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Abstract. In quantitative Magnetic Resonance Imaging, traditional methods suffer

from the so-called Partial Volume Effect (PVE) due to spatial resolution limitations.

As a consequence of PVE, the parameters of the voxels containing more than one

tissue are not correctly estimated. Magnetic Resonance Fingerprinting (MRF) is not

an exception. The existing methods addressing PVE are neither scalable nor accurate.

We propose to formulate the recovery of multiple tissues per voxel as a non-convex

constrained least-squares minimisation problem. To solve this problem, we develop a

memory efficient, greedy approximate projected gradient descent algorithm, dubbed

GAP-MRF. Our method adaptively finds the regions of interest on the manifold of

fingerprints defined by the MRF sequence. We generalise our method to compensate for

phase errors appearing in the model, using an alternating minimisation approach. We

show, through simulations on synthetic data with PVE, that our algorithm outperforms

state-of-the-art methods in reconstruction quality. Our approach is validated on the

EUROSPIN phantom and on in vivo datasets.

1. Introduction

Magnetic Resonance Imaging (MRI) is a powerful tool for diagnosis in medicine.

Its main advantage over other medical imaging modalities is that MRI acquisitions

are non-ionising and non-invasive. Nevertheless, the main drawback of MRI is that

it produces qualitative images whose intensity values are a nonlinear response to

underpinning physical parameters. Quantitative MRI (qMRI) is a particular modality

that aims to produce spatial quantitative maps of parameters related to the tissues
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Figure 1. Partial volume effect in a T1 parameter map. Left: true T1 parameter map.

Right: low resolution reconstruction.

under investigation, such as T1 and T2 relaxation times [1]. Unfortunately, due to

prohibitively long acquisition times, qMRI is not the standard for diagnosis. To

overcome this difficulty, Magnetic Resonance Fingerprinting (MRF) was introduced

to accelerate qMRI acquisitions [2], inspired by Compressive Sensing (CS) theory [3].

MRF uses a combination of random excitation pulse sequences and k-space (i.e. Fourier

space) undersampling to simultaneously acquire all relevant quantitative information.

These random excitation sequences are used to produce unique temporal patterns called

fingerprints, which are compared to the ones predicted by the model to extract the

parameters of interest, similar to dictionary based methods such as [4]. More recently,

a full CS strategy was formulated in [5] for MRF. In this work, the authors developed

an iterative projection algorithm (also known as projected gradient descent, or forward-

backward algorithm [6, 7]), dubbed BLoch response recovery via Iterative Projection

(BLIP), reconstructing MRF signal with less acquisitions than the traditional MRF

method [2]. Note that increasing the number of acquisitions can significantly increase the

acquisition time and potentially induce additional modelling inaccuracies (e.g., resulting

from motion or timing).

In general, qMRI techniques, particularly MRF-based methods [8, 9, 10, 11, 12, 5,

13], assume that a voxel contains at most one type of tissue, e.g. white matter (WM),

grey matter (GM), etc. This assumption is not suitable in practice. Consequently,

voxels containing multiple tissue types may be assigned with incorrect parameters. This

problem is known as the Partial Volume Effect (PVE) and appears in all medical imaging

modalities with limited spatial resolution [14]. An example of PVE is given in Fig. 1.

The left image shows a spatial distribution of T1 in a simulated brain. The right image

shows a reconstruction using voxels four times bigger and assuming a single tissue per

voxel. All low resolution voxels at the edge between tissues contain partial volumes,

which implies a wrong estimate (single wrong value of T1 rather than multiple values).

The PVE has been analysed in the supplementary material of [2]. In this work, using

a least-squares method, the signal is decomposed as a weighted sum of at most three

distinct signals, each representing a different tissue. Although this method was shown

to be robust to noise for long sequences, since it necessitates both information about

the spatial distribution of the PV voxels and the true components of the original signal
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(which are unknown in practice), it is not adapted to handle in vivo data. An extension

of this approach has been proposed in [15], where the tissue parameters are learnt using

a clustering approach on the parameter maps, obtained by the match filter. Then the

data is matched with a PV dictionary varying the tissue proportion.This method has

shown good results when considering long sequences, but the reconstruction quality is

limited by the precision of the dictionary elements obtained by the MRF solution and

the precision of the tissue proportions used to generate the PV dictionary. Moreover, the

size of the PV dictionary increases exponentially with the maximum number of tissues

allowed in a voxel and, the parameters for the PV dictionary are manually selected

from the clustering results. In addition, all the reconstructions are performed with

high aliased images requiring more acquisitions for accurate results. Additionally, for

short sequences, the noise in the measurements and the sampling of the manifold of

fingerprints describing the signal can significantly affect the estimations. More recently,

a Bayesian method was proposed in [16], to tackle the PVE in MRF (we will refer to

this method as Bayesian-MRF). The authors show that their approach estimates the

parameters of the PV voxels. However, due to the high aliasing effect encountered with

undersampled noisy data, this estimation comes at the cost of an increased acquisition

time with respect to traditional MRF based reconstructions (i.e. three times longer

sequences than traditional MRF). Furthermore, to obtain accurate results, this method

relies on a high sampling of the fingerprint manifold, resulting in a high computational

cost (in terms of both reconstruction time and memory requirement). While this

method was formulated as a convex optimisation problem in the Bayesian framework,

the algorithm in [16] removes dictionary entries at each iteration, and consequently does

not ensure that the algorithm converges to the maximum a posteriori estimate. Finally,

inspired by the re-weighted `1-norm regularisation for sparse recovery, a novel algorithm

was proposed in [17]. This method is based on the alternative-direction method of

multipliers (ADMM). At each iteration, the tissue proportions are updated through the

re-weighting `1-norm in a voxel-wise fashion. As shown in [17], this algorithm is able

to estimate partial volumes in almost noiseless scenarios. Even with the re-weighting,

the support estimation is extremely ill-posed, in consequence, the estimations are very

sensitive to noise. In addition, the full dictionary is used in the re-weighing process

introducing a high computational cost.

In this paper, we propose to tackle the PVE in MRF by reformulating the problem

as a non-convex constrained least-squares minimisation problem. In our approach,

we assume that the number of independent tissues in the imaged volume is upper

bounded, and that there exists at least a region of the total volume with only pure

voxels for each tissue. To solve the resulting non-convex constrained minimisation

problem, we develop a greedy approximate projected gradient descent method, dubbed

GAP-MRF. It can be seen as a generalisation of BLIP method for PVE. It consists

in a projected gradient descent algorithm, where the projection is computed inexactly,

through a memory efficient greedy approach. The proposed method is also generalised

to compensate for phase errors in the model, due to timing or coil sensitivity errors,
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using an alternating minimisation approach [18, 19, 20, 21, 22]. Through simulations

on a simulated PV phantom, we show that our approach outperforms state-of-the-art

methods. Our method is afterward validated on the EUROSPIN phantom and on in

vivo MRF datasets.

The remainder of the paper is organised as follows: In Section 2 we introduce the

notation used throughout the paper, and we define the MRF inverse problem introducing

the proposed PV model. In Section 3 we give the proposed algorithm to solve the PV

problem. Finally, in Sections 5 and 6, we investigate the behaviour of the proposed

method on simulated data and show the results on the in vivo datasets, respectively.

We conclude in Section 7.

2. Notation and MRF problem description

2.1. Notation

In this section, we introduce the notation we will use in the remainder of the paper. We

refer the reader to [23, 24] for additional details about optimisation. To have a compact

notation when selecting a specific row n ∈ {1, . . . , N} of a matrixM ∈ CN×L, we use the

notation Mn,: = (Mn,l)1≤l≤L. Similarly, to select a specific column l ∈ {1, . . . , L} of this

matrix, we use M:,l = (Mn,l)1≤n≤N . More generally, this notation is also used to select

subparts of tensors. The operator real(·) gives the real part of its complex argument,

the operator Diag(·) builds a diagonal matrix whose diagonal elements are given by its

argument, and (·)† gives its adjoint. The adjoint of a linear operator g:CL → CN is

denoted by g†. The cardinality of a countable set T is given by card(T ). The `p norm

(p ∈]0,+∞]) is denoted by ‖ · ‖p. The `0 pseudo-norm [3], counting the non-zero entries

of its argument, is defined as (∀x ∈ RN) ‖x‖0 =
∑N

n=1 (xn)0, with the convention

00 = 0. By abuse of notation, the `p norms and the `0 pseudo-norm will be used for

tensors by reshaping them into vectors. Finally, the projection of a vector x ∈ CN onto

a non-empty closed subset S of CN is given by PS(x) = argminx∈S
1
2
‖x−x‖22 [23]. The

same notation is used for projections of tensors.

