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COXETER CATEGORIES AND QUANTUM GROUPS

ANDREA APPEL AND VALERIO TOLEDANO LAREDO

ABSTRACT. We define the notion of braided Coxeter category, which is infor-
mally a monoidal category carrying compatible, commuting actions of a gen-
eralised braid group By and Artin’s braid groups B, on the tensor powers
of its objects. The data which defines the action of By bears a formal simi-
larity to the associativity constraints in a monoidal category, but is related to
the coherence of a family of fiber functors. We show that the quantum Weyl
group operators of a quantised Kac-Moody algebra Upg, together with the
universal R—matrices of its Levi subalgebras, give rise to a braided Coxeter
category structure on integrable, category O-modules for Uyg. By relying on
the 2—categorical extension of Etingof-Kazhdan quantisation obtained in [3],
we then prove that this structure can be transferred to integrable, category
O-representations of g. These results are used in [5] to give a monodromic
description of the quantum Weyl group operators of Upg, which extends the
one obtained by the second author for a semisimple Lie algebra.
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1. INTRODUCTION

1.1. This is the first of a series of three papers the aim of which is to extend
the description of the monodromy of the rational Casimir connection of a complex
semisimple Lie algebra in terms of quantum Weyl groups obtained in [35, 36, 37, 38]
to the case of an arbitrary symmetrisable Kac-Moody algebra g.

The method we follow is close, in spirit at least, to that of [37]. It relies on the
notion of braided Coxeter category, the definition of which is the first main contri-
bution of the present article. Informally, such a category is a monoidal category
carrying compatible, commuting actions of a given generalised braid group and
Artin’s braid groups on the tensor products of its objects. This structure arises
for example on the category O, of integrable, highest weight representations of
the quantum group Upg, from the quantum Weyl group operators of Upg and the
R-matrices of its Levi subalgebras.

A rigidity result, proved in the second paper of this series [4], shows that there
is at most one braided Coxeter structure with prescribed restriction functors, R—
matrices and local monodromies on the category Og* of integrable, highest weight
representations of g. It follows that the generalised braid group actions arising
from quantum Weyl groups and the monodromy of the Casimir connection [5] are
equivalent, provided the braided Coxeter structure underlying the former can be
transferred from Op ; to Og*. This result is the second main contribution of this
article.

1.2. In the rest of the introduction, we outline the definition of a Coxeter and
of a braided Coxeter category. We then focus on two main sources of examples.
The first arises from diagrammatic Lie bialgebras, and generalises category O for a
symmetrisable Kac-Moody algebra g. The second arises from diagrammatic Hopf
algebras, and generalises category O for the quantum group Upg. Finally, we ex-
plain how the Etingof-Kazhdan quantisation of Lie bialgebras [15, 16], and its
2-categorical extension recently obtained in [3] give rise to an equivalence between
a canonical deformation of the first class of examples and the second, thus yielding
the transfer theorem alluded to above.

1.3.  The definition of a Coxeter category bears some formal similarity to that of a
braided monoidal category, with Artin’s braid groups {B,, },>2 replaced by a given
generalised braid group By, of Coxeter type W. If C is braided monoidal then, for
any object V' € C and n > 2, there is an action

oo : By = Aut(V,2™)

for any bracketing b on the non-associative monomial z; - - - 2,,.> The choice of b is
in a sense immaterial since, for any two bracketings b, b’, the associativity constraint
Dy : Vb®" — Vb‘?" of C intertwines the corresponding actions of B,. Similarly, if
V' is an object in a Coxeter category Q, there is an action

Ar By — AUt(V]:)

which depends on a discrete choice F. Moreover, for any two such choices F, G,
there is an isomorphism Ygr : Vx — Vg which intertwines the actions of Byy.

1 The notation Vb®" indicates that n copies of V' have been tensored together according to b.
For example, if b = (z122)z3, Vb®3 =((VeV)eV).
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1.4. The relevant discrete choice is that of a mazimal nested set F on the Dynkin
diagram D of W, a combinatorial notion introduced by De Concini-Procesi [9]
which generalises that of a bracketing on z7 - - - x,, when W is the symmetric group
G&,, with diagram A,_;. Specifically, to a pair of parentheses x; - - - (x; - - - x;) - - - T,
one can associate the connected subdiagram of A,_; with nodes {i,...,j — 1}.
Under this identification, a (complete) bracketing on z; - - -z, corresponds to a
(maximal) collection F = {B} of connected subdiagrams of A,,_; which are pairwise
compatible, i.e., such that for any B, B’ € F, one has

BCHB, B'CB or B1B

where the latter condition means that B and B’ have no vertices in common, and
that no edge in A,,_1 connects a vertex in B to one in B’. Such a collection is called
a nested set on A,,_1, and may be defined for any Coxeter group, and in fact any
diagram D.?

1.5. Despite the above formal similarities, there is one significant difference be-
tween braided monoidal categories and Coxeter categories. In a Coxeter category
C, the braid group By does not act by morphism in C. For example, the quantum
Weyl group operators do not commute with the action of Upg. Thus, By does not
act through morphism of C = Rep Upg, but rather automorphisms of the forgetful
functor F' : Rep Urg — Vect. This is a general feature: in a Coxeter category C, the
braid group By acts by automorphisms of a fiber functor from C to a base category
Cp. In fact, C is endowed with a collection of such functors Fr : C — Cy, labelled
by the maximal nested sets on D. For any such F, and object V' € C, there is a
homomorphism

Ar:Bw — Autcw (V]:)

where Vr = Fx (V). Further, for any F, G, there is an isomorphism of fiber functors
Ygr : Fr = Fg which give rise to an identification of Byy—modules Vr — V5.

1.6. In a (braided) Coxeter category, the fiber functors Fr are additionally re-
quired to factorise vertically in the following sense. For any subdiagram B C D,
one is given a (braided monoidal) category Cp. In the case of quantum groups,
Cp consists of representations of the subalgebra Urgp of Urg with generators la-
belled by the vertices of B. Moreover, for any pair of subdiagrams B’ C B, there
is a family of (monoidal) functors Fr : Cp — Cps, which can be thought of as
restriction functors. These are labelled by maximal nested sets on B relative to
B’, that is nested sets on B whose elements are compatible with, but not strictly
contained in B’.> As in the absolute case B’ = ) C D = B discussed in 1.5, the
functors Fr are related by a transitive family of isomorphisms Ygr : Fr = Fg.
Finally, for any triple of subdiagrams B” C B’ C B, a maximal nested set 7 on B
relative to B’ and a maximal nested set 7’ on B’ relative to B”, the composition
Fri o Fr:Cp — Cpr is isomorphic to Fr/yr» via a coherent isomorphism.

2We use the term diagram to denote an undirected graph, with mo mutiple edges or loops.

31f D = An_1, B =D and B’ corresponds to the pair of parentheses x1---xj_1 - (x;---x;) -
Zj41---Tn, & maximal nested set on B relative to B’ consists of a complete bracketing of the
monomial 1 - Zj_1 - Tij - Tjr1 T
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1.7. Let now (D, {m;;}) be a labelled diagram with set of vertices I, and Bp the
generalised braid group corresponding to D* i.e.,

Bp = <Si>i€I/Sl-Sj Sy -=8;5:8;---
—_— ————

my

ij my

k¥

For any pair of subdiagrams B’ C B of D, we denote by Mns(B, B’) the collection
of maximal nested sets on B relative to B'.

A braided Coxeter category of type D consists of the following five pieces of
data.

(1) Diagrammatic categories. For any subdiagram B C D, a braided monoidal
category Cp.

(2) Restriction functors. For any pair of subdiagrams B’ C B, and maximal
nested set F on B relative to B’, a monoidal functor F'r : Cg — Cp'.

(3) De Concini—Procesi associators. For any B’ C B, and maximal nested sets
F,G on B relative to B’, an isomorphism of monoidal functors

Tg]::F]:éFg

such that Tyg - Ygr = Ty r for any F,G,H € Mns(B, B').

(4) Vertical joins. For any triple of subdiagrams B” C B’ C B, and max-
imal nested sets F € Mns(B, B’), 7' € Mns(B’, B”), an isomorphism of
monoidal functors af, : Frr o Fr = Fryr, such that the following prop-
erties hold

(a) Vertical Factorisation. For any subdiagrams B” C B’ C B, and max-
imal nested sets F,G € Mns(B, B’) and F',G’ € Mns(B’, B")

Cr

Fr | <Yrg=—|Fyg

Fgrig

CB//

where the triangular faces are given by a%, and ag,.

(b) Vertical associativity. For any B” C B” C B’ C B, and maximal
nested sets F € Mns(B,B’), 7’ € Mns(B’,B"),F" € Mns(B",B"),
the following equality holds

7 ’
a-]}_:/L/Jf o a-];_:/ = ai/u}'u o a-]}_://

as natural transformations Fr» o Fri o Fir = FryFpyFr.

4A labelling on D is the additional data of integers m;; € {2,...,00} for any two i # j € I
such that m;; = mj; and m;; =2 if i L j.



COXETER CATEGORIES AND QUANTUM GROUPS 5

(5) Local monodromies. For any vertex i € D, an element S € Aut(F;),
where {i} is the unique element in Mns(¢, (), satisfying
(a) Braid relations. For any B C D, i # j € B and maximal nested sets
F,G on B with i € F,j € G, the following holds in Aut(Fg)

Ad (Ygr) (SE) - 55 - Ad (Tgr) (S5) -+ =S5 - Ad (Ygr) (S5) - S5

Mij Mij

where S¢ is regarded as an automorphism of Fr via the factorisa-
tion aﬁ}{z} : Fryy o Fryyiy = Fr, and SJC is similarly regarded as an
automorphism of Fg.

(b) Coproduct identity. For any vertex i € D, and V, W € C; the following
diagram in Cp is commutative

Sf@sic c
F{i} (V) ® F{i} W) — F{i} (V) & F{i} (W) - F{i} W) ® F{i} (V) (1.1)

V,W W,V
Ty l JJU}

where Jy;) is the tensor structure on Fy;y : C; — Cy, and ¢;, ¢y are the
opposite braidings in C; and Cy, respectively.’
Remarks.

(1) The diagram (1.1) codifies the coproduct identity A(S;) = R?' - S; ® S;
satisfied by quantum Weyl group elements [28, Prop. 5.3.4]. It relates
the failure of Fi;; to be a braided monoidal functor and that of S¢ to
be a monoidal isomorphism. That is, if (1.1) is commutative, then S¢ is
monoidal if and only if Fy;y is braided.

(2) As mentioned in 1.3, the definition of a Coxeter category C is tailored to
produce a family of equivalent representations of Bp. Specifically, there is a
collection of homomorphisms Ar : Bp — Aut(Fr), labelled by the maximal
nested sets on D, which is uniquely determined by

o \r(S;) =S¢ ifie F.
° )\g = Ad(Tg]:) o Ar, for any F,G € Mns(D).

1.8.  An important class of braided pre—Coxeter categories, that is structures satis-
fying the axioms (1)—(4) of 1.7 but not necessarily endowed with local monodromies,
arises from split diagrammatic Lie bialgebras. Recall first that a Lie bialgebra is a
triple (b, [, ‘s, dp), where (b, [,-]p) is a Lie algebra and (b, dp) a Lie coalgebra such
that the cobracket d, and the bracket [-,-]p satisfy an appropriate compatibility
condition.

A natural class of representations over a Lie bialgebra b is that of Drinfeld—Yetter
modules [16]. Such a module is a triple (V, 7, 7*) such that 7: b @V — V gives V
the structure of a left b—module, 7* : V' — b ® V that of a right b—comodule, and
m, ™ satisfy a compatibility condition. The latter is designed so as to give rise to
a representation of the Drinfeld double g, = b @ b* of b, with ¢ € b* acting on V
by ¢ ® idy om*.

5n a braided monoidal category with braiding 3, the opposite braiding is ﬁ(}’{pyy = ﬁ;ylx.
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If b is finite-dimensional, the symmetric monoidal category DY, of such modules
coincides in fact with that of gp—modules, with the coaction of b on V' € Rep(gs)
given by 7*(v) = >, b; ® b'v, where {b;},{b’} are dual bases of b and b*. For
an arbitrary b, DY, is isomorphic to the category &g, of equicontinuous modules
over gp [15], that is those for which b* acts locally finitely. This makes DYy more
convenient to study than &g, .

If a = b 5 ais a split embedding of Lie bialgebras, there is a tensor restriction
functor Resqp : DYy — DY defined by

Resmb(V, 7TV77T€/) = (‘/, Ty 01 ®idy,p ®idy O7Tik/)

Moreover, if a < b < ¢ is a chain of split embeddings, then Res, 5 o Resp,. = Resq .
In terms of Drinfeld doubles, a split embedding gives rise to an isometric embedding
of Lie algebras j = i®p' : g4 — gp, and the functor Res, p corresponds to the pull-
back functor j* from (equicontinuous) modules over g, to those over g,.

1.9. A (split) diagrammatic Lie (bi)algebra b over a diagram D is the datum of a
family of Lie (bi)algebras {bp}scp labelled by the subdiagrams of D, together with
(split) morphisms bg: — bp for any B’ C B. These are assumed to be transitive
under compositions B” C B’ C B, and such that if B, B” C D are orthogonal
subdiagrams, bp: g~ is isomorphic to bg @ b~ as Lie (bi)algebras.

If b is a split diagrammatic Lie bialgebra, there is a symmetric pre—Coxeter
category DY, defined as follows

(1) For any B C D, DY, p is the symmetric monoidal category DYy,

(2) For any B’ C B and maximal nested set F on B relative to B’, the restric-
tion functor Fir : DY, p — DY, p/ is given by Resp ,, v,

(3) For any B’ C B and maximal nested sets F,G on B relative to B’, the
associator Ygr : Fir = Fg is the identity on Resu /b5

(4) For any B” C B’ C B, and maximal nested sets 7 € Mns(B,B’), F' €
Mns(B’, B"), the vertical join a%, : Fr o Fr = FryF is the equality
Resbs/hbs/ OReSbB/,bB = ReSbBu,bB-

A deformation of DY, where the restriction functors Fir and associators ®gr
genuinely depend on the choice of maximal nested sets will be outlined in 1.15.

1.10. Semisimple Lie algebras are basic examples of diagrammatic Lie bialgebras.
Specifically, let g be a complex semisimple Lie algebra, with opposite Borel subal-
gebras by C g, Dynkin diagram D, Serre generators {e;, fi, h;i }iep, and standard
Lie bialgebra structure determined by b1 and an invariant inner product on g (see
11.7). Then, g is a diagrammatic Lie bialgebra where, for any B C D, gp C g is
the subalgebra generated by {e;, fi, hi bicp-

The diagrammatic structure on g determines a split diagrammatic one on b
as follows. For any B C D, let b p = by N gp be the subalgebras generated by
{h”hei}iGB and {hi7fi}i€B respectively. If B’ - B, let i:t,BB’ : bin/ — b:t,B be
the embedding, and regard its transpose iy pp, as amap pz p/p : b p — bx pr via
the identifications by ¢ = b% ; given by the inner product. Then, {i+ 5/, p+ BB}
give the required splitting of b.

Taking Drinfeld—Yetter modules gives rise to a symmetric pre-Coxeter category
DYy, , as explained in 1.9. Moreover, the realisation of each gp as a quotient of the
Drinfeld double of by g gives rise to an embedding of the pre-Coxeter category of
g-modules with standard restriction functors to DY, .
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1.11. The above example does not immediately extend to the case of a symmetris-
able Kac-Moody algebra g, however, since g need not be diagrammatic (Sect. 12).
To remedy this, we introduce the notion of an extended Kac—-Moody algebra.

Fix an |I| x |I| matrix A with entries in a field k. The extended Kac—Moody
algebra g(A) corresponding to A is the quotient of the Lie algebra generated by
{ei, fi, s N Yier, with relations [oy, af] = 0, [\, A/] =0, [/, Y] = 0,

[ el = ajiej, o, fi] = —azfy, Nl =dies, N il = =0k

and [e;, f;] = d;5hi, for any i,j € I, by the maximal ideal intersecting the span of
{a), A }ier trivially.

g = g(A) is non—canonically a split central extension of the Kac-Moody algebra
g = g(A) corresponding to A (12.6). Unlike g, however, the Lie algebra g always pos-
sesses a diagrammatic structure over the Dynkin diagram D of A, which is given by
associating to any B C D the subalgebra gz C § generated by {e;, fi, ), \ }ien.
In particular, gp is the extended Kac-Moody algebra corresponding to Ap.

If A is symmetrisable, the Borel subalgebras b, b_ generated by {e;, ), \} }ier
and {f;, af A }ier respectively, are split diagrammatic Lie bialgebras. Each gives
rise to a symmetric pre-Coxeter category ]D)YEi with diagrammatic categories
DYEi,B’ B C D, and, as in 1.10 there is a canonical embedding of the pre—Coxeter

category of g-modules with a locally finite b+—action to ]D)Ygi.

1.12. A quantum analogue of the symmetric pre-Coxeter category DY, can be
obtained along similar lines from split diagrammatic Hopf algebras. A Drinfeld—
Yetter module over a Hopf algebra B is a triple (V, p, p*), where p: BV — Visa
left B—module, p* : V — BV aright B-comodule, and p, p* satisfy an appropriate
compatibility [39, 16]. Such modules form a braided monoidal category DY, with
commutativity constraints Sy v : U ® V — V @ U given by

Buy = (12) 0 pyy ®idy o (12) o idy ®py-

If *B is finite-dimensional, the category DYy coincides with that of representa-
tions of the quantum double of DB of B [11]. As a coalgebra, DB is the tensor
product B ®B°, where B° is the dual Hopf algebra 8* endowed with the opposite
coproduct. Moreover, DB is endowed with a unique product such that 9B, B° are
subalgebras, and D*B is a quasitriangular Hopf algebra, with R—matrix given by
the canonical element in B ® B°. The isomorphism DYy = Rep(D*B) is obtained
by letting ¢ € B° act on V € DYy by ¢ ® idy op*, and conversely defining the
coaction of B on V € Rep(DB) by p*v = R 1 v.

A similar equivalence holds if % is a quantised universal enveloping algebra
(QUE), that is a topological Hopf algebra over k[#] such that B/ is a universal
enveloping algebra Ub. If b is finite-dimensional, one can consider the quantised
formal group B’ C 9B corresponding to B defined in [11, 21], define the dual
QUE BY as (B')*, and the quantum double of B as the double crossed product
D% = BraBY introduced in [30]. The latter is a quasitriangular QUE, which
quantises the Drinfeld double of b, with R—matrix given by the canonical element
in B’ @ BY C DB®2. The representations of DB then coincide, as a braided
monoidal category, with the category DY™ of admissible Drinfeld—Yetter modules
over ‘B, that is are those for which the coaction p* : V — B ® V factors through
B'@V.
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More generally, let B = ®n>0 B,, be an N-graded QUE such that 98¢ deforms
Ub with dim b < oo, and each B,, is finitely—generated over By. Then, admissible
Drinfeld—Yetter modules over 5 coincide with modules V over the quantum double
of B such that the action of BY = P, ((B' NB,)* is locally finite, i.e., such that
for any v € V, BYv = 0 for n large enough (Sect. 6.4).

1.13. As in the case of Lie bialgebras, a split pair 2 5B B of Hopf algebras
gives rise to a monoidal restriction functor Resy o : DYy — DYy defined by

Resm,%(va PV, p*{}) = (Vv Py © 1® idV;p X ldV Op*{))

If both 2,8 are finite-dimensional, Resg 3 corresponds to the pullback functor
(i @ p')* : Rep(DB) — Rep(DA). If both 2A, B are QUEs, Resg g restricts to a
functor DY§&™ — DYy™. It follows that if B is a diagrammatic QUE, there is a
braided pre-Coxeter category DY§i™ with diagrammatic categories DY™, B C D,
restriction functors Reswy , %5, B’ C B, and trivial associators and vertical joins.

Such an example arises from a quantised extended Kac—-Moody algebra algebra
Urg, specifically from the split diagrammatic structure on its quantum Borel subal-
gebras Uyb. Moreover, the realisation of Ug as a central quotient of the quantum
double of Uzby yields an embedding of the pre-Coxeter category of Ung-modules
with a locally finite action of UEEJF into DY%‘I". Moreover, once attention is re-
stricted to integrable modules, Lusztig’s quantum Weyl group elements extend the
structure to that of a braided Coxeter category.

1.14. We now explain how the 2—categorical extension of Etingof~-Kazhdan quan-
tisation obtained in [3] yields an equivalence between a deformation of the braided
pre—Coxeter category DY described in 1.9, and its quantum counterpart described
in 1.13.

In [15, 16], Etingof and Kazhdan construct a quantisation functor Q from the
category of Lie bialgebras over a field k of characteristic zero to that of QUEs. O
depends on the choice of an associator ®, and is compatible with taking Drinfeld—
Yetter modules. Specifically, it is endowed with a braided tensor equivalence

Hy : DYy — DYgh, (1.2)

where DY:,D is the category of deformation Drinfeld—Yetter modules over the Lie
bialgebra b, with deformed associativity constraints given by ® [17, 3]. If g is
a symmetrisable (extended) Kac—Moody algebra with negative Borel subalgebra
b, this implies in particular the existence of an equivalence between category O
representations of g and those of the quantum group Usg.

1.15.  Assume now that b is a split diagrammatic Lie bialgebra. By functoriality,
its quantisation Q(b) is a split diagrammatic QUE and, by 1.13, there is a braided
pre—Coxeter category ID)Y‘SE“[,) with diagrammatic categories DYSE’; p)» B € D. The
equivalence (1.2) then raises the following question: is there a braided pre—Coxeter
category ]D)YE with diagrammatic categories DY;?B, such that the Etingof-Kazhdan
equivalences { Hy, } pcp fit within an equivalence H : DYy — I S)?

This involves in particular constructing, for any B’ C B and maximal nested set
F € Mns(B, B'), a monoidal restriction functor Fr : DYEB — DY:,DB,, and a natural
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isomorphism vy making the following diagram commutative

@ Hop adm
DYE, — " DYEn, (1.3)

vF
Ffl / JRGSQUJB,),Q(&B)

(3] adm
s
DYe, —, " DYols)

In order for the pre—Coxeter category ID)YE,D to fall within the scope of the rigidity
theorem proved in [4], we require further that the non—monoidal functor underlying
Fr be equal to Resp, by, which renders the problem non-trivial.®

We answer this question in the affermative by relying on the compatibility of
Etingof-Kazhdan quantisation with respect to restrictions proved in [3], and get
the following (Thms. 10.2 and 10.10)

Theorem. Let b be a split diagrammatic Lie bialgebra, and ® a Lie associator.

(1) There is a canonical braided pre—Coxeter category ]D)Y(E with the following
properties.
e For any B C D, the diagrammatic category ID)YEE B 1S given by DYZPB.
e For any B’ C B, and F € Mns(B, B'), the functor

Fr:DYy, — DYy,

is of the form (ResbB,,bB,JF) for some tensor structure Jr.
e For any B” C B' C B, F € Mns(B,B’) and F € Mns(B’, B"), the
composition Fr o Fr is equal to Fryr as functors DYE’B — DY;?BN,

and the vertical join a? : Frio Fir = Fryur is the identity.
° ]D)YE reduces to DY, mod h.
(2) The Etingof-Kazhdan equivalences Hyp,, : DYE’B — DYQ{bp), fit within an
equivalence of braided pre—Cozxeter categories Hy : DY? — ]D)Yagdz?,).

1.16. Recall that the functoriality of Etingof-Kazhdan quantisation is a direct
consequence of its realisation in the context of PROPs [16]. Roughly, this consists in
obtaining formulae which define a Hopf algebra Q([b]) which quantises the universal
Lie bialgebra [b] over k. By definition, the latter is the generating object of a k—
linear, symmetric monoidal category LBA endowed with a morphism [b] ® [b] — [b],
which is antisymmetric and satisfies the Jacobi identity. The definition of LBA
implies that the category of Lie bialgebras over k is equivalent to that of monoidal
functors F' : LBA — Vecty, via the functor mapping F to F([b]). As a consequence,
a quantisation of [b] in LBA can be applied to any Lie bialgebra b, and gives rise

to a quantisation functor b — Q(b).
An extension of the PROPic definition of Etingof-Kazhdan quantisation plays an
even greater role in proving the compatibility of the equivalences Hy with the re-
striction functors (cf. (1.3)), as well as proving that the functor Hy is an equivalence

GEquivalently7 we require that the composition H;Bll o ReSQ(bB,),Q(bB) oHy, be isomorphic,

as a non-monoidal functor, to RCSbB,,hB-
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1.17. In a similar vein, the braided pre-Coxeter category ]D)Yg’ of Theorem 1.15
is constructed through suitable PROPs. To this end, we introduce a universal
split diagrammatic Lie bialgebra [b] by extending the category LBA by a family of
idempotents 6 € End([b]) labelled by the subdiagrams of D, which satisfy 6p = id,

93093/:931 :931093 a,nd eB’UB”:eB’+HB”

whenever B’ C B and B’ L B” respectively. By relying on [3], we then construct
a braided pre-Coxeter structure ID)Y([I;] on Drinfeld—Yetter modules over [b]. This

structure gives rise to a braided pre—Coxeter category DYE for any split diagram-
matic Lie bialgebra b.
Other than its economy, the use of ]D)Yﬁ,] shows that the structure constants

of each ID)Y(E are universal, that is admit a lift to the algebras of endomorphisms
of tensor products of Drinfeld—Yetter modules over [b]. This feature is a crucial
requirement of the rigidity result obtained in [4].

1.18. Finally, we apply these results to an extended symmetrisable Kac-Moody
algebra g, with negative Borel subalgebra b and Dynkin diagram D.

The Drinfeld-Jimbo quantum group Upb is a split diagrammatic QUE. As such,
it gives rise to a braided pre—Coxeter category DY‘E;;%. Consider the subcategories
defined as follows.

