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Abstract 

TALPID3 (KIAA0586) is a centrosomal, protein which has specific functions during centriole 

maturation during the formation of the centrosomal dependent organelle, the cilia, as well as 

less well understood roles in the cytoskeleton and during cell polarisation. Cilia are an essential 

component of signal transduction during embryonic development and the loss of TALPID3 

function in humans can cause both severe lethal and mild cilia-related developmental disorders 

known as ‘ciliopathies’ the most common being Joubert syndrome. TALPID3 related 

ciliopathies affect the development of multiple organ systems including the brain, skeleton, 

eyes, lungs and liver. The consequences of TALPID3 dysfunction outside of the cilia and the 

implications for human diseases, is less well understood. 

 

Introduction 

When the talpid3 chicken mutant was first discovered by Donald Ede at Wye Agricultural 

College, UK in the 1960s, during a preliminary investigation into chick hatchability [1] it was 

never anticipated that this peculiar mutant would one day contribute to understanding rare 
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human diseases. Fortuitously Dr Ede, a previous student of Prof. C.H. Waddington, was an 

excellent anatomist and developmental biologist, with a particular interest in embryonic lethal 

developmental mutants with a disruption of pattern [2].  Donald immediately understood the 

significance of the severely disrupted anatomy of the talpid3 embryos, which was particularly 

evident in the polydactylous limbs and head [3,4]. His work and the discovery of talpid3, came 

at a timely moment in developmental biology, just as the chicken limb was becoming an 

important paradigm for understanding the induction of pattern in the developing embryo, in 

fact preceding the discovery of the cellular ‘organiser’ of digit number and identity [4]. Talpid3 

was to play an important role in understanding the developmental mechanisms which pattern 

the developing limb and in turn, forty years later, research on polydactylous mice helped 

established that a loss of cilia underpinned the unusual talpid3 phenotype [4]. 

Talpid3 chicken embryos are characterised by gross malformations of the brain, face, skeleton 

and limbs and have been a focus of many studies over several decades, in an attempt to 

understand the basis of their aberrant anatomy [3,4]. The TALPID3 gene (also known as 

KIAA0586), has now also been deleted in different animal and cell models, generating a well 

defined catalogue defects that occur upon TALPID3 loss of function (Table 1, Figure 1A, B). 

Primarily, a loss of TALPID3 causes a failure of cilia formation [5,6] and thus TALPID3 

mutants fall into a class of developmental phenotypes known as ‘ciliopathies’. Cilia are 

centrosome dependent organelles which project from the cell surface (Figure 1A). Cilia can be 

both actively motile such as ependymal cell cilia which line the ventricles of the brain, or 

‘primary’ non-motile cilia, which are found on most cell types and are essential for some 

signalling pathways, in particular Hedgehog signalling (Figure 1A)[7]. Most recently, this in-

depth understanding of the TALPID3 phenotype has aided identification of human ciliopathy 

patients with mutations in TALPID3/KIAA0586 [8-16]. Analyses of TALPID3 at the molecular 

level, meanwhile, have revealed that this centrosomal protein [17] has a role within mother 



 

 

centriole maturation prior to initiation of ciliogenesis [18] although there is evidence that 

TALPID3 may also have other non-ciliary centrosomal roles such as within organisation of the 

polarised cytoskeleton. [5,6,15] as well as possible roles independent of the centrosome 

(Figure.1A). 

 

TALPID3- sequence, homology, domains and interactions 

Vertebrates have a single TALPID3 gene, encoding a centrosomal protein of between 1520-

1644aa (Figure 2), which localises specifically to the distal ends of both the mother and 

daughter centrioles which comprise the centrosome complex (Figure3A, 3C, C’, [5,17-21]). It 

is one of the least abundant centrosomal proteins [22] and has an asymmetrical distribution, 

being more highly localised on the mother centriole (Figure 3A,[21]). TALPID3 does not show 

homology to other protein families, and its structure remains elusive. While the TALPID3 

sequence is not highly conserved (the human TALPID3 protein is approximately 70% identical 

to mouse and 45% to chicken), TALPID3 proteins do contain conserved coiled coil domains 

approximately 450-650aa from the N’ terminal (Figure 2, pink boxes), one of which is essential 

for function and which mediates both localisation of TALPID3 to the centrosome and the 

majority of known TALPID3 protein-protein interactions [blue asterisk; 4,18,19, 21, 23-27]. 