2.2. Inverse problem for single tissue recovery

In the context of MRF, the objective is to estimate the parameters of each voxel in

the imaged volume from degraded undersampled measurements. Let Y ∈ CQ×L×C be

the measurement matrix, where L is the excitation sequence length, C is the number

of coils and Q is the number of measurements at each excitation and each coil. Let

M ∈ CN×L be the response of the imaged volume of interest with N voxels. For every

(l, c) ∈ {1, . . . , L} × {1, . . . , C}, the corresponding observation Y:,l,c ∈ CQ is given by

Y:,l,c = Ω:,:,lFS:,:,cM:,l + η:,l,c, (1)

where Ω ∈ {1, 0}Q×N×L is the concatenation of L selection matrices, F ∈ CN×N is the

2-dimensional discrete Fourier transform, S ∈ CN×N×C is the concatenation of C spatial
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sensitivity coil diagonal matrices, and η ∈ CQ×L×C is a realisation of a random i.i.d.

Gaussian noise. Let h : CN×L → CQ×L×C be the linear mapping defining the complete

acquisition process such that Y = h (M ) + η.

For each voxel n ∈ {1, . . . , N}, the magnetisation response Mn,: is modelled

through the smooth non-linear mapping B : M → C1×L (commonly Bloch equations

or Extended Phase Graphs (EPG) model [25]) scaled by the unknown proton density

ρn ∈ R+, Mn,: = ρnB(θ̂n,:,Γ), where Γ ∈ RA×1 represents the concatenation of A known

acquisition parameters (e.g., flip angles α, repetition times TR) chosen such that Mn,:

is only sensitive to the P parameters θ̂n,: ∈ M under investigation, where M ⊂ R1×P

denotes the subset of feasible parameters. In the remainder, we fix P = 2 and choose

M corresponding to T1 and T2 relaxation times.

2.3. Proposed partial volume model

The model described in the previous section considers that each voxel contains at most

one element. PV voxels are introduced due to the spatial discretisation in the acquisition

process. The magnetisation sequence can be described as M = XΦ, where X ∈ RN×D
+

is a sparse mixing matrix (each line of X represents the proton densities associated with

a specific voxel, and would contain more than a nonzero value only for voxels with partial

volumes), and Φ ∈ CD×L is the over-complete dictionary of fingerprints, introduced in

[2], as a discrete sampling of the low dimensional manifold B. Φ is constructed from D

samples of M, stored in a matrix θ ∈ RD×P . Due to the smoothness of B, Φ is highly

coherent. Consequently, the estimation of X from highly undersampled noisy data is

expected to fail without additional priors. Leveraging CS theory [3, 26, 27, 28], the

sparsest matrix X, fitting the measurement model, can be found by solving:

minimise
X∈RN×D

+

‖X‖0 subject to ‖Y − h(XΦ)‖2 ≤ ε, (2)

where ε > 0 is a bound chosen according to the acquisition noise level. Since this

function is non-convex and non-differentiable, problem (2) is difficult to solve in practice,

in particular in the context of high dimensional problems (usually, D ∼ 106 and

L ∼ 103). Greedy methods that deal directly with the `0 pseudo-norm, such as [29, 30],

rely on a fixed sparsity level. Besides the computational burden of dealing with the

huge dictionary Φ, these methods are not suited for partial volume estimations. The

main reason is that the problem is intrinsically ill-posed, resulting in noise sensitive

estimations without additional constraints. Note that the inclusion of any other

constraint to these methods is not straightforward. The non-convexity of the `0 pseudo-

norm is often relaxed by the use of the `1-norm [31]. Nevertheless, Φ being highly

coherent, this convex relaxation cannot be used to correctly estimate the coefficients of

X [32, 17].To overcome these difficulties, similarly to the BLIP approach, we propose

to

minimise
M∈BS+ (Φ)

1

2
‖Y − h(M)‖22 (3)
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where

BS+ (Φ) =
{
M ∈ CN×L |M = XΦ with X ∈ S+

}
, (4)

S+ =
4
∩
s=1
Ss, (5)

and, for every s ∈ {1, . . . , 4}, Ss is a closed non-empty subset of RN×D used to impose

feasibility constraints on X. These sets are defined below.

2.3.1. Positivity constraint Since the proton densities of the imaged volume must be

non-negative, we can restrict our solution to be in the positive orthant:

S1 = RN×D
+ . (6)

2.3.2. Constraint on the number of tissues Commonly MRF aims to obtain

quantitative values of a small set of tissues. In practice, only T � D elements of

the dictionary Φ are necessary to characterise M . While T is unknown, we have a

reasonable estimate for it. We propose to introduce a loose upper bound K, such

that T ≤ K ≤ D, to limit the number of active dictionary elements. Let us define

a set DX that is formed by the column indices of X with non-zero coefficients.

To avoid noisy voxels, only rows with proton density greater than ξ > 0 (chosen

according to the noise level) will be considered. Formally, this set is defined as

DX = {d ∈ {1, . . . , D} | (∃n ∈ GX) Xn,d 6= 0}, where GX = {n ∈ {1, . . . , N} | ‖Xn,:‖1 >
ξ}. The set DX indicates the columns of X contributing to the magnetisation sequence.

We can limit the number of used elements of the dictionary by upper bounding the

cardinality of this set by K:

S2 =
{
X ∈ RN×D |Card(DX) ≤ K

}
. (7)

2.3.3. Constraint on the manifold neighbourhoods The tissues of interest are unique

and need to be sufficiently different to be distinguished. To incorporate this prior

information in the reconstruction process, we define the neighbour set associated to

each element d ∈ {1, . . . , D} of the dictionary as:

Nv(d) = {d′ ∈ {1, . . . , D}\{d}|
(∀p = {1, . . . , P}) |θd′,p − θd,p| < υθd,p}, (8)

where υ > 0. We define a set of all possible X such that, the parameters of each element

in DX are sufficiently far from each other. Precisely, we constrict all the neighbour

columns of each element in DX to be the null element 0 of RN :

S3 = {X ∈ RN×D | (∀d′ ∈ ∪
d∈DX

Nv(d))X:,d′ = 0} (9)

2.3.4. Constraint on the pure voxels Due to the additive noise in model (1), some

elements of X corresponding to non-used dictionary elements take non-zero values. In

order to avoid these noisy elements in the reconstructions, we impose that at least κ > 0
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Algorithm 1 GAP-MRF global iterations

1: Input: Y ∈ CQ×L×C , ζ < 1, M (0) ∈ CN×L
2: Iterations:

3: for i = 0, 1, . . . do

4: µ = 2N/Q, ν = 0

5: while µ > ν do

6: µ = µ/2

7: Gradient Step:

8: M
(i)

= M (i) − µh†
(
h
(
M (i)

)
− Y

)
9: Projection Step:

10: M (i+1) ≈ PBS+
(Φ)

(
M

(i)
)

11: Backtracking step

12: ν = ζ
‖M(i+1)−M(i)‖22
‖h(M(i+1)−M(i))‖22

13: end while

14: end for

rows (i.e. voxels) of X contain only one non-zero value for each active column of X.

These rows identify the pure voxels. This constraint can be formulated as follows:

S4 = {X ∈ RN×D | (∀d ∈ DX) ‖ (Xn,d)n∈VX ‖0 ≥ κ} (10)

where VX = {n ∈ {1, . . . , N} | ‖Xn,:‖0 = 1}.

3. Greedy Approximate Projection for MRF

3.1. Proposed iterative projected gradient descent algorithm

To solve problem (3), we use an iterative projected gradient descent method [33]. At

each iteration i ∈ N, this method updates M (i+1) by computing a gradient step followed

by a projection step:

M (i+1) = PBS+
(Φ)

(
M (i) − µh†(h(M (i))− Y )

)
, (11)

where µ > 0. In [5], it is shown that choosing µ ≈ N/Q is theoretically justifiable.