° ID)Y;;“%‘“” C DYZ?:E' The diagrammatic category corresponding to B C D
h L

consists of admissible Drinfeld—Yetter modules over Upbp which arise from
integrable Upgp—modules. Specifically, since Ungp is a quotient of the
quantum double of Uzbp, we require that the action of D(U;:LEB) factor
through an integrable action of Usngg.

e O 1,5 C DY‘;?“. The corresponding diagrammatic categories consist of
’ h

integrable Ungg-modules in category Oq,.”
The quantum Weyl group operators of Urg [28] endow ID)Y‘Z;;%‘”, and therefore
(O vyge With the structure of a braided Coxeter category.
The combination of Theorem 1.15 and the isomorphism of diagrammatic Hopf

algebras Ub ~ Q(b) yields our main result.

Theorem. Letg be an extended symmetrisable Kac—Moody algebra.

. . . D in
(1) There is a universal braided Coxeter category (O)Oojt such that

o The diagrammatic category corresponding to B C D is O

°,8p

e The functor Fr : (’)Z’j%; — (’)Z’j%;, corresponding to B C B and
F € Mns(B, B’) is the standard restriction functor endowed with an
appropriate tensor structure.

e The vertical joins a;, : Frro Fr = Fryr are trivial.

e The underlying braided pre—Coxeter structure is PROPic, and trivial
modulo h.

(2) The Etingof-Kazhdan equivalences Hg  restrict to equivalences Oi’j%; —

Oi)rjOt7Uh§B’ and fit within an equivalence of braided pre—Cozeter categories

®,int int
O0x5 =7 Oxus
"The symbol oo refers to the fact that we allow infinite-dimensional weight spaces. This is
required by the fact that the restriction corresponding to gg C gg or Upgg: C Uxrgp does not
preserve the finite-dimensionality of weight spaces if B’ C B.
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1.19. Outline of the paper. We begin in Section 2 by reviewing a number of
combinatorial notions related to diagrams. We lay out the definition of a Coxeter
object in an arbitrary 2—category in Section 3, and of a braided Coxeter category
in Section 4. In Sections 5 and 6 we produce examples of braided Coxeter cate-
gories through Drinfeld—Yetter modules over diagrammatic Lie bialgebras and their
quantisations. In Section 7, we introduce a PROP which describes diagrammatic Lie
bialgebras. In Sections 8 and 9, we describe in terms of PROPs a universal braided
pre—Coxeter structure on the category of Drinfeld—Yetter modules over a diagram-
matic Lie bialgebra. In Section 10, we apply the results from [3] to the case of a
diagrammatic Lie bialgebra b. We show in particular that the braided pre—Coxeter
structure of the Etingof-Kazhdan quantisation Q(b) is equivalent to a universal
braided pre—Coxeter structure on the category of Drinfeld—Yetter modules over b.
In Section 11, we review the definition and basic properties of the Kac-Moody alge-
bra associated to an n x n matrix A. In Section 12, we define extended Kac—Moody
algebras which are associated to a (non—minimal) realisation of A of dimension 2n,
and show that they are naturally endowed with a structure of diagrammatic Lie
bialgebras. In Section 13, we show that integrable Drinfeld—Yetter modules over
an extended quantum group has a natural structure of braided Coxeter category.
We then apply the results from Section 10, and obtain the desired transport of the
braided Coxeter structure of the quantum group Uxg to the category of integrable
Drinfeld—Yetter modules for g. Finally, in Appendix A, we provide an alternative
description of the axioms of a Coxeter object in terms of the standard graphical
calculus for 2-categories.

1.20. The main results of this paper first appeared in more condensed form in the
preprint [2]. The latter is superseded by the present paper, and its companion [3].

2. DIAGRAMS AND NESTED SETS

We review in this section a number of combinatorial notions associated to a
diagram D, in particular the definition of nested sets on D following [9], and [37,
Section 2].

2.1. Nested sets on diagrams. A diagram is an undirected graph D with no
multiple edges or loops. A subdiagram B C D is a full subgraph of D, that is, a
graph consisting of a (possibly empty) subset of vertices of D, together with all
edges of D joining any two elements of it.

Two subdiagrams By, Bo C D are orthogonal if they have no vertices in common,
and no two vertices ¢ € By, j € By are joined by an edge in D. We denote by B; LBy
the disjoint union of orthogonal subdiagrams. Two subdiagrams By, By C D are
compatible if either one contains the other or they are orthogonal.

A nested set on D is a collection ‘H of pairwise compatible, connected subdia-
grams of D which contains the empty subdiagram and conn(D), where conn(D)
denotes the set of connected components of D. It is easy to see that the cardinality
of any maximal nested set on D is equal to |D| + 1.

Let Ns(D) be the set of nested sets on D, and Mns(D) that of maximal nested
sets. Every (maximal) nested set H on D is uniquely determined by a collection
{Hi}I_; of (maximal) nested sets on the connected components D; of D. We
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therefore obtain canonical identifications

Ns(D) = ﬁ Ns(D;) and Mns(D) = ﬁ Mns(D;).

2.2. Relative nested sets. If B’ C B C D are two subdiagrams of D, a nested
set on B relative to B’ is a collection of subdiagrams of B which contains conn(B)
and conn(B’), and in which every element is compatible with, but not properly
contained in any of the connected components of B’. We denote by Ns(B, B’) and
Mns(B, B’) the collections of nested sets and maximal nested sets on B relative to
B’. In particular, Ns(B) = Ns(B, ) and Mns(B) = Mns(B, 0).

Relative nested sets are endowed with the following operations, which preserve
maximal nested sets.

(1) Vertical union. For any B” C B’ C B, there is an embedding
U: Ns(B,B’) x Ns(B’, B") — Ns(B, B"),

given by the union of nested sets. Its image is the collection Nsg/ (B, B”) C
Ns(B, B") of relative nested sets which contain conn(B’).

(2) Orthogonal union. For any B = BBy and B’ = B{UB) with B} C By,
B!, C Bs, there is a bijection

Ns(Bi1, By) x Ns(Bg, B;) — Ns(B, B'),
mapping (H1, Ha) — Hi U Ho.
2.3. Nested sets and chains of subdiagrams.
Definition. A chain from B C D to B’ C B is a sequence of subdiagrams
C:B'=ByCB C---C B, =B.

A chain is called mazimal if |By, \ Br—1| = 1 for every k. The sets of chains and
maximal chains from B to B’ are denoted Ch(B, B’) and MCh(B, B’), respectively.

Note that, unlike the notion of nested set, that of chain is independent of the
connectivity of the graph and only depends on the underlying set of vertices. The
following is clear.

Lemma. There is a surjective map p : Ch(B, B') — Ns(B, B’) given by
p(B'=By S Bi G-+ C By = B) = | ] conn(By),
k=0

Moreover, p restricts to a surjection p : MCh(B, B') — Mns(B, B').

The operations defined in 2.2 naturally extend to chains, and it is easy to check
that the maps p preserve these operations. In particular,

e Vertical union. For any B” C B’ C B, C € Ch(B,B’), and C' €
Ch(B’, B"), we denote by CUC’ € Ch(B, B”) the chain obtained by vertical
composition

e Orthogonal union. For any B = B1UB; and B’ = B{UB) with B} C By,
B}, C By, C € Ch(By U By, By U Bj)), we denote by Cp, € Ch(By,B},),
k = 1,2, the chains determined by C on B; and Bs.
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Two chains give rise to the same nested set if they differ only at the level of
orthogonal subdiagrams. Specifically, if B] € By L By D Bj, the chains

C,:BjUB,C ByUB,C B, UBy (2.1)
C :BiI_IBQCBll_IBQ
C,: B/ UB,CB]UBy C BiUB,

give rise to the same nested set in Ns(Bj Ll By, Bj Ul B}). More generally, for any
B’ C B, we denote by Gpg, g the graph having Ch(B, B’) as set of vertices, and
an edge between C! and C? if and only if their difference is limited to a subchain
of the form (2.1) for the same subdiagrams B}, B}, By, Ba. More precisely, C! and
C? are connected by an edge if and only if C! # C? and the following holds

e C! ¢ C? and C? ¢ C', C', C? are of the same length, there is an index 4
such that le- = BJZ, for j # i, and subdiagrams B] € By L By 2 B} such
that

Bii, = BiUBy =B},
B!=B,UB, B UB,=B?
Bilfl =BjUB)= Bi271
e C' C C?, there is an index 7 such that B} = B if j <i and B} = B3, if
j>1i, Bf € By L By D B} such that
B} =B, U B, = B?
By UBj) = B?
B, =BjUBy =B},
(and similarly for C? C C!).
The following is straightforward.
Proposition. The map p: Ch(B, B’) — Ns(B, B’) descends to a bijection
p: Ch(B,B")/ — Ns(B,B')

where ~ is the equivalence relation defined by the graph Gp ps, i.e., C ~ C' if and
only if they are connected in G, p.

Remark. The map p admits a canonical section s : Ns(B, B') — Ch(B, B’) which
assigns to a nested set H the chain s(H) defined recursively as follows

(] S(H)top =B

e 5(H)p—1 is the union of the elements of H which are properly contained

and maximal in s(H)g

Clearly, p(s(H)) = H. Note, however, that s does not preserve the vertical union
of nested set. Namely, if # € Ns(B,B’) and H' € Ns(B’, B”), then in general
s(H)Us(H') # s(HUH'). Also, s does not map maximal nested set to maximal
chains. Indeed, if 7 € Mns(B, B’), |s(F)k \ $(F)k—1] = |[conn(s(F)x)| > 1.

3. COXETER OBJECTS

In this section, we define Coxeter objects in an arbitrary 2—category X.



14 A. APPEL AND V. TOLEDANO LAREDO

3.1. 2—Categories. By definition, a 2—category is a category enriched over Cat, the
category of categories, functors and natural transformations [14, 25]. In particular,
a 2—category is a special example of a bicategory [6]. The difference between the two
notions lies in the composition of 1-morphisms, which is required to be associative
up to a prescribed isomorphism in a bicategory, and strictly associative in a 2—
category. In particular, a 2—category with one object is a strict (small) monoidal
category.

For simplicity, in this section we work with a fixed 2—category X, though our
definitions easily carry over to a bicategory.

3.2. The diagrammatic 2—category Diagr(X). Let B’ C B be two diagrams. If
K € Ns(B,B’) is a relative nested set, we denote by Mnsk (B, B’) the collection
of relative maximal nested sets on B which contain K. If Cy,...,C,, C B are
compatible diagrams such that K = conn(Cy) U --- U conn(C,,) is a relative nested
set in Ns(B, B’), we abbreviate Mnsx (B, B') to Mns;¢, ... ¢,.y(B,B’).

Definition. The diagrammatic category Diagr(X) is the following 2—category

(1) If B is a diagram, a B-object is an object Cp in X labelled by B.
(2) If B’ C B are diagrams, Cgp a B-object, Cp: a B’-object, and K €
Ns(B, B’), a diagrammatic 1-morphism C — C’ of degree K is the datum of
e for any F € Mnsi (B, B’), a 1-morphism Fr : Cp — Cp/
e for any F,G € Mnsi (B, B’), a 2-isomorphism Ygr : Fr = Fg
such that the morphisms T are transitive, i.e., for any F, G, H € Mnsi (B, B'),

TygoYgr =Tur

This implies in particular that T rr = idg,, and that Ygr = T}lg for any
F,G € Mnsi(B, B"). We denote the collection of 1-morphisms Cg — Cp-
of degree K by Hom(Cp,Cp/)[K], and set®

Diagr(¥)(Cp,Cp') = || Hom(Cp,Cp)[K]
KeNs(B,B’)
(3) If B” C B’ C B are encased diagrams, Cp,Cp/,Cp» are B, B’, and B"-
objects, K € Ns(B, B’) and K’ € Ns(B’, B”), the composition of 1-morphisms
F:Cg —Cp and F/:CB/ — Cpn

of degrees K and K’ is a 1-morphism F' o F' : Cg — Cp» of degree K U
K' € Ns(B,B"). Specifically, if F,G € Mnsiyi/ (B, B”), the 1- and 2-
morphisms

F]:ZCB—)CB// and Tg]::Fg:>F]:

corresponding to [ o I are given by the composition Fz o Fr,, , and
. o Yo, Fuy _
the vertical composition respectively.
gB//B/fB//B/

8Note that if K1 C Ka € Ns(B, B’) then Mnsk, (B, B') D Mnsk, (B, B’), and there is a
forgetful map Hom(C,C’)[K1] — Hom(C,C")[K2]

9Note that the composition F’ o F forgets some of the data of F', namely the 1-morphisms Fr
and 2-morphisms Y g corresponding to F,G € Mnsx (B, B”) \ Mnsyc (B, B").
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(4) If F*,F? : Cg — Cp/ are 1-morphisms of degrees K1,K2 € Ns(B,B’)
respectively, a diagrammatic 2-morphism u : F! = F? is the datum, for
any F1 € Mnsk, (B, B’) and F; € Mnsg, (B, B'), of a 2-morphism ur, 7, :
Fjl_-1 = F;-2 in X such that, for any F1,G1 € Mnsk,(B) and F2,G2 €
|\/|nS)C2 (B),

UgGsG, © Tél}'l = Té2]-'2 CUFF, (31)
as 2-morphisms Fz, = F§ . This amounts to the commutativity of

(3.2)

If D is a fixed diagram, we denote by Diagr,(X) C Diagr(X) the full 2-subcategory
of B-objects, where B C D.

3.3. Pre—Coxeter objects. Let D be a diagram.

Definition. A pre—Cozeter object of type D in X is the datum of
e for any B C D, a B-object Cp
e for any B’ C B, a diagrammatic 1-morphism Fp/p : Cg — Cp/ of minimal
degree K = conn(B) U conn(B’)
e for any B” C B’ C B, a diagrammatic 2-isomorphism

Crr (3.3)
Xprp
Y
CB” FB”B CB

such that
e for any B' C B, Fpp =id¢, and a8y, = idp,,, =aBg.
e the 2-morphisms « are associative, i.e., for any B"” C B” C B’ C B, the
following tetrahedron in Diagrp, (X) with 2—faces given by the morphisms «
is commutative

FB”’B”

CB/N CB// (3.4)

..-.__FB”IB/\ XBNB/
Fgnp CB/

Cp
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In other words, the following equality holds

’
O[g///B e} O[g//B = Oég///B 9} O[g///B/

1"

as 2fisomorphisms FB/// B’ © FB“B' o FB/B = FB/”B-

3.4. Unfolding the definition. We give below a more hands—on description of a
pre—Coxeter object, which will be used throughout this paper to construct examples.

Proposition. A pre—Cozeter object of type D in X is equivalently described by the
datum of
e for any B C D, an object Cp € X
e for any B’ C B and F € Mns(B, B’), a 1-morphism Fr :Cp — Cp:
e for any B’ C B and F,G € Mns(B, B’), a 2-isomorphism Ygr : Fr = Fg
e for any B” C B’ C B, F € Mns(B,B’) and F' € Mns(B',B"), a 2-
isomorphism a%, : Fri o Fr = FriF.
such that
(1) if F and F' are the unique elements in Mns(B, B) and Mns(B’, B'), respec-
tigvely, and G € Mns(B, B'), then Fr =idc,, Fr =ide,, and aé: =idp, =
a%,
(2) tife 2—isomorphisms Y are transitive, i.e., for any F,G,H € Mns(B, B’),
TrgoTon ="Tru
(3) the 2—isomorphism a are associative, i.e., for any B C B" C B’ C
B, and mazimal nested sets F € Mns(B,B’),F' € Mns(B',B"),F" €
Mns(B", B""), the following holds

af” 0 af = af pu 0 2t
as 2-morphisms Frn o Frio Fir = Frypyrr.
(4) for any B” C B' C B, F,G € Mns(B, B’), and F',G' € Mns(B’, B"),
Y FuF.gug 0 ag, = a% o o
T].‘/g/
PROOF. First, we show that any pre-Coxeter object (C, F, ) gives rise to the datum
described above.

By definition, Fg'g : Cg — Cp/ is a diagrammatic 1-morphism, i.e., it amounts
to a collection of 1-morphisms Fr : Cg — Cpr and 2—isomorphisms Ygr : Fr — Fg,
labeled by F,G € Mns(B, B’) and satisfying (1).

The diagrammatic 2—isomorphism ag:, p amounts to a collection of 2-isomorphisms

Cs Fgr
’
Fr @a}_g,,: CB/
F
CB// G

labelled by F € Mns(B,B"), ¢’ € Mns(B, B’) and G” € Mns(B’, B"), satisfying
the compatibility condition (3.1) and (3.2). We set a%, = af/uf)j;,. Then, the
condition (3.4), encoding the associativity of the morphisms a (3.4), clearly implies
(2). Then, it follows from (3.2) (with /1 =G UG =Gy and Fo =G UG, Go = F)
that a]_-g, = TYrgug o ag,. This implies that « is completely determined by the
2-isomorphisms {ag,}gyg/. Finally, the condition (3) follows directly from (3.2),
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by choosing F € Mnsp/(B,B”) and sctting F = Fp'p € Mns(B,B') and F’
Fprp € Mns(B’, B"”). The converse is proved similarly. O

3.5. The 2—categories B(D) and Ns(D). We give below a succinct definition of
a pre—Coxeter object as a 2—functor to the diagrammatic category Diagr(X).
Let B(D) be the 2—category where

e the objects are the subdiagrams of D
e the I-morphisms B — B’ are the inclusions B’ C B
e the 2-morphisms are equalities

Consider also the 2—category Ms(D) where

e the objects are the subdiagrams of D

e the I-morphisms B — B’ are the relative nested sets K € Ns(B, B’), with
composition given by union

e for any K1, /K2 € Ns(B, B’), there is a unique 2-isomorphism I — Ko

There is a forgetful 2-functor fp : Ms(D) — P(D), which is the identity on
objects, maps all 1-morphisms in Ns(B, B’) to the inclusion B’ C B, and the 2—-
morphisms to the identity. fp has a canonical section sp : P(D) — Ns(D), which
maps the inclusion B’ C B to Kuyin = conn(B) U conn(B’) € Ns(B, B').'°

Consider now the 2—functor fp x: Diagrp (%) — Ms(D), which maps a B-object
to the underlying diagram B C D, and a 1-morphism Cp — Cp’ to its degree in
Ns(B, B’). Then, a pre-Coxeter object in X is a (pseudo) 2—functor C : P(D) —
Diagrp (X) such that fp x o C = sp, that is

% Diagrp (X (3.5)

SOk

3.6. Morphisms. A 1-morphism C — C’ of pre-Coxeter objects in X is a nat-
ural transformation of the corresponding functors (D) — Diagrp(X), which is
compatible with (3.5). Concretely, this consists of the datum of

e for any B C D, a diagrammatic 1-morphism Hg : Cg — Cj
e for any B’ C B, a diagrammatic 2-isomorphism

Hp
cs —12 el

Fpip /// Fpig

/
CB/ H—B/>CB/

10Note that sp is technically a pseudo 2—functor, since it preserves the composition only
up to a coherent 2—isomorphism. Namely, for any B” C B’ C B, set K = conn(B) U conn(B’),
K’ = conn(B’)Uconn(B") and K" = conn(B)Uconn(B""). Then, the 2—-isomorphism K'UK — K"
in Ms(D) gives an identificationsp (B’ — B”) osp(B — B’) — sp(B — B”).
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such that the morphisms ~ factorise vertically, i.e., for any B” C B’ C B, the
following prism in Diagrp(X) is commutative

H
cp—2 ¢l

}, : Fpig
BIQJ FB;”B

Fginpg CB/ HB’;—> C/ ,

F - : /
gt :
]{B B ~ Fgipgr

C yy — CI
B Hgn B

where the rectangular 2—faces are the morphisms 7, and the triangular ones the
morphisms a, o’.

Remark. In view of 3.4, a 1-morphism of pre-Coxeter object C — C’ is equivalently
described as the datum of
e for any B C D, a 1-morphism Hp : Cg — Cj
e for any B’ C B and F € Mns(B, B’), a 2-isomorphism v : Fz o Hg =
HB/ o F]:
such that, for any B” C B’ C B and F' € Mns(B,B’), F’ € Mns(B’, B"”) and
F € Mns(B, B"), the following prism

H
Cp - ng
!
\;‘ F}—/
=y "
Fr Cp Hpr——— C}B,

~ :
Frrr /
K ~ X Fry

F
17 ’ 1
Cs Hon ¢
where the rectangular 2—faces are the morphisms 7, and the triangular ones the
morphisms a,a’. Note also that, if B’ = B”, for F,G € Mns(B, B’), one just get
Trgoyg =rFo Yirg.

If H', H? : C — C’ are 1-morphisms of pre-Coxeter objects in X, a 2-morphism
w: H' = H? is likewise a morphism of the natural transformations of the cor-
responding functors (D) — Diagrp(X). Specifically, u consists of the datum of
a diagrammatic 2-morphism up : Hy — H% for any B C D such that, for any
B’ C B, the following cylinder in Diagr, (%) is commutative

/ S
H?g/

’
FB’B

Cr

Fup _Hg/. ...... _}C,

Cp H?

where the rectangular 2—faces are the morphisms ~,~’ and the circular ones the
morphisms up, up:.
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Remark. In view of 3.4, a 2-morphism u : H' — H? is equivalently described as
a collection of 2-morphisms up : H; — H#, indexed by B C D, such that, for any
B’ C B and F € Mns(B, B'), it holds Y% o up = up: o k.

3.7. T—strict pre—Coxeter objects. A pre—Coxeter object C in X is Y—strict if,
for any B’ C B, and F,G € Mns(B, B’) the following holds

F]::Fg and T]:g:ing

We denote the common value of {Fr}remns(s, 5y by Fp'p : Cp — Cpr. It follows
from condition (4) in Definition 3.4 that, for any B” C B’ C B, F,G € Mns(B, B'),
F',G" € Mns(B',B"), a%, = ag,. We denote the common value of {a%,}r 7 by
ap'p'B: Fprp o Fpp= Fpip.

Proposition.

(1) A Y —strict pre—Cozeter object of type D in X is equivalently described by
the datum of
e for any B C D, an object Cp € X
e for any B’ C B, a 1-morphism Fg'g:Cg — Cp:
e for any B” C B’ C B, a 2-isomorphism

aB//B/B M FB//B/ OFB/B = FB//B
such that

L] for any B’ - B, FBB = ich and AB'BB = idFB’B — aB'B'B
e the 2—isomorphism a are associative, i.e., for any B"' C B” C B’ C B,

apmrg oaprprg — ap/mBr g Oapg B R
as Q*TTLOTphZ'S’/TLS FB”/B” o FB// B’ © FB’B = FB/”B

(2) Every pre—Coxeter object C in X is equivalent to a Y —strict pre—Cozeter
object in X.

PROOF. (1) is clear. (2) For any B’ C B, choose a maximal nested set £(B, B’) €
Mns(B, B'). We denote by C the Y-strict pre-Coxeter object with Cp = Cg,
FB/B = FS(B,B/)a and
— £(B,B')
AB"B'B ‘= T£(B,B”),S(B,B’)U£(B’,B”) ©3ag(pr,B)
Then, there is a canonical equivalence of pre-Coxeter objects C — C with Hp =
ide,, and vr = Y¢(p,pry, 7 for F € Mns(B, B'). O

Remark. We show in Sections 12.9 and 13.3 that Kac-Moody algebras and their
quantum groups naturally give rise to Y -strict pre-Coxeter objects in Cat®. On
the other hand, we prove in [5] that the monodromy of the Casimir connection of a
symmetrisable Kac-Moody algebra naturally gives rise to a pre-Coxeter structure
which is not T—strict. The latter, however, is a—strict in the following sense.

3.8. a—strict pre—Coxeter objects. A pre-Coxeter object C in X is a—strict if,
for any B" C B' C B, F € Mns(B, B'), F' € Mns(B', B"), and

F]:/U]::F]:/ OF]: and ai/ :idF]_./oF]:

In contrast with Proposition 3.7, not every pre-Coxeter object C is equivalent to an
a-strict one. We give, however, a sufficient condition for that to be the case below.
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Let Bf C B1 L By D Bj, with |By \ B;,| = 1, and denote by Fj, the unique element
in Mns(By, By,). Consider the diagram

CB,uB, (3.6)

CpjuB, Fry.72) Cp,uBy
F(Bk 1 ABQ)
Cpiuny

where the triangular 2-faces are given by the vertical joins aggi’ﬁz; and aé%"gg
1> » Dy

respectively. We say that (3.6) is trivial if
EiBy 7o) © F(71,82) = F(,By) © iy ) (3.7)
a(]:th) _ a(Bl7f2) (3.8)

(B1,F2) — “(F1,B3)

as 2—-morphisms F(Biv]:ﬂ OF(]:l,Bz) = F(-FhBé) OF(Bl,Fg) = F(]:h]:Q)' Note that this
is the case if C is a—strict.

Proposition. Let C be a pre—Coxeter object in X. If the diagrams (3.6) are trivial,
then C is canonically equivalent to an a—strict pre—Coxeter object.

PROOF. Retain the notation from 2.3. Let B’ C B, F € Mns(B,B’) and C :
B’ = By € B;--- C By = B a maximal chain corresponding to F. Denote by
Fr:Cp — Cp the composition Fr, oo Fr,, where Fj, is the unique element
in Mns(By, Br_1). By (3.7), F 7 does not depend upon the choice of C € p~1(F).
Moreover, for any F € Mns(B, B’) and ' € Mns(B’, B"), one has Fz o Fx =
Frur. o

For any F € Mns(B, B’), let ur : Fr = Fr be the 2-morphism obtained as
the composition of vertical joins a%u---u}‘[ 0---0 agiuﬂ o afﬁil. By (3.8), ur
is independent of the choice of a maximal chain C € p~!(F). For any F,G €
Mns(B, B’), set

Trg = u;_-l oYrgoug:Fg=Fr

Then, the datum of the objects Cp = Cp, I-morphisms F 7, and 2-morphisms
T £g gives rise to an a—strict pre—Coxeter object C. Moreover, there is a canonical
equivalence C — C with Hp =id¢, and vr = u}l. O

3.9. Generalised braid groups.

Definition. A labelling m of a diagram D is the assignment of an integer m;; €
{2,3,...,00} to any pair 4, of distinct vertices of D such that m;; = m;; and
m,; = 2 if 4 and j are orthogonal.

The generalised braid group corresponding to D and a labelling m is the group
BE with generators {S;};ep and relations

S;-S;-Si-- =S;-5;-S; - (3.9)

mMij mMij
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If B C D is a subdiagram, we denote by By C B}, the subgroup generated by the
elements S;, i € B, which is isomorphic to the generalised braid group corresponding
to B and the labelling m restricted to B.