Deletion of this domain causes a TALPID3 null phenotype in chicken, mice, zebrafish and 

human cells [5,18,19, 24, 27]. There is evidence that the TALPID3 coiled coil domains 

specifically mediate the maturation of the mother centriole through loss of daughter centriolar 

proteins and assembly of the basal body distal appendages prior to ciliogenesis [27]. A less 

well defined portion of C’terminal end of TALPID3 is also essential for function [5,27]. This 

region binds to the PKA regulatory subunit PKARIIβ, through which is it proposed to mediate 

Hedgehog signalling via PKA phosphorylation of the Gli proteins [28]. In addition the 



 

 

C’terminal may also mediate ciliogenesis through CP110 removal and ciliary vesicle docking 

[27]. 

 

A Ciliopathy- the TALPID3 Phenotype in Models and Man   

Other than a few species-dependent exceptions, the phenotypes of the TALPID3 null animal 

models are very similar. All are recessive and embryos homozygous for the TALPID3 

mutations lack cilia (including motile cilia) and are embryonic lethal (Table 1, Supplementary 

Table 1, Figure 1A);[1,5,19,24,28]. The developmental abnormalities exhibited by TALPID3 

null model embryos of all species, such as hypotelorism, holoprosencephaly, unpatterned 

polysyndactyly limbs and others (Table 1) are highly characteristic of vertebrate ciliopathy 

mutants which lack primary cilia and have disrupted Hedgehog signalling [7]. Since 2015 a 

number of human patients with mutations in TALPID3/KIAA0586 have been described 

providing an allelic series of TALPID3/KIAA058 mutations (Figure 2); [8-16]. In human 

patients rare homozygous mutations at c.230C>G, p.Ser77* (null) and c.1815G>A in 

KIAA0586 (the human ortholog of TALPID3), which appear to disrupt the TALPID3 protein 

before or around the essential coiled coil domain, cause a reduction of cilia on patient cells 

(c.1815G>A) and gestational and perinatal lethal phenotypes, respectively. Like the animal 

models, these null human alleles are associated with polydactyly and micromelia [9]. 

Additional phenotypes in these patients included cleft palate and hydrocephalus (c.230C>G, 

p.Ser77*), short ribs, abnormal tongue development and brain malformations (c.1815G>A), 

suggestive of Short-Rib Polydactyly ciliopathy syndrome. The similarity with the null 

TALPID3 animal models was unequivocal, demonstrating a conservation of 

TALPID3/KIAA0586 function in humans. 



 

 

The majority of human patients with mutations in TALPID3/KIAA0586, are however, viable 

and although they demonstrate challenging phenotypes associated with ciliopathy disorders 

these are at the mildest end of the ciliopathy spectrum [8, 10-15]. Joubert syndrome, the most 

common and mild syndrome in the ciliopathy spectrum caused by mutations in KIAA0586, is 

a genetically heterogenous disorder which can be caused by mutations in at least 34 different 

loci, including TALPID3/KIAA0586 (JBTS23; [29]. Diagnosis of Joubert syndrome is based 

on cerebellum and hindbrain malformations, specifically the ‘molar tooth sign’ observed on an 

axial MRI [Figure 1B. 29,30]. As the cerebellum is particularly susceptible to disruption in 

Hedgehog signalling [31], it is hypothesised that the molar tooth sign is due to a loss of 

Hedgehog dependent development of the cerebellar vermis resulting in fewer efferent fibres 

exiting the cerebellum via the paired superior cerebellar peduncles. Additionally it has also 

been proposed that there is a loss of decussation (crossing of the midline) of superior cerebellar 

peduncle neuronal tracts [29,30]. As the cerebellum normally coordinates voluntary 

movements such as posture, balance, coordination and speech as well as eye movement and 

breathing [31], common clinical characteristics associated with Joubert syndrome include 

hypotonia, abnormal eye movements, abnormal breathing patterns, slow speech, development 

and intellectual impairment [29] all of which have been described in patients with mutations in 

