
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic modelling, simulation and economic evaluation of two
CHO cell-based production modes towards developing
biopharmaceutical manufacturing processes

Citation for published version:
Shirahata, H, Diab, S, Sugiyama, H & Gerogiorgis, D 2019, 'Dynamic modelling, simulation and economic
evaluation of two CHO cell-based production modes towards developing biopharmaceutical manufacturing
processes', Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2019.07.016

Digital Object Identifier (DOI):
10.1016/j.cherd.2019.07.016

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemical Engineering Research and Design

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 31. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/327124063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/dimitrios-gerogiorgis(215c8a56-8dd4-4bc7-a337-18f801cd81ba).html
https://www.research.ed.ac.uk/portal/en/publications/dynamic-modelling-simulation-and-economic-evaluation-of-two-cho-cellbased-production-modes-towards-developing-biopharmaceutical-manufacturing-processes(7afb1a1d-11a4-400a-aa3e-ed98d350b048).html
https://www.research.ed.ac.uk/portal/en/publications/dynamic-modelling-simulation-and-economic-evaluation-of-two-cho-cellbased-production-modes-towards-developing-biopharmaceutical-manufacturing-processes(7afb1a1d-11a4-400a-aa3e-ed98d350b048).html
https://www.research.ed.ac.uk/portal/en/publications/dynamic-modelling-simulation-and-economic-evaluation-of-two-cho-cellbased-production-modes-towards-developing-biopharmaceutical-manufacturing-processes(7afb1a1d-11a4-400a-aa3e-ed98d350b048).html
https://doi.org/10.1016/j.cherd.2019.07.016
https://doi.org/10.1016/j.cherd.2019.07.016
https://www.research.ed.ac.uk/portal/en/publications/dynamic-modelling-simulation-and-economic-evaluation-of-two-cho-cellbased-production-modes-towards-developing-biopharmaceutical-manufacturing-processes(7afb1a1d-11a4-400a-aa3e-ed98d350b048).html


1 

Dynamic modelling, simulation and economic evaluation 

of two CHO cell-based production modes towards 

developing biopharmaceutical manufacturing processes 

Haruku Shirahata
a
, Samir Diab

b
, Hirokazu Sugiyama

a
, Dimitrios I. Gerogiorgis

b* 

a 
Department of Chemical System Engineering, School of Engineering, University of Tokyo, 

Hongo Campus, Tokyo 113-8656, Japan 

b 
Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, 

The Kings Buildings, Edinburgh, EH9 3FB, United Kingdom 

*Corresponding Author: D.Gerogiorgis@ed.ac.uk (+44 131 6517072)

ABSTRACT 
Chinese Hamster Ovary (CHO) cells are widely used in fermentation towards biopharmaceutical 

manufacturing. The present paper presents dynamic mathematical models of two different CHO 

culture modes: one batch mode for the production of interferon, and one perfusion mode for the 

production of a monoclonal antibody (mAb). The dynamic models have been used for simulating cell, 

substrate, by-product and product concentration trajectories, which have been compared against 

previously published experimental results. A sensitivity analysis of both models has been conducted, 

in order to analyse the relative importance of operating parameters towards biopharmaceutical process 

design. An economic analysis has also been subsequently performed: time and net present cost for 

given target capacities have been evaluated, using the validated dynamic models for the batch and 

perfusion modes. Economic trends have been discussed for variable initial concentration of viable 

CHO cells to be used in bioreactors: the latter has been recognized as the most sensitive model 

parameter for both culture modes. 

Keywords: Monoclonal antibody (mAb), perfusion culture; Monod equation; process design; 

economic evaluation; biopharmaceutical manufacturing. 

1. Introduction

1.1 Fermentation process of biopharmaceutical manufacturing

The biopharmaceuticals market is growing rapidly with an approximate revenue of $163 billion (Otto

et al., 2014). The growth rate of the market is around 8%, twice that of conventional pharmaceuticals.

For industrial-scale manufacturing, biopharmaceuticals are typically produced in two main stages:

drug substance manufacturing for synthesizing Active Pharmaceutical Ingredients (APIs) and drug

product (DP) manufacturing formulating the APIs in, e.g., vials or syringes. A biopharmaceutical

manufacturing process comprises the upstream process for fermentation and the downstream process

for harvesting and purification. Among the biopharmaceutical products, monoclonal antibodies

(mAbs) are dominant, representing approximately half of the total sales of biopharmaceuticals (Ecker

et al., 2015). Monoclonal antibodies are produced by fermenting mammalian cells; Chinese Hamster

Ovary (CHO) cells are commonly used to produce complex proteins.

Production of mAbs by means of employing CHO cell cultures is widely implemented in industrial 

manufacturing with different culture modes: batch, fed-batch, and perfusion cultures (Bielser et al., 

2018). Batch and fed-batch modes feed substrate only once or continuously to keep nutrient 

concentration constant, respectively, being dominant conventional technologies for mAb 

manufacturing. The fed-batch mode is an established industrial standard for mAb production, despite 

the problem of waste product accumulation, which inhibits cell growth. In contrast to these two 

methods, an emerging trend in continuous biomanufacturing is the perfusion mode, a technology 



 

2 

whose deployment in continuous manufacturing has become more widespread in recent years (Fisher 

et al., 2019), which retains cells in the bioreactor while simultaneously harvesting products. Industrial 

corporations are now moving towards adopting perfusion modes for numerous production lines, due 

to the higher productivity that can be achieved in comparison to the foregoing conventional methods 

(Langer and Rader, 2014). 

 

1.2 Process performance analysis 

Experiments to measure the profile of cell densities, substrate concentration and product concentration 

have been published for both antibody (Lee et al., 2005) and β-interferon (Sunley et al., 2008; 

Tharmalingam et al., 2008) production in batch mode cultures. Badsha et al. (2015) conducted a 

metabolic analysis of CHO cells in batch mode for antibody production under different stress 

conditions, with NaCl and trehalose addition to suppress cell growth. In the fed-batch mode, an 

investigation for selecting cell lines with high process performance has been recently published 

(Rouiller et al., 2016), while other studies have analysed metabolic fluxes for nutrient consumption 

and product formation (Ahn and Antoniewicz, 2011; Templeton et al., 2013). Concentrated fed-batch 

cell cultures can be implemented even with limited volume capacity when using improved cell culture 

titer (Yang et al., 2016). Process performance by means of measuring oxygen uptake rate (OUR) has 

also been measured for fed-batch mode (Huang et al., 2010). The effect of process scale-up on 

bioreactors up to 5,000 L has also been investigated by considering the OUR metric (Xing et al., 

2009). 

 

Experimental studies have also been conducted and published for perfusion mode (Dowd et al., 2003). 

The latter is expected to yield higher cell density than conventional culture modes, and a recent 

investigation of culture conditions reports a yield as high as 250×10
6
 cells/ mL (Zhang et al., 2015). 