3.10. Coxeter objects. Let (D, m) be a labelled diagram.
Definition. A Cozeter object of type (D, m) in X is the datum of

e a pre—Coxeter object (CB,FB/B,aBBu) of type D in X
e for any i € D, a diagrammatic 2—isomorphism S; : Fp; = Fy;
such that for any subdiagram B C D, and i,j € B with i # j

B ¢B . gB B ¢B . gB
SsP-87-87 ... =87.8F.57 ... (3.10)

mij mij
where SP : Fyp = Fyp is the diagrammatic 2-morphism

(apg)
F@BﬁBwF@loﬂB ﬁF@zoFlB ﬁF@B

Remark. More explicitly, the equation (3.10) reads as follows. Let F,G € Mns(B)
be two maximal nested sets on B such that {i} € F, {j} € G, so that G = G; UG/,
with G; = {0,{j}}. Let & : End (Fj;) — End(Fg) be the natural isomorphism
induced by the map ag; : Fg, o Fgr = Fg, and set %f = Ad(Tgr) o &%, so that
§67 » End (Fy;) — End (Fg). Then, (3.10) reads

67 (Si) - €5(S5) - €67(S) -+ = €5(S)) - €67(Si) - €5(S)) ---

mMij mMij

as an identity in End (Fg).

A 1-morphism C — C’ of Coxeter objects in X is one of the underlying pre—
Coxeter objects, which preserves the braid group operators S. That is, it consists
of a datum (Hp,yp p) defined as in 3.6 such that, for any i € D,

Ad(v9:)(Hy (S)) = Silm
in Diagrp (X)(Fy, o Hy, Fyy; o H;). A 2-morphism is defined as in 3.6.

3.11. Braid group actions. Let (D, m) be a labelled diagram. , and H : C — D
a 1-isomorphism of Coxeter objects.

Proposition.

(1) Let C be Cozeter object of type (D,m) in X. For any subdiagram B C D,
there is a unique homomorphism p% : By — Diagrp (X)(Fyp, Fop), such
that, for any i € B, p%(S;) = SE. Moreover, for any B' C B, the following
diagram is commutative

B —"" Diagr, (X)(Fys, Fop)

| T

B —— Diagrp(X)(Fyp, Fopr)

where the vertical right arrow s induced by the 2—isomorphism aﬁé : Fppr o
Fpp= F(Z)B-
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(2) Let C,D be Cozeter objects of type (D,m) in X and H : C — D a 1-
isomorphism of Coxeter objects. For any subdiagram B C D, the repre-
sentations p% and pB of By are equivalent, i.e., the following diagram is
commutative

DiagrD(ff)(chB, F(])CB)
s
5y

DiagrD(%)(F@%,F&)

where the vertical arrow is induced by the 2—isomorphism g : FQ% oHp =
FE,.
PrOOF. (1) The existence of the homomorphisms pg, B C D, follows by con-
struction. For the commutativity of the diagram, it is enough to observe that the
map Diagrp (X)(Fpp/, Fyp) — Diagrp(X)(Fyp, Fyp) sends a 2-endomorphism ¢ to
(als) 0 dlp,, © (afp)~t. Therefore, for any i € B', one has

(o) 0 SP o (o) ™ = (o) © () 0 Sy 0 (s ) ™) |7y 0 (o)
= (apg) 0 S; o (afp) ™"
— 9B

where the second equality follows from the associativity of a. (2) follows immedi-
ately from the definition of 1-morphism of Coxeter objects (cf. 3.10). O

Remark. In the 2—category X, the representations pp are described as follows. For
any B C D and F € Mns(B), there is a collection of homomorphisms pr : By —
Autx(Fr), F € Mns(B), uniquely determined by the conditions

. p]:(si) = Szfv if {’L} eF

e pg =Ad(Ygr)opr

3.12. Lax diagrammatic algebras [37, Sec. 3]. A laz diagrammatic algebra! is
the datum of

e for any B C D, a k—algebra Ap

e for any B’ C B, a homomorphism igp: : Agr — Ap
such that

e forany BC D, ipp =ida,

e for any B” g B’ g B7 iBB/ OiB/B// = iBB”

e for any B = B'UB"”, with B L B”, mpoigp ® igp~ is a morphism of

algebras Ag: ® Agn — Ap, where mp denotes the multiplication in Ag.
A morphism of lax diagrammatic algebras ¢ : A — A’ is a collection of homo-

morphisms ¢p : Agp — A’y such that g oipp = izp o pp for any B’ C B.12

HThe terminology adopted here differs from the one in [37], where the adjective lax is not
used in particular. In the present paper, we reserve the term diagrammatic algebra for a lax
diagrammatic algebra such that mpoigg Qigpr : Agr @ Agn — Ap is an isomorphism for any
B = B’ U B"”, which implies in particular that Ay = k (see Remark 5.14).

12 [37], a morphism of lax diagrammatic algebras is referred to as a strict morphism.
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3.13. Pre—Coxeter categories from lax diagrammatic algebras. A lax dia-
grammatic algebra A gives rise to an (a, T)-strict pre-Coxeter object C = Rep(A4)
in X = Cat given by'?
e For any BC D, Cp = Rep(4g)
e For any B’ C B, Fg'p : Cg — Cp is the pullback functor i% 5,
Moreover, a morphism of lax diagrammatic algebras ¢ : A — A’ gives rise to a
morphism of pre-Coxeter objects Rep(A’) — Rep(A).
If (D, m) is a labelled diagram, the group algebra k37 is naturally endowed with
a lax diagrammatic algebra structure. If a lax diagrammatic algebra A is further
endowed with a morphism of lax diagrammatic algebras pp : kBg — Ap, B C D,
then the elements p(S;) € A; = End (Fy;) give rise to the structure of Coxeter
object on Rep(A4).
This construction can be generalised by replacing the categories Rep(Ag) by
a collection of subcategories Cg C Rep(Ap) stable under restrictions, and p by
a morphism of lax diagrammatic algebras kB7 — End (Fjp) =: A. We show in
Section 13 that an example of such Coxeter objects is provided by quantum Weyl
groups of quantised Kac—-Moody algebras.

3.14. Topological definition. In [19], Finkelberg and Schechtman propose an
alternative definition of a (pre—)Coxeter object in Cat for Dynkin diagrams of finite
type, which is akin to Deligne’s topological definition of a braided monoidal category
[10]. This is given by a category Cp for every diagram B C D, together with
e for any B’ C B, a Weyl group equivariant local system of restriction func-
tors S’B’B : CB — CB/, defined over (bB/B/)rcg 14
e for any B” C B’ C B, a suitable analogue of the factorisation isomorphism
ol
This gives rise to a Coxeter object in the sense of 3.3, where, for each F €
Mns(B, B’), the functor Fr : Cg — Cp/, F € Mns(B,B’), is the limit of §p'p
at the point at infinity pz in the De Concini-Procesi compactification of (hz, 5/ )reg
[9].

3.15. Example: rational Cherednik algebras. Let h be a finite-dimensional
complex vector space, and W C GL(h) a finite complex reflection group. Let ¢ be
a conjugation invariant function on the set S of reflections in W, and H.(W, ) the
corresponding rational Cherednik algebra. Let O(W, k) be the category of highest
weight H.(W,h)-modules, W' C W a parabolic subgroup, §’ = [j/f)Wl, c the
restriction of ¢ to SN W',
In [7] Bezrukavnikov and Etingof construct a parabolic restriction functor
Resy : O(W. h) — O(W'. 1)

where b € f)W/ In [32, Cor. 2.5], Shan shows that the composition of two parabolic

reg"
restriction functors is isomorphic to a parabolic restriction functor, compatibly with

L3Note that the commutativity of Ag/, Agr in Apg, for any B’, B” C B with B’ 1 B’ has no
relevance in the above construction of pre-Coxeter structure on Rep(A). On the other hand, this
feature is particularly convenient in the construction of examples arising from the quantisation of
Lie bialgebras (cf. Section 10, in particular Lemma 10.9).

14 Here, b is the Cartan subalgebra of gg C gp, hp/p’ C hp is the orthogonal complement
of hgs, and (bB/B')rcg is the complement in hp,p/ to the root hyperplanes in hp not containing

bp/B’-
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the parameter b. If W is a Weyl group with Dynkin diagram D, these functors and
their factorisation isomorphisms give rise to topological Coxeter object in Cat, in
the sense sketched in 3.14.

4. BRAIDED COXETER CATEGORIES

4.1. Denote by Cat® (resp. Cat®’5) the 2—category of monoidal (resp. braided
monoidal) categories.

Definition. Let D be a diagram.

(1)

(2)

A braided pre—Cozeter category of type D is a tuple (Cp, Fp B, ag/B,,) such
that

e Cp is a B—object in Cat®”?

e (Cp,FpnB, ang//) is a pre-Coxeter object in Cat®
If m is a labelling on D, a braided Cozeter category of type (D, m) is a tuple
(CB, FB/B; Ozg;g,,, Sz) such that

e Cp is a B—object in Cat®”?

e (Cp,FpnB, ang//) is a pre-Coxeter object in Cat®

e (Cp,FppB, ang,,, S;) is a Coxeter object in Cat
and, for any ¢ € D, the following holds in Aut(F; @ F)

Ji_l [¢] FZ(CZ) o A(Sz) [¢] J,L = Cp © S,L (24 S»L (41)

where F; = Fy;, J; is the tensor structure on F; and c;, ¢y are the opposite
braidings in C; and Cyp, respectively.’® In other words, the following diagram
is commutative for any V., W € C;,

v w

F(V) & BWY 2225 By(V) @ B(W) =2 F(W) @ F(V)

Jiv‘wl L,I_W,v

A functor of braided Coxeter categories C — C’ is a tuple (Hp,yp/p) such
that
e Hp:Cp — Cjz is a 1-morphism of B-objects in Ca
e (Hp,vyp B) is a 1-morphism of pre-Coxeter objects in Cat®.
Finally, a natural transformation u : H = H' is a 2-morphism of B—objects
in Cat®?.

{88,

Remarks.

The identity (4.1) relates the failure of (F;,J;) to be a braided monoidal
functor and that of S; to be a monoidal isomorphism. That is, if (4.1)
holds, then S; is monoidal if and only if J; is braided. Conversely, if S; is
monoidal and J; is braided, then (4.1) automatically holds. In particular,
every Coxeter object in Cat®” is a braided Coxeter category.

The main examples of braided Coxeter categories arise as representations
of a quasi—Cozeter quasitriangular quasibialgebra, as defined in [37, Sec. 3].

15 In a braided monoidal category with braiding 3, the opposite braiding is BE?Y = B;IX
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e In [4], we only consider a-strict braided Coxeter categories and, for sim-
plicity, refer to them as braided Coxeter categories.

4.2. Unfolded definition. In view of 3.4, braided Coxeter category of type (D, m)
is equivalently described by the datum of

e for any B C D, a braided monoidal category Cp € X

e for any B’ C B and F € Mns(B, B’), a (not necessarily braided) monoidal
functor F'r : Cp — Cpr

e for any B’ C B and F,G € Mns(B, B), an isomorphism of monoidal func-
tors Tg]: Py = Fg

e for any B C B’ C B, F € Mns(B, B’) and F' € Mns(B’, B"), an isomor-
phism of monoidal functors a;, FrioFr = Frior

e for any ¢ € D, an isomorphism of functors S; : Fyr;y = Fygsy (not neces-
sarily preserving the tensor structure)

satisfying the properties listed in 3.4, 3.10, and the coproduct identity (4.1).
4.3. Balanced categories. In [19], the coproduct identity (4.1) is replaced by
the assumption that the categories C; are balanced categories (in fact, that Cp is
balanced for any B C D). We point out below that, in general, this assumption is
stronger than (4.1).

Recall that a braided monoidal category (C,®,b,®) is balanced if there is a
0 € Aut(idc) such that

Ovew = bw,yv obyw o0y ® Oy (4.2)

for any V.W € C.

Proposition. Let C be a braided Cozeter category such that

(1) Cy is symmetric

(2) S? = Fi(6;) for some 6; € Aut(idc,)

(8) F; : C; — Cy is faithful
Then C; is a balanced monoidal category with balance 6;.
PROOF. Squaring the right-hand side of (4.1) yields

(cpo8;®8;)° = 5o S; @S =F(0;) ® Fi(6;)
where we used the binaturality of ¢y and the assumptions (1) and (2). On the other
hand, the square of the right—-hand side of (4.1) is equal to
Jito Fiei) o A(Si) o Fi(ei) 0 A(Sy) o Jy = J; ' o Fi(c}) 0 A(SY) o J;
= Ji o Fi(c}) o Fi(0; 0 ®) o J;
where we used the naturality of S;. Since J; o F;(6;) ® Fi(6;) o J; ' = F;(6; ®6;) by
naturality of J;, we get
FZ(CZ2 00,0®)=F;(0;, ® 6‘1)

hence the required result since F; is faithful. O

Remark.

e The converse of Proposition 4.3 does not hold in general. That is, the
existence of a balance does not imply (4.1). Instead, the correct categorical
interpretation of (4.1) corresponds to the braided monoidal categories C;
(with the tensor functors F;) being half-balanced (cf. [33, Sec. 4]).



26 A. APPEL AND V. TOLEDANO LAREDO

e Finally, we note that the coproduct identity (4.1) cannot in general be
extended to subdiagrams with more than one vertex. Specifically, in the
examples of braided Coxeter structures described in Sections 10 and 13,
the categories Cp, with |B| > 1, do not in general admit a half-balanced
structure.

5. DIAGRAMMATIC LIE BIALGEBRAS

In this section, we introduce the notion of a diagrammatic Lie bialgebra b. We
then show that Drinfeld—Yetter modules over the canonical subalgebras of b give
rise to a symmetric pre—Coxeter category.

5.1. Lie bialgebras [11]. A Lie bialgebra is a triple (b, [, Js, 0p) where (b, [, Jo) is
a Lie algebra, (b, dy) a Lie coalgebra, and the cobracket dp : b — b ® b satisfies the
cocycle condition

9 ([X, Y]o) = ad(X) 65 (Y) — ad(Y) 65(X)

5.2. Manin triples [11, 15]. A Manin triple is the data of a Lie algebra g with

e a nondegenerate invariant symmetric bilinear form (-, -)
e isotropic Lie subalgebras by C g

such that

e g=>b_ @ by as vector spaces

e the inner product defines an isomorphism by — b*

e the Lie bracket of g is continuous with respect to the topology obtained
by putting the discrete and the weak topologies on b_ and b respectively.
Equivalently, the bracket on b, is continuous with respect to the weak
topology.

Under these assumptions, the commutator on by ~ b* induces a cobracket
0 :b_ — b_ ®b_ which satisfies the cocycle condition, thus endowing b_ with a
Lie bialgebra structure. In general, however, b is only a topological Lie bialgebra.
One can similarly consider restricted Manin triples, where

e gis Z-graded as a Lie algebra, with finite-dimensional components {g,, }necz

e the inner product satisfies (g,, gm) = 0 unless n+m = d, for a given d € Z

e g=1b_ @b, as vector spaces, with the isotropic subalgebra b_ (resp. b )
concentrated in non—negative (resp. non—positive) degrees

In this case, the inner product induces an isomorphism by — b%, where b} =

P, (bx,»)* is the restricted dual of b+. The joint continuity of the bracket on g is
automatic, and both b_ and b are Lie bialgebras with a cobracket of degree d.'°

5.3. Example. A finite-dimensional Lie algebra [ with an invariant inner product
(—, —) gives rise to a restricted Manin triple as follows.

g =1t t7"] b = g[t] by =t [t

16Note that the Lie algebra grading on by inherited from g differs from that induced by
the identification by 2 b* by a shift since the inner product yields an isomorphism (b_ ,)* =
b _ntq- Note also that the isotropy of by implies that b_ , =0ifn <d -1 and by , = 0 if

n>d+ 1.
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with the standard grading deg(I®t™) = m, and inner product given by the residue
pairing (f, g) = Res;—o(f(¢),g(t)), so that (X @ t™,Y @ t") = (X,Y)0m4n,—1. In
this case, b_ has a degree d = —1 cobracket given by
Q
6(f)(t,s) = | f(H) ©1+1 f(s),

s—t

where ) € (I® [)" corresponds to (-, -).
The corresponding Manin triple is (I((¢71)), ([¢], t = ([[t~1]]).

5.4. Drinfeld double [11]. The Drinfeld double of a Lie bialgebra (b, [, ]s,dp) is
the Lie algebra gy defined as follows. As a vector space, gp = b @ b*. The duality
pairing b* ® b — k extends uniquely to a symmetric, non—-degenerate bilinear form
(-,+) on gp, with respect to which both b and b* are isotropic subspaces. The Lie
bracket on gy is defined as the unique bracket which coincides with [, ]p on b, with
6 on b*, and is compatible with (-,-), i.e., satisfies ([z,y],2) = (z,[y, z]) for all
z,y, 2 € gp. The mixed bracket of z € b and ¢ € b* is then given by
[z, ¢] = ad"(2)(¢) + ¢ @ idp 06 ()

where ad” is the coadjoint action of b on b*. (g, b, b*) is a Manin triple, and any
such triple arises this way.

Similarly, if b is a Lie bialgebra which is N—graded with finite-dimensional com-
ponents, and such that the bracket and cobracket are homogeneous of degrees 0
and d € Z respectively,’” the restricted double of b is defined as gi*= = b & b*[d],
where b*[d],, = (b_p4+4)*, and is a restricted Manin triple.

5.5. Drinfeld—Yetter modules [16]. A Drinfeld—Yetter module over a Lie bial-
gebra b is a triple (V, 7y, 7y,), where (V,my) is a left b-module, (V,7},) a right
b-comodule, and the maps 7y : b®V — V and 7y, : V — b ® V satisfy the
following relation in End(b ® V)
idp @7y 0 (12) 0idp @y, — 7y o Ty = —[+, ]p ® idy 0idp @7y, + idp @7y 0 dp @ idy
The category DYy of Drinfeld—Yetter modules over b is a symmetric tensor cat-

egory. For any V., W € DYy, the action and coaction on the tensor product V@ W
are defined, respectively, by

Tvew = Ty ® idwy +idy @mw o (12) ® idw

Tew = Ty @ idw +(12) ® idw oidy ®@my,
The associativity constraints are trivial, and the braiding is defined by Syw = (1 2).
5.6. Representations of the Drinfeld double. The category DY}, is canonically
isomorphic to the category &g, of equicontinuous gy—modules [15], i.e., those en-
dowed with a locally finite b*—action. This condition yields a functor E : &;, —

DYy, which assigns to any V' € &, the Drinfeld—Yetter b-module (V, 7, 7*), where
7 is the restriction of the action of gy to b, and the coaction 7* is given by

)= bi@bvebaV

where {b;},{b'} are dual bases of b and b*. The inverse functor is obtained by
letting ¢ € b* C gp act on V € DY} by ¢ ® idy om*.

17In the sequel, we shall abusively refer to such a b as an N-graded Lie bialgebra.
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If b is N-graded with finite-dimensional homogeneous components, the formulae
defining E' similarly give rise to an isomorphism E™* between the category Egres of
equicontinuous modules over the restricted double of b and DY,. Moreover, the
categories &g, and Egres are isomorphic, since any locally finite action of b* extends
uniquely to one of b*, and the following diagram is commutative

a0 &y b

S A

DY,

5.7. Split pairs of Lie bialgebras [3]. A split pair of Lie bialgebras (b, a) is the
datum of two Lie bialgebras a, b, together with Lie bialgebra morphisms i :a — b
and p: b — a such that poi =id,.

As mentioned in 5.4, the assignment b — gj gives rise to a one-to—one correspon-
dence between Lie bialgebras and Manin triples. Similarly, there is a one-to—one
correspondence between split pairs of Lie bialgebras and split morphisms of Manin
triples. A morphism of Manin triples i : (gq,a—,ay) — (go, b—, b,) is a morphism
of Lie algebras ¢ : g4 — gp which is continuous, preserves inner products, and is
such that i(at) C by.'® Set

ii:ilai:ai%bi and pi:i;:bi—mli

i is split if the projections p4+ are morphisms of Lie algebras. The following holds
[3, Prop. 3.3

o Ifi:(gq,a—,a1) — (gp,b_,b4) is a split inclusion of Manin triples, then
(a—,b_,i_,p_) is a split pair of Lie bialgebras.
e Conversely, if (a,b,4,p) is a split pair of Lie bialgebras, then i @ p' :
(ga,a,a*) — (gp, b, b*) is a split inclusion of Manin triples.
This correspondence may be reformulated as follows. Let sLBA(k) be the cate-

gory of split Lie bialgebras. The objects of sSLBA(k) are the same as those of LBA(k),
and the morphisms are given by

Homg gagky(a, b) = {(i,p) € Homygak)(a, b) x Hom gag(b,a) [ poi=ids} (5.1)

Let sMT(k) be the category of Manin triples and split morphisms. Then, the
assignment b — gy, (i,p) — 7 @ p’ is an isomorphism of categories sLBA(k) —
SMT (k).

5.8. Split pairs and restriction functors [3]. For any split pair of Lie bialgebras
(b, a), there is a monoidal restriction functor Resq p : DYy — DY, defined by
Resq o (V,my,my) = (V, 7y 0 i @ idy, p ® idy o7yy)

Moreover, if a < b < ¢ is a chain of split embeddings, then Resq p 0 Resp, . = Resq ..
Under the identification of DY, DY, with the categories of equicontinuous modules
over the doubles g, and g, respectively, Resq p coincides with the pullback functor
corresponding to the morphism i ® pt : go — ge.

18Note that such an i is necessarily an embedding.
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5.9. Diagrammatic Lie bialgebras. A diagrammatic Lie (bi)algebra b is the
datum of

e a diagram D

e for any B C D, a Lie (bi)algebra bp

e for any B’ C B, a Lie (bi)algebra morphism igp : bp: — bp
such that

e for any B g l)7 iBB = ide

e for any B/I Q B/ Q B7 iBB’ OiB’B” = iBB”

e for any B= B'UB"

ipp’ +ippr : bp ®bpr — bp

is an isomorphism of Lie (bi)algebras.

The above properties imply in particular that by = 0, and that Ub is a diagrammatic
algebra, with (Ub)g = Ubp (cf. 3.12).

A morphism ¢ : b — ¢ of diagrammatic Lie (bi)algebras with the same underlying
diagram D is a collection of Lie (bi)algebra morphisms ¢p : bg — c¢p labelled by
the subdiagrams B C D such that, for any B’ C B, ppoi%p =i%p 0 @p.

5.10. Split diagrammatic Lie bialgebras and Manin triples. A diagrammatic
Lie (bi)algebra b is split if there are Lie (bi)algebra morphisms pp g : bg — bp
for any B’ C B, such that pp/p oigp = idp,,, and

o for any B C D, ppp =idp,
e for any B C B'C B, pprp ©Pp'B = PB"B
e for any B= B'UB"

PB'B @pB”B : bB — bBl @bBN

is an isomorphism of Lie (bi)algebras, and is the inverse of igp +igp:.*”

A morphism ¢ : b — ¢ of split diagrammatic Lie (bi)algebras with the same
underlying diagram is one of the underlying diagrammatic Lie (bi)algebras such
that, for any B’ C B, p%.50 @B = ¢p' oD% 5

One can define similarly a diagrammatic Manin triple as a diagrammatic Lie
algebra g = {gp}Bcp, where each gp is a Manin triple, and the maps igp : g —
gp are split morphisms of Manin triples (see 5.7). The equivalence of categories
sLBA(k) = sMT(k) implies that a split diagrammatic Lie bialgebra b = {bp}pcp
gives rise to a diagrammatic Manin triple go = {gs, } Bcp, which will be referred
to as the double of b, and that any such triple arises this way.

Similarly, if b is an N—graded split diagrammatic Lie bialgebra with finite—
dimensional homogeneous components (i.e., for any B C D, bp is N—graded, with
finite-dimensional homogeneous components and, for any B’ C B, the morphisms
ip'p and pp/p are homogeneous of degree 0), one can similarly define a diagram-
matic Lie bialgebra gy, with (gi*)p = gy, endowed with a canonical morphism
of diagrammatic Lie bialgebras b — gi.

9The requirements on pg/ g are formulated so as to mirror those in 5.9. Note, however, that
1) ppp = idy, follows from pppoigp = idy, and ipp = idy, and 2) the fact that pp/p @ ppr/p
is the inverse of igp/ + igp, implies that it is a Lie (bi)algebra morphism. Note also that since
pcp oipc = idy, for C = B’, B”, the requirement that ppg ® pprp = (ipp’ + iggr)” ! is
equivalent to pg/g oigpgr = 0 for any B’ 1. B”.
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5.11. Example. Let g be a complex semisimple Lie algebra, with opposite Borel
subalgebras by C g, Dynkin diagram D, Serre generators {e;, f;, h; }icp, and stan-
dard Lie bialgebra structure determined by b1 and an invariant inner product on g
(see 11.7). Then g is a diagrammatic Lie bialgebra where, for any B C D, gg C g
is the subalgebra generated by {e;, fi, hi}tien-

The diagrammatic structure on g determines a split diagrammatic one on b
as follows. For any B C D, let b p = by N gp be the subalgebras generated by
{hi,ei}ieg and {hi7fi}i€B respectively. If B/ Q B, let ii,BB’ : bi,B’ — bi,B be
the standard embedding, and regard p+ p'p = i;BB, as a map by p — by pr via
the identifications b3 - = by ¢ given by the inner product. Then, ker(py p/5) is
a Lie subalgebra in by g, and therefore {p+ p/p} give the required splitting of the
Lie bialgebra b.

5.12. Drinfeld—Yetter modules over diagrammatic Lie bialgebras. The fol-
lowing is straightforward.

Proposition. Let b be a split diagrammatic Lie bialgebra. Then, b gives rise to
an (a, Y)-strict symmetric pre-Cozeter category DY, which is defined as follows.
e For any B C D, DYy, g is the symmetric monoidal category DYy, .
e For any B' C B, the functor Fpip : DY, g — DYy g, is the restriction
functor Resp, by : DY, — DYo,, .

Note that the orthogonality condition bp/ g+ ~ bp @ bp~ is not needed to
define the pre-Coxeter category DY,. However, it is convenient to construct its
deformations as we explain in Sections 9-10.

