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Contact detection between convex polyhedra and superquadrics1

in discrete element codes2

Di Peng, Kevin J. Hanley∗3

School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh,4

Edinburgh EH9 3FG, United Kingdom5

Abstract6

Particle shape substantially influences the bulk behaviour of granular systems. Hence, much

scientific interest has been devoted to the adoption of non-spherical fundamental particles

in discrete element method simulations. Two examples of such particles are polyhedra,

which are highly angular, and superquadrics, which are best suited to simulate rounded

particles. It is desirable to use both types of particle together in a simulation to capture the

broadest possible range of particle shapes. In this paper, a novel contact detection algorithm

is presented for a convex polyhedron and superquadric. This algorithm was implemented

in a C++ code which was used to verify the correctness of the algorithm and evaluate

its efficiency using the Monte Carlo method. The proposed contact detection algorithm is

particularly efficient for many-faceted polyhedra as the effect of increasing the number of

faces on the evaluation time is small.

Keywords: discrete element method (DEM), nonspherical particle, polyhedron,7

superquadric, numerical simulation8

1. Introduction9

Since its formulation by Cundall and Strack [1] in the 1970s, the discrete element method10

(DEM) has become extremely popular as it allows exploration of the micro-scale behaviour11

that determines the bulk-scale response of any particulate system. The most commonly used12
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particle shape in DEM simulations is the sphere, which is both conceptually and computa-1

tionally simple. The large majority of commercial codes such as PFC [2] and EDEM [3],2

along with open-source codes such as YADE [4] and LIGGGHTS [5], adopt spheres as the3

basic shape of element. However, in reality many particles are poorly described by spheres4

and some problems cannot be adequately addressed without considering particle shape more5

accurately.6

In recognition of the importance of particle shape, there has been a major increase7

in scientific interest in recent years in DEM modelling of non-spherical particle systems [6].8

Many approaches have been proposed. The simplest is implementation of a rolling resistance9

model at the inter-particle contacts. As particle non-sphericity restricts its rotation to some10

extent, rolling resistance is capable of capturing a subset of the physics of non-spherical11

particles but some behaviour is poorly captured. The most common approach for simulating12

non-spherical particles, adopted in the commercial codes PFC [2] and EDEM [3], is the multi-13

sphere method in which spheres are clumped together to create irregularly shaped clusters,14

e.g., [7]. However, many spheres may be required to obtain a reasonable approximation of a15

real particle’s shape [8, 9]. An alternative is to replace the fundamental spheres with other16

shapes such as polyhedra, ellipsoids [10, 11], or superquadrics [12] which are a generalisation17

of ellipsoids.18

Compared to spheres, accurately resolving the contacts between complex fundamental19

particles such as superquadrics or polyhedra is difficult and computationally expensive. Two20

approaches are commonly used: discrete function representation (DFR) and continuous func-21

tion representation (CFR) [13]. DFR [14, 15] is based on discretising the surface of a particle22

into a set of nodes. CFR detects and evaluates interparticle contacts through direct manipu-23

lation of the equations which mathematically describe a particle’s shape. CFR has two sub-24

types: analytical CFR is used to resolve contacts between polyhedra [16, 17] while numerical25

CFR is used for resolving contacts between particles with curved surfaces [10, 12, 18, 19, 20].26

These CFR approaches tend to be applicable to particles only of specific shapes, e.g., cylin-27

ders [21] or convex particles represented using the potential particle approach [22, 23]. There28

are established analytical CFR methods for detecting and evaluating contacts between poly-29
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hedra, e.g., the 3DEC [24] code adopts Cundall’s contact plane (CP) method [25]. PFC v6.01

allows the simulation of systems of mixed spheres and polyhedra using a variant of the con-2

tact detection algorithm proposed by Nezami et al. [26]. Overlaps between ellipsoids may be3

detected efficiently using CFR-based algorithms, e.g., [27, 28]. A CFR approach for contact4

resolution of convex superquadrics [29] has been implemented in LIGGGHTS [5].5

There are also methods which, in principle, can be applied to any shape of particle. Feng6

et al. [30] proposed a method of determining contact orientation based on the potential7

field which is related to particle shape. Dong et al. [31] proposed a contact resolution8

method based on orientation discretisation: the contact region is divided into cells and each9

cell is categorised as inside or outside of the particle intersection. Their specific approach10

requires a pre-computed database. The Gilbert-Johnson-Keerthi (GJK) algorithm [32]11

is used in computer graphics for detecting penetration or finding the minimum distance12

between two objects. The original GJK algorithm has been optimised both for speed [33, 34,13