However, in order to ensure the stability of the iterative projected gradient descent

algorithm and accelerate convergence, in [34, 5] the authors proposed to choose µ using

a backtracking method. In order to handle efficiently the constraint BS+ (Φ), we propose

to compute inexactly the projection onto this set in (11). The resulting method, named

Greedy Approximate Projection for MRF (GAP-MRF), is described in Algorithm 1.

It can be noticed that the GAP-MRF method and BLIP are solving similar problems,

using the same algorithmic structure. In this context, as in [5], a condition on both L

and the undersampling ratio N/Q might be derived for recovery guarantee. However,

the investigation of such condition is beyond the scope of this article.
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3.2. Approximate projection

For every M ∈ CN×L, we have:

PBS+ (Φ)

(
M
)

= argmin
M∈BS+ (Φ)

1

2
‖M −M‖22

= argmin
M=XΦ,X∈S+

1

2
‖XΦ−M‖22

= ( argmin
X∈S+

1

2
‖XΦ−M‖22)Φ, (12)

Note that S2,S3 and S4 can be handled through the definition of Φ. Let M = XΦ ∈
BS+(Φ) and T ∈ {1, . . . , K} (K is the upper bound defined in (7)). Let U ∈ RN×T be

a subpart of X with non-zero columns and ∆ ∈ CT×L the corresponding subpart of Φ

such that M = U∆. Then we have

PBS+ (Φ)(M ) = ( argmin
U∈RN×T

+

1

2
‖U∆−M‖22)∆. (13)

In (13), the dictionary ∆ is defined as

∆ = argmin
∆∈C

( min
U∈RN×T

+

1

2
‖U ∆−M‖22), (14)

where C is the set given by

C =
{

∆ ∈ CT×L | (∃X ∈ S+) X = Z(U)

with U = argmin
U∈RN×T

+

1

2
‖U∆−M‖22

}
. (15)

with Z:RN×T
+ → RN×D

+ defined such that Z(U)Φ = U∆.

As mentioned earlier, Φ is an over-complete dictionary which makes the exact

projection practically impossible to compute. Recent advances in reconstruction

methods have introduced neural networks to efficiently approximate the projection

or proximal operators within model based iterative algorithms [35, 36, 37, 38]. A

major challenge with such methods is obtaining sufficient accurate training data. In

consequence, they can only accelerate the techniques where a prior computational

solution to provide ground truth already exists. To overcome this difficulty, we propose

a greedy approach to approximate the projection by finding a reduced dictionary

∆̃ ∈ CT×L and its corresponding mixing matrix Ũ ∈ CN×T , with T ≤ K, such that

U∆ ≈ Ũ∆̃. Then the projection in step 10 of Algorithm 1 can be approximated as

PBS+ (Φ)(M ) ≈ ( argmin
Ũ∈RN×T

+

1

2
‖Ũ∆̃−M‖22)∆̃. (16)

As mentioned in [5], it is a common practice to allow the proton density to be complex-

valued in order to absorb phase terms correcting for timing and coil sensitivity errors.

We incorporate a vector λ ∈ CN to compensate for these errors. Let B̃S+(Φ) be the

set of magnetisation sequences of the form M = Diag(λ)XΦ such that X ∈ S+ and
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λ ∈ CN satisfies (∀n ∈ {1, . . . , N}) |λn| = 1. The approximate projection with the

phase compensation is given by:

PB̃S+ (Φ)(M ) ≈ Diag(λ)Ũ∆̃, (17)

where (λ, Ũ) are obtained by solving:

minimise
λ∈CN ,Ũ∈RN×T

+

1

2
‖Diag(λ)Ũ∆̃−M‖22

subject to (∀n ∈ {1, . . . , N}) |λn| = 1. (18)

It is worth mentioning that in (16) and (18), all the rows of Ũ can be computed

independently in parallel.

On the one hand, forward-backward based algorithms [39, 7, 40] can be used to solve

problem (16) (in particular, in our simulations, we use the built-in Matlab function of

non-negative least-squares, that is an implementation of [41]). On the other hand, to

solve problem (18), to jointly estimate Λ and U , block coordinate approaches must be

considered (e.g. Gauss-Seidel approaches [18], alternating forward-backward methods

[19, 20, 21, 22]). Note that in comparison with the traditional MRF methods which

densely sample the manifold, our approach reduces the memory requirements, by using

the dictionary ∆̃ containing at most K elements, without the inaccuracies related to

the manifold discretisation.

3.3. Greedy dictionary estimation

The GAP-MRF algorithm takes advantage of the dictionary coherence and the

constraints imposed on X (described in Section 2.3) to approximate the projection

onto BS+ (Φ) in line 10 of Algorithm 1. As described in Section 3.2, this projection can

be approximated at each iteration i ∈ N, by solving (16), which necessitates to estimate

the dictionary ∆̃
(i)

. We propose to estimate it using a greedy approach, leveraging

both the knowledge of M
(i)

and the properties of the sets S2, S3 and S4 (note that the

constraint S1 is handled directly in (16)). The proposed approach is described in details

in this section.

The process to obtain ∆̃
(i)

consists in three main steps leveraging the set of pure

voxels. The first step consists in approximating the parameters of the pure voxels (S4
constraint) using the projection onto the set B+ defined as:

B+ = {M ∈ CN×L | (∀n ∈ {1, . . . , N}) Mn,: = ρm,

with ρ ∈ R+ and m ∈ B (M,Γ) }. (19)

The objective of the second step is to find K regions of interest (S2 constraint) of the

manifold by exploiting its smoothness. Finally, in the third step, the parameters that

are too close to each other are discarded (S3 constraint) by using a Non-Maximum

Suppression based method [42]. This method acts on the number of voxels that

corresponds to each parameter and keeps only the elements which have enough pure

voxels to satisfy the S4 constraint. This process is summarised in the dictionary
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M
(i)
,Φ(i),θ(i),V(i)

X ,Σ
(i)

Projection onto B+

ClusteringK

Non-Maximum

Suppression
υ κ

Approximate

Projection

onto BS+

M (i+1)

Parameter

Re-Sampling
ns, β

Φ(i+1),θ(i+1),Σ(i+1)

Pure Voxel

Set Update
γ

V(i+1)
X

Dictionary Estimation

θ̂, ρ̂

θS1∩S2

Ũ (i)

∆̃
(i)

θ̃
(i)

Σ(i)
M

(i)

M
(i)
,Φ(i),θ(i),V(i)

X

Figure 2. Greedy approximate projection diagram. The blue boxes represent the

main steps in the approximate projection, the gray boxes represent the intermediate

steps for the dictionary estimation and the arrows show the input and output variables.

estimation step on Fig. 2. The remaining blue blocks in the diagram are used to update

the variables in the greedy approximate projection. More precisely, we compute the

mixing matrix Ũ (i) and the magnetisation sequence M (i+1) using equation (16) with

the resulting dictionary ∆̃
(i)

. Then, we update the pure voxel set VX using the mixing

matrix Ũ (i). Finally, the dictionary Φ is refined by randomly sampling around the

parameters θ̃
(i)

. The complete method is described in Algorithm 2 and explained in the

following paragraphs.