5.13. Partial monoidal categories. The notion of diagrammatic Lie bialgebra
may be reformulated in terms of monoidal functors between partial monoidal cat-
egories. A partial monoidal category generalises a monoidal category, in that the
tensor product is only assumed to be defined on a full subcategory C(?) C C x C. A
monoidal functor

(F,J): (€,C?,@c, &) = (D,D?, ®p, $p)
between two such categories is the datum of

e a functor F' : C — D which preserves the unit, and is such that F' x F' maps
c to DO

e an isomorphism over C()
J:®poF? = Fo®c
which is compatible with the unit and the associativity constraint.

5.14. Functorial description of diagrammatic Lie bialgebras. Let P(D) be
the category whose objects are the subdiagrams of D, and the morphisms B’ —
B are given by inclusions B’ C B. The union U of orthogonal diagrams is a
(symmetric, strict) partial tensor product on P(D), with () as unit object.?’ Let
(LBA(k), @) be the category of Lie bialgebras, with monoidal structure given by the
direct sum, and 0 as unit object.

Proposition. The category of diagrammatic Lie bialgebras is isomorphic to that
of monoidal functors P(D) — LBA(k). Specifically,

20Note that P(D) is the opposite category to the category (D) introduced in 3.5.
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(1) A monoidal functor
(F,J): (P(D),u) — (LBA(k),®)

gives rise to a diagrammatic Lie bialgebra b defined as follows

e for any BC D, bp = F(B)

e for any B' C B, igpr = F(B' — B)
Conversely, any diagrammatic Lie bialgebra arises this way for a unique
monoidal functor (F,J).

(2) A natural transformation of monoidal functors (P(D),U) — (LBA(k), ®)

gives rise to a morphism of the corresponding diagrammatic Lie bialgebras,
and any such natural transformation arises this way.

PROOF. (1) It is clear that ipgp = ide, and that igp o iy = igp~ for any
B” C B’ C B. The key point is to observe that the existence of the natural
isomorphism Jp/ g : F(B') ® F(B") — F(B'UB") for B 1 B” is equivalent to
the requirement that igg +igpr : bg @ bgr — bp/yp» be an isomorphism of Lie
bialgebras.

To this end, note that the naturality of J implies the commutativity of the
following diagram

F(B)) @ F(0) OB b opry 6 B (B F(0) & F(B")

JB/’ml JB/|,B// J/Jw’B//
1

F(B) F(B'UB") F(B")

F(BQ—@)G}F(idB// )
- -

F(B'—B'UB") F(B'UB"+B")

Since F(0) = 0, it follows that F() — B"”) = 0 = F(B’ + (). Moreover, the
compatibility of J with the unit, that is Jo g = idpc) = Jp,c, implies that the
above diagram reduces to

F(B') & F(B")

id @0 | o@id
JB,,BN
1

F(B') F(B'UB")

F(B//)

F(B'=B'UB") F(B'UB"«B")
so that Jp/ pv = ipp’ +ipB~.

(2) If (F,J),(G,K) are monoidal functors, a natural transformation F = G
of the underlying functors is clearly the same as a morphism ¢ : b — ¢ of the
corresponding diagrammatic Lie bialgebras. The only point is to observe that
@ is automatically compatible with the tensor structures, which follows from the
commutativity of the following diagram for any B = B’ LI B”

b b
ZBB’@ZBB”

bB/ @bB// %bB@bB ;bB
sasfﬂ%asnl wa%«m l‘PB

¢pr S epr —————pDp — B

S C - C
ZBB’@ZBB”
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Split diagrammatic Lie bialgebras can be described in similar terms. Let sLBA(k)
be the category of split Lie bialgebras (5.1). Then, the category of monoidal func-
tors (F,J) : (P(D),U) — (sLBA(k),®) is canonically isomorphic to that of split
diagrammatic Lie bialgebras. Note also that any such functor is automatically sym-
metric.

Remark. In view of Proposition 5.14, it is natural to define a diagrammatic object
in a monoidal category (C,®) as a monoidal functor (P(D),U) — (C,®), and a
morphism of such objects as a natural transformation of the corresponding functors.

6. DIAGRAMMATIC HOPF ALGEBRAS

In this section, we introduce the notion of diagrammatic Hopf algebra and quan-
tised universal enveloping algebra (QUE). We then point out that the quantisation
Q(b) of a diagrammatic Lie bialgebra b is a diagrammatic QUE, and that admissi-
ble Drinfeld—Yetter modules over Q(b) and its canonical subalgebras give rise to a
braided pre—Coxeter category.

6.1. Drinfeld—Yetter modules over a Hopf algebra [16, 39]. A Drinfeld—
Yetter module over a Hopf algebra 9B is a triple (V,my, 7)), where (V,my) is a
left B-module, (V, ;) a right B-comodule, and the maps 7y : B®V — V and
1V = B ®V satisfy the following compatibility condition in End(8 ® V)

mhomy =m® @y o (13)(24) 0 ST @id® 0A®) @ 73,

where m(3) : B®3 5 B and A®) : B — B®3 are the iterated multiplication and
comultiplication respectively, and S : B — B is the antipode.

The category DYy of such modules is a braided monoidal category. For any
V, W € DY, the action and coaction on the tensor product V ® W are defined by

Tvew = Ty @mwo(23)oc A®idygyy and mygyy = m* @idygw o(23) oy @7,
The associativity constraints are trivial, and the braiding is defined by By =
(12) o Ryyy, where the R—matrix Ryyy € End(V @ W) is defined by
Ryw = 1y @ idyy o(12) o idy @7}y,
The linear map Ryyy is invertible, with inverse
Ry = Ty @ idyy oS @ idygw o(12) o idy @y,
The braiding Syyy is therefore invertible, with inverse R;&N o (12).

6.2. The finite quantum double [11]. Let B be a finite-dimensional Hopf al-
gebra, and B° the dual Hopf algebra 8* with opposite coproduct. The quan-
tum double of 9B is the unique quasitriangular Hopf algebra (D9, R) such that 1)
DB =B ® B° as vector spaces 2) B and B° are Hopf subalgebras of DB and 3)
R is the canonical element in B ® *B° C DB ® DB. The multiplication in DB is
given in Sweedler’s notation by

b f-b @ f = (ST, f1)(bh, f3) b by @ for f (6.1)
where b, € B, f,f' € B°, and (-,-) : B ® B° — k is the duality pairing [11,
Sec. 13]. The quantum double can also be realised as the double cross product

Hopf algebra B ><B* associated to a matched pair of Hopf algebras. given by the
coadjoint actions of B on B* and of B* on B [30] (see also [3, Appendix A]).



COXETER CATEGORIES AND QUANTUM GROUPS 33

The category Rep DB is canonically isomorphic, as a braided monoidal category,
to DYq. Namely, there are two braided monoidal functors

DYa = Rep DB (6.2)
(S]

which are defined as follows

e For any DB-module (V,&y), O(V, &) = (V, my,ny) is the Drinfeld—Yetter
$B-module whose action 7y is given by restricting &, to B, and coaction
iby the formula 7},(v) = R1® v.
e For any Drinfeld-Yetter B-module (V,my,n},), E(V, 7y, 715) = (V, &) is
the DB-module such that B acts by 7y, and ¢ € B° by ¢ ® idy ony,.
One checks easily that the two functors are well-defined, and are each other’s
inverses [3, Prop. A.4].

6.3. Quantum double for QUEs. The construction of the quantum double can
be adapted for quantised universal enveloping algebras (QUE). Recall that a QUE
is a Hopf algebra B over K = k[A] which reduces modulo % to an enveloping algebra
Ub for some Lie bialgebra b, and is such that, for any = € b,
- o1 /=
5(z) = M mod K
where T € 9B is any lift of . A QUE is of finite type if the underlying Lie bialgebra
b is finite-dimensional. In this case, the dual B* = Homg (B, K) is a quantised
formal series Hopf algebra (QFSH), i.e., a topological Hopf algebra over K which
reduces modulo /i to Sb = [L, S™b. Conversely, the dual of a QFSH of finite type
is a QUE (cf. [11, 21] or [3, Sec. 2.19]).
If B is a QUE, set

B ={beB|(id—r0e)® 0 A (b) € A"B" for any n > 0}

where A ;9B — B2 ig the iterated coproduct. Then, B’ is a Hopf subalgebra
of B, and a QFSH [11, 21]. In particular, if B is of finite type, BY = (B')* is a
QUE. As in 6.2, (8,BY) is a matched pair of Hopf algebras [3, A.5]. The double
cross product DB = B><BY is a quasitriangular QUE, whose R—matrix is the
canonical element R € B’ ®BY and underlying Lie bialgebra is the Drinfeld double
gp =b@Db".

This construction extends to the case of finitely N—graded QUEs, i.e., N—graded
Hopf algebras %6 = @7@0 B, such that B, is a QUE of finite type, and each B,
is a finitely generated Bp—module. Note that such a QUE is a quantisation of
an N—graded Lie bialgebra with finite-dimensional components and cobracket of
degree d = 0 (cf. 5.4). Moreover, B’ = P,5((B' N B,) is also graded, and its
restricted dual B* = @n>0 (B’ NB,)* is a finitely N-graded QUE quantising the
restricted dual Lie bialgebra b*. The double cross product (DB)™ = B < B* is
called the restricted quantum double of B. (DB)™ is a quasitriangular, finitely Z—
graded QUE whose R—matrix is the canonical element in the graded completion of
B'®B*, and underlying Lie bialgebra is the restricted Drinfeld double gi* = b@® b*.

6.4. Admissible Drinfeld—Yetter modules over a QUE. The isomorphism
(6.2) between the categories of modules over the quantum double and Drinfeld—-
Yetter modules does not hold as is for a QUE and needs to be corrected.
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An admissible Drinfeld—Yetter module over a QUE ‘B is a Drinfeld—Yetter module
(V, 7y, m3;) for which the coaction 7}, : V — B ® V factors through B’ @ V. We
denote the category of such modules by DY35™.?! We show in [3, Prop. 2.22] that
DY&™ reduces modulo i to DY.

The following holds.

e If B is a QUE of finite type, since R € B’ ® BV, the functors Z, © from
(6.2) define an isomorphism of braided monoidal categories between DY g™
and Rep D®B. Moreover, this reduces modulo A to the isomorphism between
DY, and RepUgy.

o If ‘B is a finitely N—graded QUE, since R belongs to the grading completion
of B’ ® B*, the functors =, © define an isomorphism of braided monoidal
categories between DY§™ and the category of D®B-modules whose action
of B* is locally finite (i.e., for any v € V, (B’ N B,)*v = 0 for n > 0).
Moreover, this reduces modulo A to the isomorphism E** between DY, and
Egres (cf. 5.6).

6.5. Diagrammatic Hopf algebras. Let D be a diagram. A diagrammatic Hopf
algebra with underyling diagram D is a monoidal functor

(F,J) : (P(D),1) — (HA(k),®)

where HA(k) is the category of Hopf algebras over k (cf. Remark 5.14). Concretely,
this consists of the datum of

e for any B C D, a Hopf algebra Bp

e for any B’ C B, a morphism of Hopf algebras igp: : Bg: — Bp
such that

e for any B g l)7 iBB = id%B

e for any B” - B’ - B7 iBp’ Oip/Br = iR/

e for any B= B'UB",

mpoipp Rigpr :Bpr X Bpgr — Bp
is an isomorphism of Hopf algebras, where mp is the multiplication of B p.

The above properties imply in particular that By is equal to k. Diagrammatic
QUEs are defined similarly.

A morphism ¢ : B — B’ of diagrammatic Hopf algebras (resp. QUEs) is a
collection of Hopf algebra morphisms ¢p : B — B'; labelled by the subdiagrams
B C D such that, for any B’ C B, ¢ppoilg =ikg 0 ©0p.

6.6. Split diagrammatic Hopf algebras. Recall that a split pair of Hopf alge-

bras is the datum of two Hopf algebras 2, 8 together with Hopf algebra morphisms
A 5 B L A such that poi = idy [3, Sec. 4.6]. We denote by (sHA(k), ®) the
monoidal category of split Hopf algebras. The objects in sHA(k) are the same as
those in HA(k), and the morphisms are

Homgpa() (&, B) = {(i,p) € Hompa (A, B) x Hompay (A, B) [ poi = ida}

A split diagrammatic Hopf algebra is a monoidal functor (P(D),U) — (sHA(k), ®).
Concretely, this consists of a diagrammatic Hopf algebra B = {Bp}pcp, together

21The notion of admissible Drinfeld—Yetter module is due to P. Etingof (private communica-
tion), and is studied in detail in [3, 2.20-2.22].
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with Hopf algebra morphisms pg:g : Bp — Bp for any B’ C B, such that
pp'Boipp = idy,, and

o for any B, ppp = idp,

[ ] fOI’ any B/I g B/ g _B7 pB//B/ OpB/B :pBNB

e for any B = B/UB”, P BRpprpolAp: Bp — Bp ®Bpr is a morphism

of Hopf algebras, and the inverse of mp oipp ® ippr.
Split diagrammatic QUEs are defined similarly. A morphism ¢ : 8 — 9B’ of split

diagrammatic Hopf algebras (resp. QUESs) is one of the underlying diagrammatic
Hopf algebras (resp. QUEs) such that, for any B’ C B, p%,5 0 95 = pp 0 p5 5.

Remark. One can formulate in this context a quantum analogue of the Drinfeld
double of a diagrammatic Lie bialgebra defined in 5.10. If 95 is a split diagrammatic
Hopf algebra, where Bp are finite-dimensional Hopf algebras (resp. finitely N—
graded QUE), there is a diagrammatic Hopf algebra DB with (D®B)p = D®Bp
(resp. (DB)™ with (DB)y = (DB p)™*), endowed with a canonical embedding of
diagrammatic Hopf algebras B — DB (resp. B — (DB)™).

6.7. Drinfeld—Yetter modules over split diagrammatic Hopf algebras. If
2 = B is a split pair of Hopf algebras, there is a monoidal restriction functor
RGSQ(&; : DYQ; — DYQ[ given by

Resg o (V, mp,15y) = (V,mp 0@ @ idy, p ®@ idy on}y)
If A, B are QUEs, Resg o restricts to a functor DYE™ — DYg ™.

Proposition. Let B be a split diagrammatic Hopf algebra. Then, B gives rise to
an (a, Y)-strict braided pre—Cozeter category DY o, which is defined as follows.

e For any B C D, DYy g is the braided monoidal category DY s .
e For any B’ C B, the functor Fppg : DY%)B — DY%,B/ is the restriction
functor Resgs ,, 3, : DY, — DYsy,.

Similarly, a split diagrammatic QUE 8 gives rise to a braided pre-Coxeter cat-

egory DYR™ given by DY = DYR™.

6.8. Quantisation of diagrammatic Lie bialgebras. In [15, 16], Etingof and
Kazhdan construct a quantisation functor Q from the category of Lie bialgebras
over k to the category of quantised universal enveloping algebras over K = k[A].
One checks easily that Q respects direct sums, i.e., for any Lie bialgebras a, b, there
is an isomorphism of Hopf algebras Jyp : Q(a) ® Q(b) — Q(a @ b). In fact, this
holds for any quantisation functor.

Proposition. Every quantisation functor Q is canonically endowed with a monoidal

structure (Q,J) : (LBA(k), ®) — (QUE(K), ®).

PROOF. The result is an easy consequence of Radford’s theorem [31]. Namely, let
ig:a—adband p,:adb— abe the canonical injection of and projection to a
and set mq = iq 0 pa. Then, O(a @ b) projects onto Q(a) through O(iq) and Q(pq).
By Radford’s theorem, Q(a®b) is canonically isomorphic, as a Hopf algebra, to the
Radford product Q(a)x L, where L = {z € Q(a®b) | Q(m) ®idoA(z) =1®@x}. It
is easy to show that, in this case, L = Q(b) and Q(a) » Q(b) = Q(a) ® Q(b). The
isomorphism Jqp : Q(a) ® Q(b) — Q(a @ b) is given by Ja o = Mgage) © Lia) @
Q(ip), it is natural and defines a monoidal structure on Q. O
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The same holds for sLBA(k) and sQUE(K), since the quantisation of a split pair
of Lie bialgebras is a split pair of QUEs.

Corollary. The quantisation of a (split) diagrammatic Lie bialgebra is a (split)
diagrammatic QUE.
PROOF. A (split) diagrammatic Lie bialgebra is a monoidal functor (P(D),U) —

((s)LBA(k), ®). By composition with the quantisation functor, we obtain a monoidal
functor (P(D),U) — ((s)QUE(K), ®), i.e., a (split) diagrammatic QUE. O

6.9. Drinfeld—Yetter Q(b)—modules. The following is a direct consequence of
Propositions 6.8 and 6.7.

Corollary. Let Q : LBA(k) — QUE(K) be a quantisation functor, and b a split
diagrammatic Lie bialgebra. Then, there is an (a,Y)-strict braided pre—Cozeter
category DYB‘E’Q) defined by the following data
e Forany BC D, D "52}‘1)73 is the braided monoidal category D adE’{,B)
e For any B’ C B and F € Mns(B, B'), the functor
F]-‘ : D ddzn) B —D ddE]L))B/
is the restriction functor Resgp,,),0(b5)-

One checks easily that D “dz“) reduces modulo A to the braided pre-Coxeter
category DY defined in 5.12. In 10.10, we construct an equivalence of pre-Coxeter
categories between DY? Zﬂb) and a (non a-strict) deformation of DY,.

7. DiaAGRaMMATIC PROPSs

We review in this section the definition of PROPs, and introduce a PROP which
governs split diagrammatic Lie bialgebras.

7.1. PROPs [27, 29, 12, 3]. A PROP is a k-linear, strict, symmetric monoidal cate-
gory P whose objects are the non—negative integers, and such that [n]®[m] = [n+m].
In particular, [0] is the unit object and [1]®" = [n]. A morphism of PROPs is a
symmetric monoidal functor G : P — Q which is the identity on objects, and is
endowed with the trivial tensor structure

id: G(Imlp) @ G([nlp) = [m]q ® [n]q = [m + nlq = G([m + nlp)

Fix henceforth a complete bracketing b, on n letters for any n > 2, and set
b = {b,}n>2. A module over P in a symmetric monoidal category N is a symmetric
monoidal functor (G,J) : P — A such that*?

G(In) = Gy

and the following diagram is commutative

G([m )—>g([m+n]) (7.1)

gD @ G ——— G

m+n

22In a monoidal category (C, ) Vb%” denotes the n—fold tensor product of V' € C bracketed
according to by. For example VO = (Ve V)@ V.

(oo)o



COXETER CATEGORIES AND QUANTUM GROUPS 37

where @ is the associativity constraint in N.?> A morphism of modules over P is a

natural transformation of functors. The category of P-modules in A is denoted by
Fung (P, ).

7.2. The PROPs LA, LCA and LBA. Let LA be the PROP generated by a morphism
u: [2] = [1], subject to the relations

po (idpg +(12)) =0 and J7e (N®id[1])° (id[3]+(123)+ (312))=0

as morphisms [2] — [1] and [3] — [1] respectively. Then, there is a canonical
isomorphism of categories Funy, (LA, Vecty) ~ LA(k), where LA(k) is the category of
Lie algebras over k. We denote by LCA and LBA the PROPs corresponding to the
notions of Lie coalgebras and Lie bialgebras.

7.3. The Karoubi envelope. Recall that the Karoubi envelope of a category C is
the category Kar(C) whose objects are pairs (X, 7), where X € Cand 7: X — X
is an idempotent. The morphisms in Kar(C) are defined as

Kar(C)((X,7), (Y, p)) ={f € C(X,Y) [ po f = f=fom}

with id(x ) = m. In particular, Kar(C)((X,id), (Y,id)) = C(X,Y), so that the
functor C — Kar(C) which maps X — (X,id) and f +— f is fully faithful.

Every idempotent in Kar(C) splits canonically. Namely, if ¢ € Kar(C)((X, 7), (X, 7))
satisfies ¢> = ¢, the maps

i=q:(X,q) = (X,7) and p=q:(X,m) = (X,q)

satisfy i op = q and poi =id(x ¢

If P is a PROP, we denote by P the closure under infinite direct sums of the
Karoubi completion of P. If A/ is a symmetric monoidal category, a module over P in
N is a symmetric monoidal functor P — A such that the composition P — P — N
is a module over P. We denote the category of such modules by FunE(E,N). It
is clear that, if N is Karoubi complete and closed under infinite direct sums, the
pull-back functor

Fun (P, N') — Fung(P,N\)

is an equivalence of categories.

7.4. Diagrammatic PROPs. Let D be a non—empty diagram. We denote by Pp
the PROP generated by an idempotent 6 : [1] — [1] for any B C D subject to the
relations

L] 91) :id[l]
e forany B’ C B, 0g/ ofg =0p =fgofp
[ ] fOI‘ any B/ J_ BN7 QB/UB// = GB’ “+ 93//,

23Note that the requirement (7.1) determines J uniquely. In fact, given any functor G :
P — N such that G([n]) = g([l])ff:’, (7.1) defines a family of isomorphisms Jm.n : G([m]) ®
G([n]) — G(Im+n]), which is easily seen to be compatible with the commutativity and associativity
constraints in P and A. Such a J, however, need not be natural with respect to morphisms
in P, that is satisfy G(f ® g) = Jma.ny - G(f) ® G(g) - Jmim, for any f € P(lma],[ms]) and
g € P([n1], [n2]). For example, if N is strict, then J = id, and J is natural if and only if G is
multiplicative with respect to tensor products of morphisms.
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The above relations imply that 8y = 0, and that 0 0 fg» = 0 = Op» o Op/ for
any B’ L B” since if p,q are idempotents, p + ¢ is an idempotent if and only if
pg=0=qgp*

Let Q be a PROP, and consider the PROP Qp generated by the morphisms in
Q and Pp subject to the relation

H%m o f — f o 9%”
for any f € Q([n], [m]) and B C D.

7.5. The PROP LBAp. By definition, LBA is generated by a Lie bialgebra object

([1], u, 0), and idempotents 6 € End([1]), B C D, which are Lie bialgebra maps.
For any category C, denote by sC the category with the same objects as C, and

with a morphism X — Y in sC given by a pair of morphisms¢: X - Y, p:Y — X

in C such that poi =idx.

Proposition. Let N be a k-linear, symmetric monoidal category, and LBA(N) the

category of Lie bialgebras in N'. Let (P(D),U) be the partial monoidal category of

subdiagrams of D introduced in 5.14. Then, there is a canonical isomorphism of
categories

Funy(LBAp, V) ~ Fung ((P(D), 1), (sLBA(N), ®))
In particular, the notions of module over LBA and split diagrammatic Lie bialgebra
i N coincide.
PROOF. Let 7 : P(D) — sLBA, be the functor given by
» T(B) = ([1],05)
o T(B'C B)=(i=0p:([1],05) — ([1],05),p = 05 : ([1],05) — ([1],05))
T is a tensor functor (P(D),U) — (sLBAp,®) with the (iso)morphism 7 (B’) @
T(B") — T(B'UB") given by the pair of morphisms
i=0p +0p : (1] @ [1],05 & 0p) — ([1],05us")
p= 93/ &b oB// : ([1];GB'UB”) — ([1] (&) [1]793/ D 93//)

which are each other’s inverses because 0p/ g = g + Op.
The functor Fun,(LBAL, N') — Fung(P(D),sLBA(N)) is defined by precompo-
sition with 7, and is easily seen to be an isomorphism. O

8. UNIVERSAL ALGEBRAS

In this section, we define a family of algebras which are universal analogues of
the tensor powers U g‘?" of the enveloping algebra of the double of a diagrammatic
Lie bialgebra.

8.1. Colored PROPs. A colored PROP P is a k-linear, strict, symmetric monoidal
category whose objects are finite sequences over a set A, i.e.,

Obj(P) = [T A"
n>=0
with tensor product given by the concatenation of sequences, and tensor unit given

by the empty sequence. Modules over a colored PROP P and its closure P are
defined as in 7.1 and 7.3, respectively.

241f p, q are idempotents, (p + q)2 = p + q is equivalent to pg = —gp. This implies pg = pg® =
—qpq = ¢°p = qp, and therefore pg = 0.
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8.2. Universal Drinfeld—Yetter modules. Given a diagram D and n > 0, the
category DYT, is the colored PROP generated by n + 1 objects, [1] and {V,}7_,,
and morphisms

o 05:[1] =[], BCD
o n:[2) =[], 0: 1) = [2

o mp: [1]®@V, =V, and 7 : V,, — [1] @V,
such that
e ([1],{fB}BCD: 1,0) is an LBAp—module in DY

o cvery (V;, 7, 7)) is a Drinfeld—Yetter module over [1]
In particular, DY® = LBAp.

8.3. Modules over DYp. If AV is a k-linear symmetric monoidal category, DY)~
modules in NV are isomorphic to the category whose objects are tuples (b; Vi,...,V,)
consisting of a diagrammatic Lie bialgebra b in A, and n Drinfeld—Yetter modules
Vi,..., Vo € N over bp. A morphism (b;Vy,..., V) = (¢ Wi,...,W,) is a tuple
(¢5 f1,- -+, fn), where ¢ : b — ¢ is a morphism of diagrammatic Lie bialgebras, and
fi : Vi = W, are such that the following diagrams are commutative

bp®V, ——— V; Vi—Sbp @V,
¢D®f¢l lfi le ld’D@fi
¢p @ Wi —— W, Wi ——ccp @ W;
i Ty

k3

so that f; is a morphism of bp—modules V; — ¢, W, as well as a morphism of
cp—comodules (¢p).V; — W;.

8.4. Universal algebras. Let L} be the algebra defined by
Up = Endpyr (V, ®---®V,,)

Let A be a symmetric tensor category and (b;Vi,...,V,) a DY[—module in N.
The corresponding realisation functor Gy, : DY, — A yields a homomorphism
R — Endy (V1 @ -+ ® V,,). We shall need the following.

Lemma. Let (b;Vy,...,V,) and (¢;Wh,...,W,) be two DY},-modules in N, ¢ :

b — ¢ a morphism of split diagrammatic Lie bialgebras, and
f e oV, -We---0W,

a morphism which intertwines the action of bp and the coaction of cp on each tensor
factor. Then, f intertwines the action of U on Vi ®@--- @V, and W1 ® -+ - @ W,.