KIAA0586 [8,10-16]. In order to model Joubert syndrome through loss of Talpid3, a mouse 

with a conditional deletion of Talpid3 in the central nervous system, has recently been 

generated [32]. This had a surprisingly specific effect on the development of the cerebellum 

and little effect, other than hydrocephaly in the rest of the central nervous system. The 

phenotype of these mice closely recapitulated many aspects of Joubert syndrome [32]. As well 

as severe hypoplasia and a lack of foliation of the cerebellar hemispheres, there was loss of 

decussation of the superior cerebellar peduncles. In addition, both the Purkinje cell layer and 

the granule cell layer were affected by a loss of Talpid3; proliferation and normal organisation 



 

 

of granule layer cells were compromised, while the Purkinje cell layer demonstrated abnormal 

dendritic arborisation and a widespread disruption of the cerebellar circuitry [32]. This mouse 

model demonstrated significant ataxia, supporting its relevance as a model for Joubert 

syndrome, but happily the mice were able to both feed and groom. 

 

The TALPID3 Gene: a Genotype to Phenotype Conundrum  

Joubert syndrome is considered a pleiotropic condition and patients commonly exhibit other 

ciliopathy phenotypes including retinal dystrophy, kidney disease, coloboma, liver fibrosis, 

encephalocele and polydactyly [33]. Despite TALPID3/KIAA0586 null phenotype clearly 

acting pleiotropically in both human and animal models, Joubert syndrome caused by 

mutations in TALPID3/KIAA0586 is only rarely associated with other ciliopathy related 

phenotypes (Figure 1B). These include a limited number of examples of coloboma [10,16] 

atrial-septal defects [10,15] polydactyly, sensorineural hearing loss [10], skeletal dysplasia of 

the thorax [12] and mild respiratory and liver dysfunction [12]. The difference in severity of 

phenotypes both between the severe and mild ciliopathy phenotypes caused by 

TALPID3/KIAA0586 mutations as well as between different Joubert loci, may be due both to 

the heterogenous nature of the human mutations and/or to the tissue-specific requirements for 

TALPID3/KIAA0586, cilia or Hedgehog signalling. It is clear that mutations in the 5’ end of 

TALPID3/KIAA0586 are likely to cause a ciliopathy phenotype (Figure 2) and that mutations 

that disrupt the essential coiled-coil domain are more likely to cause a severe ciliopathy 

phenotypes, with the exception of the c.428delG p.Arg143Lysfs*4 mutations.  

The c.428delG p.Arg143Lysfs*4 mutation is a particularly prevalent mutation accounting for 

34/49 known compound heterozygous mutations, and while it would be predicted to disrupt 

the coiled coil domains causing a loss of TALPID3/KIAA0586 function, there are two reported 



 

 

cases of Joubert syndrome patients and one reported healthy individual, homozygous for the 

mutation [10,13,14]. This suggests the c.428delG p.Arg143Lysfs*4 mutation is instead likely 

to function as a hypomorphic allele, possibly through the use of an alternative start codon 

downstream of the c.428delG p.Arg143Lysfs*4 mutation which may produce a functional 

shortened protein (Figure 2, purple arrow; NM_001244193/NP_001231122); [13].  The 

disparity between the severe embryonic lethal phenotype observed in null TALPID3 embryos 

and the relativity mild Joubert phenotype observed in the majority of TALPID3/KIAA0586 

compound heterozygous mutations including those patients with a c.428delG 

p.Arg143Lysfs*4, support the hypothesis that this is a hypomorphic allele. TALPID3 is a low 

abundance protein [22] and the disparity between null and hypomorphic alleles perhaps 

suggests that very little active TALPID3 protein is required to fulfil its function in the cell.  

 

More than a Ciliopathy- TALPID3 in the Centrosome and Cytoskeleton 

The TALPID3 null phenotype is driven not only by a loss of cilia but by multiple mechanistic 

failures within the centrosome and possibly cytoskeleton, prior to ciliogenesis [5, 6, 15, 18, 26, 

27]. The centrosome is a highly complex, structured and dynamic organelle, comprising of two 

centrioles surrounded by centriolar material and the centriolar satellites [17,20]. The 

centrioles, known as the mother and daughter centrioles are structurally different  and have 

different and asymmetric protein compositions [20]. Centrioles lacking TALPID3 exhibit a 

number of abnormalities; TALPID3 null centrioles fail to migrate normally within the cell, are 

overly elongated, have a loss of orientation and are unable to dock with the ciliary vescile. 