Process performance has been similarly tested for different bioreactor configurations using different 

filters, e.g. conventional tangential flow (TFF) and alternating tangential flow filtration (ATFF) 

(Clincke et al., 2013a, 2013b; Karst et al., 2016). There are other investigations of perfusion mode 

production, e.g., process performance analyses when integrating the fermentation unit with 

subsequent downstream capture processes (Karst et al., 2017b; Steinebach et al., 2017). A new culture 

mode has been recently reported; therein, perfusion and fed-batch modes are combined in order to 

avoid lactate accumulation and to increase productivity (Hiller et al., 2017). 

 

Combinations of these three different culture modes (batch, fed-batch, and perfusion mode) have also 

been investigated in recent publications. Individual experiments for the three different culture modes 

have been conducted (Hu et al., 2011), and modelling CHO metabolism in order to elucidate its effect 

on cell growth, productivity and glycosylation has been reviewed (Galleguillos et al., 2017). Sokolov 

et al. (2017) applied the experimental results of a fed-batch process to identify preferable process 

conditions for early process development. Beyond perfusion mode, a single-use technology using 

disposable resin-based equipment has been invented to replace the limitations of conventional multi-

use technologies, which rely on expensive stainless-steel vessels and facilities. The technology can 

reduce the complexity and cost due to change-over operations for multi-product plants; nevertheless, 

concerns about leachable chemical compounds which can migrate from resin containment materials 

into drug solutions are serious, and such effects on CHO cell growth inhibition are reported (Kelly et 

al., 2016). 

 

1.3 Modelling approach 

Modelling of fermentation kinetics have been mainly conducted for non-CHO cells. For example, 

modelling and optimisation have been conducted for fermentation of E. coli with a comparison of 

different algorithms (Rocha et al., 2014). A mechanistic model has been applied to predict and 

monitor process performance of fermentation of filamentous fungi (Mears et al., 2017) and lactic acid 

bacteria (Spann et al., 2018). Dynamic modelling has been conducted in beer fermentation processes, 

and the models were applied to sensitivity analysis and multi-objective process optimisation (Rodman 

and Gerogiorgis, 2016, 2017; Rodman et al., 2018).  
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As for CHO fermentation, kinetic models have been developed for batch mode and validated using 

experimental results obtained from a packed-bed bioreactor (Shakibaie et al., 2011). Model 

development for the fed-batch mode of CHO cells has been investigated by applying the Markov 

Chain Monte Carlo method for fed-batch mode (Xing et al., 2010).  

 

Published studies have also used plant data to design biopharmaceutical processes relying on 

fermentation. For example, different (fed-batch and perfusion) culture modes have been evaluated 

regarding the cost of goods by integrating fermentation and downstream processes (Klutz et al., 2016). 

Bunnak et al. (2016) evaluated the life-cycle cost of goods of different (fed-batch and perfusion) 

culture modes, along with an evaluation on the environmental effects such as water consumption, 

energy input and CO2 emission. In both lab-scale and commercial mAb manufacturing, integrated 

continuous processes have been evaluated with respect to their economic, operational, and 

environmental feasibility (Pollock et al., 2017). The foregoing process analysis methodologies can be 

implemented towards systematic biopharmaceutical process design and decision-making regarding 

investment in new technologies, but have exclusively relied on experiments and plant data to evaluate 

economic and environmental impact; cell growth and production kinetic models have not been 

hitherto considered as fundamental building blocks of technoeconomic analyses of biopharmaceutical 

manufacturing concepts, hence this contribution aims to offer a new perspective on combining models 

and data to this key end. 

 

1.4 Summary and objectives 

The key (batch and fed-batch) culture modes for producing biopharmaceuticals have different process 

performance and variable concerns regarding productivity, resource usage, culture duration and 

economic impact. To select and design a culture mode quantitatively, kinetic modelling is a useful, 

versatile tool in order to describe and assess process performance. Previous studies mainly focus on 

experimental approaches to improve culture conditions, or mathematical models developed mainly to 

replicate the physical phenomena of fermentation. The approach of dynamic modelling with kinetic 

parameters has yet to be applied to employ economic evaluation toward design of CHO fermentation 

modes; therein lies the novelty of this work. 

 

The objective of this paper is to implement mathematical models incorporating kinetics of CHO cell 

fermentation for different types of cultures for evaluation of different process design spaces. The 

batch and perfusion modes are the two options selected in the present study. Kinetic models are firstly 

described and compared with experimental results to achieve validation against two recent 

publications, which present experimental results for CHO cell fermentation, one for each culture 

mode. Next, the developed models have been used for a parametric sensitivity analysis, where the 

effects of parameters on dynamic states have been investigated. Finally, an economic evaluation of 

both culture modes is conducted by perturbing the sensitive parameters identified in the sensitivity 

analysis. We emphasize that this is a proof-of-concept study, without advising in favour of technology 

adoption. 

2. Dynamic Modelling 
The dynamic models considered describing CHO cell fermentation process performance are described. 

One biological cell can be recognized as a reactor, which itself grows and increases in number. The 

input to the “reactor” is substrate, oxygen and nutrients, which will be transformed to cells or desired 

products. Waste products, such as CO2 or ammonia, are also generated. The scheme of the batch and 

perfusion mode fermentations in the context of API and DS manufacturing are shown in Figure 1. 

 



 

4 

 
Figure 1: Typical scheme of the two culture modes of fermentation processes for biopharmaceutical 

manufacturing. 

 
 

2.1 Model development 

2.1.1 Batch mode 

A CHO cell line expressing human interferon (IFN)-γ has been cultivated in 50 mL working volume 

at 32 and 37 °C. The culture solution was mixed at 100 rpm with a paddle agitator. The culture was 

initiated from highly viable and mid-exponential cells and seeded at 2.5×10
5
 cells mL

-1
 with a basal 

medium containing 20 mM glucose (Fox et al., 2004). The mass balance equations on viable cells, 

glucose, and IFN-γ in the batch mode are given by Eqs. 1–3, respectively. The Monod model is 

assumed to be valid for predicting the specific growth rate µ and specific glucose consumption rate qs 

given by Eqs. 4 and 5, respectively. 

 

d batch

d 
    

batch
 batch (1) 

d batch

d 
   – 

 ,batch
 batch (2) 

d batch

d 
    

 ,batch
 batch (3) 

 
batch

   
 
 ax,batch

  batch

 batch  batch
   batch    t,batch  (4) 

                batch  t,batch  

 
 ,batch

   
 
 ax

  batch

    batch
 (5) 

 

Here, t is time, and X, S and P are concentrations of viable cells, substrate, and product, respectively. 

