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Abstract

We develop a flexible binary choice model for mortgage default decisions that

incorporates neighborhood effects in the disturbances. The main advantage

of the model lies in its performance in providing accurate estimates of the

probability of default for risky mortgage loans. In addition, it can be applied

to portfolios with a high number of loans. Assuming mortgage decisions with

spatially dependent disturbances, the proposed approach uses the generalized

extreme value distribution to flexibly model the error terms. To estimate the

model on a large sample size, we use a variant of the Geweke-Hajivassiliou-

Keane algorithm. We apply the proposed model and its competitors to a large

dataset on almost 300,000 mortgages in Clark County, which includes Las

Vegas, over 2009-2010. The results show that our proposal greatly improves

the predictive accuracy of identifying loans that will default. Moreover, the

competitor models underestimate credit Value at Risk.

Keywords: binary imbalanced samples, spatial econometrics, generalized

extreme value distribution, mortgage default decisions.



1 Introduction

Problems emanating from the mortgage market played a role in the Great

Recession and has demonstrated the importance of better modeling of house-

hold mortgage default. The literature on mortgage default has emphasized

the role of house prices as well as home equity accumulation for the default

decision (Deng et al. 2000; Ghent and Kudlyak, 2011; Mayer et al. 2009;

Mian et al. 2010; Scharlemann and Shore, 2016; Zhu and Pace, 2015). Re-

cently, Scharlemann and Shore (2016) have examined the effect of negative

equity on borrowers’ mortgage default under the Principal Reduction Alterna-

tive (PRA), part of the government’s Home Affordable Modification Program

(HAMP), which was introduced to reduce mortgage payments of borrowers

with negative equity who are likely to default.

Although existing studies have established the importance of modeling

mortgage risk, the risk associated with neighborhood effects in the distur-

bances is under-explored. Agarwal et al. (2012) have examined how the con-

centration in the same zip code of defaulted mortgage affected individual loan

performance, finding some significant neighborhood effects. The authors ac-

count for neighborhood effects by including zip code fixed effects corresponding

to property location. Harding et al. (2009) have shown that foreclosures re-

duce the prices of nearby non-distressed sales through a neighborhood effect.

These effects could arise because of the neglect of vacant properties or as a

consequence of the reduction in maintenance of properties by defaulted bor-

rowers.

Although fixed effects provide the most common way to model such neigh-
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borhood effects, the very local nature of real estate requires a large number

of fixed effects. As an alternative, recently spatial autoregressive models been

used to model neighborhood effects in mortgage defaults. Zhu and Pace (2014)

have investigated spatial dependence in the disturbances and the effect of bor-

rower characteristics from nearby properties on own default propensity. They

find that allowing spatial dependence in the disturbances greatly improves the

predictive accuracy of credit risk models.

This result is a consequence of the influence of neighbors’ characteristics on

a borrower’s propensity to default on a mortgage. For example, if the houses in

a neighborhood are in a poor condition the expectation of future appreciation

is low, leaving the borrower with less of an incentive to repay her mortgage.

Lenders employ credit standards that ordinarily result in low levels of de-

fault. In other words, most times a default is a rare event and the estimated

probability of a default depends partially on the assumed error distribution.

Using a spatial probit model, Zhu and Pace (2014) assume that the errors

are normally distributed, which gives little weight to rare events. As the dis-

tribution of the errors in this model is symmetric, borrowers are subject to

approximately equal levels of positive and negative random influences in their

decisions. However, the omission of relevant skewed variables, such as wealth,

could lead to an overall error composed of both a symmetric component and

a skewed component. Therefore, the overall error could be skewed.

In addition, logit models often rely on a utility justification where each

choice has associated with a Gumbel distributed error (McFadden, 1978). The

utility difference between two choices has a systematic part and an error part,
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composed of the difference between two Gumbel distributed errors, which leads

to the symmetric logit distribution. However, if the variance of the errors

associated with each choice differs, this could also lead to a skewed distribution

of the overall error.1 If we model mortgage decisions, disturbances can be

spatially dependent because location related variables can be omitted and

because nearby properties show similar values for those omitted variables.