PROOF. Let Go.v,Geow : DYy — N be the realisation functors corresponding to
(b;V4,..., Vo) and (¢; We,...,W,).

By 8.3, the result holds if f is of the form f; ®---® f,, where each fj : Vi, — Wy
intertwines the action of bp and coaction of ¢p. Indeed, in that case (¢; f1,..., fn)
gives rise to a morphism Gp.y — G, whose valueon Vi ® --- @ V,, is f.

More generally, consider the colored PROP MB" generated by an LBAp—module
(1],{0B}BCcD, 1, 6), together with an object V endowed with n commuting actions
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7t [1]®V — V, and n commuting coactions 7} : V — [1]®V such that (V, 7w, 7})
is a Drinfeld—Yetter module over [1] for any 1 < k < n. There is a natural tensor
functor A : mgn — DYp which maps [1] to [1] and V to V; ® --- ® V,,.

The pair (¢; f) gives rise to a morphism of functors G,y 0 A — G 0 A, so that
f intertwines the action of EndDYIl),n MonVi® - @V, and Wy @ --- @ W,,. The
result now follows because the functor A is full. O

8.5. Diagrammatic structure on universal algebras. For any B’ C B, there
is a canonical realisation functor DYy, — DY which sends the object [1] 5/ in DY,
to the Lie bialgebra 0p/([1]p) = ([1]p,0p/) in DY}, and each (Vg 1, 7Bk, T 1)
to

Resg,, (115),1115 VB ks TB.k: TBk) = (Vg o Bk 0 05 @ id, 0 @ idomp 1)

where 0p/ is regarded both as the split injection ([1]p,0p/) — [1]p and projection
1]z — ([1]B,0m/) (cf. 7.3). The functor induces a homomorphism igp : U%, — UR,
and it is clear that iBB = idu%, and iBB' o iB'B” = iBB” for any B” - B’ - B.

Proposition. The algebras {{%}pcp and maps {ipp }pcp give rise to a lax
diagrammatic algebra, which we denote by U™.

PROOF. We need to prove that if B’ L B”, the images of ipps and ipp» commute
in 4. This can be proved by a direct computation [4, Prop. 10.6]. We give a more
conceptual proof below.

By Lemma 8.4, it suffices to show that the action of %, on V; ®---®V,, € DYy
commutes with the action and coaction of [1]p on each V. It is easy to check that
each of these commutes with both the action and the coaction of [1]g» on V. This
implies that the maps

Bk Vi® (1l eV,)® -V, —V,®---QV,
ngykyl(g®Mn—)yl®®([1]3/®yk)®®yn

commute with the action and coaction of [1]p~ on each tensor factor, where [1]p
is given the structure of trivial Drinfeld—Yetter module over [1]p~.

By Lemma 8.4, if 2 € U, and 2y (resp. x§17~~-,[1]B/®Mk,---7Mn) denote its
actionon V; ® --- @V, (resp. V; ® - @ ([l]pr ®V,) ®---®V,), then

" _ o
TV, B = BTV 1] 58,00V,
* Lo R/ Lk
T8k TV, Y, = IV, e ®Y,,.Y, " TB Lk

The conclusion now follows from the fact that, since [1]p/ is regarded as a trivial
Drinfeld—Yetter module over [1]p~,

" . "
TV, 1] g @YY, = 0] @2y Ly

n

under the identification V; ®- - @ ([1]pr ® V) ®---®V,, [l @V, ®---QV,,. O

Remark. We show in [4] that, for any B’ C B, the homomorphism igp: : %, — U%
is injective. We shall therefore regard 4%, as a subalgebra of U’% and, for x € U,
write € U} instead of ipp/(x) € U%. Moreover, {{{}}pcp is a diagrammatic
algebra, since multiplication induces an isomorphism U} 5 = U% @UE [4, Prop.
10.6 (4)].
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8.6. Fiber functors and diagrammatic structures. Let now b be a split dia-
grammatic Lie bialgebra. For any B C D, let

fop : DYp, — Vecty  and Uy, = End (f?g)

be the forgetful functor and algebra of endomorphisms of ngB”. By definition, an
element of U is a collection zv, . v, € Endy(Vi®---®V,,) labelled by V4, ...,V,, €
DYy, such that if f; € Endpy, (Vie, Wi), 1 <k <n, then

A® @ fnozv, v, =2w,,. . w,0f1® - ® fy

The equivalence between DYy, and equicontinuous modules over gp,, (Section 5.6)
gives rise to a map Ugg@]g — U, which is an isomorphism if dim bp < oco.

For any B’ C B, (bp/,bp) is a split pair of Lie bialgebras. The corresponding
restriction functor DYy, — DYy, induces a homomorphism igp: : Z/{{}B/ —= Uy,
which clearly satisfies ipp = idz,{ng and igpr oipg g = igp~ for any B" C B’ C B.

Proposition. The algebras {L{[?B}BQD and maps {igp ' }p'cp give rise to a lax
diagrammatic algebra, which we denote by U

PRroOF. We need to prove that if B’ 1 B”, the images of ipp/ and ipp» commute
in Uy . It is easy to check that the action and coaction of bp: commute with those
of bpr on any V € DYy,. Thus, bp: acts and coacts on each tensor factor of
1®---®@Vy, Vi € DYy, through morphisms in DYy ,,. By definition of Z/{{}B” , the
action of the latter on V; ®- - -®V,, therefore commutes with the action and coaction
of bp/ on each tensor factor. Thus, L{QB” acts by tensor products of morphisms in
DYy, and thefore commutes with U{}B,. [l

8.7. Universal algebras as endomorphisms of fiber functors. The following
shows that the lax diagrammatic algebra 4™ obtained in 8.5 is a universal analogue
of the lax diagrammatic algebra U obtained in 8.6.

Let B C D. For any n-tuple {Vj,m, 7}, of Drinfeld-Yetter modules over
bp, let

G(op:vi,.... Vi) : DYp — Vecti
be the corresponding realisation functor.
Proposition.
(1) There is an algebra homomorphism
Poy  Up — Uy,

which assigns to any T € U%, and any Vi,...,V, € DYy, the endomor-
phism Gopvi,...,v,) (T) € Endu(Vi ® -~ @ Vo).

(2) The collection of homomorphisms {py,} Bcp is a morphism of lax diagram-
matic algebras py : U™ — U,

PROOF. (1) follows from Lemma 8.4. (2) is clear. O
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8.8. Cosimplicial structure of U/;. For any B C D, the tensor structure on
DYs, endows the tower {U{ }n>0, with the structure of a cosimplicial complex of
algebras

k = End (fo,,) =} End (f52) = End (5%
which is compatible with the cosimplicial structure on {U gi@g}nzo induced by the
coproduct, via the maps Ug?}? — Uy,
The corresponding face morphisms d* : End (ngB") — End (ngB”H), 1=0,...,n+

1 are given by (dSp)y = (dfp)y = ¢-idy, for ¢ € k and V € DYy, and, for n > 1,
¢ € End (f2"), and V; € DY, 1<i<n+1,

idVl ®QPV2,~~~7Vn+1 =0
m . .
(di SD)V17~~~;‘/71+1 - PVi,.. ., Vi®Vig1,... Vit I<i<n
PV, Ve @ ian+1 i=n+1

The degeneration homomorphisms &¢, : End (f?g) — End (f[i"_l), i=1,...,n, are

)
(EnSD)Xl,...,anl = PX1,0Xic1,1,X4,.., X0 1

where 1 is the trivial Drinfeld—Yetter module. The morphisms &, d? satisfy the
standard relations ] _ _ _
di_z+_1d:1 =dpdl7t i<

i _ i gt . .

E%,En—i-l - EnEnJrl ? g J

y _1 . .

‘ dy_q€) 1< ]
Enady = id i=3,j+1

di-hel  i>j41
and give in particular rise to the Hochschild differential
n+1

g — ;(_Uid;z - End (be") — End (fLZZ“rl)

The cosimplicial structure is compatible with the maps {ipp' } p'c c p and therefore
determines a cosimplicial lax diagrammatic algebra /.

8.9. Cosimplicial structure of ${*. The above construction can be lifted to the
PROPs DY'%;. For every B C D, n > 1 and i = 0,...,n + 1, there are faithful
functors
D} : DY% — DY
mapping [1] to [1], and given by
Dy (Vi) = Vi and Dppa(Vy) = Yy,
for1<k<n,and, for1 <i<n

)

D (Vy) =9 Vi®V,y
Vi, i+l<k<n

vV, 1<k<i—1
k:

1

and £ : DY%, — DY?, !

ED =Gy, v, 1 Vi Mo 1)

Vi1V
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where 1 is the tensor unit in DY, regarded as trivial Drinfeld—Yetter module.
These induce algebra homomorphisms

A} — Ut

which are universal analogues of the insertion/coproduct maps on U gb . They en-
dow the tower {{% },,>0 with the structure of a cosimplicial algebra, with Hochschild
differential d" = Z;:rol( 1)PA? @ 8% — (%P This structure is compatible with
the maps {ipp } B'cBcp and therefore it extends to a cosimplicial structure on the
lax diagrammatic algebras ™.

The following is straightforward.

Proposition. The morphism of lax diagrammatic algebras pf, : U* — Uy obtained
in 8.7 is compatible with the cosimplicial structures.

9. UNIVERSAL BRAIDED PRE—COXETER STRUCTURES

We introduce in this section a class of braided pre-Coxeter categories related to

split diagrammatic Lie bialgebras. They are universal, in that they are arise from
the PROPs DY, defined in Section 8.

9.1. Gradings. Let B C D. The PROP DY’} has a natural N-bigrading given by
deg(o) = (0,0) = deg(fp:) for any 0 € S and B’ C B,

deg(p) = (1,0) = deg(ﬂyk) and deg(d) = (0,1) = deg(ﬂ'ik)
for any 1 < k < n.

The algebra 47 inherits this bigrading and is concentrated in bidegrees (N, N),
since a degree (p,q) morphism with source V; ® --- ® V,, is easily seen to map to
[1]2@P) @V, ®- - -®V,. Forany a,b € N, the corresponding N-grading determined
by mapping (1,0), (0,1) to a,b respectively yields the same graded completion ﬁ’é
of %, so long as a +b > 0. For definiteness, we set a = 0 and b = 1. The
morphisms {z B B/} pcp naturally extends to the graded complet1ons and induce on

the algebras , B C D, a lax diagrammatic algebra structure il", which extends
.

9.2. Invariants. For any pair of subdiagrams B’ C B, denote by ﬁ%_’B, - ﬁ% the
subalgebra of elements which commute with the diagonal action and coaction of
[bp] = ([1],0p) on V; ®---®V,,. Note that, by Lemma 8.4, {{}; 5, commutes with

the diagonal action of QB, onV, ® --®YV,, which is given by

L[B/ ST — 12,0 = Afllfl 0--+0 A% o A}(I)

9.3. Associators. Fix B C D. Define the r-matrix r = ry v, € LAI2B as the
composition

TV,V, = TV, X idy2 o (1 2) o idyl ®7T§2
(resp. 14} v = idy, @7y, o (12)o7y ®@idy,), and set @ = 7' +r?'. An invertible,
invariant element ® € 11337 g is called an associator if the following relations are
satisfied (in {4 and 803, respectively).

e Pentagon relation

D1,234P1234 = P23 4P1234P12,3
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[ ] Hexagon I'elations
Q 2 Q 2571 Q 2
e 12’3/ — @3_’ 738 13/ @]73_’28 23/ @ ,2,3
Q 2 —1 Q 2 Q 2571
e 1'23/ == @2)3716 13/ @L )36 12/ @]72)3

e Duality
B394 = ‘I)iés
o 2—jet
1 o~
d=1+ ﬂ[le, Q3] mod (U%)>s

9.4. Braided pre—Coxeter structures on ge.

Definition. A braided pre-Cozeter structure (®p, Jr, Y rg,a%,) on $(* consists of
the following data.

(1) Associators. For any B C D, an associator &g € ﬁ%)B. We set Rp =
exp(Qp/2) € 5.12373.

(2) Relative twists. For any B’ C B and maximal nested set 7 € Mns(B, B’),
an invertible element Jr € LLQB)B, such that (Jr)o = 1 and e3(Jr) =1 =

e3(JF), where 3,3 : LALQB — LALB are the degeneration homomorphisms, and
satisfying the following properties.

e Compatibility with associators. The relative twist equation holds,

Jri123-JFe3 P = ®p-Jri123- Jr 12 (9.1)
e Normalisation. For any B C D, Jg = 1.25

(3) De Concini—Procesi associators. For any B’ C B and F,G € Mns(B, B’),
an invertible element Ygx € Uy p, such that (Ygr)o = 1, e(Ygx) = 1, and
satisfying the following properties.

e Compatibility with J. For any F,G € Mns(B, B'),
Jg = (Ygrhz-Jr - (Tor)i' - (Tor);'
e Horizontal factorisation. For any F,G, H € Mns(B, B’),
Tur="Tung YTgr
In particular, Yrr =1 and YTxg = T;}

(4) Vertical joins. For any B” C B’ C B, F € Mns(B,B’), and F’' €
Mns(B’, B"), an invertible element a%, € Up g, such that (a%)o = 1,
e(a%/) = 1, and satisfying the following properties.

e Compatibility with J (vertical J—factorisation).
Jrur = @F e Jr - Jr - (@F)7 - (aF); !

e Compatibility with T (vertical Y —factorisation). For any F,G €
Mns(B, B’) and F',G’' € Mns(B’, B"),

f
Y (gugy(FuF) - @ = ag, - Ygr - Lgrr

25Here B is identified with the unique element in Mns(B, B).
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e Associativity. For any B” C B” C B’ C B, F € Mns(B,B’),
F’ € Mns(B’,B"”), and F” € Mns(B", B""),
a_];;/uj: . a_];/ - ai//u]:/ . a_];;/
e Normalisation. For any F € Mns(B, B'),

ag,:1:a§

Consistently with the diagrammatic algebra structure on ﬁ‘, specifically the fact

that ﬁ%lu B, = ﬁ%ﬁ ®5.A1’E§2 (Remark 8.5), we further require that J, T and a satisfy
the following property.

e Orthogonal factorisation. If BY C B C By L By 2 B, 2 BY,

(F1,F2) € Mns(By U By, B} U BY), (F1,F4) € Mns(B; U B}, BY UBY),

®p,up, = P, PB,
J(]:h]:Q) = J}-l : J]‘-2
T(gth)(]:h]:Q) = Tglfl : TQ2.7-'2
(F1,F2) 271 . g7z
(FLF) = 2R Am
Note that Rp,up, = Rp, - Rp,- Moreover, since ﬁ%l and Q%Q commute, the

order of the products in the above identities is irrelevant. The following is a direct
consequence of the orthogonal factorisation and normalisation of J, T, and a.

Lemma.
(1) For any B' C B L B", and F € Mns(B, B'), J(r,pn) = JF.
(2) For any B CBL BN, and F,G € I\/Ins(B,B’), T(]_‘)B//)(Q7BN) = T]:g.
(8) For any By C By L By D B}, F1 € Mns(B1, By), and F2 € Mns(Bs, B}),

(F1,B2) _ 4 _ . (B1,F2)
3syF) = 1= 3R By-

9.5. Twisting of braided pre—Coxeter structures on g,

Definition.
(1) A twist in 4° is a pair T = (u, K) where
(a) u={ur} is a collection of invertible elements in LALB) g, indexed by a
maximal nested set F € Mns(B, B'), which satisfy e(ur) = 1 and or-
thogonal factorisation, i.e., for any B} C By L By D Bj, and (Fi, F2)
in Mns(B1, B]) x Mns(Bg, B}) = Mns(By U By, B} U BY),

U(Fy,Fp) = UFy " UF, = UFy - UF,
(b) K = {Kp} is a collection of invertible elements of LAI2B g, indexed by
subdiagrams B C D, which satisfy e}(Kp) = 1 = ¢3(Kp), are sym-

metric,i.e., (Kp)21 = Kp, %% d(Kg); = 0, and such that Kp, 5, =
Kp, - Kp,.

(2) The twisting of a braided pre-Coxeter structure € = (&g, Jr, Txg) by a
twist T = (u, K) is the braided pre—Coxeter structure

¢r = ((®8) s, (JF) () (YFG)u, (@F )u)

26 There is a natural action of &, on U% given by permutations of V; ® ---® V,, (cf. [4, Sec.
7.2]), which is a propic version of the action of &, on Ug(bgm.
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given by
(®5)k = (Kp)ys - (Kp)iss ®5- (KB)i2s- (Kb
(JF)wr) = (ur)y -Kg'-Jr-Kp-(ur)i - (ur)
(Yrg)u = ur'  Trg-ug
(af,)u = u},luf . af, CUF - UF

Remark. The twisting of a braided pre—Coxeter structure does not affect the R—
matrix Rp = exp(Q2p/2) (cf. [4, Sec. 13.2]).

9.6. Gauging of twists transformation.

Definition.

(1) A gauge is a collection a = {ap} of invertible elements ap € QB)B indexed
by subdiagrams B C D and satisfying

aBluBg = aBl : a/BQ
(2) The gauging of a twist T = (u, K) by a is the twist T, = (uq, K,) given by

(ur)a = ap -uF - ag'
(Ka)p = (ap)i2- K5 - (ap);" - (ap);"

Remark. It is easy to see that if (u, F') is a twist, and a a gauge, the twist of a
braided pre—Coxeter structure on {* by (u, F') is the same as that by (ug, Fy,).

9.7. Deformation Drinfeld—Yetter modules. Let b be a split diagrammatic
Lie bialgebra and gp its Drinfeld double. We explained in 8.4 that ™ is a universal
analogue of the diagrammatic algebra U g?". In a similar vein, we now show that
the completion 4" introduced in 9.1 is a universal analogue of the trivially deformed
diagrammatic algebra Ugg™ [A].

Let for this purpose ¢ be a Lie bialgebra and DY;Ci the category of Drinfeld—Yetter
¢-modules in topologically free k[h]-modules. Scaling the coaction on V € DY by
h yields an isomorphism between DY” and the category DY2#™ of DrinfeldYetter
modules over the Lie bialgebra ¢ = (c[A], [, ||, hd), whose coaction is divisible by A.
We denote by LA{C” the algebra of endomorphisms of the n—fold tensor power of the
forgetful functor f. : DY;:‘ — Vecty[]- LA{C" identifies canonically with the analogous
completion defined for DY¢™.

In the case of the diagrammatic Lie bialgebra b, the realisation functors

Gonvi.....vi) * DY — Vectiay
corresponding to Vi,...,V, € DY;‘,}:‘ = DY]ZB induce a homomorphism pp : 4™ —
Uy which naturally extends to 4".27 In particular,

Poy(my, 0my ) =hY bb'  and  Bg (rv,v,) =h) b @b

K2

2"Note that DY? can also be identified with the category of Drinfeld—Yetter modules over the
Lie bialgebra ¢, = (c[A], i[-,:],d) whose action is divisible by h. The corresponding realisation
functors for bp ; yield the same homomorphism ﬁ'g ST = U



COXETER CATEGORIES AND QUANTUM GROUPS 47

where {b;}, {b'} are dual bases of bp and b%.>® Note also that if B’ C B, the
definition of the subalgebra of [bp/|-invariants in {} (§9.3) implies that U% g is

mapped by py _ to elements of Zj{}B commuting with the diagonal (co)action of bp:.

9.8. From universal algebras to Drinfeld—Yetter modules. We shall make
use of the following standard construction due to Drinfeld. Let b be a diagram-
matic Lie bialgebra, B C D, and ®p € ﬁ% an associator. Then, DY‘EB is the
braided monoidal category with the same objects as DYZLB, and commutativity and
associativity constraints given respectively by

Bon = (12) 0 p3, (e27/%)  and @y, =77, (®5)

Proposition. Let b be a diagrammatic Lie bialgebra.
(1) A braided pre—Cozeter structure € on e gives rise to a braided pre—Coxeter
category ]D)Yg with
e diagrammatic categories DY% 5= DY:,I)};3
e restriction functors F; : DYfBB — DYE);/ of the form (ResbB,bB,Jg)
for some tensor structure JJC_- on Resp b5
Moreover, ]Dﬂlig is a deformation of DY, (cf. 5.12).
(2) A twist T in 8 gives rise to a 1-isomorphism Ty : DYy — DY{".
(8) A gauge g in U gives rise to a 2—isomorphism gp : Te = (Tg)e-
PROOF. (1) Consider the following data.
e Diagrammatic categories. For any B C D, set ID)YsB = DYE}’;.
e Restriction functors. For any B’ C B and F € Mns(B, B’), the action of
JE = ﬁ%B (J£) defines a linear automorphism of V@ W, for any V,W €
]D)Yg - By the properties of J, this defines a tensor structure on the stan-
dard restriction functor Resp, »,. Then, we set F; = (RGSbB,,b37 J;_),
where the tensor structure is given by the natural isomorphism

(J]Q_-)VJ/V : ReSbB/,bB(V) ®Resb3/,bB(W) — ReSbB/,bB(V X W)

e De Concini—Procesi associators. For any B’ C B, and F,G € Mns(B, B'),
the action of Tgf = poy(Ygr) defines a linear automorphism of V' €
]D)Yf p- By the properties of Tgr, this defines an isomorphism of tensor

functors Ff- = FgG
e Vertical joins. For any B” C B’ C B, 7" € Mns(B’, B"), F' € Mns(B, B'),

/€
let a%, Ff-” o F§, = FQ,U}-,, be the tensor isomorphism defined by
Db (aﬁ/), together with the equality Resp,,, 6, 0 Rese,, b = Reso,, 05

These satisty the conditions of Proposition 3.4, so that ]D)Yg = (DYgB,Fg, JJG_-7

e
T%_-g, aZ, ) is a braided pre-Coxeter category.

28Note that the realisation functors corresponding to the tuples (b%; Vi,...,Vn) and
(bp;Vi,...,Vn), where Vi,...,V,, € DYZ%B"‘ o DYZB do not lead to the same homomorphism

un — ZZ? because b}}g is not isomorphic to bp[h] as Lie bialgebras.
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(2) Let T = (u, F) be a twist in $* and ¢r the twisted braided pre-Coxeter
structure (cf. 9.5). Define a 1-isomorphism Ty = (Hp,7v%) : DYy — DY as
follows.

e For any B C D, we denote by Hp, the identity functor on ID)Yg p endowed
with the tensor structure p%(Fg). It follows from Definition 9.5 that HE
is a braided tensor equivalence DY& B DY&TB.

e For any B C B C D and F € Mns(B, B’), we denote by 7% the natural
isomorphism FJET oHL = Hp, o Ff- induced by ppp/(ur). 7= is a well-
defined isomorphism of tensor functors satisfying the vertical factorisation
property.

(3) Finally, let g be a gauge in 4 and T the gauged twist (cf. 9.6). Define
a 2-isomorphism gp : Ty = (Tg)e as follows. For any B C D, denote by v% the
isomorphism of braided tensor functors Hy = Hgg given by pp(ggr). It follows
from the definition of g that ,Y}T:g ov} =18, ok O
Definition. Let b be a diagrammatic Lie bialgebra, and {®p}pcp a collection of
associators. A braided pre—Coxeter category with diagrammatic categories DY:,D;
is called universal if it is of the form DYS, for some braided pre-Coxeter structure
¢ on L°.

9.9. Coherence and minimal data. Let ¢ = (®p, Jr, Txg,a% ) be a braided

pre—Coxeter structure on §[*. We show in this section that ¢ is determined by its
vertical joins, together with a minimal collection of associators, relative twists, De
Concini—Procesi associators, vertical joins. We shall need two preliminary results.

99.1. Let B C B, FEMns(B,B)and C: B =By C B C--C B =Ba
maximal chain from B to B’ corresponding to F (cf. 2.3). For any 1 < k < ¢, denote
by Fi € Mns(By, By) the restriction of F to By, and note that F, = Frp_1 U E,
where & is the unique element in Mns(By, Bx—1).

Lemma. Define bc € iAlByB, by
£ Eo &
bc=a%  -ay | ---aF (9.2)
(1) bg is independent of the choice of C, and will be denoted br.
(2) For any B" C B’ C B, ' € Mns(B, B’) and F" € Mns(B’, B"),
aj;:, = b]:/U]:N . b;-/l : b;-/l/
PrOOF. (1) Lemma 9.4 (3) implies that b is constant on the connected components
of the graph Gp g (cf. 2.3). (2) Let C: B =By C B;1 C---C B, =Bbea
maximal chain such that B’ = B,,, for some 1 < p < £ — 1, and the restriction of
C to a chain from B” to B’ (resp. B’ to B) corresponds to F" (resp. F'). Note
that, with respect to the notation established above, we have
Fl'=F,=&U---U&  and  F =&UE1U---U&n
For 1 <k </l —p, we set Fj, :=Epyp U---UEpy1. By definition,

_ & S8 St & 6
b]-‘/ufll—a]_-271 a]_—p+l a]_-p afVl agl

& L S8 (Gt
—a]_-271 a]_—p+l a]_-p b]://
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Note that, by the associativity of the vertical joins,

Eptz | Ept1 _ Ept2Upt1  _Epta
a]:p+1 a]:p B a]:p agp+1

More in general, for any 1 < k < £ — p, we have Fpi = F;, U F, and

Eptirt T _ Fhtr | Eptrtr
a]:p+k a]:p_a]:p a]:;;

Therefore, we get

_ & G2 S
brur = ar, ., a]:p+1 afp bz

Fiep & R

- a]:p ' a]_-l{7 Ep+t1 ' b}-”

p—1

= aj;:, . b]:/ . b]://
where the second identity follows from iterated applications of the associativity of
the vertical joins. (|

9.9.2. Let now B’ C B, and F,G € Mns(B, B’). Assume there is a chain of
inclusions B’ = By C By C By C B3 = B, and Fi, G, € Mns(By, Br—1), 1 <k < 3,
such that

F=FRUFRUF; G=G1UGUGs
F1=G and  F3=0s
so that F, G only differ in the choice of an element in Mns(Bs, By).
Lemma. The following holds
bg' - Ygr-br=bg! - Yg,r br

PROOF. The compatibility of the associators T with the vertical joins yields

—1
_ .9 G F- 7
Tor =agug, 3G YTar Tor Tz - (aqufl 'aff)
1 -1 -1 1
:bg'bg3 .bgz .bgl 'TC’?]:Q'b-Fl'b]:z'bfs'b]:
-1 1
—bg by Tg,7, -br, by

where the second identity follows from Lemma 9.9.1, /1 = G;, and F3 = G3, and
the third from the invariance of Yg,r, under [bp,] and that of bg, under [bp,]. O

Remark. Recall that if B C B and F,G € Mns(B, B’), there is a sequence
F=Hi1,...,Hm =G in Mns(B, B’) such that H; and Hj_; differ by one element
[37, Prop. 3.26]. We term such a sequence an elementary sequence. Moreover, if
F,G € Mns(B, B’) differ by one element, there are a unique B € F N G, vertices
i # j € B, and maximal nested sets F,G € Mns(B, B \ {i,j}) such that
F=HUFUH'" and G=H UGUH"
for some H' € Mns(B, B), H" € Mns(B\ {i, j}, B'), where
B=Bu |J B
B" €conn(B’)
B”ZE
Then, it follows from the result above and Lemma 9.4 (2), that
bg' - Ygr -br =bz' Tgz b
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9.9.3. We show below that € is determined by the elements by, where H is any
maximal nested set, and (®p, Jp g/, Trg), where B is connected, B’ C B is a 1-
step maximal chain with B connected, and F,G are maximal 2—step chains of the
form B” C B} € B and B” C B}, C B respectively, with B connected.