The experimental values of the maximum specific growth rate µmax, Monod growth constant K, 

maximum specific substrate consumption rate qmax, Monod substrate consumption constant Ks and 

specific production rate of product qP at both 32 and 37 °C cultures of the CHO cell line are defined in 

the literature (Fox et al., 2004), with values summarized in Table 1. An assumption of the onset of 

massive cell death with the depletion of glucose is applied as shown in Eq. 4. The parameter St is the 

minimum substrate concentration at which cell growth was observed, i.e., substrate threshold 

concentration. The initial conditions are given by the experiment (X0,batch = 2.5×10
5
 cells mL

-1
 and 

S0,batch = 3.6 mg mL
-1

) and by an assumption (P0,batch = 0 µg mL
-1

). 

 
Table 1: Parameter values used in batch (Fox et al., 2004) and perfusion mode (Karst et al., 2017a) simulations. 

Parameter Unit Batch mode Perfusion mode Temperature (°C) 

 har est L hr
-1

 – 0.083   – 

 batch mg mL
-1

 0.10 – 32 

  0.80 – 37 

  
*1

 mg mL
-1

 1.2 – 32 

  11 – 37 

Fermentation PurificationHost cells
Drug

product
Sterile filling

Batch mode

Solution V [L]

Cells 

X [cell L-1]

Product

P [kg L-1]

Bleed

Fbleed [L h-1]

Harvest

Fharvest [L h-1]Medium

Fin [L h-1]

Perfusion mode
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  ,a   mg mL
-1

 – 0.032 – 

 
a  ,per usion

 mg cell
-1

 hr
-1

 – 6.6×10
-11

 – 

 
 ax

 mg cell
-1

 hr
-1

 4.6×10
-8

 – 32 

  2.4×10
-7

 – 37 

 
 ,batch

*2
 µg cell

-1
 hr

-1
 3.0×10

-8
 – 32 

  1.5×10
-8

 – 37 

 
 ,per usion

*3
 µg cell

-1
 hr

-1
 – 3.3×10

-7
 – 

 t,batch mg mL
-1

       ,batch – – 

 
 ax,batch

 hr
-1

 0.011 – 32 

  0.036 – 37 

 
 ax,per usion

 hr
-1

 – 0.038 – 
*1

 S was glucose in the batch mode. 
*2

 P was IFN-γ in the batch mode. 
*3

 P was mAb in the perfusion mode. 

2.1.2 Perfusion mode 

A CHO cell line expressing fully humanized mAb was cultured in 1.5 L working volume with a 

perfusion seed bioreactor at 36.5 °C for 26 days (Karst et al., 2017a). The culture solution was mixed 

at 400 rpm with a Rushton turbine impeller. The culture was initiated with cells seeded at 40×10
6
 cells 

mL
-1

. The cell concentration was controlled by automated manipulation of the bleed rate Fbleed at an 

average value of 0.021 L hr
-1

. The harvest rate Fbleed was fixed at a constant volume exchange rate at 

0.083 L hr
-1

. The value obtained from Eq. 6 is used for  b eed, and a constant value (0.083 L hr
-1

) is 

used for Fharvest in the simulation. The fresh media feed was adjusted according to gravimetric 

feedback to keep the reactor weight constant (Eq. 7). 

 

 

The mass balance equations on viable cells, ammonia, and the mAb in perfusion culture are given by 

Eqs. 8–10, respectively. The concentration of ammonia    , a waste product of the fermentation 

process, is used for predicting the specific growth rate given by Eq. (11). 

 

d  per usion  per usion 

d 
    

per usion
 per usion per usion– b eed per usion (8) 

d  per usion     

d 
    

a  ,per usion
 per usion per usion– out    (9) 

d  per usion  per usion 

d 
    

 ,per usion
 per usion per usion– har est per usion (10) 

 
per usion

   
 
 ax,per usion

   ,a  

  ,a      
 (11) 

 

The experimental values of µmax, ammonia growth inhibition constant Kµ,AMM, specific ammonia 

production rate qAMM, and qP of the CHO cell line are defined in the literature (Karst et al., 2017a) 

with values summarized in Table 1. The initial conditions are as per the experiment (X0,perfusion= 

40×10
6
 cells mL

-1
 and V0,perfusion = 1.5 L) and the assumption that there is product or ammonia present 

at t = 0 (AMM0,perfusion = 0 mg mL
-1

 and P0,perfusion = 0 µg mL
-1

). 

 

2.2 Dynamic simulation trajectories 
The simulations of the equations have been conducted in MATLAB R2018a and 2018b, and the 

employed computers are the ThinkPad-Windows 10 Pro (Intel® Core
TM

 i5-8350U CPU @ 1.70GHz 

with installed memory (RAM) of 16.0GB) and ThinkCentre-Windows 8.1 Pro (Intel® Core
TM

 i7-4790 

CPU @ 3.60GHz with installed memory (RAM) of 16.0GB) (same for Section 3.2 and 4.2). 

 

 b eed    per usion per usion (6) 

d per usion

d 
    in,per usion –  out    in,per usion –   b eed    har est      (7) 
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2.2.1 Batch mode 

Figure 2a shows the simulation results of the growth rate with MATLAB compared to the 

experimental results in the literature (Fox et al., 2004). For both temperatures considered, the rate 

increases and eventually plateaus at some glucose concentration. The rate is higher at the higher 

operating temperature of 37 °C. The experimental data at 32 °C does not follow the Monod model in 

the same way as at 37 °C due to cell characteristics that arrest growth at lower temperatures. 

Similarly, Figure 2b shows the simulation results of the glucose consumption rate with MATLAB 

compared to the experimental results in the literature (Fox et al., 2004). Again, for both temperatures 

there is an increase in rate followed by a plateau with increasing glucose concentration for 32 °C. 

However, the rate continually increases over the glucose concentration range shown. 
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Figure 2: Batch model (Fox et al., 2004) validation vs. experimental data for (a) specific growth rates, 

(b) specific glucose consumption rates and concentrations of (c) viable cells, (d) glucose and (e) IFN-γ  

(a) (b)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

T = 32  C T = 37  C 

(a)

(b)

(c)

(d)

(e)
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Figure 2c-e shows the simulation results of the cell, glucose and product (IFN- γ) concentration 

profiles, respectively, with MATLAB compared to the experimental results in the literature (Fox et 

al., 2004). The simulated results reproduce the experimental results well. After approximately t = 200 

hr at T = 32 °C and t = 100 hr at T = 37 °C, the experimental results show decreasing cell 

concentration, where the simulation results remain constant. This is because the onset of massive cell 

death has been considered as µ = 0 if the concentration of glucose is less than 1% of the initial 

concentration S0 in the simulation with MATLAB. More accurate description of cell death kinetics 

incorporated into the model may reduce the discrepancy between the model and the experimental data 

and should be investigated. Figure 2d shows the simulated results of the glucose concentration 

profiles versus the experimental results (Fox et al., 2004); the simulated results show similar 

behaviour to the experimental results, where the concentration decreases as time passes. Figure 2e 

shows the simulation results of the IFN-γ concentration profiles only as there is no experimental 

results available in the paper. The concentration of IFN-γ increases with time. The IFN-γ 

concentration of the higher temperature (T = 37 °C) is smaller than that of the lower temperature (T = 

32 °C) before t = 64 hr, after which the concentrations at 37 °C are higher than for 32 °C. As the batch 

duration proceeds, growing cells produce product and thus the batch with the higher cell concentration 

(i.e., that operating at higher temperature) produces more product. The advantage of mild hypothermic 

culture conditions on product titre are associated with prolonged culture time, (i.e., higher integral of 

viable cells) combined with the associated increase in specific productivity (Yoon et al., 2003; Kumar 

et al., 2007; Vergara et al., 2014). These positive effects may not be observed in cultures where 

nutrient availability limits culture duration or large numbers of cells have died. 