Critically, in TALPID3 null cells, mother centrioles fails to undergo maturation prior to ciliary 

vesicle docking and ciliogenesis. Detailed analysis of this process has shown that centrioles 

lacking TALPID3 do not undertake removal of daughter centriolar proteins and subsequently 



 

 

also fail to acquire mother centriolar proteins during maturation, including normal Distal 

Appendage (DA) proteins and structure [Figure 3B; 5,6,18,27], although some disorganised 

DA proteins have been shown to be present in human and chicken TALPID3 null cells [9, 15]. 

In addition around the centrioles there is an increased number and disorganisation of the 

centriolar satellites. Increasingly the search to understand the biological function of TALPID3 

has turned to proteomics combined with super resolution microscopy and genome editing 

technology to assess the hierarchical and dynamic nature of TALPID3 protein interactions 

within the centrosome [27,34]. TALPID3 localises to the distal ends of both the mother and 

daughter centrioles and directly interacts with numerous centrosomal proteins including 

PCM1, MIB1, CP110, CEP290, CEP120, C2CD3, MACF1, CEP97/KIF24, RAB8a, PKARIIβ 

[18,21,25,26,27,28,34]. PCM1 is key controller of the abundance of TALPID3 on the mother 

centrioles by sequestering the E3 Ligase MIB1 to the centriolar satellites, which would 

otherwise promotes the poly-ubiquitylation of TALPID3. TALPID3 is recruited to the distal 

centrioles through reciprocal interactions with C2CD3 and CEP120; the loss of the any one of 

these two partners leads to a failure of ciliogenesis and Joubert syndrome [15, 34]. Once at the 

distal end of the mother centriole, TALPID3 and C2CD3 play a central role in the maturation 

of the mother centriole, controlling first the removal of daughter centriolar proteins and then 

the recruitment of proteins during the assembly of the DA [21,34] (Figure 3A). While the Sub 

Distal Appendage (SDA) appears to remain intact, TALPID3 is also known to interact with 

MACF1, a SDA protein and other proteins between the DA and SDA are mislocalised 

(CEP19). TALPID3 also interacts with CP110 which must be removed from the distal centriole 

to allow prior to the recruitment of ciliary vesicles, which is dependent on RAB8a (Figure 3A) 

[25, 27]. Recent papers [27,34] have utilised human TALPID3/KIAA0586 mutations to inform 

proteomic approaches to establish potential residues and uncharacterised domains that the 

TALPID3 protein used to control the dynamic and transient actions of the distal centriolar 



 

 

interacting protein network. The distinctive multiple roles of TALPID3 within the distal 

centriole are not generic to all proteins of the distal centriolar protein network- nor even 

TALPID3’s binding partners such as C2CD3. C2CD3 is a particularly interesting example; a 

null mutation in C2CD3 also causes an embryonic lethal chicken mutant, talpid2 [3]. While 

talpid3 and talpid2 have overlapping phenotypic features (polydactyly) and both cause a loss of 

OFD1 at the distal end of the centriole [27], they also have distinctive differences; hyperteloism 

in talpid2, hypoteloism in talpid3 [3]; a loss of TALPID3 causes elongation of the centrioles, 

while a loss of C2CD3 causes a shortening; TALPID3 null cells have an abnormal actin 

cytokeleton, while null C2CD3 cells do not [5, 34]. Thus while TALPID3 and C2CD3 have 

overlapping and co-ordinated functions they also have distinctive functions from each other, 

which lead to diverse phenotypes in null situations.  