35] and for specific shapes such as polyhedra [36]. However, the GJK algorithm is accurate14

only for shapes with flat surfaces; for shapes with curved surfaces such as superquadrics,15

discretisation is necessary.16

While there are established approaches for polyhedron–polyhedron (PH–PH) and superquadric–17

superquadric (SQ–SQ) contact detection, an open problem is contact detection in mixed18

polyhedron–superquadric (PH–SQ) systems. Such simulations are desirable as many real19

systems contain a broad range of particle shapes. Superquadrics are appropriate for sim-20

ulating rounded particles but cannot capture the high degree of angularity provided by21

polyhedra. Hence, having both shapes available in a single simulation gives a broader range22

of possible particle shapes than solely polyhedra or superquadrics.23

In this paper, a novel contact detection algorithm for a convex polyhedron and su-24

perquadric is presented which is efficient and reasonably simple. An associated contact25

evaluation method has also been proposed to determine the contact normal and interparti-26

cle overlap. The contact detection algorithm has been implemented in a C++ code, enabling27

verification of the algorithm and quantification of its run time.28
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2. Development of convex PH–SQ contact detection algorithm1

In Sections 2.1 and 2.2, the superquadric (SQ) and polyhedron (PH) particles are re-2

spectively introduced and an existing algorithm for SQ–SQ contact detection is presented.3

The newly developed algorithm for PH–SQ contact detection is then described in Section4

2.3 based on this prior knowledge.5

2.1. Definition of and contact detection between convex superquadrics6

The surface of a SQ particle may be written as a function7

F (X) = F (x, y, z) =
(∣∣∣x
a

∣∣∣n2

+
∣∣∣y
b

∣∣∣n2
)n1

n2 +
∣∣∣z
c

∣∣∣n1

− 1 = 0 (1)

where X is a point defined by three coordinates (x, y, z) in 3D space [29]. a, b, c are shape8

parameters (half-lengths of the particle along the x, y, z axes) and n1, n2 are blockiness9

parameters which define a SQ’s shape. n1 = n2 = 2 corresponds to an ellipsoid; in addition,10

if a = b = c, the ellipsoid becomes a sphere. The LIGGGHTS implementation of SQs11

requires n1, n2 ≥ 2 [37]. This prohibition of non-convex SQs is to avoid issues with multiple12

contacts between two SQs.13

If F (X) < 0, X lies within the particle; if F (X) > 0, X is outside of the particle. The14

special case F (X) = 0 means that X lies on the particle’s surface. Consider two SQs A and15

B that are potentially in contact. The surfaces of both particles can be written as FA(X)16

and FB(X), or simply FA and FB. Contact detection between A and B is equivalent to the17

following constrained optimisation [23]:18

Minimise FA + FB while FA − FB = 0 (2)

Podlozhnyuk et al. [29] substituted Eq. (1) into Eq. (2), and used the Lagrange multiplier19

method to obtain a solution. Suppose the Lagrange function20

L(x, y, z, λ) = FA + FB + λ(FA − FB). (3)
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Thus,1

∇L = 0⇐⇒ ∇(FA + FB) = −λ∇(FA − FB)⇐⇒ (1 + λ)∇FA + (1− λ)∇FB = 0 (4)

By combining Eq. (4), which provides three equations, with ∂L
∂λ

= 0, or equivalently FA −2

FB = 0, a set of four equations is obtained:3

Φ =


(1 + λ)∂FA

∂x
+ (1− λ)∂FB

∂x

(1 + λ)∂FA

∂y
+ (1− λ)∂FB

∂y

(1 + λ)∂FA

∂z
+ (1− λ)∂FB

∂z

FA − FB

 = 0 (5)