2.2.2 Perfusion mode 

Figure 3 shows the experimental results and the estimated constant values in the literature (Karst et 

al., 2017a), and the simulation results of different perfusion process flow rates. The estimated values 

in the paper were the average of fluctuating both bleed and harvest rate values over time. Constant 

values were also estimated regarding the values of qAMM,perfusion and qP,perfusion, whereas the simulation 

results with the values did not reproduce the experimental results well. Therefore, the experimental 

 a ues ha e been  itted using “polyval” in MATLAB  The approxi ate equations  or qAMM,perfusion and 

qP,perfusion given by Eqs. 12 and 13, respectively. The orders of the polynomials in Eqs. 12 and 13 were 

chosen to that fit the experimental data well rather than based on any physical theories or process 

models. 

 
AMM,per usion

  –       
–  

           –    –        –             –             –  (12) 

 
 ,per usion

           
–  

  –        –            – (13) 

Figure 4a shows the experimental results of the growth rate from the literature (Karst et al., 2017a) 

and MATLAB simulation results to derive the growth rate. Figure 4a-c show the results of the 

experimental data and fitting curve of ammonia production rate and mAb production rate, where both 

curves fit the experimental results well. The specific growth rate overestimates in the beginning, 

where the simulation mostly reproduces the experimental results well. 

Published models for both batch (Fox et al., 2004) and perfusion (Karst et al., 2017a) modes were 

used for simulation of different fermentation processes. The model does not capture oscillations in 

bleed and harvest rates (Figs. 2 and 3); a constant value of harvest rate (Fharvest = 0.083 L hr
-1

), taken

as the average value from the literature (shown in Fig. 3), is implemented. Mechanistic model-based 

descriptions of these processes may provide deeper insight into optimal operating modes for different 

CHO culture processes. 
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Figure 3: Profile of the flow rates for perfusion mode. 

 

 
Figure 4: Profile of specific (a) growth (b) ammonia (c) mAb production rate for perfusion mode. 

 

Figure 5 shows the simulation results of cell, ammonia, and mAb concentration profiles simulated 

with MATLAB, and the experimental results in the paper (Karst et al., 2017a). The concentration of 

the viable cells are constant with time. The simulation results of the concentration of ammonia 

reproduce the experimental data well, while the concentration of the product, mAb, overestimated by 

at least 11%. 

 

(c)

(a) (b)
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Figure 5: Profile of concentration of (a) viable cells (b) ammonia (c) mAb for perfusion mode. 

 

2.3 Model validation 

The obtained MATLAB simulation results are validated with the experimental data. The summary of 

the papers used for the validation of the models, and results of the validation are shown in Table 2 for 

batch (32 and 37 °C), and perfusion mode. The one-sample t-test is conducted with the null 

hypothesis H0 and the alternative hypothesis H1 are given by Eqs. 14 and 15, respectively, 

 

             (14) 

             (15) 

       
 

 
     –     

 

     

 (16) 

 

where     is the mean of the difference between the MATLAB simulation reuslts    and the 

experimental values     for each dynamic state i (mean bias error, MBE) with a number of data point n 

given by Eq. 16. The obtained p-value is shown in Table 2: the agree ent  e e  is  udged as “ oor” 

when the value is smaller than the significant level (5%) and “Good” when the  a ue is   50%. 

Standard error (SE) values are included in Table 2 for comparison between models and experimental 

resu ts  More e aborate  ethods  or  a idity testing exist, such as χ
2
 analysis, may be employed by an 

interested reader, provided the experimental and model results presented in the literature (Fox et al., 

2004; Karst et al., 2017a) and this work. 

3. Sensitivity Analysis 

3.1 Method 
Sensitivity analysis is conducted for dynamic states i of the two culture modes. This paper has 

implemented a local sensitivity analysis, i.e. the One-At-a-Time (OAT) method, in order to 

investigate and comparatively evaluate each of the isolated (elementary) effects on each dynamic 

biochemical state variable as a result of perturbing each of several various model and design 

(c)

(a) (b)
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parameters on for each considered fermentation mode. Local sensitivity analysis methods are suitable 

for models with relatively small DAE systems (Saltelli et al., 2005), as is the case for both 

fermentation modes and models considered in this study (Fox et al., 2004; Karst et al., 2017). More 

elaborate methods for quantifying and understanding parametric uncertainty are also available and 

widely employed in the literature, e.g. Morris Screening (Morris, 1991; Quiepo et al., 2005) and 

Global Sensitivity Analysis (Sobol, 2001; Li et al., 2010; Kiparissides et al., 2015); nevertheless, their 

implementation escapes the purpose and priorities of this study, which is the quantitative 

characterisation, visualisation and hopeful guiding of further experimentation on these parametric 

effects, for the purpose of dynamic simulation and consequent economic evaluation of different CHO 

fermentation modes. The analysed dynamic states are X, S and P for batch mode. The concentration of 

ammonia AMM is analysed in perfusion mode instead of S. In perfusion mode, the analysis of V as a 

dynamic state has also been conducted. Parameters in the equations to derive the dynamic states are 

perturbed one by one with three different perturbation ranges, θ = {±10, ±20, ±50%}, and the effect 

ratio R is given by Eq. 17, 

 

  
  ,perturbed –  end,perturbed

  ,basecase– end,basecase
–  (17) 

 

where i0,basecase is initial concentration of a dynamic state with no perturbations, i0,perturbed is initial 

concentration of a dynamic state with one parameter perturbed, iend,basecase is the final concentration of 

the dynamic state with no parameters perturbed and iend,perturbed is the final concentration with one of 

the parameters perturbed. 

 
Table 2: Agreement level with experimental data of (a) batch mode (Fox et al., 2004) and (b) perfusion mode 

(Karst et al., 2017a) comparing with our MATLAB simulation. 