Actin cytoskeleton defects are observed in both chickens and human TALPID3 null cells and 

TALPID3 null animal models also demonstrate cell polarity defects (Table1) [5, 27] including 

a recent demonstration of the disruption of cell polarity in photoreceptor cells [35]. The 

centrosome may also be nucleation centre for the actin cytoskeleton [40] but it is currently 

unknown whether the actin cytoskeleton is directly mediated by TALPID3, or perhaps through 

interactions with other proteins such a MACF1 (Microtubule Actin Crosslinking Factor 1; 

[25]). This is, however, an important distinction between the TALPID3 null phenotype and 

other ciliopathy mutants which have normal centrosomes but lack cilia for other reasons. While 

superficially ciliopathy phenotypes are overwhelming due to the loss of normal Hedgehog 

signalling, fundamentally the phenotype of TALPID3 null mutants is also underpinned by a 

different and abnormal cell biology, with different, although subtle consequences for the 

embryo and perhaps for patients.  

 



 

 

Conclusion 

The talpid3 legacy is far from complete. We have, as yet, only a partial understanding of the 

action of TALPID3 within the centrosome with hints that there are dynamic and multiple roles 

for TALPID3. We still have little understanding of the action of TALPID3 in regulation of the 

cytoskeleton or cell polarity. It is likely that these outstanding questions are in fact one and the 

same and that in combining the power of human genetics with proteomics, microscopy and 

model systems we will generate new insights into this enduring biological problem and 

illuminate the connection between cell biology and phenotype, towards, we hope, informing 

the development of future therapies for those living with Joubert syndrome and other 

ciliopathies. 

In memory of Dr Donald A. Ede, discoverer of the talpid3 chicken mutant 4th May 1926-22nd 

August 2018. 
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PHENOTYPE Ciliopathy 

Phenotype 

TALPID3 

Animal 

Model 

Short-Rib 

Polydacyly 

Joubert 

Syndrome 

Hedgehog 

related 

Cell 

polarity 

related  

CELLULAR DEFECTS yes 1, 2, 3, 5, 6, 7 yes     yes 

Cilia absent/reduced, smaller   1, 2, 3, 5, 6, 7 yes Yes [11]   
 

yes 

Abnormal centrosome location   1, 2, 3, 5, 6, 7     
 

yes 

Increase centriolar satellites    1,7     
 

  

Increased centriole length   1,7     
 

  

Failure of Distal Appendage  1 (reduced), 7 CEP164 seen    

Abnormal actin cytoskeleton   1, 7     
 

yes 

Abnormal Hedgehog signalling yes 1,2,3,5 yes   yes   

FACE AND HEAD DEFECTS yes 5 yes yes yes yes 

Frontonasal prominence yes 1,2 yes yes yes   

Hypotelorism yes 1,2,5   yes yes   

Midface shortening yes 
 

  yes 
 

  

Long philtrum   
 

  yes 
 

  

Mandibular prominence yes 1,2   yes yes   

Micrognathia yes 1   yes yes   

Retrognathia yes 1 yes   
 

  

Cleft tongue yes 
 

yes   
 

  

Abnormal dentition yes 
 

yes yes yes   

Maxillary prominence   1,2 yes   yes   

Cleft palate yes 
 

yes   
 

  

Abnormal dentition yes 
 

  yes yes   

CNS DEFECTS yes 1,2,3,5   yes yes   

Hydrocephaly yes 3 yes yes 
 

  

Enlarged ventricles yes 3 yes yes 
 

  

Forebrain yes 2,3 yes   yes   

Holoprosencephaly yes 1,2,5     yes   

Cerebellum yes 3 yes yes yes   

Molar tooth sign yes 
 

yes yes yes   

Hypoplasia of the cerebellum yes 3 yes yes yes   

Reduced cerebellar foliation yes 3   yes yes   

Reduced sup. cerebellar 

peduncles 

yes 3   yes yes   

Reduced decussation of the 

cerebellar peduncles 

yes 3   yes yes yes 

Loss of granule layer   3     yes   

Disorganised Purkinje cells   3     
 

yes 

Eyes yes 1   yes 
 

  

Coloboma yes 6   yes 
 

  

Retinal degeneration yes 6     
 

  

Loss of photoreceptor polarity   6     
 

yes 

Behaviours yes 3 NA yes 
 

  

Ataxia yes 3   yes 
 

  

Hypotonia yes 
 

  yes 
 

  

Irregular breathing yes 
 

  yes 
 

  

Intellectual disability yes 
 

  yes 
 

  