There must be a solution (x0, y0, z0, λ0) to Eq. (5). The multi-unknown Newton’s method4

can be used to obtain this solution:5 
xn+1

yn+1

zn+1

λn+1

 =


xn

yn

zn

λn

− J−1Φ (6)

where J is the Jacobian of Φ. The detailed solution procedure can be found in Podlozhnyuk6

et al. [29], resulting in the point (x0, y0, z0), which is the midpoint of two points XA and7

XB: the closest point to the centre of SQ B on SQ A’s surface and the closest point to the8

centre of SQ A on SQ B’s surface, respectively. We can evaluate whether or not (x0, y0, z0)9

is the contact point with the following criterion:10

FA(x0, y0, z0) < 0 and FB(x0, y0, z0) < 0 (7)

If Eq. (7) is true, A and B are in contact; otherwise the two SQs are not in contact. If11

FB were substituted by the function of a planar wall, SQ–wall contact detection can be12

accomplished in a similar manner to find the point on the surface of the SQ which is closest13
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to the wall, or the deepest point beneath the wall surface if the SQ contacts the wall [29].1

2.2. Definition of and points within convex polyhedra2

The surface function describing a polyhedron is given as Eq. (8) [22]:3

F (X) = F (x, y, z) =
n∑
i=1

〈fi(x, y, z)〉 =
n∑
i=1

〈Aix+Biy + Ciz −Di〉 = 0 (8)

where n is the total number of faces comprising the PH, fi(x, y, z) is the function of the ith

plane of the PH with outer normal vector (Ai, Bi, Ci), and Di is the perpendicular distance

from the origin to the ith plane of the PH. The Macaulay brackets in Eq. (8) indicate that

positive terms retain their values while negative terms are set to zero. Eq. (8) is equivalent

to

F (X) ≤ 0⇐⇒ ∀fi(X) ≤ 0 (9a)

F (X) > 0⇐⇒ ∃fi(X) > 0. (9b)

Eq. (9a) means that if a point is within a PH, all PH surface functions must be negative4

at that point. Conversely, if a point makes one or more PH surface functions positive, that5

point must be outside the PH (Eq. (9b)). Thus Eq. (9a) can be used to confirm a possible6

contact point, while Eq. (9b) can be used to eliminate invalid candidate contact points. Eq.7

(9) is used extensively in the algorithm presented in Section 2.3.8

2.3. Resolving contact or non-contact between a PH and a SQ9

In total, there are six distinct cases that must be considered in this algorithm: three10

cases in which the PH and SQ are in contact, and three in which they are not. We have11

chosen a triangular prism with five faces as the PH and an ellipsoid as the SQ for most of12

the figures in Section 2.3. After the six cases have been described, a flowchart is shown as13

Fig. 7 which summarises the steps in the algorithm.14
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2.3.1. Defining the ‘Initial Face’ (IF) and positive/negative faces1

We define the initial face (IF) as the face of the PH whose outer normal vector has the2

maximum dot product, i.e., is most closely aligned, with the vector joining the centroids of3

the PH and SQ. An example IF is shown in Fig. 1(a). The IF is used in the first step to4

judge whether or not the particles are in contact. Positive/negative faces are assigned that5

status by their positions relative to a fixed point X. Each face lies on an infinite plane;6

if the point X is above that plane, where the outer normal vector indicates the positive7

direction, that face is positive for point X. Conversely, if X is beneath the plane, the face8

is negative for X. In order to clearly present a 3D shape on paper, only three of the faces9

of the triangular prism PH are labelled as positive or negative in the figures in this section;10

the other faces are always negative.11

In this algorithm, the SQ–planar wall contact detection approach summarised in Section12

2.1 [29] is applied to one or more specific planes enclosing faces of the PH. This yields one13

or more points on the surface of the SQ which are potentially contact points.14

2.3.2. Case 1: Positive IF15

Consider Fig. 1(a) in which the PH and SQ are not in contact. The point highlighted on16

the surface of the SQ has been identified as a potential contact point based on Section 2.1.17

However, this point makes the IF positive. Based on Eq. (9b), there must be no contact18

and the contact detection can be terminated. Case 1 is highly efficient as there is no need19

to check any PH faces apart from the IF.20

2.3.3. Case 2: All faces negative21

Case 2, in which all faces are negative, is shown in Fig. 1(b). The highlighted point must22

be the contact point according to Eq. (9a). Case 2 is somewhat less efficient than Case 123

as the positive/negative assessment must be made for all faces of the PH, not only the IF.24