3.3.1. Projection onto B+ At iteration i ∈ N, we have:

PBS+(Φ)
(MV(i)

X ,:
) = PB+(Φ)(MV(i)

X ,:
), (20)

where B+ is the set defined in equation (19), and MV(i)
X ,:

= (Mn,:)n∈V(i)
X

, V(i)
X

corresponding to an estimate of the pure voxel positions in X(i) at iteration i (the

true set VX corresponding to the pure voxels of the original X being unknown). At the

first iteration, we choose V(0)
X = {1, . . . , N}, and it is updated during the greedy process

(see Algorithm 2, step 20). Note that that the region containing pure voxel does not

need to be known a priori (it is automatically estimated), and does not need to be large

to be detected (depending on the noise).
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Algorithm 2 Greedy Approximate Projection

1: Input: M
(i)
,Φ(i),θ(i),V(i)

X ,Σ(i),K,Γ, κ, υ, γ, β, ξ, ns
2: Dictionary Estimation:

3: Projection onto B+

4: for n = 1, 2, ..., N do

5: d̂n = argmax
d

real(M
(i)

n,:Φ
†(i)
d,: )/‖Φ(i)

d,:‖2

6: ρ̂n = max(real(M
(i)

n,:Φ
†(i)
d̂n,:

)/‖Φ(i)

d̂n,:
‖22, 0)

7: θ̂n,: = θ
(i)

d̂n,:

8: end for

9: Clustering

10: I = {n ∈ V(i)
X | ρ̂n > ξ}

11: [θS1∩S2 , c] = k-means(θ̂I,:,K)

12: Non-Maximum Suppression

13: θ̃
(i)

= NonMaximumSuppression(θS1∩S2 , c, υ, κ)

14: ∆̃
(i)

= B(θ̃
(i)
,Γ)

15: Approximate Projection onto BS+

16: Ũ (i) = argmin
U∈RN×T

+

1

2
‖U∆̃

(i)
−M (i)‖22

17: M (i+1) = Ũ (i)∆̃
(i)

18: Pure Voxel Set Update

19: G(i)X = {n ∈ {1, . . . , N} | ‖Ũ (i)
n,:‖1 > ξ}

20: V(i+1)
X = {n ∈ G(i)X | max(Ũ

(i)
n,:) ≥ γ‖Ũ (i)

n,:‖1}
21: Parameter Re-sampling

22: θ(i+1) = ParameterReSampling(θ̃
(i)
,Σ(i), ns)

23: Φ(i+1) = B(θ(i+1),Γ)

24: Σ(i+1) = Σ(i)β

25: Output: θ(i+1),Φ(i+1),Σ(i+1),V(i+1)
X and M (i+1)

From (20), we can estimate the parameters θ̂ and the proton density ρ̂ of the

voxels in V(i)
X using the projection onto B+ with a dictionary Φ(i) (see steps 4-8 of

Algorithm 2). Φ(i) is an adaptive dictionary that is refined at each iteration to reduce

the computational cost, the simulations suggest that the accuracy of the reconstructions

is preserved. Since there are at least κ pure voxels for each active element in Φ and

the value of the proton density is at least ξ, we expect that the voxel parameters in

V(i)
X with ρ̂ > ξ will form clusters around the true values of the dictionary elements, an

example can be seen in Fig. 3 (Left).

3.3.2. Clustering In order to find K centers approximating the parameters of interest,

we propose to use the k-means algorithm [43]. The objective of k-means is to find

K centers that minimise the squared distance from all points to its closest center. The

centers obtained by solving the k-means problem θS1∩S2 ∈ RK×P can be used to compute
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a dictionary ∆S1∩S2 ∈ CK×L. By solving equation (16) with ∆S1∩S2 , we would obtain a

US1∩S2 ∈ RN×K such that Z
(
US1∩S2

)
∈ S1 ∩ S2.

3.3.3. Non-maximum suppression The k-means algorithm also provides a label to each

voxel corresponding to the matched center. We define c ∈ RK×1 to be the vector

containing the number of voxels associated with each center. Inspired by the Non-

Maximum Suppression method in [42], we use the number of pure voxels assigned to each

center to remove the neighbours defined in equation (8). We first take the parameters

of the highest value of c, and we add all the c values of the neighbours to the maximum

value of c if it is greater than κ we keep the parameters, if not we discard them and

set the corresponding values of c to 0 (see Fig. 3 (Center)). We repeat the process until

all values of c are 0. Finally, we use the resulting parameters θ̃
(i)
∈ RT×P to construct

∆̃
(i)
∈ CT×L.

3.3.4. Inexact projection onto BS+ Once the dictionary ∆̃
(i)

is approximated,

computing the three steps described above, the magnetisation sequence M (i+1) can

be updated. To this aim, we use equation (16), where the minimisation problem is

solved using Matlab built-in function for non-negative least-squares problems [41].

3.3.5. Pure voxel set update In order to avoid noisy voxels, we re-define the set GX ,

introduced in Section 2.3.2, for Ũ (i). Note that Z(Ũ (i)) is a matrix of the size of X

filling the missing values of Ũ (i) with zeros, and thus we can re-define the set G(i)X in

terms of Ũ (i) as:

G(i)X = {n ∈ {1, . . . , N} | ‖Ũ (i)
n,:‖1 > ξ}. (21)

Then, we update the pure voxel set as:

V(i+1)
X = {n ∈ G(i)X | max(Ũ (i)

n,: ) ≥ γ‖Ũ (i)
n,:‖1}, (22)

where 0 < γ < 1 is a relaxation factor used to compensate both for the noise and for

the fact that the true dictionary elements are not guaranteed to be present. Note that

the parameter γ is defined as a proportion of the total proton density in the voxels, and

it is used as a threshold to determine if a voxel is pure or not.

3.3.6. Parameter re-sampling We update Φ(i) to refine the manifold elements of

interest. For this process, we produce ns random samples around the elements in

θ̃
(i)

using a Gaussian distribution with a diagonal covariance matrix Σ(i) (see Fig. 3

(Right)). The values of the covariance matrix Σ(i) are reduced by a factor 0 < β < 1

at each iteration. When the values of Σ(i) are sufficiently small, the dictionary ∆̃ will

not change anymore and after a fixed number of iterations the sequences generated by

Algorithm 1 will stabilise. Since the samples are randomly Gaussian distributed, the

parameter values are not limited to a given resolution.
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Figure 3. Examples of the clustering, non-maximum suppression and parameter re-

sampling. For all examples the red stars represent the true phantom parameters.

(Left) Clustering. The parameters of the voxels in V(i)
X which its corresponding proton

density is greater than ξ (green crosses) are the input of the k-means algorithm and

the output are the centers (black circles). (Center) Non-maximum suppression. The

centers obtained by the k-means (black circles) and the filtered centers are output of

the Non-Maximum Suppression (blue crosses). (Right) Parameter re-sampling. The

parameters of the dictionary Φ(i+1) are obtained by randomly sampling around the

parameters obtained by the Non-Maximum Suppression (green crosses).

4. Choice of the parameters and initialisation

Since S+ is a non-convex set, the choice of the initialisation is important. If the initial

magnetisation sequence or the dictionary are not close to the desired values, the greedy

approximate projection can fail. In this section, we will describe the initialisation for

our algorithm.

4.1. Choice of the parameters

The choice of ξ, setting the minimum proton density, is related to the background noise,

the ideal ξ is a value between the background noise and the signal in the volume of

interest. If ξ is too small, empty voxels will affect the clustering process. If it is too big,

the tissue voxels will not be considered in the clustering process.

As mentioned before, the dictionary Φ(i) is updated through the iterations to reduce

the complexity of the algorithm. We fix Φ(0) to all possible combinations of 20 values

of T1 and 20 values of T2, equally spaced in M.

Concerning the number of random samples ns, on the one hand if we choose it too

big, we increase the complexity of our pure voxel projection. On the other hand if we

set ns too small, more iterations will be needed to find the elements of interest. In all

our simulations (simulated and in vivo data) we fix ns = 10.