SKELETAL DEFECTS yes 1,4,5 yes yes yes   

Polydactyly yes 1,2,5 yes   
 

  

Syndactyly yes 1,2     
 

yes 

Failure of ossification yes 1,4     
 

  

Shortened long bones yes 1,4 yes ? yes yes 

Short ribs yes 1 yes rare 
 

  

VISCERA DEFECTS yes 1     yes   

Abnormal situs yes 2,5,6     yes   

Heart defects yes 
 

  rare 
 

  

Kidney cysts yes 1,5   rare 
 

yes 

Small lungs yes 1   rare yes   

Hepatic fibrosis yes 1     yes   

Table 1- An abbreviated review of the phenotypes associated with a loss of 

TALPID3/KIAA0586 [1-5, 7-15, 17, 18, 20, 22, 23, 26, 27, 31, 34-38] 



 

 

Figure and Table Legends 

Table 1- An abbreviated review of the phenotypes associated with a loss of 

TALPID3/KIAA0586 [1-5, 7-15, 17, 18, 20, 22, 23, 26, 27, 31, 34-38] 

1-7 indicate TALPID3 mutant alleles in model systems. 1=talpid3 chicken (null), 2= Talpid3-/- 

mouse (null), 3=Nestin-cre (null central nervous system), 4=Prx-cre (null in limb), 5=Maternal 

Zygotic talpid3-/- zebrafish (null), 6=Zygotic ta3-/- zebrafish (hypomorph/progressive loss), 7= 

siRNA Knockdown and CRISPR/Cas9 generated KIAA0586-/-, human cells. CNS= central 

nervous system, NA= not appliciable, ?= unclear phenotype. Short Rib Polydactyly and Joubert 

Syndrome refer to the phenotypes observed in human patients with mutations in 

TALPID3/KIAA0586. 

 

  



 

 

Figure 1- The phenotypes associated with a loss of TALPID3 in the cell, embryo and 

human. Figure 1A. The phenotypes associated with TALPID3 are primarily caused by a loss 

of centrosome (red arrow) function and a loss of the cilia (yellow arrow)- an organelle 

dependent on normal centrosome function. Abnormal cellular phenotypes oberved in null 

TALPID3 cells in culture and in the embryo are as listed. Homozygous null alleles cause an 

embryonic lethal phenotype in humans, mice, zebrafish and chicken embryos, characterised by 

the phenotypes listed and include those associated with disrupted Hedgehog signalling as well 

as phenotype which are independent of Hedgehog signalling. Figure 1B. In comparison with 

null embronic lethal phenotypes, viable humans with  mutations in TALPID3 are likely to have 

hypomorphic mutations, which are usually compound heterozygous mutations. Common 

phenotypes in these patients include brain defects related to the cerebellum and associated 

structures (red arrows), presenting as a ‘Molar Tooth Sign’ which is characteristic of Joubert 

syndrome. More rarely a proportion of patients present with other ‘ciliopathy’ related 

phenotypes, such as polydactyly and other phenotypes listed. 



 

 

 

Figure 2.- The mutations in TALPID3/KIAA0586 which cause human disease  

Figure 2. Human TALPID3/KIAA0586 mutations can be grouped into three main categories 

rare Lethal short-rib polydactyly (n=2; both are homozygous patients), rare Joubert syndrome 

with addition ciliopathy phenotypes (annotated above the gene structure) and relatively mild 

compound heterozygous mutations which cause Joubert syndrome (anotated below the gene 

structure). Green arrows heads represent rare single deleterious mutations, 

c.2663_2667delp.L888Qfs*24 has been shown to be essential for CP110 removal [26]. A 

hotspot for Joubert syndrome mutations, immediately prior to the essential coiled coil domain 

(blue asterisk) is shown in greater detail. The most common mutation, c.428delG,pR143Kfs*4, 

is annotated in bold and the potential alternative transcriptional start is shown by the blue arrow. 

Heterozygous mutations which do not occur with the common variant are marked by black 



 

 

arrowheads. The mutations are annotated on a schematic of the human KIAA0586 protein. 

Black vertical lines represent exon boundaries, purple boxes mark the coiled coil domains, red 

vertical lines indicate mutations predicted to result in premature stop codons, grey vertical lines 

represent predicted splice variant mutations. 