2.3.4. Cases 3 & 4: Negative IF, resolve through switch to ‘Positive Face’ (PF)25

Cases 3 (non-contact) and 4 (contact) arise when the IF is negative for the potential26

contact point denoted as X0 but one other face is positive. The scenario in which more27
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(a) Case 1: non-contact due to a positive IF (b) Case 2: the simplest contact case with all PH
faces negative

Figure 1: The simplest (non-)contact cases for face contact of a PH and SQ.

than one face is positive is addressed in Section 2.3.5. Fig. 2(a) illustrates Case 3: X01

makes one face, which is not the IF, positive. In this situation, we switch from the IF to2

this newly identified positive face (PF) and repeat the same procedure as before. A new3

potential contact point X1 is identified by applying the procedure outlined in Section 2.24

to the plane which includes the PF (Fig. 2(b)). Since the PF remains positive, the same5

conclusion of no contact is drawn, based on Eq. (9b), as for Case 1.6

Case 4 is the analogue of Case 3 for which there is a PH–SQ contact. This is shown in7

Fig. 3. As usual, the IF is found initially, resulting in a potential contact point X0 (Fig.8

3(a)). Since X0 makes a face other than the IF positive, it cannot be the contact point but9

another point on the SQ surface may still be in contact with the PH. Attention is switched10

from the IF to the PF (Fig. 3(b)). The potential contact point X1 makes all PH faces11

negative. As concluded for Case 2, X1 is the contact point.12

2.3.5. Cases 5 & 6: Negative IF, search and return for edge/vertex contact13

In Cases 3 and 4, an unambiguous assessment of contact/non-contact could be made14

after switching from the initial face to the one positive face. However, one could imagine a15

scenario in which the contact status remains uncertain after switching to the one PF. For16

example, resolving a contact between a SQ and the edge or vertex of a PH, rather than17

its face, cannot be adequately resolved using Cases 1–4. Furthermore, Cases 3 and 4 are18

8



(a) Positive and negative faces and poten-
tial contact point X0 based on the IF

(b) After switching attention to
the PF

Figure 2: Non-contact of a PH and SQ determined by switching from the IF to the PF (Case 3).

(a) Positive and negative faces and
potential contact point X0 based on
the IF

(b) Contact point X1 found after switch-
ing to the PF

Figure 3: Contact point X1 found after switching from the IF to the PF (Case 4).
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(a) First switch from IF to PF (b) Second switch from PF back
to IF

(c) Check the common edge

Figure 4: SR method for determining SQ contact with a PH edge/vertex (Case 5: non-contact).

inapplicable if there is more than one positive face. In these situations, Cases 5 (non-contact)1

and 6 (contact) apply.2

Consider Fig. 4(a). As for Cases 3 and 4, a potential contact point X0 is found initially3

using the IF obtained by joining the centroids of the two shapes. Since this makes the4

rightmost face positive, another potential contact point X1 is found based on the PF (Fig.5

4(b)). However, X1 makes the PF negative but the IF positive, thus creating an endless6

alternating cycle between these two faces. This is resolved by checking whether the edge7

common to the two faces contacts the SQ (Fig. 4(c)). Fig. 5 is a similar scenario in which8

there is indeed a contact with the common edge. This is termed the ‘search and return’9

(SR) method for contact determination. This also allows the detection of contacts between10

a SQ and a vertex of a PH: since a vertex belongs to multiple edges of a PH, contact can11

be assessed using any of the edges linking to it.12

In Figs. 4 and 5, the return appears after only one switch from IF to another face.13

However, more iterations may be needed before a return appears, e.g., Fig. 6(a). This is14

a limitation of the simple SR method. Furthermore, consider Fig. 6(b) which shows a 2D15

projection of a cuboidal SQ contacting a many-faceted PH. Starting from the IF in the usual16

manner, both the IF and all of the faces surrounding it are negative. However, since one17

face of the PH remains positive, X0 cannot be definitively identified as the contact point.18

The SR method described above needs to be amended to account for this general situation.19

10



(a) First switch from IF to
PF

(b) Second switch from PF
back to IF

(c) Check the common edge

Figure 5: SR method for determining SQ contact with a PH edge/vertex (Case 6: contact found).