For the diagonal elements of the covariance matrix (i.e. Σ
(0)
1,1 and Σ

(0)
2,2) associated

to the resampling of the dictionary, if they are chosen too big, the parameter sampling

will be far from the parameters of interest, increasing the number of iterations required

to find them. If they are too small, the algorithm may not find the parameter of

interest. Σ(0) should be chosen based on the parameter separation of Φ(0). In all the

reconstructions we fix Σ
(0)
1,1 = 40 and Σ

(0)
2,2 = 10.
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N Number of voxels in the volume of interest

Q Number of measurements per excitation and per coil

L Number of excitation instances

Y ∈ CQ×L×C Measurement matrix

M ∈ CN×L Magnetisation Response of the volume of interest, introduced in (1)

h Linear operator from CN×L to CQ×L×C defining the acquisition process

P Number of the tissue parameters

M⊂ R1×P Subset describing the feasible parameter space

B Non-linear smooth operator from M to C1×L describing the magnetic resonance

experiment, introduced in Section 2.2

Φ ∈ CD×L Discretisation of B with D elements

B+ Set describing M as a magnetisation response of pure voxels

X ∈ RN×D+ Mixing matrix used to describe the PVE, introduced in Section 2.3

BS+(Φ) Set describing all possible M satisfying the proposed PV model, defined in (4)

S+ Set describing the intersection of the sets S1, S2, S3 and S4, defined in (5)

S1 Positive orthant, defined in (6)

S2 Set describing the maximum number of active dictionary elements, defined in (7)

with:
GX Set indicating the columns of X contributing to the magnetisation response

ξ Minimum voxel proton density

DX Set giving the voxels with significant contribution to the magnetisation response

K Maximum number of active dictionary elements

S3 Set describing the constraint on the distinct active dictionary elements, defined in (8)

with:
υ Constant used to define neighbourhoods for the dictionary elements in

the parameter space

Nυ Set describing the neighbour dictionary elements for given dictionary

element d

S4 Set giving the minimum number of pure voxels per active dictionary element, defined

in (10) with:

VX Set describing the pure voxels in X

κ Minimum number of pure voxels per active dictionary element

µ Step size in Algorithm 1

U ∈ RN×T Sub-matrix of X (see eq. (13))

∆ ∈ CT×L Sub-matrix of Φ (see eq. (14))

Z Operator from RN×T+ to RN×D+ that maps a matrix U to the correspronding X

λ ∈ CN Vetor used to compensate for the complex phase errors in the model

γ Tolerance parameter for a pure voxels (see (22))

τ, τk, τυ, τκ Tolerance parameters for the initialisation process (see Section 4)

Table 1. Table of symbols.

Similarly, for the decreasing parameter β of the covariance matrix (see step 24 in

Algorithm 2), if it is chosen too big, the algorithm will need more iterations to find

the correct elements while if it is too small the algorithm may not explore the true

parameters. We fix β = 0.9 in the considered scenarios.

The choice of the pure voxel tolerance γ is related to the noise and the accuracy

of the dictionary during the iterations of the algorithm. If it is too big, the elements of

interest could be eliminated through the iterations since pure voxels may be considered
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as PV voxels, if it is too small, the PV voxels may be considered as pure affecting the

clustering process. We found in our simulations that γ = 0.85 is a suitable choice.

The choice of the different parameters K, υ and κ has been investigated during

preliminary work. In particular, we observed a significant increase in the residual

‖Y − h(M )‖2 when K is not sufficiently large. For υ and κ, we see a significant

increase in the residual when they are chosen too large (i.e. merging proton density

maps of the true tissues), and an increase of noisy proton density maps when they are

chosen too low.

We propose to automatically choose K, υ and κ by analysing the residual. Precisely,

we choose a tolerance value on the residual, denoted by τ > 0. This value, indicates

the minimum contribution of an element of the dictionary in the residual. If τ is chosen

too big, our solution will contain noisy elements. While if it is chosen too small our

elements of interest will be removed from the reconstruction.

4.2. Initialisation

The global GAP-MRF method, including the initialisation process, is described in

Algorithm 3. It describes the process to choose the parameters K, υ and κ. Firstly,

the estimation of K is described in steps 2-10. Fixing all the other parameters, K is

estimated by running multiple times the GAP-MRF iterations given in Algorithm 1.

We assume that we have a suitable estimate of K when the stopping criteria given in

step 10 of Algorithm 3 is reached. The same process is adopted for the estimation of

υ described (steps 11-19) and κ (steps 20-28). For these two estimates, we allow for a

small tolerance (τυ > 0 and τκ > 0, respectively), for robustness purposes. Note that

each new run of Algorithm 1 uses the previous estimated of M , ∆ and θ, in order to

accelerate the global method.

5. Simulations and results

In this section, we present the procedure used to evaluate the reconstruction with

simulated data using a simulated PV phantom. For the sake of simplicity, we consider a

particular case of model (1), with only one coil (i.e. C = 1) and the corresponding

sensitivity map S:,:,1 to be the identity matrix. An Echo-planar Imaging (EPI)

undersampling scheme is used [44, 45]. The Bloch Equations are used for the non-linear

mapping, with the random flip angles α and fixed repetition times TR as described in [5].

We compare the BLIP algorithm [5] to the proposed GAP-MRF method, considering two

different experiments (we also implemented the Bayesian method in [16] but the results

were not meaningful due to the reduced number of acquisitions). In the first experiment,

we investigate the effect of measurement noise by varying the input SNR (iSNR in dB),

defined as iSNR = 20 log
(
‖h(M )‖2/(

√
QLCσY

)
), where σY is the standard deviation

of the noise. We vary the iSNR from 10dB to 50dB. In the second experiment, we

investigate the effect of the magnetisation sequence length L ∈ [200, 600], affecting



GAP-MRF with Partial Volumes 16

Algorithm 3 GAP-MRF global method

1: Input: Y , Γ, Φ, θ, ξ, τ , Σ
(0)
1,1 = 40, Σ

(0)
2,2 = 10, ζ = 0.99, V(0)

X = {1, . . . , N}, β = 0.9, ns = 10,

M (0) = 0, (τK , τυ, τκ) = (10, 0.02, 10)

2: Estimation of K:

3: Input: (γ,K, υ, κ) = (0, 0, 0, 0), ∆̃
(0)

= {}, θ̃
(0)

= {}, j = 0.

4: Do

5: Φ(0) =

[
Φ, ∆̃

(j)
]
, θ(0) =

[
(θ)T , (θ̃

(j)
)T
]T

6: K = K + τK

7:

[
M (j+1), ∆̃

(j+1)
, θ̃

(j+1)
]

= Algorithm1(Y , ζ,M (j))

8: j=j+1

9: while ‖Y − h(M (j−1))‖2 − ‖Y − h(M (j))‖2 > τ .

10: Output: K? = K, j = j − 1

11: Estimation of υ:

12: Input: (γ,K, υ, κ) = (0.85,K?, 0, 0)

13: Do

14: Φ(0) = ∆̃
(j)

, θ(0) = θ̃
(j)

15: υ = υ + τυ

16:

[
M (j+1), ∆̃

(j+1)
, θ̃

(j+1)
]

= Algorithm1
(
Y , ζ,M (j)

)
17: j=j+1;

18: while ‖Y − h(M (j))‖2 − ‖Y − h(M (j−1))‖2 > τ .

19: Output: υ? = υ − 2τυ, j = j − 1

20: Estimation of κ:

21: Input: (γ,K, υ, κ) = (0.85,K?, υ?, 0)

22: Do

23: Φ(0) = ∆̃
(j)

, θ(0) = θ̃
(j)

24: κ = κ+ τκ

25:

[
M (j+1), ∆̃

(j+1)
, θ̃

(j+1)
]

= Algorithm1
(
Y , ζ,M (j)

)
26: j=j+1;

27: while ‖Y − h(M (j))‖2 − ‖Y − h(M (j−1))‖2 > τ .

28: Output: κ? = κ− 2τκ

29: GAP-MRF Global Iterations:

30: Input: (γ,K, υ, κ) = (0.85,K?, υ?, κ?), Φ(0) = ∆̃
(j−1)

, θ(0) = θ̃
(j−1)

31:
[
M ,∆,θ

]
= Algorithm1

(
Y , ζ,M (j−1))

32: U = argmin
U∈RN×T

+

1

2
‖U∆−M‖22

33: Output: M , ∆, θ and U

directly the acquisition time. In both the cases, we choose the undersampling ratio

N/Q = 16 to simulate the EPI in vivo data in Section 6.

The BLIP algorithm and Algorithm 1 are stopped when the following stopping

criterion is satisfied |E(i+1) − E(i)| < 10−4E(i+1), where E(i) = ‖h(M (i)) − Y ‖22, and

(M (i))i∈N is a sequence generated by the algorithms. In all simulations, GAP-MRF takes

at most 120 iterations of Algorithm 1 to converge taking the initialisation into account.

Both algorithms were implemented in Matlab. For the longest test, BLIP takes around
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30 minutes and GAP-MRF takes around 3 hours using a computer with a 3rd generation

Quad Core Intel i5 processor. The computational time can be significantly improved

with a parallel implementation of both algorithms.