Eroposition. Let € = (Pp, J;,T;g,af,) be a braided pre—Cozeter structure on
sU*. Then,
(1) For any BC D,
op =[] ®s.
where the product is over the connected components of B.
(2) For any B' C B, F € Mns(B, B')
Jr = (brh2 - Jpepe s Imime - (bF)T - (bF)s "

where B' = By € --+- € By = B is a maximal chain corresponding to F.
(3) For any B’ C B, and elementary sequence H1, ..., Hmy in Mns(B, B'),

—1 —1 —1
THmHl = b'Hm : (bﬁm ’ Tﬁmﬁm—l ’ bﬁm—l) e (bﬂz ’ Tﬁ2ﬁ1 ’ bﬁ1) b'Hl

PROOF. (1) is the orthogonal factorisation property of the associators ®.
(2) For k = 1,...,¢, let Fj be the restriction of F to By and & the unique
element in Mns(By, Bi—1), so that Fj, = & U Fx_1, and F = F;. Then,

& £ — £ —
Jr = (3;171)12 : JS@ 'J]:E—l ’ (afe,1)1 ' (afe,1)2 '

13 Eo— Ee1\—1 Ee1\—1 £ -1 £ -1
= ( _7'5[,1)12 ’ Jgé ’ (a]‘fg,;)l2 ’ ng—l : J]:Z—2 ’ (a]-é,lz)l ’ (a;g,12)2 ’ (a;ﬁ71)1 ’ (3]:271)2

. Ep Er_1 Ep Ep_1\—1 Ep Er_1\—1
= (af,_;,l : af,g,g)u e, Jep s IF s (afg,l 'afg,2)1 : (af,_;,l ‘ af,g,g)z

£ & & EaN—1 (& E2y—1
=@%,_, ragheJe o Je (A%, rag)r - (AF, o rag)s

= (brhiz-Je, - Je, - (br)7 " (br)3 !

where the second identity follows from the invariance of Jg, under [bp, ,].
(3) follows from Lemma 9.9.2 and the subsequent remark. (]

9.10. Strict pre—Coxeter structures. By Proposition 9.8, a braided pre—Coxeter
structure € = (¢, Jr, Y g, af,) on 4° gives rise to a braided pre—Coxeter category
]D)YS. The following conditions ensure that ]D)YS is T—strict or a—strict (cf. 3.7 and
3.8).
We say that

o € is Y—strict if Y rg = 1 for any F,G € Mns(B, B')

e ¢ is a-strict if a%, = 1 for any F € Mns(B, B’) and F’ € Mns(B’, B") #
The following result shows that we can always restrict to either of these cases.

Proposition. Let € be a braided pre—Coxeter structure on ge.

(1) € is twist equivalent to a Y —strict braided pre—Coxeter structure.

291 [4] we only consider a-strict braided pre-Coxeter structures and for simplicity refer to
them as braided pre—Coxeter structures. Note also that such a structure is essentially a quasi—
Coxeter quasitriangular quasi—Hopf algebra structure on the diagrammatic algebra ®, as defined
in [37].
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(2) € is canonically twist equivalent to an a-strict braided pre—Cozeter struc-
ture.

PROOF. (1) The trivialisation of the associators Y zg follows as in Proposition 3.7,
and can be thought of as a universal lift of the fact that every pre—Coxeter category
is equivalent to a YT—strict one. Equivalently, it is enough to observe that, for any
choice of maximal nested sets & = {£(B, B')}pcp, Te = (u, F) with

’U,]:ZTg(B_’B/)]: and FleB

is a twist in ﬁ‘, and €, is a T-strict braided pre-Coxeter structure.

(2) The trivialisation of the vertical joins a%, follows as in Proposition 3.8. In-
deed, the result of Lemma 9.4 (3) implies that the propic analogues of the diagrams
(3.6) are trivial in {[*. Equivalently, it is enough to observe that T = (u, F) with

’u,]::b;-1 and FleB

is a twist in ﬁ', and € is an a—strict braided pre-Coxeter structure (cf. Proposition
9.9 (4)). (]

Remark. It is easy to see that Proposition 9.10 cannot be used to obtain a braided
pre—Coxeter structure on £* which is both Y—strict and a—strict.

10. AN EQUIVALENCE OF BRAIDED PRE-COXETER CATEGORIES

In this section, we rely on the results of [3] to prove the existence of a braided pre—
Coxeter structure € on {*. We then show that, for any diagrammatic Lie bialgebra
b, the braided pre-Coxeter category ]D)Yf determined by € and b is equivalent to
that of admissible Drinfeld—Yetter modules over the Etingof-Kazhdan quantisation

Q(b) of b.

10.1. Factorisable associators. Let LBA be the PROP describing Lie bialgebras,
and LLLB A the corresponding universal algebra.® Let LBA, be the PROP describing
a Lie bialgebra [b], which decomposes as the direct sum [b] = [b1] @ [b2] of two
Lie bialgebras, and ﬁ; the corresponding universal algebra. Equivalently, LBA, is
the PROP generated by a Lie bialgebra object [b], together with two Lie bialgebra
idempotents 61,0y € End([b]) satisfying 6, -6 = 0 = 60 - 6; and 01 + 02 = idp).
It therefore coincides with the PROP LBA [, for the diagram 5o consisting of two
disconnected vertices.

Let ® € LLLBA be an associator, and ®p}, Py}, P, € S.Al its images under the
homomorphisms LILBA — 4® corresponding to the Lie bialgebras [b], [b;] and [by)]
respectively. @ is said to be factorisable if the following holds in ng 31

o) = Ppo,) - Plog)

This is the case for example if @ is a Lie associator, that is the exponential of a Lie
series in 215 and (o3.

30Note that LBA (resp. uLBA) coincides with the PROP (resp. universal algebra) LBA, (resp.
) for a diagram D consisting of a single vertex.

31The order of the factors is irrelevant, since the images of ﬁ’f and ﬁ’; commute in ﬁ? g = ﬁ"}
o o 0o o

by Proposition 8.5.
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10.2. A pre—Coxeter structure on °. Let now D be a fixed diagram. By
construction, the generating object in LBAp is a split diagrammatic Lie bialgebra.
In particular, for any B C D, the subobject [bg] = ([1],05) is a Lie bialgebra in
LBAp. This induces a functor LBA — LBAp which factors through LBAR, and a

homomorphism p% : Ulgs — 5.

Theorem. For any factorzsable associator ® in uLBA} there is a Y —strict braided
pre Cozeter structure €3 on 8 which is trivial modulo Ll>1, and such that ®p =
p%(®) for any B C D.

The proof of Theorem 10.2 is given in 10.9. It relies on our earlier results in [3],
which are reviewed in 10.3-10.7.

Remarks.

e Theorem 10.2 and Proposition 9.10 imply the existence of an a—strict braided
pre—Coxeter structure €3 on {* with associators ®p5 = p%(®), which is
canonically twist equivalent to €3=".

e As mentioned in 3.7, and proved in [5], the monodromy of the Casimir
connection of a Kac-Moody algebra is encoded by an a—strict pre-Coxeter
structure, which is more naturally compared with €.

Corollary. Let ® € LAIEBA be a factorisable associator. Then, for any split dia-
grammatic Lie bialgebra b, there is a Y —strict (resp. a—strict) braided pre—Coxeter

category DY‘:’T'S” (resp. DY‘:’S'S”) with
o diagrammatic categories (DY ") p = DY;I>BB = (DY) p
e restriction functors DY;,I>]‘3B — DYS;’ of the form (ResbB,bB,J}-) for some

tensor structure Jr on Resp, b5

Moreover, DY‘:’T'S" and ID)Y(;)’Q'S“r are canonically equivalent braided pre—Coxeter
categories.

PRrROOF. This follows by applying Proposition 9.8 to the braided pre—Coxeter struc-
tures €3, €%, and setting

Ca str

Y-str
DY = DYg* and  DYp™™ :=DY®

By the remark above, DY;}’T’S" and ]D)Y:]D""’S" are canonically equivalent. O

10.3. A relative fiber functor. Let sLBA(k) be the category whose objects are
Lie bialgebras, and morphisms are split embeddings (cf. (5.1)). Fix an associator

@ in U3, In [3], we construct a 2-functor
DY® : sLBA(k) — Cat¥
which assigns
e to any Lie bialgebra b, the monoidal category DYg) of deformation Drinfeld—

Yetter b-modules with associativity constraint ®, = pg (®)

e to any split embedding a < b, a monoidal structure J; p on the restriction
functor Resqp : DY§ — DYT
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e to any chain of split embeddings (a split triple) a < b < ¢, an isomorphism
of monoidal functors

Ug,b,c : (Resap, Ja,p) © (Rese,c, Jo,c) — (Resa,cs Ja,c)
in such a way that, for any chain a < b < ¢ < 9, one has
Ua,b,0 © Up,c,0 = Ua,c,0 © Uq,b,¢ (10'1)
as isomorphisms
(Resq,b, Ja,6) © (Resp,c, Jo,c) © (Rese o, Je,0) — (Resa,o, Ja,0)
Moreover, Jq q, %a,a,6, and uq 5,6 are trivial and, if ® is factorisable, then

Jal@a27bl®b2 = Jay,b; 'Ju2,b2 and Ua;Paz,bi1®ba,c1®ea — Uay,by,e; * Uas,ba,co

Remark. When a = 0, Jgp is gauge equivalent to the monoidal structure on the
forgetful functor DY — Vecty constructed by Etingof-Kazhdan [15].

10.4. Functoriality of the Etingof-Kazhdan equivalence. In [17], Etingof
and Kazhdan define an equivalence of braided monoidal categories Hp : DY;,I> —
DY"SE’L), where b is a Lie bialgebra and Q(b) its Etingof~Kazhdan quantisation. We
prove in [3] that the equivalence Hy is functorial with respect to split embeddings.
Specifically, let sQ : sLBA(k) — sQUE(K) be the Etingof-Kazhdan quantisation
functor between the categories of split Lie bialgebras and split QUEs. We show
that there is an isomorphism of 2—functors

SLBA(K) <SQ/SQUE(k)
DY® A
Caty

which assigns to a Lie bialgebra b the equivalence Hy. In particular,

e For any split embedding a < b, there is a natural isomorphism v, p making
the following diagram commute

DY? — DYy, (10.2)

Va,b .
(Resa,[vvJa,[v)J/ l(ReSQ(a),Q(h)vld)

adm

DYy ———— DYg(y

where (Resqp, Ja,p) is the monoidal functor from 10.3, and the functor
Resg(a),0(p) is induced by the split embedding Q(a) — Q(b).
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e For any chain of split embeddings a <— b < ¢, the following prism is

commutative
adm
DYUﬁC
H. .
DY? Resg(bi(:)
\ Reso(a),0(c)
Respc : DY?}?{,
. Hy
Ua,b,¢c P ..
Resq,c | <—= DY, - R?u»@(b) (10.3)
=
Resq,p adm
DYy, a
Hn
DY?

where uq p,c is the isomorphism from 10.3, the back 2-face is the identity,
and the lateral 2—faces are the isomorphisms vq,c, Vp,c, ’Ua)b.32
Remarks.

e The natural isomorphism vg4 is not trivial in general. Indeed, the strict
commutativity of (10.2), even as a diagram of non-monoidal functors,
would contradict Prop. 3.2 in [37] (see [1, Sec. 1.10]). Namely, let U{* and
Z/IQ([]) be the algebras of endomorphisms of the forgetful functors DYZ —
Vect, [, and DYQ“‘E‘;) — Vecty[p], respectively. The Etingof-Kazhdan equiv-
alence Hy : DYb - D ‘5{“[,) intertwines the forgetful functors and gives
rise to an isomorphism of algebras Z/{[’:l — L{Q(b). Through the classical and
quantum restriction functors, we get canonical inclusions U — L{g and
Ug(q) < Ug(p)- Therefore, the strict commutativity of (10.2) is equivalent
to the commutativity of the diagram

UL — Ug
In the case of a semisimple Lie algebra g, Q(g) is isomorphic to the Drinfeld—
Jimbo quantum groups Uy g as a diagrammatic QUE (cf. 13 and Proposition
13.6). Thus, we obtain a diagrammatic isomorphism Ug[h] — Q(g) ~ Uxg,
which contradicts [37, Pro. 3.2].

e The natural transformation u4 p . described in 10.3 is in fact defined so as
to make (10.3) commutative. Namely, since Hy is invertible, vq p induces a
natural isomorphism wq p

adm

P
DY? — DYy,

Wa,p
(Resa,b:Ja,b) l(Rebg(a) o(b),id)

@ adm
DY, Qd(a)

3275 alleviate the notation, tensor structures are suppressed from the diagram (10.3).
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The natural transformation g p . is then defined as
-1
Uqa,b,c = Wy ¢ © Wa,b © Wp,c

In particular, this makes the associativity (10.1) of u manifest. Finally, one
observes that wgq q is trivial and wq, ga,,6,06, = Way,b, * Way,by, SO that the
normalisation and factorisation properties of u follow.

10.5. Auxiliary PROPs. The constructions described in 10.3-10.4 are universal,
in that the relative twist J, p, the natural transformation uq s, and their properties
are induced by analogous elements and relations in the universal algebras associated
to the following PROPs.

Let LBA, be the PROP generated by a Lie bialgebra object ([1], i1, d), together
with a Lie bialgebra idempotent 6 : [1] — [1]. We denote by g, the corresponding
universal algebras. A split embedding of Lie bialgebras (i,p) : a — b is equivalent
to a realisation functor Gy : LBA,, — Vecty given by

gb[l] =b and Gud =iop

It therefore gives rise to a map pj , : 43, — Uy. We denote the Lie bialgebra objects
[1],0[1] by [b], [a], respectively.

Let LBA, be the PROP generated by a Lie bialgebra object ([1], i, §) with idem-
potents 6,6’ : [1] — [1] such that 00’ = 6’ = 6. We denote by {2, the correspond-
ing universal algebras. A split triple of Lie bialgebras (¢,p) o (¢/,p’) :a = b — ¢ is
equivalent to a realisation functor G, : LBA,, — Vecty given by

Gc[1] =, gl =iop and GO =ioi'opop

It therefore gives rise to a map pg, . @ U — US. We denote the Lie bialgebra
objects [1],0[1],0'[1] by [c], [b], [a], respectively. The PROP LBA, and its universal
algebra 3, corresponding to split quadruples, are similarly defined.

Let LBA, (resp. Ug,) be the PROP (resp. its universal algebra) consisting of a
split pair [a] < [b] which decomposes as the direct sum of two split pairs [a;] — [b1]
and [ag] < [b2]. The PROPs LBA;, LBA, and their universal algebras {8, $15,,
corresponding, respectively, to a split triple and a split quadruple with a direct sum

decomposition, are similarly defined.

10.6. Universal relative twists and joins. Let ® € QEBA be an associator. An
element J € U2 is a relative twist if it is such that (J)o = 1, e5(J) = 1 = £5(J),
it commutes with the diagonal action and coaction of [a], and satisfies the relative
twist equation with respect to ®
Ji,23 - Jaz - Pra) = Proy - J12,3 - J12
J is said to be
e normalised if Jig)[q) = 1, where Jig) [q) is the image of J under the map
ﬁs'p — LAIEBA, corresponding to the split pair ([1],[1]) in LBA
e factorisable if ® is a factorisable associator, and
Jajefas) [or)ee2] = Jai), (1] * la),o2]
whereAJ[ule}\], J[ag],[bg]a J[al]ea[ag],[bl]@[bg] are the images of J under the
maps g, — Us,, induced by the corresponding split pairs in LBA,.

osp
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Let J be a relative twist, and denote by Jig) (6], J[o],[c]> J[a],[ the images of J
under the homomorphisms ﬁ;p — iAls't induced by the corresponding to split pairs

~

in LBA,,. An element u € $ is a vertical join if is such that (u)o =1, e(u) =1, it
commutes with the action and coaction of [a], and satisfies

Tiap e =z o) Jia o) - ur vy

u is said to be
o normalised if Ua) [a],[6] = 1 = Ua],[o],[6), Where U[a) [a] (6] AN Ufq],[p],[o] ATC
the images of u under the homomorphism g — ,, induced by the split
triples ([al, ], [6]) and ([a], [0, [6]) in LBA,,

e associative if

Ulal,[6],[0] * Y[o],[c],[0] = Ual,[c],[o] * U[a],[0],[c]

where Ula],[6],[0]> W[b],[c],[0]> Ula],[c],[0] and Ulq],[b],[c] OT€ the images of u under

the homomorphisms ﬁs't — ﬁ;sq,
in LBA_,
e factorisable if ® and J are factorisable, and

induced by the corresponding split triples

Ula1]@[az],[b1]@[b2],[c1]@[c2] = Ylar],[b1],[c1] * U[az],[ba],[c2]

where tfa,)az],[6:1]0[bal, (1] @(cals Ufar] [o1],[e2] AN Ulay] [o] [co] AT€ the Tmages

of u under the homomorphisms 42 — U3, induced by the corresponding
split triples in LBA

10.7. Existence of a universal relative twist and join.

Theorem. Let ® € QEBA be an associator.

(1) There is a relative twist J € ﬁfp,

any split pair a — b, Ju p = ﬁﬁ)b(J)

which is normalised and such that, for

(2) There is a vertical join u € ﬁst; which is normalised, associative and such
that, for any split triple a < b < ¢, Ugp,c = Pa,b,c(U).

Moreover, if ® is factorisable, then so are J and u.

PROOF. (1) The existence of a relative twist J € ﬁfp is proved in [3, Prop. 7.7,
8.2.2]. By construction, J satisfies Jyp = ﬁib(J) and, by direct inspection, it is
normalised and factorisable (for the latter property, see also [3, Prop. 2.25]).

(2) We show in [3, Sec. 6.17] that the Etingof-Kazhdan equivalence Hy : DY§ —
DY5(y) is PROPic. Specifically, let DY g, (resp. DYque) be the PROP describ-
ing an admissible Drinfeld—Yetter module over a co—Poisson universal enveloping
algebra (resp. over a QUE). Then, the category DY‘E (resp. DYB‘E’Q,)) is equiva-
lent to that of realisation functors from DY g, (resp. DYqug) to Vectypsp. Un-
der these identifications, H, arises as the pullback of an isomorphism of PROPs
H : DYque — MUEC.:' Similarly, one shows that the natural isomorphism vq is
PROPic, i.e., it is induced by

DYque ——————— DYy,

l [a],[6 l

DYquesp = DY e, s
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where

® DYye, o (resp. DYques,) denote the PROPs describing a Drinfeld—Yetter
module over a split pair of co-Poisson universal enveloping algebras [Ag] —
[By] (resp. over a split pair of QUEs [4] — [B));

e the vertical arrows are the canonical functors mapping the generating ob-
jects of UEcp and QUE to [Ag] and [A], respectively

e the horizontal arrows are PROPic Etingof-Kazhdan equivalences

The natural transformation v [p) is normalised and factorisable, i.e., v[q) [q] is
trivial and Vlay]®]az],[61]@[b2] = Y[a1],[b1] * Vlaz],[b2]- The construction of U[a],[6],[c]> and
its normalisation, associativity and factorisability follow as in 10.4, by considering
the PROPic analogue of the diagram (10.3). O

10.8. T—strict braided pre—Coxeter structures. It is useful to observe, in anal-
ogy with Proposition 3.7, that a YT —strict braided pre—Coxeter structure on ° is
described by the datum of

e for any B C D, an associator ®p € ﬁ%)B
e for any B’ C B, a relative twist Jg/g € LALQB)B/ satisfying

Jp'B1,23 - JpB23 - Pp = Pp-Jp 123 JBB12
together with the normalisation Jgp =1
e for any B” C B’ C B, a vertical join ag,p/p € Up . satisfying

—1

Jprp = (agngphe-Jep - Jp'B-(apipp)] )

(aprpB)2
together with the associativity
apmBrp*aARMYB'B — A/ BB * AR B! B!

for any B"” C B” C B’ C B, and the normalisation ag/ g g =1=ag/ g
Moreover, for any BY C Bf C By 1. Bs D B D BY, the following holds

¢Bl|_|B2 - ¢Bl : (bBQ
JpiuBy.BiuB, = JBiB: BB,

aBIUBY,B,UB,,Bi1UB; aBrBiB, 4By BB,

10.9. Proof of Theorem 10.2. We now construct a Y —strict braided pre—Coxeter
structure @é’su = (‘I)B, JB'B, aB//B/B) in U°.

Associators. We use the notation from Section 10.2. For any B C D, set &5 =
p%(®) € U3, Since @ is a factorisable associator, ®p, 5, = ®p, - Pp,.

Relative twists. For any B’ C B C D, the Lie bialgebra objects [bg] and [bp/]
a split pair in LBAp. This induces a functor Gip ) (65 + LBA;, — LBAp, and a
homomorphism pl, 5 : ﬁ;‘p — ﬁ’é Set Jp'p = phig(J) € QQB)B/. By Theorem
10.6, the relative twists Jp/p satisfy the required properties of normalisation and
orthogonal factorisation.
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Vertical joins. For any chain of subdiagrams B” C B’ C B C D, the Lie bialgebra
objects [bB], [bB/], and [bB//] induce a functor Q[[,B,,])[[,B,])[[,B] : LBAst — |_BAD7
and a homomorphism /7%//)3/73 : UL — U%. Then, we set aprp'p = ppr.p,B(U) €

Up pr. By Theorem 10.6, the vertical joins ap~p/p satisty the required properties
of associativity, normalisation, and orthogonal factorisation. O

10.10. An equivalence of braided pre—Coxeter categories. We now show
that the braided pre—Coxeter structures associated to a diagrammatic Lie bialgebra
b and to its Etingof-Kazhdan quantisation Q(b) are equivalent.

Theorem. Let b be a split diagrammatic Lie bialgebra. For any factorisable asso-
ciator ® € {35, , there is an equivalence of braided pre-Cozeter categories

<I>, -str adm
Hp : DY[J N — DYQd(b)

where DY‘:’T'S" and ID)Y‘SE“[,) are defined in 10.2 and 6.9, respectively, and whose di-

agrammatic equivalences are given by the Etingof-Kazhdan functors Hy, : DY:,D; —
D E‘E’;B), BCD.

PROOF. By definition, an equivalence Hp : ]D)Y(:’T'S" — DYg(y) of braided pre-
Coxeter categories is the datum of
e For any B C D, an equivalence of braided monoidal categories Hp :
® adm
Dng — DYQd(bB)
e For any B’ C B, a natural transformation of monoidal functors

‘PB HB adm
—F
DYbB DYQ(bB)
B! .
(RCSbB/thJB/B)l / J(RGSQ(UB,),Q@B),Id)
(I)B’ adm
e —
DYy, o PYQ(,)

satisfying the properties 3.10. Then, it is enough to set set Hg = Hp, and yp'p =
Vb, b+ Lhe required properties are easily verified and the result follows. (I

11. KAC-MOODY ALGEBRAS

Let k be a field of characteristic zero, I a finite set, and A = (a;;)i jer a fixed
II| x |I] matrix with entries in k. We review in this section the definition and basic
properties of the Kac-Moody algebra associated to A. Our treatment is a little
more general than [24], in that we consider realisations of A whose dimension is
not assumed to be minimal. Such realisations will be used in Section 12 to endow
a Kac—Moody algebra and its Borel subalgebras with a diagrammatic structure.

11.1. Realisations. Departing slightly from the terminology in [24], we define a
realisation of A to be a triple (V,II,I1V), where?3

e V is a finite-dimensional vector space over k

o IT = {«;}ie1 is a linearly independent subset of V*

o 11V = {a) }ie1 is a linearly independent subset of V

e a;(aj) =ay foranyi,jel

33In [24], V is additionally required to be of dimension 2|I| — rank(A).
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Given a realisation (V,II,IIV), we denote by V' C V the [I|-dimensional subspace
spanned by IIY, and by II* C V the |I|-codimensional subspace given by the
annihilator of II.

Lemma. Let (V,II,11V) be a realisation of A. Then
(1) dimV > 2|I| — rank(A).
(2) I+ C V' if, and only if V is of minimal dimension 2|I| — rank(A).

PRrROOF. (1) Let (IT) C V* and (IIV) C V be the subspaces spanned by II and ITV.
Restriction to (IIV) gives rise to a surjection V* — (IIV)* which maps (II) to a
subspace V" of dimension rank(A). Thus,

dimV — [I| = dim (V*/(I1)) > dim ((I1¥)*/Vy) = [TI| — r
(2) TI* is of dimension dim V' — [I|, while IT* NV is of dimension |I| — rank(A). O

11.2. Subrealisations. If (V,II,I1V) is a realisation of A, a subrealisation of V is
a subspace U C V such that ITV C U and the restriction of the linear forms {a; }ie1
to U are linearly independent, so that (U, IT|,; , IIV) is a realisation of A.