  



 

 

 

Figure 3- Model of the function of TALPID3 in the centrosome and the centrosome 

phenotypes caused by a loss of TALPID3 

(A). TALPID3 interacts with CEP120 and C2CD3 to establish a TALPID3, C2CD3 and OFD1 

complex at the distal ends of the mother and daughter centriole, prior to ciliogenesis. TALPID3 

controls loss of DCP (daughter centriolar proteins; CEP120, CP110, Centrobin, Neurl14) and 

contributes in the acquisition of mother centriolar specific proteins (CEP83, CEP89, FBF1 

module), distal appendage development including localisation of CEP164 (with C2CD3 and 

CEP120) and ciliary vescile binding (with Rab8a) during the maturation of the mother centriole 

towards ciliogenesis.TALPID3 binds to CP110, limiting localisation of CP110 on the mother 

centriole and limiting the length of daughter centriole length.  PCM1 and C2CD3 are found in 

a low number of centriolar satellites around the centrioles B. A loss of TALPLID3 localisation 

from the centrioles results in a loss of C2CD3 and OFD1 and CEP120 is maintained at higher 



 

 

daughter centriolar levels. Daughter centriolar proteins are maintained and localisation of 

mother centriolar proteins fails. While subdistal appendages develop, distal appendages are 

abnormal, CEP164 is disorganised, ciliary vesicles fail to dock. CP110 is also maintained at 

daughter centriolar levels and centrioles are elongated. Centrioles fail to migrate of orientate 

correctly to the cell surface. Centriolar satillites are abundant and inclide localisation of PCM1 

and Cep290. * indicates known protein interaction with TALPID3.C, C’. Super resolution 

image and reconstruction of TALPID3 localisation (arrows, red) at the distal end of the 

centrosome via Tublin (green).  

  



 

 

PHENOTYPE 
Ciliopathy 

phenotype 

Null 

TALPID3 

Animal 

Model 

Human 

Short-Rib 

Polydacyly 

Human 

Joubert 

Syndrome 

Hedgehog 

related 

Cell 

polarity 

related 

defect 

CELLULAR DEFECTS yes 1, 2, 3, 5, 6, 

7 

yes     yes 

Cilia absent or ciliated cells 

significantly reduced, size reduced 

  1, 2, 3, 5, 6, 

7 

yes  Yes [11] causative 

of loss HH 

yes 

Abnormal centrosome/basal body 

location 

  1, 2, 3, 5, 6, 

7 

    
 

yes 

 Loss basal body subdistal 

appendage/markers (CEP164, 

CP120) 

  7     
 

  

Increase centriolar satellites    1,7     
 

  

Increased centriole length   1,7     
 

  

Failure of Distal Appendage  1 (reduced, 

CEP164 

seen but 

abnormal), 

7 (no 

CEP164) 

CEP164 

seen 

   

Abnormal microtubule 

cytoskeleton 

  1     
 

yes 

Abnormal actin cytoskeleton   1,7     
 

yes 

Mislocation of Golgi    1     
 

yes 

Mislocation of mitochondria   1,6     
 

yes 

Abnormal cell migration   1,2,3     
 

yes 

Abnormal Hedgehog signalling 

(loss PTC1, GLI1 expression, 

mislocation of GLI protein) 

yes 1,2,3,5 yes   yes   

Abnormal Wnt signalling yes 3     
 

  

FACE AND HEAD DEFECTS yes 5 yes yes yes yes 

Frontonasal prominence yes 1,2 yes yes yes   

Hypotelorism yes 1,2,5   yes yes   

Midface shortening yes 
 

  yes 
 

  

Long philtrum   
 

  yes 
 

  

Mandibular prominence yes 1,2   yes yes   

Micrognathia yes 1   yes yes   

Retrognathia yes 1 yes   
 

  

Cleft tongue yes 
 

yes   
 

  

Abnormal dentition yes 
 

yes yes yes   

Maxillary prominence   1,2 yes   yes   

Cleft palate yes 
 

yes   
 

  