Furthermore, one could argue for using a distribution with some tail weight

on decision theoretic grounds. If a rare event, such as a default, has associated

with it a much larger cost (loss) than the benefit (profit) associated with the

common event of loan repayment it would argue for using a method which has

substantial tail weight.

In a non-spatial context, various papers (Calabrese et al. 2015; King and

Zeng, 2001; and Wang and Dey, 2010) have dealt with this rare binary event

problem. Different methods have been proposed to overcome the challenges

associated with this problem. Over-sampling rare events and under-sampling

common events have been proposed (for a review see Sahare and Gupta, 2012),

but this approach encounters difficulty when applied to spatial data since it

alters the spatial structure of the data and can potentially change the estimates

of spatial spillovers and spatial dependence. Another approach suggested in

the literature, although not in a spatial context, is to use a flexible skewed

link function such as one based on the Generalized Extreme Value (GEV)

distribution. This approach effectively increases the weight given to the rare

event (Calabrese et al. 2015; Wang and Dey, 2010).

1Such heteroscedastic choice models across alternatives have often been employed in political science where
interest lies in estimating the uncertainty associated with the choices (Zeng, 2000). As an example, consider
the choice between Donald Trump and Hilary Clinton.
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Calabrese and Elkink (2016) applied the GEV approach to spatial data,

but encountered computational problems when using Gibbs sampling for large

sample sizes. Insofar as many practical problems involving loan data have a

large number of observations, this is a limitation. In contrast, Pace and LeSage

(2016) proposed a method to handle binary spatial problems for large sample

sizes using the Geweke-Hajivassiliou-Keane algorithm, but they used normal

errors which give low weights to rare events.

The contribution of this article is twofold. From a methodological perspec-

tive, we propose a spatial choice model suitable for highly imbalanced binary

large sample size data. The distribution of the error terms is allowed to be

asymmetric and its tail behavior is flexibly determined from the data. Particu-

larly, we assume that the joint distribution of the error terms is a multivariate

Generalized Extreme Value (GEV) random variable, whose marginal distribu-

tions are also GEV.2 The advantage of the GEV model we discuss here is that

it incorporates a wide range of skewness and kurtosis with the unconstrained

shape parameter τ .

From an empirical point of view, we improve the classification performance

obtained using classical alternatives for mortgage scoring assessments. We

analyze a dataset of almost 300,000 mortgages over 2009-2010 in Clark County,

which includes Las Vegas, the city with the largest concentration of subprime

mortgages in the US. We show that ignoring neighborhood spillover effects

and using logit or probit choice models yield misleading results. For example,

2The model we introduce here is totally different from the generalized extreme value models initiated by
McFadden (1974). In McFadden’s definition, the GEV distribution is Type I extreme value distribution or
Gumbel distribution (McFadden, 1978), which is a special case of the GEV distribution we use in the equation
(17) when the shape parameter τ → 0. Furthermore, our proposal generalizes McFadden’s model to allow
heteroscedasticity across choice alternatives.
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in 2009, at the beginning of the foreclosure crisis in Las Vegas, a logit choice

model under the assumption of independent mortgage decisions leads to the

minimum estimated probability of repayment of 0.9. If we introduce spatially

dependent disturbances in a logit model the minimum estimate is 0.73. The

Fast Binary Spatial Generalized Extreme Value (FBSGEV) model proposed

here achieves a more realistic minimum estimated probability of repayment

equal to 0.25.

The paper is organized as follows. The next section reviews the widely used

specifications of the binary choice models with spatial dependence. In Section

3 we propose the FBSGEV choice model. Section 4 shows the results obtained

from applying the traditional and proposed approaches to data on mortgage

decisions. The last section reviews the key findings.

