field isolates included in analyses. Format is ‘site – 

number of isolates – year’, where the number of isolates refers to genetically unique (i.e. non-clonal) 

samples. Location abbreviations are as follows: QC – Quebec, MA – Massachusetts, PA – 

Pennsylvania, NC – North Carolina, MN – Minnesota, FL – Florida, Kg – Kagoshima Prefecture. 

Quebec refers to two separate sites, Farnham (QC1, 21 total isolates) and MacDonald College (QC2, 

four isolates). The Massachusetts isolates are also from two sites ~13 km apart, and one site/isolation 

is represented by two laboratory strains in the species-wide dataset (see main text).  
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Figure 2. Results of the population structure analyses. a) Neighbour joining tree of all 4D sites, with 

NA1 isolates coloured blue, NA2 isolates red, and JPN isolates yellow. All nodes had >70% bootstrap 

support, with the exception of the node connecting CC-3069 with GB119/GB141/GB66. b) The first 

and second axes of the PCA. c) fineSTRUCTURE coancestry matrix, in which the colour of the cells 

represents the expected number of shared haplotypes between donor (columns) and recipient (rows) 

isolate pairs. The blue dashed square marks a subset of highly admixed NA1 isolates. Sampling 

locations for each isolate are provided on the y-axis (see figure 1 for abbreviations). A STRUCTURE 

plot for three populations is shown above the matrix (see figure S1 for additional population 

numbers). 
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Figure 3. Mantel tests performed on matrices of genetic distance and geographical distance within 

NA1 (blue) and NA2 (red). 
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Figure 4. Admixture profiling. a) For each isolate, the proportion of NA1 and NA2 marker SNPs in 20 

kb windows along chromosome 3 plotted as a heat map, with 0 (dark blue) representing 100% NA1 

SNPs, and 1 (dark red) representing 100% NA2 SNPs. Windows containing no sites/SNPs are shown 

in grey. Chromosome 3 was randomly selected, see figure S3 for all chromosomes. b) Per isolate total 

of introgressed sequence, with NA1 isolates shown in blue (with bars representing the total length of 

introgressed sequence from NA2), and NA2 isolates shown in red. The NA1 isolates to the right of 

the dashed line are those that were designated as highly admixed from the fineSTRUCTURE analysis. 
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Figure 5. NA1 identity by descent analyses a) Density plot of the estimates of total sharing across all 

325 isolate pair comparisons for NA1, shown for the three definitions of identity by descent. b) 

Density plot of the mean sharing across all 325 NA1 pairs per 100 kb chromosomal window, shown 

for tracts >100 kb and >500 kb.     

 

 

 

Figure 6. Summary of C. reinhardtii genetic diversity. A) Genome-wide and 4D within-lineage 

genetic diversity for NA1, NA2 and JPN. b) A comparison of pairwise genetic diversity estimated 

along chromosome 9 in 100 kb windows, for the JPN isolates, and for Quebec isolate pairs exhibiting 

a low (CC-3059 – CC-3063) and high (CC-3084 – CC-3086) incidence of identity by descent sharing. 
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