If (U, I1,11Y) is a realisation of A, and U° a finite-dimensional vector space, then
(V =U@UOIIIIY) is a realisation of A, U a subrealisation and U a null subspace
that is a subspace of V contained in II+.

Lemma. If (V,11,11V) is a realisation of A, there is a subrepresentation U CV of
minimal dimension 2|I| —rank(A) and a null subspace U° C'V such that V is equal
to the realisation U @ UY.

PROOF. Note first that U C V is a subrepresentation iff V/ C U, and U+ N {(II) = 0
or equivalently U + II* = V. Let now ¢ : V — V/V’ be the quotient map.
Since I+ NV is of dimension |I| — rank(A), ¢(II+) = I+ /TI- N V" is of dimension
dim V — (2|I| —rank(A)). Thus, if U C V/V’ is a complementary subspace to q(IT+),
then U = ¢~ !(U) is a subrepresentation of V of dimension 2|I| — rank(A). Note
also that U NI+ = V' NII+ since the right-hand side is contained in the left-hand
side and their dimensions agree. Let now U® C V be a complementary subspace to
V' NI+ in I+, Then U° is a null subspace of V such that U @ U° = V. (I

11.3. Morphisms of realisations. A morphism (V1,111,11Y) — (Va,1ls, 1Y) of
realisations is a linear map 7' : Vi — V; such that Tay,; = oy ; and Tz = ay;
for any 7 € I. We denote the set of such morphisms by Homa (V7, V2).

Proposition.

(1) Let T € Homa(V1, V2) be a morphism of realisations.
(a) If V1 is of minimal dimension, T is injective.
(b) If Va is of minimal dimension, T is surjective.

(2) Given two realisations {(V;, 11,11 ) }iz1,2 of A, the set Homa(V, V) is
non—empty. Moreover, the map

Homy (V1 /V{,1I5) x Homa(Vi, Va) — Homa (V1, V)

defined by (6,T) — T+ 6 gives Homa (V1, V) the structure of a torsor over
the abelian group Homy (V1 /V{ 5 ).

(3) There is, up to (non—unique) isomorphism, a unique realisation of A of
minimal dimension 2|I| — rank(A).
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PROOF. (1a) Since ag; 0T = ;1 for any i € I, Ker(T) C IIf C VY, where the last
inclusion holds by (2) of Lemma 11.1. Since the restriction of T to V7 is injective, it
follows that so is 7. (1b) follows from (1a) since T : (V5 Iy, IIy) — (V;*, 1Y, 11;)
is a morphism of realisations of At.

(2) The second part of the claim is clear, once the non—emptyness of Homa (V1, V2)
is proved. A linear map T' € Homy(V3, Vz) satisfies Tof'; = o, for any i € Tiff in
a(ny) decomposition V7 = V{/ @ V}’, T has the block form T' = (z *), where 2 is the
map V{ = Vy < V3, af; = of,;. Similarly, given a decomposition V5 = Iy & Va,
let p be the map Vi — (II;)* = (Ilp)* = Vo /I3 = \72 given by assigning to v; € V;
the unique vy € Vs such that ag,;(v2) = oy 4(vy) for any i € I. Then, ag ;0T = ;1

holds for any i € I iff T has the block form T' = (;) . Combining, we see that T is

a morphism of realisations iff it has the form

7=, %y )
W, =PV Py

where the equality 1, = py; follows because as (a3 ;) = a;; = a1:(ay;). In
particular, Homa (V1, V2) is non—empty.

(3) Tt is easy to see that there is a realisation of A of minimal dimension. Its
uniqueness then follows from (2) and (1). O

Abusing language slightly, we shall refer to a realisation of A of minimal dimen-
sion 2|I| — rank(A) as the realisation of A, and denote the underlying vector space

by b.

11.4. Invariant forms. Recall that A is symmetrisable if there is an invertible
diagonal matrix D = Diag(d;);er such that DA is symmetric, that is such that
diaij = djaji for any ¢,j € L

If A is symmetrisable, an invariant form on a realisation (V,II,IIV) is a non—
degenerate, symmetric bilinear form (-,-) on V such that (a,-) = d; 'a;.

Proposition. Assume that A is symmetrisable. Then

(1) If V is a realisation of minimal dimension, then any symmetric bilinear
form on V such that (o), —) = d;loel- is non—degenerate, and therefore an
invariant form.

(2) Any realisation (V,II,I1V) of A possesses an invariant form.

PROOF. (1) If v € V is such that (v,-) = 0, then v € II* C V', where the last
inclusion follows by part (2) of Lemma 11.3. The result then follows from the fact
the map v : V/ — V* given by o — d; 'y = (a,-) is an injection.

(2) By Lemma 11.2, there is a subrepresentation U C V of minimal dimension,
and a null subspace U® C V such that V = U @ U°. By (1), U admits an invariant
form (-,-). If {-,-)% is a non—degenerate symmetric bilinear form on U?, ()& (-,-)°
is an invariant form on V.

11.5. Kac—Moody algebras. Let (V,II,IIV) be a realisation of A, and g = g(V)
the Lie algebra generated by V and elements {e;, f;}ic1, with relations [h, h'] = 0
for any h,h’ € V, and

[hyei] = ci(h)es  [h, fi] = —cu(h)fi  eq, 3] = dija
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The Lie algebra g is graded by the root lattice Q = €@, Za; C V*, that is g =
Docq as Where g, = {X € g|[h, X] = a(h)X, h € V} is finite-dimensional. In
fact, if Q1 = @,;¢1 Zxo00, then g has the triangular decomposition

g=n_©godny

where 1y = @QGQ+\{O} G+a, and go = V.

The Kac-Moody algebra corresponding to (V,II,1IV) is the quotient g = g(V') =
g/ I, , Where I is the sum of all (graded) ideals in g having trivial intersection with
Go. g inherits the Q-grading and triangular decomposition of g, and go = V.34

Lemma. Let T € Homa(V1,V2) be a morphism of realisations of A. Then

(1) The assignments vi — T(v1), e; — e;, fi = fi extend uniquely to a Lie
algebra homomorphism g(T) : g(V1) — g(V2).
(2) 9(T) is homogeneous with respect to the Q—grading. Its restriction to

Vi=g(Vi)o = a(V2)o = V2

is equal to T, and its restriction to g(Vi)a — 9(V2)a s an isomorphism for
any o € Q\ {0}.
(8) If Ty : Vi = Vo and Ty : Vo — V3 are morphisms of realisations, then

9(TroTh) =g(T2) o g(T1)  and  g(idv;) = idg(vy)

PROOF. (1) The given assignments clearly uniquely determine a Lie algebra homo-
morphism g(7) : g(V1) — g(V2). If I; C g1 is an ideal, then g(7)({1) is stable under
the adjoint action of V5 since the latter factors through Vo /Tl = (IT;)* = (II)* =
Vi /Ii. Since g(T)(I) is also stable under the adjoint action of e; = g(T)(e;) and
fi =3(T)(f:), it is an ideal in g2 and §(T') descends to §(V1)/I1 — §(V2)/Ia.

(2) The homogeneity of g(T') is clear, as is the fact that the restriction of g(7T)
to Vi — Vs is equal to T. g(T) is surjective in degrees a # 0 since g(T) is. If
K C g(T1) is the kernel of g(T'), then K = @, .q Ko, where Ky = K Ng(Vi)a. It
is easy to check that K* = €D, cq\o Ko is an ideal in 9(V1) with trivial intersection
with V hence it is equal to zero.

(3) is clear. O

Let Lieq be the category of Q—graded Lie algebras g over k which are generated
by go and elements e; € go, and f; € g_q,, ¢ € I, with morphisms g; — g2 which
are homogeneous with respect to Q and map el, f} to €2, f2. By Lemma 11.5, g(—)
is a faithful functor from the category of realisations of A to Lieq. It is easy to see
that g(—) is also full.

11.6. The derived subalgebra g(V)’. Lemma 11.5 implies in particular that the
derived subalgebras g(V1)" and g(V2)" corresponding to any two realisations of A
are canonically isomorphic. Indeed, as vector spaces, each g(V;) is easily seen to
be n_ @& V/ @ ny, and any morphism 7' € Homa(V3, V2) restricts to the canonical
identification V{ = V4.

SLIFA Qs a symmetrisable generalised Cartan matrix (i.e., a; = 2, a;; € Zgo, © # j, and
a;j = 0 implies aj; = 0), the ideal T is generated by the Serre relations ad(e;)!~%ii (ej) =0=
ad(f;)1—eu (f;) for any i # j [20]. Note that our terminology differs slightly from the one given
in [24] where g(A) is called a Kac-Moody algebra only if A is a generalised Cartan matrix.
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Moreover, the derived subalgebra g(V)’ admits a presentation similar to that
of g(V). Namely, let g’ the Lie algebra generated by elements {e;, f;, @’} with
relations

lof jei] = ajiei o], fil = —ajifi  es, fi] = 0y
g’ is graded by Q, with g, = bh’, where the latter is the |I|-dimensional span
of {a)}ier. The quotient of g’ by the sum I’ of its graded ideals with trivial
intersection with gj, is easily seen to be canonically isomorphic to g(V)’.

11.7. Symmetrisable Kac—-Moody algebras. Assume that A is symmetrisable,
and fix an invertible diagonal matrix D = Diag(d;) such that DA is symmetric.
Let (V,II,IIV) be a realisation of A endowed with an invariant form (,-). Then,
(-,+) uniquely extends to a symmetric, invariant, non—-degenerate bilinear form on
g = g(V), which satisfies (e;, f;) = d;;d; * [24, Thm. 2.2].

Recall that g has a standard Z-grading with finite-dimensional homogeneous
components, given by deg(f;) = 1 = —deg(e;) and deg(V) = 0. Set by =V &
Dacr L 9+ta C 0 Then, by are FN—graded Lie algebras with finite—dimensional
components. Moreover, the bilinear form induces a canonical isomorphisms b} =~
b=, where b} is the restricted dual of b4, and is equal to

r=Ve @ dia
acRy
These identifications allows to determine on b, and therefore on g, a natural
structure of Lie bialgebra compatible with the grading.
More precisely, consider the Lie algebra g® = g @ V, and endow it with the
inner product (-,-) ® —(-,-)|,/xy- Let mo : g = go = V be the projection, and

b(ﬁ) C g the subalgebra
6 = {(X,v) € by @ V| 7(X) = +v}
Note that the projection g(®? — g onto the first component restricts to an isomor-

phism b — by with inverse by 3 X — (X, +m(X)) € b?.
Then, the following is easily seen to hold (cf. [11, Ex. 3.2], [17, Prop. 2.1]).

Proposition.

1) (g, b(f), 6'?) is a restricted Manin triple. In particular, 62 and a@ are
+ F
Lie bialgebras, with cobracket 5b<2> =, -]’;(2) and d42) = 5b<2> — 5b<2>.
F ¥ - +

(2) The central subalgebra 0 @V C ¢? is a coideal, so that the projection
a® = g induces a Lie bialgebra structure on g and br.
(3) The Lie bialgebra structure on g is given by

6|V =0 5(61) e dZOé;/ N e; 5(.]01) e dzoz;/ A fi

12. DIAGRAMMATIC KAC—MOODY ALGEBRAS

As pointed out in 5.11, a complex semisimple Lie algebra g and its positive Borel
subalgebra are diagrammatic Lie bialgebras with respect to the Dynkin diagram
of g. The extension of this result to an arbitrary Kac-Moody algebra requires the
introduction of extended Kac-Moody algebras which correspond to non-minimal
realisations of the underlying matrices. These realisations are defined in this section,
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together with a natural braided Coxeter structure on integrable Drinfeld—Yetter
modules over the corresponding Borel subalgebras.

12.1. Fix an |I| X |I| matrix A with entries in k, and let D be the diagram having I
as its vertex set and an edge between ¢ # j unless a;; = aj; = 0. For any B C D, let
Ap be the | B| x |B| matrix (ai;): je 5, 9(Ar) the Kac-Moody algebra corresponding
to its minimal realisation, and h(Ap) its Cartan subalgebra.

As pointed out in 11.6, the derived subalgebra g(A) is generated by {e;, fi, @ }iep.
It possesses a diagrammatic structure over D which is given by associating to any
subdiagram B C D the derived algebra g(Ag)’, and to each inclusion B’ C B the

morphism 755, : g(Ap')’ — g(Ag)’ mapping e?’, fiB/,ozz\-/B/ to e?, fB ay”, ie B.
This is a diagrammatic structure since, if ¢ L j, e; (resp. f;) commutes with e;
(resp. f;) [24, Lemma 1.6].

We say that g(A) is Cartan diagrammatic if it is endowed with a diagrammatic
structure such that gg = g(Ap) for any B C D, and the following diagram com-
mutes for any B’ C B

3:9:U

9(Ap) —— 9(AB)

I

0(An) —— o(Ap)’
BB/
where the vertial arrows are the natural inclusions.
For any B C D, set lIp = {a;}ien, I}, = {a }iep, and let (IIg) C h(A)* and
b’z = (IIf;) C h(A) the subspaces they span respectively.

Proposition.
(1) If g(A) is Cartan diagrammatic, each morphism 1pp' : g(Ap) — g(Ag),
B’ C B, is an embedding.
(2) g(A) is Cartan diagrammatic iff, for any B C D, there is a subspace hg C
h(A) such that (f)B, HBlhB ,H%) 1s a minimal realisation of Ag, that is

(a) b Chr

(b) (Ils) Mg =0

(¢) dimbhp = 2|B| — rank(Ap)

and, for any B,B’' C D

(d) bp Chp if B'C B

(6) hB - Hé/ and [jB/ - Hﬁ ZfB 1B

PROOF. (1) It suffices to show that the restriction z%B, of ipp’ to a map h(Ap/) —
h(Ap) is injective for any B’ C B. Applying 1pp: to the relation [h,eB] =
aF’ (h)eP" shows that af 04, = of for any i € B'. Tt follows that Kers%,,
is contained in 113, C h(Ap/)’, where the inclusion holds by Lemma 11.1. Since the
restriction of 2?5, 5 to h(Aps)’ is injective by assumption, the conclusion follows.
(2) Assume that g(A) is diagrammatic, and set hg = 1pp(h(Ap)). Since 1pp ()
=a) and P o ZDB|hB = aP for any i € B, hp contains b’y and the restrictions of
the linear forms aP to hp are linearly independent. Moreover, hp has the claimed
dimension since 1pp is injective by (1). The remaining properties are clear.
Conversely, assume given subspaces hp satisfying the above properties. For any
B, the triple (hp, |, ,1T%) is a minimal realisation of Ag, which determines a
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morphism of realisations z?:,B : h(Ap) — b with image hp. Since, for any B’ C B the
image of z?j g is contained in the image of 2?3 g there is a uniquely defined morphism
of realisations of Ap, such that Z%B, : hp — bp such that z?:,B o ’?33' = z?:,B,. Let
now B” C B’ C B. We wish to show that z%B, ) 2?3,3,, = z%B,,. It suffices to show
that this holds after composition with 1?3 g since the latter is injective. However,

b b b _ b b _ b _.b b
'pp©lpp °tprpr = 'pp °lprpr = ppr = ipp°lppr
The morphisms of realisations ZhB g canonically induce Lie algebra homomorphisms

wpp’ : 9(Ap/) — g(Ap) which give rise to a Cartan diagrammatic structure on
9(Ag). 0

In 12.2-12.3 we give sufficient conditions for g(A) to be Cartan diagrammatic,
together with a counterexample which show that g(A) is not Cartan diagrammatic
in general.

12.2.

Lemma. If det(Ag) # 0 for any B C D with |D \ B| > 2, then g(A) is Cartan
diagrammatic.

PROOF. We rely on part (2) of Proposition 12.1. For any B such that |D \ B| > 2,
set hp = h5. If |D\ B| = 1, Lemma 11.2 implies that h(A) contains a subspace hp
such that (hg, lp |hB ,IT};) is a minimal realisation of Ag. If B is perpendicular to
the single vertex i in D\ B, we require additionally that hg be chosen in Ker(«;).
Finally, if B = D, set hg = h(A). It is easy to see that the subspaces hp satisfy
the conditions of Proposition 12.1 except possibly the orthogonality condition (d)
when B is such that |D\ B| = 1. If 7 is the single vertex in D\ B and a;; # 0, then
(d) holds with B’ = ¢ by construction. If a;; = 0 then, by assumption, A must be
the diagonal matrix Diag(x,0), and g(A) is readily seen to be diagrammatic in this
case. O

Remark. The converse of Lemma 12.2 does not hold. Indeed, let A be the zero
matrix, which for n > 3 does not satisfy the above condition. Its minimal realisation
can be taken to be the 2|I|-dimensional vector space ) with basis {a) }ie1U{9; }ier,
and {a;}ier C h* the last |I| elements of the corresponding dual basis, so that
ai(a}/) = 0 and «;(0;) = d;; for any 4,j € I. The corresponding Kac-Moody
algebra g(A) is Cartan diagrammatic, with gp the Lie subalgebra of g(A) generated
by {ei,fi,oz;/,ai}ieB, B g D.

12.3.  Assume in this paragraph that k = @Q, and that A is such that a;; < 0 for
i # j and that a;; = 0 & aj; = 0. Recall that if A is indecomposable, it is called
finite if rank(A) = |I|, affine if rank(A) = |I| — 1, and indefinite otherwise. A is
hyperbolic if it is indefinite, but the irreducible components of any Ag, with B C D,
are all of finite or affine type. In A is finite or affine, then any submatrix Ag, with
B C D decomposes into a direct sum of matrices of finite type [24, Chap. 4].

If A is a direct sum of indecomposable matrices Ay & --- & A,,. Then g(A) =
g(A1) @ @ g(Ay,) is Cartan diagrammatic iff each g(A;) is.

Proposition. Assume that A is indecomposable. Then

(1) g(A) is Cartan diagrammatic if A is of finite, affine or hyperbolic type.
(2) g(A) is not Cartan diagrammatic in general.
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PROOF. (1) is an immediate consequence of Lemma 12.2. To prove (2), we consider
the following example. Let A be the generalised Cartan matrix

2 -1 0 0
-1 2 =2 0
0 -2 2 -1
0 0 -1 2
Note that Ag is of full rank if |B| = 3, so that hp = b3 for any such B. Then,

dim ho3 = 3, while h123 N haza = Hia3 N hhgy = bl is of dimension 2. Therefore the
condition haz C h123 N hagg cannot be satisfied. O

A=

12.4. The canonical realisation. To remedy the fact that g(A) is not diagram-
matic in general, we follow a suggestion of P. Etingof, and give in 12.5 a modified
definition of g(A) along the lines of [18]. The corresponding Cartan subalgebra is
given by the following (non—minimal) realisation of A.

Let (b, II, ﬁv) be the realisation given by b = k2! with basis {a) }ier U {\Y }ier,
I = {a) }ier and 1T = {«; }ie1, where «; is given by

ai(oe}/) = a;; and ozl-()\}/) = 0y;

We refer to (b, II, ﬁv) as the canonical realisation of A, and denote by AV C b the
|I|-dimensional subspace spanned by {\} }ier.

Proposition. Let (V,II,11V) be a realisation of A.
(1) If p € Homa(h, V), then p(AV) C V is a complementary subspace to II+.
Moreover, the map
Homa(h,V) = {VCV[IF @V =V}, p—p(AY)
is a bijection.
(2) If » € Homa(V,B), then 1+~ 1(AY) C V is a complementary subspace to V.
Moreover, the map
Homa(V,h) = {V" CV|V @ V" =V}, 1 — 1 H(AY)
is a bijection. B
(3) If1 € Homa(V, ) and p € Homa(h, V) correspond to the subspaces V",V C
V respectively, then p o1 =idy if, and only if, V' C V.

PROOF. (1) Since p is a morphism, Ker(p) C p~1(IT+) C . It follows in particular
that p(AY) C V is an |I|-dimensional subspace with trivial intersection with IT+
since AYNTI = 0. Let now V C V be a complementary subspace to ITI-. Then,
V > II* =T = AV so there is a unique map ¢ : AY — V such that o 0 ¢ = a,
and therefore a unique morphism of realisations p = idg/ @®q : h — V such that
p(AY) =V.

(2) 2= 1(AY) has trivial intersection with V' since 2(V') C B'. Moreover, V = V' +
17 H(V). Indeed, let ¢/, ¢ be the components of 2 corresponding to the decomposition
h= E/ @ AV. Then, for any v € V,

w(v) = 7' (v) + 1" () = 1(2]y) 0’ (v)) +2"(v)

so that v — 1|y, 04/(v) € 27 1(AY). Finally, note that the restriction of ¢ to s~ (AY)
is necessarily given by 1(v) = >, a; o u(v)\Y = >, a;(v)A/, so that ¢ is uniquely
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determined by the subspace 17 1(AY). Conversely, given a decomposition V =
V'@ V" then 1 =1 @ : V — b, where ¢’ is the canonical identification V' — EI,
and ¢/ : V" — AY is given by v — >, a;(v))! is easily seen to be the unique
morphism of realisations such that V" =171(AY).

(3) If por = idy, then V" = pou(V") C p(AY) = V since V" =171(AY). To prove
the converse, it suffices to show that the restriction of p o1 to V" is the identity.
This follows from the fact that a) for any v” € V", o(v”) is the unique \¥Y € AY
such that o;(v") = a;(AY) for any i € I, b) for any AY € AY, p(}) is the unique

element v € V such that a;(A\Y) = a;(v) for any i € L and ¢) V" C V. O

12.5. Extended Kac—Moody algebras. We denote by § = g(A) the extended
Kac-Moody algebra corresponding to A, that is the Lie algebra associated to the
canonical realisation of A. In particular, g is generated by {e;, fi, @, \ }ie1, with
relations [y, af] = 0, [\, A}] =0, [/, Y] = 0,

i\

[ el = ajies,  lagi, fil = —azify, N el =diges, [N il = =045,

and [e;, f;] = d;5hs, for any ¢,j € I. Unlike g(A), g(A) always possesses a diagram-
matic structure over the Dynkin diagram D of A.

Proposition. The extended Kac-Moody algebra g is a diagrammatic Lie algebra,
with diagrammatic Lie subalgebras §g = (e:, fi, o), N} | i € B) =g§(Ag), B C D.

12.6. Relation between g and g. The following shows that g is non—canonically
a split central extension of g, with a rank(A)-dimensional kernel. Let Lieq be the
category of Q—graded Lie algebras defined in 11.5.

Proposition.

(1) Any p € Homyie, (@, g) is surjective, and Ker(p) is a rank(A)-dimensional
subspace of ﬁL = 3(9) which is complementary to ﬁL N EI.

(2) There is a bijection between Homyie, (g, g) and the set of subspaces H ch
which are complementary to I+, given by mapping p: g — g to p(AY).

(3) Any i € Homyie,(9,9) is injective.

(4) There is a bijection between Homyie,(g,8) and the set of subspaces H ch
which are complementary to b/, given by mapping i :g — g to i *(AV).

(5) If p € Homyiey(9,9) and i € Homyie,(g,8) correspond to the subspaces b
and b C b respectively, then poi =idg if, and only ifhCy.

PROOF. (1) By 11.5, p is of the form g(po) for a unique py € Homa(h,h). p is
surjective by part (2) of Lemma 11.5 and part (1b) of Proposition 11.3. Moreover,

Ker(p) = Ker(pp) is a rank(A) dimensional subspace of T since a;0po = ;. Since
po is injective on B, Ker(pg) N (ﬁL N E/) = 0 and it follows that the two spaces are

in direct sum since their dimensions add up to |I| = dimTI.
(3) The injectivity of ¢ follows from 11.5 and part (1a) of Proposition 11.3.
(2), (4) and (5) Follow from 11.5 and Proposition 12.4. O
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12.7. Split diagrammatic structure. Assume henceforth that A is symmetris-
able. Fix D = Diag(d;) such that DA is symmetric, and an invariant form (-, -) on b.
Then, by Proposition 11.7, there is a standard Lie bialgebra structure on g = g(A)
given by

5((1;/) =0= 5()\2/) 6(61') = d/lOéz/ Ne; 6(][1) = dia;/ A fi
It follows as in 12.5 that g is a diagrammatic Lie bialgebra with Lie subbialgebras
ﬁB = (ei,fi,a;/,)\;/ |i€ B>, BCD.

As in the finite-dimensional case described in Example 5.11, the diagrammatic
structure on g determines a split diagrammatic one on by. For any B C D,
let b g = by Ngp be the Lie subbialgebras generated by {a), A\, e;}iep and
{aY, N, fi}iep respectively. If B’ C B, let iy g : by g — by p be the standard
embedding, and regard p+ p'p = iﬁF)BB, as a map EiB — Ei,B/ via the identifica-

. —* = . . . .
tions by o = by ¢ given by the inner product, where as usual by is the restricted
dual of b, and is equal to

—x —% .
by:=bh @ @ Ota
acRy
Then, ker(ps+ p'5) is a Lie subalgebra in by p, and therefore {p+ p/p} give the
required splitting of the Lie bialgebra by (cf. 5.10). The splitting can also be
explicitly described as follows. Set N+ = @,cr, , Fa C 0B+

Lemma. The projection p+ p'p : b+ p — by g/ corresponds to the splitting

Np+ =np + bupp+ where Npg+ = @ [

O¢ERB,+\RB/’Jr

together with the orthogonal splitting

EB :EB’®EB’B where EB’B = @ k)\;/GBkCUE/BJ

jEB\B’
and wy g ; is given by o =7, g, ai(e )N . In particular, hp p C ;e p Ker(ai).
PROOF. It is enough to observe that for any i € B’ and j € B\ B/,
(af ) NY)y =0=(\/,\Y) and (oez\-/,w)é/B)j} =0= (z\iv,wE,BJ}

i 7Y RV

O

12.8. The category Og. A g-module V is in category Oy if the following holds.
(01) V =8, Vi, where Vy = {v € V|hv = A(h)v, h € b}

(02) dim V) < oo for any A € P(V) ={\ € H*| VA # 0}

(03) P(V) C D(A)U---UD(Ap), for some Ai,...,Am €5
where D(A\) = {u € (¥ | p < A}, with p < X iff A — p € Q. The category Og has
a natural symmetric tensor structure inherited from Repg.