Abnormal dentition yes 
 

  yes yes   

Pituitary gland absence   1     yes   

CENTRAL NERVOUS 

SYSTEM DEFECTS 

yes 1,2,3,5   yes yes   

Hydrocephaly yes 3 yes yes 
 

  

Enlarged ventricles yes 3 yes yes 
 

  

Forebrain yes 2,3 yes   yes   

Holoprosencephaly yes 1,2,5     yes   

Midbrain yes 1     yes   

Expansion of midbrain boundaries yes 1,3     yes   

Hindbrain   1,3     yes   

Cerebellum yes 3 yes yes yes   

Molar tooth sign yes 
 

yes yes yes   

Hypoplasia of the cerebellum yes 3 yes yes yes   

Reduced cerebellar foliation yes 3   yes yes   

Reduced superior cerebellar 

peduncles 

yes 3   yes yes   

Reduced decussation of the 

cerebellar peduncles 

yes 3   yes yes yes 

Loss of granule layer   3     yes   

Disorganised Purkinje 

cells/abberrant connectivity 

  3     
 

yes 

Spinal cord yes 2,5     yes   

Loss of ventral Hh dependent 

neurons 

yes 1,2,5     yes   

Expansion dorsal neurons yes 1,2     yes   

Eyes yes 1   yes 
 

  

Coloboma yes 6   yes 
 

  

Retinal degeneration yes 6     
 

  



 

 

Supplementary Table1. A comprehensive review of the phenotypes associated with a loss 

of TALPID3/KIAA0586 [1-5, 7-15, 17, 18, 20, 22, 23, 26, 27, 31, 34-38] 

1-7 indicate TALPID3 mutant alleles in model systems. 1=talpid3 chicken (null), 2= Talpid3-/- 

mouse (null), 3=Nestin-cre (null central nervous system), 4=Prx-cre (null in limb), 5=Maternal 

Zygotic talpid3-/- zebrafish (null), 6=Zygotic ta3-/- zebrafish (hypomorph/progressive loss), 7= 

siRNA Knockdown and CRISPR/Cas9 generated KIAA0586-/-, human cells. CNS= central 

nervous system, NA= not appliciable, ?= unclear phenotype. Short Rib Polydactyly and Joubert 

Syndrome refer to the phenotypes observed in human patients with mutations in 

TALPID3/KIAA0586. 

Loss of photoreceptor polarity   6     
 

yes 

Ectopic lens development   1     
 

  

Loss of stereocilia on hair cells yes 1     
 

yes 

Behaviours yes 3 NA yes 
 

  

Ataxia yes 3   yes 
 

  

Hypotonia yes 
 

  yes 
 

  

Irregular breathing yes 
 

  yes 
 

  

Intellectual disability yes 
 

  yes 
 

  

AXIAL AND APPENDICULAR 

SKELETAL DEFECTS 

yes 1,4,5 yes yes yes   

Limb yes 1,2,5 yes yes yes   

Polydactyly yes 1,2,5 yes   
 

  

Syndactyly yes 1,2     
 

yes 

Shortened/curled body axis partly 1,5     yes yes 

Skeleton yes 1,4 yes   yes   

Failure of ossification yes 1,4     
 

  

Mislocation of cell polarity marker 

(VANGL2) 

  1     
 

yes 

Misorientation of chondrocytes   1     
 

yes 

Shortened long bones yes 1,4 yes ? yes yes 

Short ribs yes 1 yes rare 
 

  

VISCERA DEFECTS yes 1     yes   

Abnormal situs yes 2,5,6     yes   

Heart defects yes 
 

  rare 
 

  

Kidney cysts yes 1,5   rare 
 

yes 

Small lungs yes 1   rare yes   

Hepatic fibrosis yes 1     yes   

Gut patterning/innervation   1     yes   

MUSCLE DEFECTS   1,5     yes   

Abnormal myotome/muscle 

development 

  1,5     yes   

INTEGUMENTARY DEFECTS 

-Skin/Feather/Hair/Scales/Nails  

  1     yes   

Failure of appendage development   1     yes   

Lost of polarity of appendage   1     
 

yes 

VASCULAR DEFECTS   1,5     yes   

Ectopic blood vessels   1     
 

  

Haemorrhage   1,2,3,5     
 

  

Oedema   1,3         