5.1. Partial volume simulated phantom

We create a simulated phantom according to [46], with five tissues: adipose, WM, GM,

muscle and cerebrospinal fluid (CSF). More precisely, to introduce the PVE, we use

blocks of 2 × 2 voxels to form a lower resolution phantom containing PV voxels. The

resulting volume is resized to 256 × 256 voxels, and we generate the magnetisation

sequence from this volume using the Bloch equations. All the reconstructions are

performed with the same resolution. In the first column of Fig. 4 proton density

maps and the voxel distribution of the simulated phantom are shown. Using this

representation we can see the structure of the tissues of interest. Traditionally in qMRI,

individual parameter maps are evaluated since only a tissue per voxel is considered but

in a PV scenario this is not meaningful since several parameter maps would be needed

and visually do not show the tissue structures. We also compute the dominant tissue

(highest proton density in the voxel) parameter maps for a traditional evaluation. The

phantom dominant tissue parameter maps can be seen in the first column of Fig. 6.

Note that for the construction of the phantom, we only consider in-plane PV, while in

reality through-plane PV and in-plane PV occurs. Both kind of PV are modelled the

same way and should not make any difference in the reconstructions.

5.2. Evaluation

In order to evaluate the algorithms, we use the Signal-to-Noise Ratio (SNR in dB)

defined as SNR(U:,t, Ũ:,t) = 10 log
(∑N

n=1 (Un,t)
2 /
∑N

n=1(Un,t − Ũn,t)
2
)

, where t ∈
{1, . . . , T} is the index of the evaluated tissue, U is the mixing matrix ground truth

and Ũ is the estimation. Similarly for the magnetisation sequence SNR, we sum for all

values in the matrix. To construct the matrix Ũ , a tolerance of 15% from the ground

truth parameter values is used (i.e. for T1 = 530 and T2 = 77 milliseconds (ms) all the

dictionary elements that fall for T1 in the range of [450.5−609.5]ms and simultaneously

for T2 in the range of [65.45 − 88.55]ms are considered). In order to evaluate if the

tissues are correctly identified, we define the success rate (SR) index as the proportion

of voxels where the number of elements are correctly identified and its corresponding

parameters fall within the 15% of the true parameters. The same definition of SR is

used for both pure and PV voxels (considering only the corresponding phantom voxels).

Due to noise, there could be small values in Ũ that could significantly affect the SR. In

consequence, we choose not to consider values that are smaller than 30, given that the

range of the proton densities is from 80 to 400.
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Table 2. Parameter values of example in Fig. 4 corresponding to Experiment 1 with

an iSNR of 30dB. The relaxation times are in ms.

Ground Truth BLIP GAP-MRF

T1 T2 T1 T2 T1 T2
Adipose 530 77 [460-590] [74-84] 531.1 77.0

White

Matter
811 77 [690-930] [66-80] 811.1 77.0

Muscle 1425 41 [1220-1630] [36-46] 1424.0 41.0

Gray

Matter
1545 83 [1320-1610] [74-86] 1544.3 83.1

CSF 5012 512 [4400-5000] 500 5013.1 512.1

5.3. Experiment 1 - Impact of the iSNR

In this experiment, we investigate the behaviour of both the BLIP and the GAP-MRF

algorithms while changing the input noise. We fix the magnetisation sequence length

L = 1000. The dictionary for BLIP is defined as in [5] with D = 16170. The results

correspond to an average (with standard deviation) over 10 runs of each choice of iSNR.

The results of the proton density maps are shown in Fig. 7 (Left). GAP-MRF

significantly outperform BLIP when the iSNR is greater than 30dB. We can notice that

GAP-MRF estimates correctly the number of true atoms when the iSNR is 30dB or

greater. The reconstruction of adipose tissue is more affected by the noise since there

are significantly less pure voxels of this tissue. GAP-MRF magnetisation sequence

reconstruction is significantly more accurate than BLIP reconstruction, because BLIP

does not consider the PVE and also because of the dictionary inaccuracy. GAP-MRF

magnetisation sequence SNR has a linear behaviour with respect to the iSNR. In Fig. 7

(Center), the SR with respect to the iSNR can be seen. We can observe that the SR is

significantly affected by the iSNR.

The results for the dominant tissue parameter maps SNR can be seen in Fig. 7

(Right). GAP-MRF outperforms BLIP reconstructing the dominant tissue parameter

maps. It is important to mention than GAP-MRF is more affected by noise because the

linear combination of dictionary elements overfits the noise.

We show an example of the proton density maps for each tissue in Fig. 4 when

the iSNR is 30dB. By visual inspection, we can observe that the GAP-MRF method

outperforms the BLIP method for PV reconstructions for moderate noise scenarios.

The values of BLIP in Table 2 are given in a range because multiple parameters were

assigned to the corresponding ground truth tissue. On the contrary, GAP-MRF has

a single value because only one value was assigned to the corresponding ground truth

tissue. In this example, for BLIP and GAP-MRF respectively, the SNR values are as

follows: 9.70dB and 11.94dB for Adipose, 9.14dB and 19.52dB for WM, 17.66dB and

39.29dB for Muscle, 8.31dB and 31.87dB for GM, 5.72dB and 52.60dB for CSF and for

the magnetisation sequence 23.84dB and 48.18dB. The SR: 0.9944 and 0.9745 for pure

voxels, and for PV voxels 0 and 0.9465. The GAP-MRF correctly estimates the manifold
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Figure 4. Experiment 1 - Example of the proton density maps with L = 1000 and an

iSNR of 30dB. From first to last column: Ground truth images, BLIP reconstructions,

absolute difference between BLIP and the Ground Truth, GAP-MRF reconstructions

and absolute difference between GAP-MRF and the Ground Truth. From first to fifth

row: Adipose, WM, muscle, GM and CSF. Sixth row: Proton density sum of all other

matched elements that are not in the 15% range of the ground truth elements. The

corresponding T1 and T2 values are given in Table 2.

regions of interest. BLIP has a residual map formed by all the elements that are not

sufficiently close to the true elements (see last row of Fig. 4). Note that the residual
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Figure 5. Voxel distribution map of the simulated phantom showing the pure voxels

(green) and the PV voxels (red).
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Figure 6. Experiment 1 - Example of the dominant tissue parameters with L = 1000

and an iSNR of 30dB. From first to last column: Ground truth images, BLIP

reconstructions, absolute difference between BLIP and the Ground Truth, GAP-MRF

reconstructions and absolute difference between GAP-MRF and the Ground Truth.

From first to last row: Proton density, T1 and T2 parameter maps.

map is quite similar to the distribution of the PV voxels shown in Fig. 5, this shows

that the parameter mismatch is due to the PVE. In the GAP-MRF reconstructions,

the WM and adipose tissue are slightly mixed due to the noise since their parameters

are close one to each other. By choosing a better Γ we can make the atoms of the

dictionary more distant in the `2-norm sense, this would provide noise robustness to the

reconstructions. The dominant tissue parameter maps are shown in Fig. 6. The T1 and

T2 maps reconstructed by BLIP show a smooth transition from one tissue to another

due to the partial volume. On the contrary, GAP-MRF reconstructions show abrupt

transitions in the T1 and T2 maps delimiting the tissues. This is expected since each

tissue is modelled with a unique set of parameters. We can observe that the dominant
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Figure 7. Experiment 1 - Simulation results obtained with BLIP (dashed lines) and

GAP-MRF (solid lines). Left: Tissue proton density maps (Adipose, WM, Muscle,

GM, CSF) and magnetisation sequence (M) evaluation. Center: SR evaluation for the

pure and PV voxels. Right: Dominant tissue parameter maps (ρ, T1, T2) evaluation.
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Figure 8. Experiment 2 - Simulation results obtained with BLIP (dashed lines) and

GAP-MRF (solid lines). Left: Tissue proton density maps (Adipose, WM, Muscle,

GM, CSF) and magnetisation sequence (M) evaluation. Center: SR evaluation for the

pure and PV voxels. Right: Dominant tissue parameter maps (ρ, T1, T2) evaluation.

tissue proton density reconstruction of GAP-MRF is significantly affected by the noise.

Nevertheless, thanks to the constraint S+ handled by the proposed method, the T1 and

T2 parameter maps are accurate.