Batch mode 

Parameter Literature Model Agreement p-value Standard Error (SE) 

   32 °C 37 °C 32 °C 37 °C 32 °C 37 °C 

 
batch

  

(hr
-1

) 
✔ ✔ Good Good 0.69 0.69 7.8×10

–3
 1.5×10

–3
 

 
 ,batch

 

(mg 10
6
 cell

-1
 hr

-1
) 

✔ ✔ Acceptable Good 0.19 0.73 3.1×10
–3

 1.7×10
–3

 

 batch 

(cell mL
-1

) 
✘ ✔ Acceptable Acceptable 0.085 0.15 3.6×10

5
 2.8×10

5
 

 batch 
(mg mL

-1
) 

✘ ✔ Poor Acceptable 8.3×10
–5

 0.080 0.21 0.15 

 batch 

(µg mL
-1

) 
✔ ✔ Acceptable Acceptable 0.10 0.24 2.3 1.1 

Perfusion mode 

Parameter Literature Model  Agreement level p-value Standard Error (SE) 

 
per usion

 

(hr
-1

) 
✘ ✔ – – – 

 
AMM,per usion

 

(mg 10
6
 cell

-1
 hr

-1
) 

✘ ✔ – – – 

 
 ,per usion

 

(mg 10
6
 cell

-1
 hr

-1
) 

✘ ✔ – – – 

 per usion 

(cell mL
-1

) 
✘ ✔ Good 0.56 1.3×10

6
 

    

(mg mL
-1

) 
✘ ✔ Acceptable 0.12 8.2×10

–3
 

 per usion 

(µg mL
-1

) 
✘ ✔ Acceptable 0.29 81 
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3.1.1 Batch mode 

Firstly, the sensitivity of the parameters Kbatch, KS, qmax, qP,batch, µmax,batch and St,batch on dynamic states 

Xbatch, Sbatch and Pbatch are tested. The values of the parameters in the base cases are shown in Table 1. 

Two sensitivity analyses are conducted using values at 32 °C and 37 °C. Secondly, the parameters for 

initial conditions, such as X0,batch, S0,batch and P0,batch, are perturbed to investigate their effects on their 

respective dynamic states. The values of the parameters in the base case are shown in Section 2.1.1. 

Two sensitivity analyses are conducted using values at 32 and 37 °C. 

3.1.2 Perfusion mode 

Firstly, the sensitivity of the parameters Fharvest, Kµ,AMM, qAMM,perfusion, qP,perfusion and µmax,perfusion on 

dynamic states Xperfusion,    , Pperfusion, and Vperfusion are tested. The values of the parameters in the 

base case are shown in Table 1. Secondly, the parameters for initial conditions, such as X0,perfusion, 

AMM0,perfusion, P0,perfusion and V0,perfusion, are perturbed to investigate their effects on their respective 

dynamic states. The values of the parameters in the base cases are shown in Section 2.1.2. 

 

3.2 Sensitivity analysis results 
The effect ratio has been calculated as an indicator of the sensitivity of the parameter on dynamic 

states. The ratio has been derived for six different perturbation ratio and the ratio has been categorized 

into two patterns that are negative perturbation, -10%, -20%, and -50%, as well as a positive 

perturbation, 10%, 20%, and 50%. 

3.2.1 Batch mode 

Table 3 shows the effect ratio R for the batch mode at 32 and 37 °C, where the parameters. At 32 °C, 

the parameters that have the value of R more than 0.5 are qmax and µmax,batch  on Xbatch, as well as qP,batch 

and µmax,batch on Pbatch as shown in Table 3 for the perturbation ratio of 50%. This tendency is similar at 

37 °C as shown in Table 3, however, µmax,batch has a smaller effect on Xbatch, and qmax has a much larger 

effect on Pbatch. The effect ratio of the parameters on Sbatch is observed small in common to both 

temperatures except for S0,batch. 

3.2.2 Perfusion mode 

Table 3 shows the effect ratio R for perfusion mode. In the perfusion mode, no effect on Xperfusion and 

Vperfusion are observed (R = 0) due to the constant concentration of the viable cells and the culture 

volume. The parameters that have the value of R > 0.5 are Fharvest on     and Pperfusion as shown in 

Table 3 for the perturbation ratio of 50%. Also, X0,perfusion and V0,perfusion have the value of R > 0.5 for 

both     and Pperfusion for the perturbation ratio of 50%. 

3.2.3 Commonality among two culture modes 

Although the operating parameters are different between batch and perfusion culture modes due to the 

inherently different nature of their operation, there is some commonality between the two methods. 

The parameters  or each  ode’s  ode  are categorized into kinetic and operation parameters. Kinetic 

parameters are, e.g., K, q and µ, whereas operating parameters which can be altered in the design 

stages are flowrates (for perfusion mode) and initial conditions of the cultures (e.g., initial cell and/or 

substrate concentration). In common to all the culture modes, kinetic parameters have significant 

effect on dynamic states of X and P; however, for perfusion mode, X is maintained constant by 

appropriate selection of harvest and bleed rates to maintain steady production in an effort towards 

continuous operation. In particular, the parameters that directly affect specific growth, substrate 

consumption rates and product production are found to be sensitive. The harvest rate is observed to be 

sensitive in perfusion mode. The sensitivity of different initial conditions varies between the culture 

modes, but at least one initial concentration is found to have large sensitivity on at least one dynamic 

state in both cases. 

 

The batch mode results in different sensitivity at different temperature for the parameter qmax. 

Experimental data is used to observe the difference in process performance as a function of 

temperature for batch mode, with Arrhenius-type equations for different parameters being unavailable 

for this process or for CHO cell fermentations. Availability of such temperature-dependence 
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modelling would also allow process performance to be assessed at intermediated temperatures to 

those considered here, i.e., 32 °C < T < 37 °C. Previous work in the literature investigated the effect 

of temperature on cellular response or productivity (Masterton and Smales, 2014). 

 

4. Process Design 
The dynamic models are applied to investigate the design space and perform economic evaluations of 

both batch and perfusion modes described. Quantitative measures of process performances for design 

include culture time, media usage, productivity and economic indicators such as total costs. In this 

work, culture time to produce a target amount of product and the annual operating cost are computed. 

 

 
Table 3: Effect ratio on dynamic states with |R|   0.5 in bold. 