IF
X0

Route 

of search

X1

X2

(a) Multiple searches before a
return

- - +
IF

X0

(b) Positive face not adjacent
to IF

IF
X0

Route 

of search

X1

X2

MPF

(c) New search route for the
amended SR method

Figure 6: Extreme PH–SQ contact situations which cannot be addressed using the simple SR method.
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This is simply done. As before, start from the IF and find X0. The check of plane1

function values with X0 is expanded to all PH faces, rather than those faces adjacent to2

the IF. The face with maximum positive value (termed the ‘maximal positive face’ or MPF)3

becomes the starting point for the next search. This amended initial search procedure is4

suitable for Fig. 6(a), as demonstrated in Fig. 6(c), and is also applicable to all other5

scenarios, including Fig. 6(b). As the SQ surface is considered in finding the MPF, this6

amended SR method also improves efficiency by reducing the scope of the search to the area7

in which contact is most likely. Only neighbouring faces need to be checked in the following8

searches to find a return.9

There is a subtle difference to note between contacts with the faces of PHs, e.g., Fig.10

1(b) or Fig. 3, and contacts with the edges or vertices of PHs, e.g., Fig. 5 or Fig. 6. Face11

contacts yield a contact point on the surface of the SQ while edge/vertex contacts yield a12

contact point which is on an edge of the PH.13

This algorithm is only applicable to a convex PH and SQ: the outer normal vector is14

used in the approach for PHs, while the SQs must be convex to avoid the possibility of15

multiple contacts as the algorithm presented in this section gives at most one contact point.16

Furthermore, the overlap between a PH and a SQ should be small to ensure accuracy. This17

is because an identified contact point is always located on the surface of the PH or SQ; as18

overlaps become large, the validity of choosing a surface point as the single contact point19

becomes questionable.20

The complete algorithm is summarised in Fig. 7. The six cases leading to termination21

of the algorithm are shown in this flowchart. For odd cases, a contact is not found; for even22

cases, a contact is found.23

2.4. Contact evaluation based on the contact point24

If a contact exists, a single contact point Xc is found by following the algorithm in Fig.25

7. The next step is to determine the contact normal and the interparticle overlap, both of26

which are necessary to calculate a contact force. It is noted that these quantities are not27

well defined in general for irregularly shaped particles [21]; however, the approach proposed28

12



Acquire vector from
PH centre to SQ centre

Find IF whose normal vector
has maximum dot prod-
uct with the centre vector

Calculate X0 on
SQ surface with IF

Is X0 beneath IF?
Contact detection termi-
nated, no contact (Case 1)

Check all other PH
surfaces with X0

Is X0 beneath all other faces?
Contact detection ter-
minated, X0 is face

contact point (Case 2)

Find MPF in all PH sur-
faces for next search

Calculate Xi on SQ surface
with current face of search

Is Xi beneath MPF?
Contact detection termi-
nated, no contact (Case 3)

Check neighbouring faces
of current face with Xi

Is Xi beneath all faces checked?
Contact detection ter-
minated, X0 is face

contact point (Case 4)

Is Xi above the pre-
vious face of search?

Check the common edge of
previous face and current face

Find MPF in neighbouring PH
surfaces for the next search

Is the edge intersecting SQ?
Contact detection termi-
nated, no contact (Case 5)

Contact detection ter-
minated, edge/vertex
contact found (Case 6)

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

No

Yes

Figure 7: Flowchart showing the complete PH–SQ contact detection algorithm.
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here gives physically reasonable values. Three cases must be considered separately: face1

contact, edge contact and vertex contact.2

For face contact, the contact point lies on a single face of the PH which is therefore the3

contact plane. The normal vector of the contact plane is4

n = nc (10)

where nc is the normal vector of the PH face which contains the contact point Xc. The5

interparticle overlap is the distance between Xc and the contact plane (Fig. 8(a)). This6

method originates from Feng et al. [30].7

For edge contact, it would not be physically meaningful to adopt either of the PH faces8

forming the edge as the contact plane. Hence, a virtual contact plane is sought. Its normal9

vector is chosen to be the normalised sum of the normal vectors of the two faces forming10