5.4. Experiment 2 - Impact of L

In this subsection, we compare the proposed GAP-MRF algorithm with the BLIP

algorithm, for different number of excitation instances L. The iSNR is set to 50dB.

The dictionary for BLIP is defined as in [5] with D = 16170. The results correspond to

an average (with standard deviation) over 10 runs of each choice of L.

Fig. 8 (Left) shows the evaluation of the proton density maps for each tissue

(Adipose, WM, Muscle, GM, and CSF) and the magnetisation sequence. Note that

GAP-MRF results are taken directly from the matrix Ũ without using any post-

processing. We can observe that GAP-MRF outperforms BLIP in reconstructing U .

This can be explained by the fact that BLIP is restricted to the input dictionary, while

our method estimates the dictionary. In addition, we can observe that the SNR values

of magnetisation sequence reconstructed with BLIP slightly decreases while L increases
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(while it is not the case for the proton density maps). This is expected since the linear

combination of short fingerprints are less distinctive, hence it is easier to approximate

it with fingerprints of other elements (allowing BLIP to fit better PV voxels with other

elements). This behaviour is not observed with the proposed GAP-MRF method for

which accurate proton density map estimates result in accurate magnetisation sequence

reconstructions.

Fig. 8 (Center) gives the SR for both pure and PV voxels. Since BLIP can only

reconstruct one element per voxel, its SR for PV is always equal to 0. In a low noise

scenario, GAP-MRF can identify the correct voxel elements even for short sequences as

can be seen in Fig. 8 (Center), where the SR of GAP-MRF for pure and PV voxels is

1. An important remark is that due to PV, the dictionary sampling and the number of

excitation instances, the BLIP algorithm can mis-reconstruct pure voxels even in a low

noise scenario.

For the dominant tissue parameter maps in the low noise scenario, GAP-MRF

outperforms BLIP as shown in Fig. 8 (Right). The proton density map of BLIP is

affected by the PV since it is not able to distinguish between the voxel tissues. The T1
and T2 maps are affected by the PV voxels and the dictionary inaccuracies.

BLIP reconstructions show a variation on T1 and T2 for the same tissue while

GAP-MRF reconstructions are accurate. The GAP-MRF has the additional advantage

that it simultaneously estimates the manifold regions of interest, resulting in better

reconstructions.

6. Real data results

In this section, we show the reconstructions on the EUROSPIN phantom and on two

in vivo datasets. The first and second datasets were acquired using spiral sampling

scheme and the third dataset was acquired using EPI sampling scheme [47]. The

parameters were chosen as discussed in Section 4. The obtained proton density maps

were normalised as Ũ/max(Ũ) and only the proton densities greater than the 10% of

max(Ũ ) are shown in the figures. The normalised proton density is in arbitrary units

(a.u.) and the relaxation times are in ms. Note that for the spiral datasets, a single

spiral interleaf is acquired for each excitation instance. For the next excitation instance,

the interleaf is rotated a fixed angle given by the total number of interleaves (e.g. 377

interleaves corresponds to 360/377 ≈ .9549◦).

6.1. EUROSPIN phantom dataset with spiral sampling

In this subsection, we show the results obtained with the proposed approach and BLIP

method, considering a dataset from a GE HDx MRI system with an 8 channel receive

only head RF coil (GE Medical Systems, Milwaukee, WI). The acquisition scheme uses

a variable density spiral with 377 interleaves using FISP based α [48] and a constant

TR = 10ms. The excitation sequence length is L = 1000. In this experiment, we have



GAP-MRF with Partial Volumes 23

ρ T1 T2

1
80
×

1
80

B
L

IP

4
0
×

4
0

18
0
×

1
80

G
A

P
-M

R
F

4
0
×

40

0 0.5 1 0 400 800 0 100 200

Figure 9. Dominant tissue parameter maps corresponding to the EUROSPIN

phantom dataset. From first to last column: 180× 180 BLIP reconstruction trimmed

to 41 × 41 voxels, 40 × 40 BLIP reconstruction trimmed to 9 × 9 voxels, 180 × 180

GAP-MRF reconstruction trimmed to 41×41 voxels, 40×40 GAP-MRF reconstruction

trimmed to 9×9 voxels. From first to last row: normalised proton density, T1, and T2.

FOV = 22.5 × 22.5cm2 with a 5mm slice thickness. The EPG model is used for the

reconstructions with an inversion time (TI) of 18ms and an Echo Time TE = 1.902ms.

The scanned objects are the tubes 1, 5 and 9 of the EUROSPIN phantom. We

reconstruct the parameter maps with two spatial resolutions: the first one at 180× 180

with an undersampling ratio of N/Q = 44.8753, and the second one at 40× 40 with an

undersampling ratio of N/Q = 20.6869 to introduce the PV. Note that for the 40× 40

reconstruction, only the Fourier samples corresponding to the target resolution are used.

Reconstructing for higher spatial resolution would introduce high frequency artefacts

as shown in [49]. An acquisition without the tubes is performed to estimate σY and

compute a lower bound on the iSNR. More precisely, using the triangle inequality, since

‖Y ‖2 ≥ ‖η‖2, we have iSNR ≥ 20 log
(
(‖Y ‖2 − ‖η‖2)/(

√
QLCσY )

)
= 64.73dB, where

Y corresponds to the measurements with the tubes, η corresponds to the measurements

without the tubes, and the value σY is the standard deviation of η.
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Figure 10. Normalised proton density maps corresponding to the EUROSPIN

phantom dataset. The first and second row correspond to the 180×180 reconstruction

trimmed to 41 × 41, and the 40 × 40 reconstruction trimmed to 9 × 9, respectively.

The corresponding T1 and T2 can be seen in Table 3. From left to right the columns

correspond to Tube 1, Tube 5 and Tube 9 of the EUROSPIN phantom.

Table 3. Comparison between the parameters obtained with GAP-MRF and the

EUROSPIN phantom values.
Phantom Values 180× 180 40× 40

T1 T2 T1 T2 T1 T2
Tube 1 200± 6 52± 1.6 197.0 93.9 195.4 96.0

Tube 5 450± 13.5 94± 2.8 455.9 159.8 459.5 168.1

Tube 9 754± 22.6 116± 3.5 766.3 199.2 757.5 199.9

The box in red shows a PV voxel artificially created by reconstructing a lower

resolution image. As predicted by the corresponding high resolution maps, this voxel is

formed by a linear combination of the Tubes 1 and 9.

In Fig. 9, we show a comparison of the reconstructions with two different spatial

resolutions. The T1 and T2 lower resolution maps of BLIP show a variation introduced

by the PVE. A clear example of the PVE is the voxel in the red box where two tissues

appear, the BLIP method shows a parameter mismatch. Note that the parameters

predicted by BLIP suggest that the voxel contains the same substance as Tube 5,

contrary to the true composition (Tubes 1 and 9). GAP-MRF reconstructions do not

show this behaviour since we take the PV into account in the model. Note that GAP-

MRF is more sensitive to noise as shown in the simulations, this may explain small

artefacts in the proton density maps.

The T1 values in Table 3 are in agreement with the values of the EUROSPIN

phantom. The T2 values are higher than expected. As seen in Fig. 9, BLIP results

show the same increased T2, suggesting that the errors may be related to the acquisition

parameters specifically to the constant TR as shown in [50].

In Fig. 10, the normalised proton density maps reconstructed by GAP-MRF with

two different resolutions can be seen. As highlighted by the red box, the PV voxel in
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Figure 11. Normalised proton density maps corresponding to the brain dataset

with spiral sampling. The corresponding T1 and T2 can be seen in Table 4. The

reconstructions were trimmed from 180 × 180 to 151 × 151 voxels. From left to right

and top to bottom, the figures correspond to WM, GM, CSF, muscle and fat.

Table 4. Comparison between the parameters obtain with GAP-MRF for the brain

dataset with spiral sampling and the reported values in [51].

Values reported in [51] GAP-MRF

T1 T2 T1 T2
WM 781±61 65±6 758.7 42.1

GM 1193±65 109±11 872.4 67.3

CSF 1658.5 799.8

Muscle 1100±59 44±9 1218.0 23.2

Fat 253±42 68±4 325.5 68.1

the low resolution reconstruction has values different than 0 in the maps corresponding

to Tube 1 and 9, this is in agreement with the high resolution maps.