Batch mode (T = 32 °C) 

Parameters  batch  batch  batch 

θ –50% 50% –50% 50% –50% 50% 

 batch   1.27×10
–1

 –5.72×10
–2

   3.51×10
–4

 –3.62×10
–4

   6.10×10
–2

 –3.84×10
–2

 

   –2.67×10
–1

   2.94×10
–1

   7.53×10
–4

 –4.28×10
–3

 –1.09×10
–1

   7.25×10
–2

 

 
 ax

   7.72×10
–1

 –3.22×10
–1

 –4.87×10
–2

   7.17×10
–4

   1.51×10
–1

 –1.42×10
–1

 

 
 ,batch

   6.51×10
–3

   2.59×10
–2

   1.12×10
–5

   4.72×10
–5

 –4.99×10
–1

   5.09×10
–1

 

 
 ax,batch

 –6.12×10
–1

   5.23×10
–1

 –1.03×10
–1

   7.57×10
–4

 –5.13×10
–1

   6.31×10
–1

 

 t,batch   3.88×10
–2

   3.30×10
–3

   6.15×10
–5

   6.72×10
–6

   8.40×10
–3

   8.29×10
–4

 

  ,batch –1.14×10
–1

   1.21×10
–2

 –4.87×10
–2

   7.16×10
–4

 –4.24×10
–1

   2.85×10
–1

 

  ,batch –3.11×10
–1

   3.15×10
–1

 –5.00×10
–1

   4.99×10
–1

 –1.65×10
–1

   1.06×10
–1

 

  ,batch   0   0   0   0   0   0 

Batch mode (T = 37 °C) 

Parameters  batch  batch  batch 

θ –50% 50% –50% 50% –50% 50% 

 batch   3.22×10
–1

 –1.78×10
–1

   1.99×10
–6

 –1.76×10
–5

   2.99×10
–1

 –1.69×10
–1

 

   –4.45×10
–1

   4.53×10
–1

   1.98×10
–6

 –6.75×10
–6

 –3.53×10
–1

   3.24×10
–1

 

 
 ax

   9.96×10
–1

 –3.30×10
–1

 –1.40×10
–5

   1.57×10
–6

   6.93×10
–1

 –2.60×10
–1

 

 
 ,batch

   5.28×10
–3

   1.30×10
–3

   9.25×10
–8

   2.11×10
–8

 –4.98×10
–1

   5.01×10
–1

 

 
 ax,batch

 –4.95×10
–1

   5.03×10
–1

 –2.51×10
–3

   2.04×10
–6

 –5.30×10
–1

   5.67×10
–1

 

 t,batch   1.32×10
–2

 –6.08×10
–3

   1.94×10
–7

 –1.12×10
–7

   7.47×10
–3

 –3.52×10
–3

 

  ,batch   5.28×10
–3

   3.29×10
–3

 –1.33×10
–5

   1.57×10
–6

 –1.50×10
–1

   1.09×10
–1

 

  ,batch –3.40×10
–1

   2.61×10–1 –5.00×10
–1

   5.00×10
–1

 –3.16×10
–1

   2.32×10
–1

 

  ,batch   0   0   0   0   0   0 

Perfusion mode 

Parameters  per usion      per usion  per usion 

θ –50% 50% –50% 50% –50% 50% –50% 50% 

 har est 0 0 1.19 –3.51×10
–1

 9.61×10
–1

 –3.28×10
–1

 0 0 

  ,AMM 0 0 1.15×10
–1

 –6.94×10
–2

 –2.10×10
–6

 5.11×10
–6

 0 0 

 
AMM,per usion

 0 0 0 0 0 0 0 0 

 
 ,per usion

 0 0 0 0 0 0 0 0 

 
 ax,per usion

 0 0 1.49×10
–1

 –1.33×10
–1

 –1.82×10
–6

 –9.21×10
–6

 0 0 

  ,per usion 0 0 –5.56×10
–1

 6.04×10
–1

 –5.00×10
–1

 5.00×10
–1

 0 0 

    ,per usion 0 0 0 0 0 0 0 0 

  ,per usion 0 0 0 0 0 0 0 0 

  ,per usion 0 0 –5.17×10
–1

 5.73×10
–1

 –4.94×10
–1

 4.84×10
–1

 0 0 

 



 

14 

4.1 Method 

The target amount of product is determined based on the information of the required amount to 

produce one vial of product. Information of some drug products that use IFN-γ (for batch mode) or 

mAb (perfusion mode) is reviewed. It is assumed that the production amount per year is 20,000 vials 

per year for both products. The desired amount w is determined as shown in Table 4. Inefficiencies 

associated with downstream processing following the fermentation process are not considered. 

Annual operating cost for the required time to produce the certain amount of products involves raw 

material cost, utility cost, and waste treatment cost. Costing data used in this work is summarized in 

Table 4. 

 

The chosen scale of operation for both culture volumes (100 L) for economic evaluations correspond 

to experimental demonstration values (Fox et al, 2004; Karst et al., 2017a). Conclusions drawn about 

economic evaluations from these results correspond to the implemented production scale. Larger 

production scales closer to industrial application ranges can be readily considered in the implemented 

methodology and framework for comparison purposes. 

 
Table 4: Target amounts of active pharmaceutical ingredients (APIs) and drug products (DPs) with costing data. 

API Desired amount, w 
[µg yr

-1
] 

API per vial Unit Source 

IFN-γ 10
7
 500 µg/vial [1], [2] 

mAb 2×10
9
 100 mg/vial [3], [4] 

     
Cost Component Description Unit Value Source 

Ccell CHO cells USD cell
-1

 mL 9.36×10
-4

 [5] 
Cmedia Culture media USD mL

-1
 0.11 [6] 

Celectricity Electricity USD kWh
-1

 1.59×10
3
 [7] 

Cwaste Waste treatment USD L
-1

 0.46 [8] 

[1] https://ds-pharma.jp/product/sumiferon/ 

[2] (Meager et al., 2001) 

[3] http://www.info.pmda.go.jp/go/pack/4291413A1022_1_20/4291413A1022_1_20?view=body 

[4] http://www.info.pmda.go.jp/go/pack/4291406D3021_1_04/ 

[5] http://www.saibou.jp/products/cho/cho.php 

[6] https://www.gelifesciences.co.jp/catalog/39552.html 

[ ] Depart ent  or Business, Energy & Industria   trategy “Industria  e ectricity prices in the IEA”        

[8] (Schaber et al., 2011) 

 

4.1.1 Evaluation indicators 

The annual production time t’ required to produce the amount w is given by Eqs. 18 and 19 for batch 

and perfusion modes, respectively: 

 

 wor ing             (18) 

 har est    dt
  

 

     (19) 

 

where Vworking is the working culture volume and P’ is the product concentration at t’. The working 

volume is estimated as 100 L for both culture modes. The symbol f is the function to derive the 

concentration of product for batch and perfusion culture. 

 

            (20) 

 

In this calculation, the limited production time of batch mode is defined as the time where the 

substrate concentration Sbatch reached to the threshold concentration St,batch = 0.01S0,batch and the time 

for perfusion mode is defined as the maximum time when the experiment was conducted (= 624 hr). 

The annual operating cost Ctotal for both culture modes is given by 
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 tota           ateria     uti ity    waste   edia (21) 

  ateria     ce          edia   edia (22) 

 uti ity       e ectricity    heating
     ixing     (23) 

  edia       wor ing (batch mode) (24) 

     wor ing   in,per usion    (perfusion)  

 

where the raw material cost Cmaterial and the utilities cost Cutility are given by Eqs. 22 and 23, 

respectively. The volume of culture media Vmedia is given by Eq. 24. The energy for heating the reactor 

Qheating and power for mixing Pmixing given by Eqs. 25–27, respectively, 

 

 
heating

    so ution       (25) 

 so ution   so ution  edia (26) 

  ixing      so ution  
      La inar   ow when         –      

(27) 
                  so ution  

    Turbu ent   ow when           

     
     so ution
 
so ution

 
 (28) 

 

where msolution is the mass of solution, cP is the specific heat capacity and ΔT the difference between 

reaction and room temperatures. Energy from endo- or exothermicity of the reaction and heat losses 

are neglected. The parameters µsolution, ρsolution, N and D are the viscosity of the solution, density of the 

solution, stirring speed and impeller blade diameter, respectively. The constants k and NP have 

different values depending on the type of the blade. The Reynolds number Re is given by Eq. 28. 