the edge:11

n =
n1 + n2

||n1 + n2||
(11)

where n1 and n2 are the normal vectors of the two faces forming the edge. The contact12

plane passes through Xc with normal vector n. The overlap is computed between the SQ13

and the contact plane [29] (Fig. 8(b)).14

For vertex contact, a virtual contact plane is again required. Its normal vector is chosen15

to be the normalised sum of the direction vectors l of all n edges meeting at the vertex:16

n =

∑n
i=1 li

||
∑n

i=1 li||
(12)

l always points towards the vertex contact. This notation emphasises the adoption of the17

direction vectors of edges rather than normal vectors of faces for the edge contact case. As18

for the edge contact case, the overlap is computed between the SQ and the contact plane [29]19

(Fig. 8(c)).20

14



(a) For face contact (b) For edge contact (c) For vertex contact

Figure 8: Contact evaluation for three different contact cases.

3. Implementation and verification of the contact detection algorithm1

3.1. Implementation of algorithm2

LIGGGHTS-PUBLIC v3.8.0 [37] implements the contact detection approach described3

in Section 2.1 for SQ–SQ, SQ–planar wall and SQ–line segment contacts. The LIGGGHTS4

implementation was used as a basis for the code implementation described in this paper.5

Since the algorithm requires knowledge of neighbouring faces, it is beneficial to build a6

relationship map of PH surface faces into the implementation. A graph model in which7

nodes are PH surface faces and links are relationships between these faces was adopted to8

satisfy this requirement. Two faces link only when they have a common edge, not if they9

only share a vertex. Fig. 9 shows three simple examples of this graph model. All faces are10

linked to each other for a tetrahedron; for a cube, each face is linked to four other faces; for11

a regular pyramid, any side face links to all other faces except the face directly opposite,12

while the square bottom face links to all faces.13

This PH model was implemented in C++ by creating a class which includes a set of14

planes enclosing the PH faces (stored using the outer normal vector and one specific point15

on each plane) and a 2D adjacency array to store the relationships between faces/planes.16

This is an easy way to model a static graph [38]. Within this class, the vertices are stored in a17

disordered array list. The vertices are traversed only when edge/vertex contact judgement is18

15



(a) Tetrahedron (b) Cube (c) Regular pyramid

Node
(Face)

Face-face
relationship

(d) Tetrahedron model

Node
(Face)

Face-face
relationship

Front

RightBottom

Left Top

Back

(e) Cube model

Node (Face)

Face-face
relationship

Bottom
SideSide

Side Side

(f) Regular pyramid model

Figure 9: Describing PHs using a graph model.
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(a) Sphere–cube edge con-
tact

(b) Sphere–tetrahedron non-
contact

(c) Ellipsoid–cube vertex contact

Figure 10: Three examples of verification cases.

needed. This traversal was not optimised to improve upon the time complexity of O(n) [39]1

for the naive implementation which was considered acceptable. This class was combined2

with the SQ implementation from LIGGGHTS to create a standalone program for verifying3

one PH contacting one SQ.4

3.2. Verification of algorithm5

Initially, spheres, the simplest SQs, were placed in a wide range of contacting and non-6

contacting positions relative to a cube, e.g., Fig. 10(a). Contact/non-contact was determined7

using the code described in Section 3.1. The contact points identified were compared with8

the analytical contact points to confirm that the correct results were obtained. A wide9

range of other (non-)contact cases were checked, e.g., sphere–tetrahedron (Fig. 10(b)) and10

ellipsoid–cube (Fig. 10(c)), which also gave the expected results.11

After successfully carrying out this initial stage of verification, the Monte Carlo method12

was adopted to randomly position a spherical SQ of radius 1m in a large cubical space (edge13

length 6m) containing a smaller cubical PH of edge length 2m. The centre of the SQ could14

be any point within the 6m × 6m × 6m cubical space shown in pink in Fig. 11. The15

cubical PH is shown in green in this figure. The centres of any spheres which contact the16

cube must lie within the round-cornered cubic space shown in yellow in Fig. 11. 100000017

17



Space containing the centres
of spheres contac�ng the PH 

Cubical 2m x 2m x 2m PH

Outer 6m x 6m x 6m cubical space

Figure 11: Setup for the Monte Carlo verification.