6.2. In vivo brain dataset with spiral sampling

This dataset was acquired by self-experimentation on our team members (all experts in

MRI). Since these experiments are not intended to be qualified as a clinical investigation,

they do not require any formal IRB approval according to the German Act on Medical

Devices (Medical Device Act, MDA). The self-experiments were performed on a device

that has already met the requirements of the assessment procedure of conformity,

certifying its safety and functionality for the intended purpose (aka “CE marking of

MR scanner”). The experiments were neither invasive nor stressful, therefore, they

fully comply with internal GE and German/EU regulations. The scanning for this

dataset was performed on a GE HDx MRI system with an 8 channel receive only head

RF coil (GE Medical Systems, Milwaukee, WI). The acquisition scheme uses a variable

density spiral with 89 interleaves using FISP based α and TR as in [48]. The excitation

sequence length is L = 1000. In this experiment, we have FOV = 22.5×22.5cm2 and the

spatial resolution is 180 × 180 voxels, with a 5mm slice thickness. The undersampling

ratio is N/Q = 89.53. The EPG model is used for the reconstructions with a TI of 18ms

and a TE of 2ms. The reconstruction for BLIP and GAP-MRF was accelerated with

the SVD compression in the time domain described in [13, 49] using 30 eigenvectors.

In Fig. 11, we can observe the resulting proton density maps provided by the GAP-

MRF algorithm and the Table 4 shows a comparison between the parameters reported
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Figure 12. Normalised proton density maps corresponding to the brain dataset with

spiral sampling. The reconstructions were trimmed from 180×180 to 151×151 voxels.

From left to right and top to bottom, the figures correspond to WM, GM, CSF, muscle

and fat.
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Figure 13. Dominant tissue parameter maps corresponding to the brain dataset

with spiral sampling. The first row corresponds to the BLIP reconstructions and

the second row to the GAP-MRF reconstructions. The reconstructions were trimmed

from 180× 180 to 151× 151 voxels. From left to right, the columns correspond to the

normalised proton density, T1 and T2. The values of T1 and T2 are capped to 1500ms

and 300ms respectively.

in [51] and the parameters obtained by GAP-MRF. The WM, GM and Fat parameters

obtained by GAP-MRF slightly differ from those reported for MRF sequences but the

values are in agreement with the parameters of other qMRI methods reported in [51].

The muscle parameters are far from the expected values. This could be due to the small

number of pure voxels that are not sufficient to accurately estimate the parameters.

We believe that choosing better acquisition parameters Γ to make the elements of the

dictionary more distant in the `2-norm sense can significantly improve the accuracy

of the parameters. Also, inaccuracies in the model such as calibration or motion

in the acquisition can produce artefacts in the reconstruction. In order to show the

importance of the phase compensation in the real data, we present the results without

phase compensation. As seen in Fig. 12, due to the phase errors there are voxels within

the brain without proton density.

In Fig. 13, the T1 and T2 maps reconstructed by BLIP show a smooth transition

from one tissue to another (similar to the simulated phantom). Moreover, the proton
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Figure 14. Normalised proton density maps corresponding to the brain dataset with

EPI sampling. The reconstructions were trimmed from 128 × 128 to 89 × 89 voxels.

The corresponding T1 and T2 can be seen in Table 5. From left to right, the figures

correspond to WM, GM and CSF.

Table 5. Comparison between the parameters obtain with GAP-MRF for the brain

dataset with EPI sampling and the reported values in [51].

Values reported in [51] GAP-MRF

T1 T2 T1 T2
WM 781±61 65±6 762.6 67.2

GM 1193±65 109±11 1116.6 107.1

CSF 2391.1 856.2

density map reconstructed by BLIP does not provide any information on the tissue

distribution. On the contrary, GAP-MRF reconstructions show abrupt transitions in

the T1 and T2 maps of the dominant tissues. In addition, the proton density map shows

more structure than BLIP, but not all the tissue structures are appreciated compared

to the normalised proton density maps. Note that the voxels with higher proton density

values indicate the pure voxels, and the voxels with reduced values, which are observed

at tissue interfaces, indicate the dominant tissue that occupying only a fraction of the

voxel.

6.3. In vivo brain dataset with EPI sampling

The scanning for this dataset has been performed on a 3T GE MR750w scanner with a

12 channel receive only head RF coil (GE Medical Systems, Milwaukee, WI). The study

was approved by the local ethics committee. The used acquisition scheme was 16-shot

EPI-MRF on a healthy volunteer using a variable flip angle α ramp, ranging from 1◦

to 70◦. The excitation sequence length is L = 500. The repetition time TR was set

to 16ms. In [50], it was shown to be as effective at estimating the MRF parameters

but had better sensitivity than the FISP sequence in [48]. The acquisition bandwidth

(BW) = 5kHz and the Field of View (FOV) = 22.5 × 22.5cm2. The spatial resolution

is 128× 128 voxels, with a 5mm slice thickness. The undersampling ratio is N/Q = 16.

The EPG model is used for the reconstructions with an Inversion Time (TI) of 18ms

and an Echo Time (TE) of 3.5ms. The acquisition time for the slice was 9s. A reference

scan with null Gy gradient was performed for phase correction of EPI raw data.

In Fig. 14, we can observe the resulting proton density maps provided by the GAP-
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Figure 15. Dominant tissue parameter maps corresponding to the brain dataset

with EPI sampling. The first row corresponds to the BLIP reconstructions and the

second row to the GAP-MRF reconstructions. The reconstructions were trimmed from

128×128 to 89×89 voxels. From left to right, the columns correspond to the normalised

proton density, T1 and T2. The values of T1 and T2 are capped to 1500ms and 300ms

respectively.

MRF algorithm and the Table 5 shows a comparison between the parameters reported in

[51] for MRF FISP sequences and the parameters obtained by GAP-MRF. CSF values

are not reported for the MRF FISP sequence. The WM parameters are similar to the

ones reported in [51] and the GM T1 is slightly lower than the reported one. We believe

that the lack of pure voxels (due the spatial resolution) made the approach unable to

find the other tissues.

In Fig. 15, the T1 and T2 maps reconstructed by BLIP shows a smooth transition

from one tissue to another. On the contrary, GAP-MRF reconstructions show abrupt

transitions in the T1 and T2 maps of the dominant tissues.

7. Conclusions and future work

We have presented an extension of the model in [5] to PV reconstructions in the

context of MRF. Our algorithm provides a way to explore the manifold of magnetic

resonance fingerprints without densely sampling M. For this reason, the algorithm is

memory efficient and the algorithmic structure allows parallel implementations. The

proposed model assumes that the number of independent tissues in the imaged volume

is upper bounded, and that each tissue has a minimum number of pure voxels. Also, the

parameters of each tissue should be sufficiently different to be distinguished. Finally, we

assume that the combination of the sampling patterns should cover most of the k-space

to avoid high frequency artefacts.

The simulation results presented in Section 5 show that the proposed GAP-MRF

method can achieve accurate reconstructions with very short pulse sequences in the low

input noise scenario. It also performs well when the iSNR is greater than 30dB. We also
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present in Section 6 the results obtained with in vivo datasets. Some parameters differ

slightly to the reported in the literature, but the structure seen in the proton densities

maps suggests that this approach can provide additional information that can be useful

for diagnosis.

The next step is to evaluate the PV reconstructions with a real PV phantom in

the scanner and a full brain reconstruction to provide enough pure voxels to accurately

estimate the true parameters. In particular, an interesting point would be to evaluate

the behaviour of GAP-MRF in presence of a pathology. A pathology can be seen as a

distinct additional tissue. Therefore, since the number of tissues is estimated along the

iterations, if the pathology is represented by enough pure voxels, it should be detected

by the algorithm exactly in the same way as for the other tissues. In addition, we plan

to incorporate spatial regularisation in the objective function to improve the robustness

of the method. A joint calibration and imaging problem will also be developed in order

to provide both phase estimation and compensation. Finally, we acknowledge that deep

learning is an interesting research direction to accelerate the projection onto BS+ .
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