Electricity costs assume a 40% efficiency. 

 

Given a certain interest rate r and production lifetime LT, the net present cost NPC is calculated by 

Eq. 29: 

        
 tota 

        

  

     

 (29) 

where, the interest rate is considered 5% and the production lifetime is assumed to be 20 years. 

 

We define NPC as an economic-based function for comparative evaluation purposes. Whilst 

formulating a formal optimisation problem for NPC minimisation can elucidate optimal operating 

strategies, our focus is to evaluate different fermentation modes in terms of different evaluation 

indicators: NPC and production time. 

 

4.1.2 Design variables 

Based on the sensitivity analysis in Section 3, the parameters with large sensitivity on the product 

concentration have been selected for tuning in process design for each culture modes. For the batch 

mode, the initial cell and substrate (glucose) concentrations, X0 and S0, are varied for process design 

while for perfusion mode, initial cell concentration, X0 and harvest rate, Fharvest, are varied. 

 

4.2 Results and discussion 

4.2.1 Batch mode 

The annual batch number to produce the desired amount is shown in Fig. 6a for varying initial 

concentration of viable cells and initial glucose concentration. The case of the viable cells had the 

same batch number for each production temperature. On the other hand, the batch number differed 
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depending on the value of the initial concentration of glucose, which directly affected the limited 

production time. 

 

The annual production time per year is shown in Fig. 6b for the case perturbing the initial 

concentration of viable cells and for varying initial glucose concentration. In both initial cell and 

glucose concentration variations, the production time decreases due to the increasing produced 

amount of IFN-γ per batch. The difference of the production amount led to the smaller annual batch 

numbers in larger concentrations, which results in the shorter production time per year. The higher 

temperature (T = 37 °C) always results in longer production times than lower temperature (T = 32 °C).  

 

The net present cost (NPC) is shown in Fig. 6c. The case of perturbing the initial concentration of 

glucose results in the same tendency for both temperatures, where the NPC decreased as the 

concentration becomes larger. The value is similar among the initial glucose concentrations resulting 

in the same annual batch per year. 

 

 
Figure 6: Effect of perturbations in initial cell (X0) and glucose (S0) concentrations on (a) annual 

number of batches, (b) annual total production time and (c) net present costs for batch mode. 

(a) (b)

(a) (b)

(a)

(b)

(c)

X0, batch S0, batch



 

17 

 

The breakdown of the NPC for batch mode is shown in Fig. 8. In common to all the cases, the effect 

of cell purchase and waste treatment are small. The waste cost is not shown as it is insignificant in 

comparison to the other cost components shown. The cell purchase cost increases as the initial cell 

concentration increases and the waste treatment cost decreases with decreasing production time and 

increasing concentrations. The mixing cost also becomes smaller as the production time decreases. 

Media costs are the most significant contributor, which decreases with increasing cell concentration. 

 

4.2.2 Perfusion mode 

The annual production time per year for perfusion mode is shown in Fig. 7a. The production time 

decreases as the values of the harvest rate, and the initial cell concentration increased. For the case of 

the harvest rate, the outlet flow increased as the harvest rate increases, which leads to ammonia (waste 

product) to be removed faster so that the product concentration increased - higher product 

concentration results in shorter production time. As the initial cell concentration increases, 

productivity increases also. The effect of varying initial cell concentration on annual production time 

is more significant than for varying harvest rate. 

 

The NPC is shown in Fig. 7b for the case perturbing harvest rate and for the case perturbing the initial 

concentration of viable cells. The decrease of the NPC corresponds to the decreased production time. 

The change of the NPC is larger in the case of perturbing the initial cell concentration than the case of 

perturbing the harvest rate, as is the case in the annual production time. 

 

 
Figure 7: Effect of perturbations in harvest rate (Fharvest) and initial cell concentration (X0) on (a) 

annual number of batches, (b) annual total production time and (c) net present costs for perfusion 

mode. 

 

The breakdown of the NPC results is shown in Fig. 8 for the case perturbing the harvest rate and for 

the case perturbing the initial concentration of viable cells. In common to all the cases, the effect of 

cell purchase and waste treatment are small. Similarly to the batch mode results, waste cost 

components are not shown as their contribution is insignificant in comparison to other cost 

(a) (b)

(a) (b)

Fharvest X0,perfusion

(a)

(b)
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components, although it has been explicitly considered. The cell purchase cost increases as the initial 

cell concentration increases. Cost related to media is known to be dominant especially in the case of 

perfusion mode (Klutz et al., 2016). The mixing cost becomes smaller as the production time becomes 

shorter. 

 

 

 

 

 
Figure 8: Batch Mode: Detailed breakdown of net present cost with perturbation of (a) initial cell 

concentration and (b) initial glucose concentration at  =32 °C, (c) initial cell concentration and (d) 

initial glucose concentration at  =37 °C. Perfusion Mode: Detailed breakdown of net present cost 

with perturbation of (e) harvest rate and (f) initial cell concentration. 

 

(a) (b)

(c) (d)

∆(Initial conc. of cells, X0,batch)

-50% 50%0%

∆(Initial conc. of cells, X0,batch)

-50% 50%0%

∆(Initial conc. of glucose, S0,batch)

-50% 50%0%

∆(Initial conc. of glucose, S0,batch)

-50% 50%0%

Cell
Media

Heating
Mixing

(a) (b)

∆(Harvest rate, Fharvest)

-50% 50%0%

∆(Initial conc. of cells, X0,batch)

-50% 50%0%

Cell
Media

Heating
Mixing

(e) (f)

Perfusion Mode

Batch Mode

X0,batch S0,batch

Fharvest S0,perfusion

T = 32  C

T = 37  C
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5. Conclusions 
The dynamic models of the two modes of the CHO cell-based production have been developed and 

simulated with MATLAB. These two modes are namely a batch mode (the conventional mode in 

biopharmaceutical manufacturing processes), and a perfusion mode (recently introduced towards 

continuous manufacturing). In this work, a batch mode to produce interferon and a perfusion mode to 

produce monoclonal antibody have been analysed. The simulation results have been compared to 

experimental data available from the literature (Fox et al., 2004; Karst et al., 2017a). For both culture 

modes, the one-sample t-test has been conducted as a sensitivity analysis for every dynamic state of 

the models, and the p-value has been used as a quantitative indicator to probe agreement between 

simulation and experimental data. 