points were randomly generated within the pink cube as SQ centre points. This led to three1

possible outcomes for each point, with reference to Fig. 11:2

1. The centre was inside the green PH. These points were neither identified as contacts3

nor as non-contacts but were counted separately as ‘Case 8’.4

2. The centre was inside the yellow round-cornered cubic space but not inside the green5

PH. These are contact points, i.e., Cases 2, 4 or 6.6

3. The centre was outside the yellow region, i.e., no contact (Cases 1, 3 or 5).7

The code described in Section 3.1 was applied to each SQ centre point generated, leading8

to one of these three outcomes for each point. Analytically, the frequency with which these9

outcomes were observed must be proportional to the volumes of the three regions on Fig. 11.10

Vgreen = 23 = 8m3, Vyellow ≈ 47.038m3, and Vpink = 63− Vgreen− Vyellow ≈ 160.962m3. This11

is exactly what was observed, as shown in Table 1. The difference between the analytical12

and Monte Carlo results is less than 0.05%, further demonstrating the reliability of this13

algorithm for resolving PH–SQ contact.14
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Table 1: Comparison of the Monte Carlo verification with the analytical result based on volumes.
Cases 1/3/5 Cases 2/4/6 Case 8 Total(no contact) (contact)

Monte Carlo count 745619 217499 36882 1000000
Monte Carlo (%) 74.56 21.75 3.69 100.00
Analytical volume (m3) 160.962 47.038 8 216
Analytical % 74.52 21.78 3.70 100.00

4. Computational efficiency of algorithm1

After the code had been verified, it could be used to assess the computational efficiency of2

the contact detection algorithm. A similar Monte Carlo approach was used for this purpose3

with the centre points of 10000 spherical SQs being randomly located within the space4

shown on Fig. 11. Instead of only a cubical PH, all five convex regular polyhedra were used5

for assessing computational efficiency: a tetrahedron, cube, octahedron, dodecahedron and6

icosahedron which have 4, 6, 8, 12 and 20 faces, respectively. Sphere centres within the PHs7

(Case 8) were disregarded for this benchmarking exercise.8

Each determination of contact/non-contact was repeated 5000 times to ensure robust9

data were gathered for total elapsed time. Times were measured using the ctime library [40];10

this was confirmed to give almost identical results to class std::chrono::system_clock [41].11

All benchmarks were run on a laptop computer with an Intel Core i7-6600U 2.60GHz CPU.12

The results are shown in Fig. 12. The elapsed calculation times are categorised by case13

and accumulated curves are adopted for representation. It is noted that, for certain PHs,14

some cases cannot occur, e.g., Case 4 for a cube. For any PH, Cases 1 and 2 are clearly the15

fastest, then Cases 3 and 4 where present, and finally Cases 5 and 6 are the slowest by a16

significant margin, which is expected from Fig. 7. The odd, non-contact cases are generally17

slightly faster than the corresponding contact cases, as termination of the algorithm occurs18

sooner for the non-contact cases than for the contact cases.19

The effect of increasing the number of PH faces (and also edges and vertices) is perhaps20

not as pronounced as might be expected. Comparing the graphs for the five different poly-21

hedra on Fig. 12, there is a small time penalty associated with increasing the number of22

19



faces but this is modest. This algorithm is therefore particularly efficient for polyhedra with1

a large number of faces.2

5. Conclusions3

This paper presents a novel contact detection algorithm for a convex polyhedron (PH)4

and superquadric (SQ) in DEM. This algorithm is based on contact detection between a SQ5

and a planar wall, and terminates in one of six cases for each contact event: three cases in6

which the PH and the SQ are in contact, and three in which they are not. This contact7

detection algorithm has been implemented as a standalone program, based on the existing8

SQ implementation in LIGGGHTS [37].9

This program was used to verify the correctness of the algorithm and evaluate its effi-10

ciency using the Monte Carlo method. The evaluation time largely depends on the point11

at which the algorithm terminates. Non-contact cases are generally slightly faster than the12

equivalent contact cases. The effect of increasing the number of PH faces on the evaluation13

time is small, indicating that the proposed algorithm is particularly efficient for many-faceted14

PHs.15
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