We observed in 11.7 that the restricted Drinfeld double of the negative Borel
subalgebra b_ of g is isomorphic to the trivial central extension 5(2) =gd EC of g
by EC = b. It follows by 5.5-5.6 that the category of Drinfeld—Yetter modules over
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b_ is equivalent to the category Eﬁ(g) of 5(2)7modules, where 5(2) =gd HC, which

carry a locally finite action of Ef) C 5(2). This implies the following.

Proposition.

(1) Category Oy is isomorphic to the full tensor subcategory of Eﬁ(z) consisting
of those modules carrying a trivial action of Ec and satisfying, as a module
over ) € § C g%, the conditions (O1)~(O3) above.

(2) Under the equivalence 5§<2) ~ DY , Og is isomorphic to the full tensor
subcategory of DYy consisting of those modules V' such that the action py
and coaction pi; of b on V° coincide under (-, '>E’ i.e.,

pv = <','>H®idv0idﬁ®p*{/ (121)
as maps h@V — V and, as a module over h C b_, V satisfies the conditions
(01)—~(03) above.

12.9. Pre—Coxeter structures and category O,. Condition (O2) on the finite—
dimensionality of weight spaces in 12.8 is not stable under restriction from g =gp
to g if B C D, which makes category Og unsuitable to the axiomatic frame-
work of braided pre-Coxeter structures. We therefore omit it, and denote by O 5
the category of g-modules satisfying conditions (O1) and (O3). Proposition 12.8

shows that O 3 is a full subcategory of DY . Moreover, the universal braided

pre-Coxeter structure on {DY%B ~}BcD restricts to one on {OF 5,1 BCD-

12.10. Braid group actions. Assume now that A is a symmetrisable generalised
Cartan matrix, let W be the corresponding Weyl group with set of simple reflections
{si}ier, and set m = (m;;), where m;; is the order of s;s; in W.

Let Mgz* be the category of integrable g-modules, i.e., b-semisimple modules
endowed with a locally nilpotent action of the elements {e;, f;}icr. For any i € D,

let s; € End (M‘E‘" — Vect) be the triple exponential

5i = exp(e;) - exp(—fi) - exp(e;)
It is well-known (cf. [34]) that these satisfy the generalised braid relations (3.9).
Let DY%‘i be the category of integrable Drinfeld-Yetter b_-—modules in DY5 ,

i.e., h-diagonalisable, endowed with a locally nilpotent action of the elements
{fitiep C b_, and satistying (12.1), so as to give rise to integrable modules over
9. In particular, the triple exponential 5; acts on the objects in DY‘{ and the sub-
category of integrable modules in O, 3, denoted O;“O‘j, is isomorphic to a braided
tensor subcategory of DY%‘E. The following is straightforward.

Proposition. There is a canonical (a, T)-strict symmetric Cozeter category ]D)Yi—b“j
of type (D, m), defined as follows

e Forany BC D, ID)Y‘F“:B is the symmetﬁc monoida{ category DYiEn;,,

e For any B’ C B, the functor Fgip : DY’—;‘E 5~ DY‘{ 5 15 the restriction
RCSE oy - DYLUt — DY¥*
B/bB bp, — bpr _

e foranyi€e D, S;=75;

35The (co)action of b is defined by restricting that of b_ as in 5.12, since the inclusion g :
b — b_ is a split embedding with left inverse po: py = 7y 0ig ® idy, Py = po ®idy omry,.
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There is a natural symmetric Coxeter category @;“Otﬁ obtained from ]D)Y%‘i by re-

striction to the subcategories O™ _ = B C D.

00,8’

PROOF. It is enough to observe that s; is group-like and therefore satisfies the
coproduct identity (4.1), which for the symmetric category DY{" reduces precisely
to the condition A(3;) =3; ® §;. O

12.11. Universal braided Coxeter structures on Kac-Moody algebras. Let
DYZ’Int be the category of integrable deformation Drinfeld—Yetter bpg _—modules.
B

Recall that Z}g and ﬁg)o denote the algebras of endomorphisms of the forgetful
functors 5" : (DvgBﬁ)" — Vectyqy) and f57 (DY%Bﬁ)” — DY%, respectively.
For any X € U}, we denote by p(X) the induced endomorphism of the forgetful
functor (DY;_Z"nt )" — Vect[p.
B,_
Definition. A braided Coxeter structure of type (D, m) with diagrammatic cate-
gories {DY%"nt }Bcp is universal if the underlying braided pre—Coxeter structure
5 _IBC

is (cf. 9.8), and its local monodromies have the form
Si = si-p(9;)

where S; € Z}{li},o, S, =1 mod &, and §; = exp(e;) exp(—f;) exp(e;).
Remark. Since DY;—Zi ~ Rep Uﬁl(?) [h] with g; = s157, we have LA{FZ} = (UﬁEQ))(@"[[h]].

In particular, p(S,) is an element in (Ug;)" [A].

13. QuaNTUM KAC-MOODY ALGEBRAS

We show in this section that integrable, category O, representations of a quan-
tised extended Kac—Moody algebra Upg give rise to a braided Coxeter category,
with local monodromies given by Lusztig’s quantum Weyl group operators. Using
the fact that Uxg is isomorphic to the Etingof-Kazhdan quantisation of g [17], to-
gether with the results of Section 10, we then transport this structure to integrable,
category O representations of g.

13.1. The extended Drinfeld—Jimbo quantum group. Throughout this sec-
tion, A = {a;;}i jer denotes a fixed, symmetrisable generalised Cartan matrix, i.e.,
ai; =2, a;j € Zgo if ¢ # j, and there is a non-singular diagonal matrix D such that
B = DA is symmetric (in particular, a;; = 0 if and only if a;; = 0). The matrix D
is determined uniquely by requiring that d; € Z, and ged{d;} = 1.

Let g = g(A) be the corresponding extended Kac-Moody algebra with the
standard diagrammatic Lie bialgebra structure described in 12.7, and set ¢; =
exp(h/2 - d;), i € I. The following is a straightforward generalisation to extended
Kac—Moody algebras of the Drinfeld-Jimbo quantum group Upg [11, Example
6.2],[22).

Definition. The Drinfeld-Jimbo quantum group of g is the unital associative alge-
bra Uxg over k[fi] topologically generated by b and the elements {E;, F;}ic1, with
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relations
[h, hl] =0 [h, El] = al(h)Ez [h, E] = —al(h)E
h; —h;
q; —4;
[Em Fz] —
qi — 4q;

for any h,h' € b, i € I, where h; = o, and
1—ai;
> xR =0
m=0
for X = E,F, i+ j €I, where X" = X7 /[r],,!
Urg is a Hopf algebra, with counit e(h) = 5( ;) = e(F;) =0, coproduct

Ah)=h®1+10h AE)=E®¢" +10E AF)=Fol+q"oF

and antipode S(h) = —h, S(E;) = —FE;q; "', and S(F;) = —¢" F;, for any h € §
and ¢ € L.

The following result is well-known for Upg (cf. [11, Sec. 13] and [8, Sec. 8.3]). It
readily extends to Upg through the isomorphism of Hopf algebras Uxg ~ Urg® Upc,
where Urc = Sc[h], which quantises the decomposition g ~ g & ¢ (cf. 12.6).

Proposition. [11, §]

(1) The Hopf algebra Ug is a quantisation of the Lie bialgebra g.

(2) Let U,tﬁ; C Urg be the Hopf subalgebra topologically generated by § and
{Fi}ic1 (resp. b and {E;}ic1). Then, UthF is a quantisation of the Lie
bialgebra E;, and there is a unique non—degenerate Hopf pairing (-,-)p :
Upb_ @ Upby — k((R), defined on the generators by

1 0ii
—(h,n") (F;,Ej)p = .

,)p=1 h,h'\p = —
<7 >D <7 >'D B q_q_l

and zero otherwise.

(3) The Hopf pairing (-, -)p induces an isomorphism of finitely N-graded QUEFEs
Urb_ ~ (Upby)*, where the latter is the restricted QUE dual (cf. 6.3).
This gives rise to an isomorphism of QUE Uyg ~ (DUpb_)"/(h ~b*). In
particular, Uxrg is a quasitriangular Hopf algebra, with R—matriz

R = qu u;®@u’ | ZXP ® XP, (13.1)
P

where {u;}, {u'} Ch are dual bases with respect to (-,-), and {X,} C Upn_,
{XP} C Upny are dual bases with respect to (-, -)p.

13.2. Diagrammatic structures on Uxg. The quantum group Uxg is canoni-
cally endowed with the structure of diagrammatic Hopf algebra, with subalgebras
Unspg = (), N/, Ei, F;)iep, B C D.

As in the classical case (cf. 12.7), the diagrammatic structure of Upg induces
a split diagrammatic one on Upby. Namely, for any B C D, 1et Ubt p =
Upb ﬁUth be the Hopf sualgebras topologically generated by {a), A, e; }:e 5 and
{a), N/, fi}iep respectively. For B’ C B, let zi e Unby g — Upbs g be the

standard embedding, and regard p+ p/Br = Z%BB,ﬁ as a map thin — Uﬁb:t,B/
via the identifications UHE;C o~ UhEiyc given by the inner product (-,-)p. The
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map (DUb_ )™ — U,g from Proposition 13.1 (3) is then a morphism of diagram-
matic Hopf algebras.

13.3. Coxeter structures on quantum groups. Let W be the Weyl group of
¥, {s:i}icr its generators, and set m = (m;;), where m;; is the order of s;s; in W.
Thus, for any B C D, the generalised braid group B3 is the Tits braid group of
the standard parabolic subgroup of W generated by {s;}icn-

Let DY?JCI:EB,, be the braided monoidal category of admissible Drinfeld—Yetter

Urbp,_—modules. As in 12.8, denote by DY?Fi%Zt, the full subcategory of bhp—

diagonalisable, integrable Drinfeld—Yetter Ubp, _-~modules V such that the action
and coaction of h on V coincide under (-, '>5’ that is satisfy

py = ()5 ®idy oidg ®py,
so as to give rise to integrable modules over Unrgp.

Proposition. There is a canonical (a, Y)—strict braided Coxeter category DY‘[‘Jd"%i“t
nb_
of type (D, m), with
e diagrammatic categories DY";"%;‘“ ,BCD
hbp,

e standard restriction functors DY — DY*¥  determined by the
Unbp,— Unbg/ _

split diagrammatic structure of Upb_
e local monodromies given by Lusztig’s quantum Weyl group operators SI

ProOOF. The (a, T)-strict braided pre-Coxeter structure on DY;‘”‘E’“‘“ is defined in
nb_

6.7. For the Coxeter structure, we proceed as in 12.10. Denote by iﬁ;a the cate-
gory of integrable Urg—modules. Following [28], the quantum Weyl group operator

of Upg corresponding to i € I is the element S € End (M}};E — VectK) acting on

Ve My as

h% —ac
Shwy= Y (-1l T B EPE Dy

a,b,c€Z
a—bt+e=—X(a))
where v € V), for A € h*. The quantum Weyl group operators SI' satisfy the braid
relations (3.9), together with the coproduct identity
A(S!) =R - (St @ S))
Each SI, acts on any V; € DY;“%“{“; and they complete the (a, T)-strict braided
nbiy, —
Coxeter structure on DY>¥™, O
Unb_
13.4. Etingof-Kazhdan quantisation. Let Q(g) (resp. Q(b+)) be the Etingof-
Kazhdan quantisation of the extended Kac—Moody algebra g (resp. the Borel sub-
algebras by C g).

Proposition.
(1) O(9) is a diagrammatic QUE, with subalgebras Q(gg), B C D.
(2) Q(bs) is a split diagrammatic QUE, with subalgebras Q(bp +).
(3) The quantised embeddings Q(bg,_) — Q(gg), B C D, give rise to a mor-
phism of diagrammatic QUEs Q(b_) — Q(g).
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(4) The following data defines an (a,T)-strict braided pre—Cozeter category

]D)Yzz%‘i")t
e Forany BC D, DY‘S?‘E";‘;)B is the braided monoidal category DYEE’;‘;";
’ . adm,int adm,int .
e For any B' C B, the functor Fp/p : DYQ(E,),B — DYQ(E,),B’ s the

restriction functor Resg(g ).0(65._)"
5/,-),Q(bn,

(5) The braided pre—Cozeter category ]D)Ygz%““; is a deformation of DY%“j.
PROOF. (1) and (2) follow from the compatibility of the quantisation functor with
the diagrammatic and split diagrammatic structures of § and by, respectively
(Corollary 6.8). (3) follows from the functoriality of Q, and the canonical mor-
phism of diagrammatic Lie bialgebras b_ — g (Proposition 12.7 (4)). (4) is given
by Corollary 6.9. (5) is clear. O

13.5. Quantum double construction of Q(g). By [13], the Etingof-Kazhdan
quantisation functor Q is compatible with taking duals and doubles. This is used
in [17] to show that Q(g) is a quotient of the quantum double of Q(b_), and that
it is isomorphic to the quantum group Upg. The argument is easily adapted to the
extended Kac—Moody algebra g, since the latter is a central extension of the former
g (cf. 12.6). Specifically, by Proposition 11.7, g is isomorphic to the quotient of the
Drinfeld double of b_ by the ideal generated by the identification of ¢ : h — E*,
i.e., g (Db_)*"/(h ~ E*) Since Q is compatible with doubling operations, there
is an isomorphism Q((Db_)**) ~ (DQ(b_))™, which is the identity on hh". This
yields an isomorphism of Hopf algebras

(DQ(E—))TQS/E ~ 5~ Q@)

which shows, in particular, that Q(g) is quasitriangular. Finally, one proves the
following

Theorem. [17]

(1) There is a (non—canonical) isomorphism of QUEs P~ Upb_ — Q(b_),
which is the identity on B.

(2) By the quantum double construction of Q(g) and Uxg (cf. Proposition 13.1
(3)), ©°~ induces an isomorphism of quasitriangular QUEs % : Upg —
Q)

13.6. Diagrammatic isomorphism between 9O(g) and Ug. We now show that
the isomorphism between Q(g) and Ung can be chosen so as to preserve the dia-
grammatic structures.

Proposition.
(1) There is an isomorphism of split diagrammatic QUEFEs 1/)5* : Upb_ —
Q(b_), which is the identity on b.

(2) By the quantum double construction, z/JE* induces an isomorphism of dia-
grammatic QUEs ¥% : Urg — Q(3).
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PROOF. (1) For any j € D, use Theorem 13.5 (1) to choose an isomorphism of Hopf

algebras 1/1;’ = cpE{i},* : UhE{j}y, — Q(E{j}ﬁ,). Then, for any B C D, we get an
isomorphism of Hopf algebras 1/);’ :Upbp — Q(bg) by

VS (Fy) = Q0 ) 0wl (Fy)

where j € B. The collection 1/)5* = {1/)]?’3’} Bcp gives an isomorphism of split
diagrammatic Hopf algebras. (2) is clear. O

13.7. An equivalence of braided Coxeter categories. We now prove the main
result of this paper. We show that the Coxeter structure on integrable Drinfeld—
Yetter modules for Uyb, which accounts for the quantum Weyl group operators
of Uxg, can be transferred to a Coxeter structure on integrable Drinfeld—Yetter
modules for b, with standard restriction functors.

Theorem. Let ® € QEBA be a factorisable associator.

(1) There is an equivalence of braided pre—Coxeter categories

. . D a-str,int adm,int
Hy DYE, — ]D)YUHE,
where
(a) DY "™ is the (a, T)-strict structure defined in 13.3, with
b

. . . adm,i
e diagrammatic categories DY‘[‘J"‘F’nt
hVYB,—

e standard monoidal restriction functors

. adm,int adm,int
ReSUﬁbB/,77thB,7 ! DYUFLEB,, - DYUREBIY,

(b) DY%)’a’s"’i“t is a—strict and universal (see 9.8), with

. . . ®p,in
e diagrammatic categories DYEB e
B

e restriction functors of the form (RQSEB/ 5 o JF) DY%I’B’int —
Pl [ B

P p,in .
DYEB’ ‘. for some monoidal structure Jr
A

(c) the equivalence Hy is given the composition
D a-str,int P, Y -str,int adm,int adm,int

ID)YL — ID)YR — DYQ(E,) — DYURE, (13.2)
where the first equivalence is given by Corollary 10.2, the second one
by the transfer Theorem 10.10, and the third one by the isomorphism

of diagrammatic QUEs Q(b_) ~ Urb_ (Prop. 13.6).
2) There is a unique braided Coxeter structure on DY which extends

b

the pre—Coxeter structure, and is such that

. . D a-str,int adm,int
H; DYE, — DYURE,

is an equivalence of Coxeter categories with respect to the Cozeter structure

on ]D)YZ;'%‘“” arising from the quantum Weyl group operators of Urg (cf.
Wb

13.3). Moreover, the braided Cozeter structure on DY?Q'S"”M s ungversal

in the sense of Definition 12.11.
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(3) The representations of the generalised braid groups By, B C D, arising
from the quantum Weyl group operators of Urg and the Coxeter category
]D)Y%D 2RI are equivalent.

PROOF. (1) Let ]D)Y%D = he the universal a-strict braided pre-Coxeter category

associated to b_ by Corollary 10.2. By Theorem 10.10, there is an equivalence
of braided pre-Coxeter categories ]D)Y%D RS DY‘SE“E). The isomorphism of split
diagrammatic Hopf algebras Q(b_) ~ Upb_ constructed in Proposition 13.6, then
allows to extend it to an equivalence

~7 . D a-str adm
Hg_:DYD™™ - D=

Let ID)Y%’ =i he the braided pre-Coxeter subcategory of ID)Y%’ = with underlying
diagrammatic categories DYi:) Bt B C D. Since the Etingof-Kazhdan functors
B

preserve integrable modules [1, Prop. 6.5], the restriction of I?]IR give rise to an
adm,int
Upb_ ~
(2) By 13.3, the quantum Weyl group operators of U g define a Coxeter structure

on ]D)Y?Jd“%‘“”. The requirement that Hy be an equivalence of braided Coxeter cat-
b _

egories therefore uniquely determines a Coxeter structure on DY

equivalence of braided pre-Coxeter categories Hy : DY%) it DY

D a-str,int
b_

let ¥; denote the pullback on the algebra of endomorphisms of the forgetful functor
along

. Namely,

Py int - i - i
H’ . DY— {i}» N DYddnl,]nt N DYddrr:lrJt
! bgiy,— Q(briy,-) Unbyiy,—

Then, the operators ¥;(S!) extend the braided pre-Coxeter structure of ]D)Y%D amstnint
to a braided Coxeter structure. It is then clear by 13.3 that U,(S?) satisfies the
conditions of Definition 12.11, and therefore that this structure is universal.

(3) By construction, the action of the generalised braid groups Bz on V €
DY";‘%“‘t arising from the Coxeter category ]D)Y;‘”%“‘“ coincides with the action of

hVB,— hU—

the quantum Weyl group operators of Usgp (cf. 13.3). The result then follows from
(2) and Proposition 3.11 (2). O

13.8. Coxeter structures and category O.. Fix B C D. Recall that a Urgg—
module V is in category O;;EB if it is topologically free over k[h], integrable,
and satisfies the conditions (O1) — (O3) of 12.8. Let O ;5 be the category of
Urgg—modules satisfying conditions (O1) and (O3), but not necessarily the finite—
dimensionality of weight spaces. The realisation of Uxrgy as a quotient of the quan-

tum double of Uzbp _ (13.1) gives rise to a full embedding O™ C Dy=dmin

OO)UHEB UEEByf '

Since the Etingof-Kazhdan functor DY%’ B DYSE%B ) is the identity on b5
B —

modules, the equivalence (13.2) preserves the categories (’)(iBﬁ’i;“ C DYi:) 2 and
) B
Oint C DY"[‘J‘“%;nt . This yields the following
h y—

oo,Uﬁ,ﬁB

Theorem. Let ¢ € QEBA be factorisable associator. Then, there is an equivalence
of braided Cozeter categories

. ‘P,int int
Hg: 0.5 = 0L v,s
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where @fo’i%t (resp. @L“Ot)UhE) is the braided Coxeter category obtained from DY%)f’s"’i“t

(resp. DY?;%‘”“) by restriction to integrable, category O representations.
13.9. Coxeter structures, Levi subalgebras and category O. As mentioned
in 12.4 and 12.9, the reason behind the introduction of extended Kac-Moody alge-
bras and of category O is the construction of a diagrammatic structure endowed
with well-defined restriction functors.

There is, however, a weaker notion of diagrammatic structure which leads to
an analogue of Theorem 13.8 expressed solely in terms of standard Kac—Moody
algebras and category O representations. Indeed, the facts that minimal realisations
of Kac-Moody algebras do not give rise to a diagrammatic structure (Prop. 12.3),
and that category O representations are not stable under restriction, due to the
requirement on the finite—dimensionality of weight spaces, can both be overcome by
considering instead the Levi subalgebras [g = (e;, fi, h)icp of a given Kac-Moody

algebra g.
The collection {[g} does not, however, define a diagrammatic structure on g,
since it does not satisfy the orthogonality condition [Ip,[5] = 0 for B L B’

As mentioned in 3.13, this condition is convenient in the construction of PROPic
structures, but not required by the axioms of a Coxeter category. It is in fact
possible to adapt the definition of universal pre-Coxeter structure, and consequently
Sections 7-9, by removing the orthogonal factorisation axiom in Definition 9.4. In
this new setting, Proposition 9.10 does not hold, i.e., a non—orthogonal structure
cannot be a—strictified in general. With this exception, all other results from Section
10 can be adapted, and applied to the case of the Levi subalgebras [5.

As observed in 13.7 and 13.8, for any B C D, the Etingof-Kazhdan equiva-
lence DYfJfﬁ — DYB‘E‘;B,J preserves integrable modules, and is the identity on
h—modules. It therefore restricts to an equivalence of braided monoidal categories

Hy, : OpF™ = Op .,
Together with the fact that the universal constructions described in Section 10 are
easily seen to yield twists, associators and joins which are invariant under b, this
yields the following analogue of Theorem 13.8.

Theorem. Let ® € QEBA be an associator. Then, there is an equivalence of braided

Cozeter categories

. D int int
Hy : O™ — Op, 4

where (D);D’i“t (resp. Oy o) is the braided Cozeter category obtained from ]D)Y:,DLT'S“"“

D int int ).36

(resp. DYr™) by restriction to the categories O™ (resp. Ot

APPENDIX A. GRAPHICAL CALCULUS FOR COXETER OBJECTS

We describe below the axioms of Coxeter objects in a 2—category X in terms of
graphical calculus.

36Note that in order to have an action of the quantum Weyl group operators Sih7 which do
not commute with the action of h, the diagrammatic categories (@g)'im)@ and (@i[‘};g)@ have to
be taken to be Vecty[n), rather than category O for [y = h. Note also that the example in
Proposition 12.3 shows that the minimal realisation of Kac—-Moody algebras does not lead to
a diagrammatic structure, even if the orthogonality requirement is omitted. It is therefore not
possible in general to formulate an analogue of Theorem 13.9 involving minimal realisations, rather
than Levi subalgebras.
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A.1. Graphical notation. In the following, we use the graphical notation of string
diagrams to describe relations between 2-morphisms in a 2—category X (e.g., [23,
26]). We represent objects, 1-morphisms, and 2-morphisms with two dimensional,
one dimensional and zero dimensional cells, respectively. Let XY € X, F,G €
XM(X,Y) and o € X2 (F,G). Then, we represent o as

G
G
F

F

where the diagram on the right-hand side is read from bottom to top, and from
right to left. Similarly, a 2-morphism « : F o G — H will be represented as follows:

H H
\ a/ R
F G Y
Y F G
and more generally we represent « : Fj, 0---0F; = G, 0---0Gy as

G»m Gmfl G2 Gl

Fnanl F2 Fl

When no confusion is possible, we omit the labels and identify the 1-morphisms
with the color of the string, and the 2-morphism with the underlying diagram.

A.2. Coxeter objects (cf. 3.10). A Coxeter object in a 2—category X is the da-
tum of
e for any B C D, an object Xp
e for any F € Mns(B, B’), a 1-morphism Fr : Xp — Xp/ which we represent
as the identity 2-morphisms idp,

Fr
Xp Xp
Fr
e for any F' € Mns(B,B’),F” € Mns(B’,B") and F = F ' UF", a 2-
morphism
a;;/

F]:// OF]—‘/<7F]:

’
(a;,,)’l
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represented as
F]—‘ F]:// F]-‘/
Xpr XB Xp
Xpr XB

Xp
J T Fr

e for any F,G € Mns(B, B’) a pair of 2-morphisms

YTor

Fr —>< Fg
Tor
represented as fake crossings

Fg id id Fr

XB XB’
XB/ XB XB/ XB

XB/ XB

id Fr Fg id

e for any ¢ € D, an invertible 1-morphism S; : Fip ;v — Fyp.4}

Fro.iy
X X,

Fo,iy

s

satisfying the following relations. To alleviate the notation, the labels of objects

and 1-morphisms are omitted unless necessary.

e Invertibility.

e Associativity.
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e Vertical and horizontal factorisation.

AKX X

e Braid relations. For any i,j € B C D, F,G,’H € Mns(B) such that i # j,
my; < oo, {i} € H, {j} €3G,

Fr Fr

I |~
o> (®
il (D = O
o (O
pd ™~

Fr Fr

A.3. 1-Morphisms. Let X, X’ be Coxeter objects in X. We distinguish between
them by assigning a different color to their 2—cells (specifically, yellow for X, gray
for X'). We represent their defining data as

A X
A X |

Then a 1-morphisms of Coxeter objects H : X = X' is the datum of

e for any B C D, a 1-morphism Hg : Xp — X},
Hgp
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e for any F € Mns(B, B’) a pair of 2-morphisms

YF
F}_-OHBé HB/OF].'

—1

YF
represented as
Fy Hp Hp Fr
X5 Xp
X A Xp Xp X Xp
Xp X5
Hp Fr Fr Hp

satisfying the following relations
e Invertibility.

e Vertical factorization.

e Preserving associators. *’

e Preserving local monodromies.

><:

A.4. 2-Morphisms. Let H, H' : X — X' be two 1-morphisms,

X

37The crossings

represent the identity on Hp.

79
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A X

A 2-morphism u : H = H’ is the datum, for any B C D, of an invertible 2—
morphism up : Hg = Hp

satisfying
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