 

A sensitivity analysis has also been conducted by applying the developed models of the batch and 

perfusion mode. Nine parameters for batch and perfusion are perturbed with ±10, ±20 and ±50 % 

from the values of base case to see the effect on three dynamic states. In the batch mode, kinetic 

parameters to derive specific growth rate and specific substrate consumption rates are identified to be 

sensitive. In the perfusion mode, harvest rate is found to be sensitive in common to both on ammonia 

and product concentrations. In common to the two culture modes, initial concentration is found to be 

sensitive to the dynamic states. Based on the results of the sensitivity analysis, some parameters have 

been chosen for the analysis of process design. 

 

In the process design, two objective functions have been defined that are the required time to produce 

a certain amount of product per year, and the net present cost as an economic evaluation indicator. For 

the batch mode and the perfusion mode, operation parameters, such as initial concentration of viable 

cells (for the both modes), initial concentration of glucose, (only for the batch mode) and harvest rate 

(only for the perfusion mode), are tested by perturbing the value within the ranges of ±50%. The 

annual production time decreases as all the operating parameters increase. In the net present cost 

results, the media cost dominates for all the cases as known in biologics manufacturing. The heating 

cost is also relevant to the large media cost, where the usage of the media is large especially in the 

perfusion modes, where the media flows as an inlet. In this work, change-over costs, e.g., cleaning, 

are not included in the batch mode, where the multiple batches are assumed to be produced without 

any change-over operations. In biopharmaceutical manufacturing processes, the change-over costs are 

known to consume a large amount of energy cleaning and sterilization, which would exacerbate the 

results of the economic evaluation of the batch mode. 

 

In the future, the incorporation of the effect of cell death behaviour is necessary to make the process 

design with the time indicator and the economic indicator more rigorous. The analysis of process 

design will also be expanded by defining other objective functions and by analysis the different design 

variables. Furthermore, the models will be implemented to a dynamic optimisation problem 

formulation to find optimal operating and design parameters. 
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Nomenclature and Acronyms 
Latin Letters and Acronyms 

    Concentration of ammonia, mg mL
-1

 

    ,per usion Initial concentration of ammonia, mg mL
-1

 

    Mean of the difference between the MATLAB simulation results and the 

experimental values 

ATFF Alternating tangential flow filtration 

CHO Chinese hamster ovary 

 ce   Price of CHO cells, USD cell
-1

 mL 

 e ectricity Price of electricity, USD kWh
-1

 

  ateria  Raw material cost, USD 

  edia Price of culture media, USD mL
-1

 

   Specific heat of the solution, J g
-1

 K
-1

 

 tota  Annual operating cost, USD yr
-1

 

 uti ity Utility cost, USD 

 waste Price of waste treatment, USD L
-1

 

  Blade diameter, m 

DP Drug product 

 b eed Bleed rate, L hr
-1

 

 har est Harvest rate, L hr
-1

 

 in,per usion Feed rate for perfusion culture, L hr
-1

 

 out Outlet flow rate, L hr
-1

 

  Dynamic states (MATLAB simulation), cell mL
-1

, mg mL
-1

, µg mL
-1

, or L 

   Dynamic states (experimental results), cell mL
-1

, mg mL
-1

, µg mL
-1

, or L 

  ,basecase Initial concentration of a dynamic state   with no parameters perturbed, cell 

mL
-1

, mg mL
-1

, µg mL
-1

, or L 

  ,perturbed Initial concentration of a dynamic state   with one of the parameters perturbed, 

cell mL
-1

, mg mL
-1

, µg mL
-1

, or L 

 end,basecase Final concentration of a dynamic state   with no parameters perturbed, cell mL
-

1
, mg mL

-1
, µg mL

-1
, or L 

 end,perturbed Final concentration of a dynamic state   with one of the parameters perturbed, 

cell mL
-1

, mg mL
-1

, µg mL
-1

, or L 

IFN Interferon 

  Constant, – 

 batch Monod growth constant for batch culture, mg mL
-1

 

   Monod substrate consumption constant, mg mL
-1

 

  ,AMM Ammonia growth inhibition constant, mg mL
-1

 

   Production lifetime, yr 

 so ution Weight of the heated solution, g 

mAb monoclonal antibody 

  Number of data points, – 

  Stirred speed, rps 

   Constant, – 

    Net present cost, USD 

OUR Oxygen uptake rate 

   Active pharmaceutical ingredients, – 

 batch Concentration of product for batch culture, µg mL
-1

 

 per usion Concentration of product for perfusion culture, µg mL
-1

 

  ixing Power for mixing of a propeller in a reactor, W 

   Concentration of product at time   , µg mL
-1

 

  ,batch Initial concentration of product for batch culture, µg mL
-1

 

  ,per usion Initial concentration of product for perfusion culture, µg mL
-1

 

 
heating

 Energy for heating up a reactor, J 
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AMM,per usion

 Specific ammonia production rate for perfusion culture, mg cell
-1

 hr
-1

 

 
 ax

 Maximum specific substrate consumption rate, mg cell
-1

 hr
-1

 

 
 ,batch

 Specific production rate of product for batch culture, µg cell
-1

 hr
-1

 

 
 ,per usion

 Specific production rate of product for perfusion culture, µg cell
-1

 hr
-1

 

 
 ,batch

 Specific substrate consumption rate for batch culture, mg cell
-1

 hr
-1

 

  Interest rate, – 

  Effect ratio, – 

   Reynolds number, – 

 batch Concentration of substrate for batch culture, mg mL
-1

 

 t,batch Substrate threshold concentration for batch culture, mg mL
-1

 

  ,batch Initial concentration of substrate for batch culture, mg mL
-1

 

SE Standard error 

  Time, hr 

   Annual production time to produce the desired amount, hr yr
-1

 

  Temperature, °C 

   Temperature difference from room temperature, °C 

TFF Tangential flow filtration 

  edia Volume of culture media, L 

 per usion Culture volume for perfusion culture, L 

 wor ing Working volume of the culture, L 

  ,per usion Initial culture volume for perfusion culture, L 

 desire,  Desired amount of API   per year, µg yr
-1

 

 batch Concentration of viable cells for batch culture, cell mL
-1

 

 per usion Concentration of viable cells for perfusion culture, cell mL
-1

 

  ,batch Initial concentration of viable cells for batch culture, cell mL
-1

 

  ,per usion Initial concentration of viable cells for perfusion culture, cell mL
-1

 

 

Greek Letters 

θ Perturbation range, – 

 
batch

 Specific growth rate for batch culture, hr
-1

 

 
per usion

 Specific growth rate for perfusion culture, hr
-1

 

 
 ax,batch

 Maximum specific growth rate for batch culture, hr
-1

 

 
 ax,per usion

 Maximum specific growth rate for perfusion culture, hr
-1

 

  
so ution

 Viscosity of the solution, Pa s 

 so ution Density of the solution, kg m
-3
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