2 Binary Choice Models

We have a portfolio of n mortgages. A borrower labeled i is a decision maker

facing two mutually exclusive and collectively exhaustive alternatives – pay-

ment of mortgage debt p (indicated by Yi = 0) or default d (Yi = 1). A binary

choice model specifies the probability of choosing each alternative as a function

of observable variables and unknown parameters to be estimated from sample

data. The estimated model can then be used to explain and predict choice

behavior.

In the utility maximization approach, the i decision-maker chooses the al-

ternative j = d,p that provides the greatest utility Uij. The dependent variable

Yi can be represented as a latent response model
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Yi =

 1, Uid − Uip > 0

0, otherwise.
(1)

The utility that the borrower obtains from the j-th alternative is decom-

posed into a part that is known up to some parameters xiβj and an unknown

part εij that is treated as random

Uij = xiβj + εij for j = p,d. (2)

The borrower’s default probability is given by the probability that the

decision-maker i chooses the alternative d

Pid = Prob{Yi = 1} = Prob{Uid > Uip} = Prob{xiβd + εid > xiβp + εip}

=

∫
εp

∫
εd

1{εid − εip > xi(βd − βp)}f(εip)f(εid)dεipdεid (3)

where 1{·} is the indicator function, equaling 1 when the term in parentheses

is true and 0 otherwise. The bidimensional integral in the equation (3) is

computed over the density of the unobserved portion of utility f(·) under the

assumption that εij are identically and independently distributed. Different

discrete choice models are obtained from different specifications of the error

terms εij.

The most widely used binary choice model is logit. Originally, Luce (1959)

derived the logit equation from some assumptions about the characteristics of

choice probabilities, known as the independence from irrelevant alternatives.

McFadden (1974, 1978) extended this analysis assuming that εij are distributed
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as a type I extreme value (Gumbel) and deriving the logit closed-form under

this assumption. As the unobserved component εij has variance σ2(π2/6) in

McFadden’s model, therefore the logit choice model implies homoscedasticity

across choice alternatives.

2.1 Spatial Binary Choice Models

In house price models, disturbances often display statistically significant spa-

tial dependence (e.g. LeSage and Pace, 2004). The mortgage literature, de-

spite relying on house prices, usually assume independent error components,

ignoring neighborhood effects. However, Zhu and Pace (2014) have found that

the predictive accuracy of a default model is greatly improved when allowing

spatial dependence in the disturbances. Thus, we add spatial random effects

in the binary choice model to account for latent and unmeasured effects that

are spatially structured.

Let εj be the n-dimensional vector of disturbances for the alternative j.

Spatial interdependence can be introduced in the error terms εj as follows

εj = Avj, (4)

where vj is a vector of independent and identically distributed error terms. Dif-

ferent specifications for the matrix A have been used in the literature (LeSage

and Pace, 2009)

• if A = (I − ρW )−1, the model is known as spatial error model (SEM);
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• if

A = (I − ρW )−1/2, (5)

the model is known as conditional autoregressive model (CAR);

• if A = (I + ρW ), the model is known as a moving average model (MA),

where W is an exogenous square matrix W of order n and ρ is the associated

scalar parameter. The generic element wij is equal to a positive number when

observation j is a neighbor to observation i and 0 otherwise. Neighborhood

can refer to geographical or alternative vicinity. In practice, W is often scaled

to have a maximum eigenvalue of 1, which simplifies the setting of the interval

for the spatial dependence parameter. For a symmetric W which has real

eigenvalues, one can either divide a candidate weight matrix by its maximum

eigenvalues so that the new matrix has an eigenvalue of 1 or scale the weight

matrix so that both the rows and columns sum to 1.3

Substituting the equation (4) in the utility function (2), we obtain

Uj = Xβj + Avj for j = p,d. (6)

Ud −Up = X(βd − βp) + Avd − Avp. (7)

Different methods have been proposed to estimate the parameters in the

equation (6). Some of the widely used approach are the Gibbs Sampling

(LeSage, 2000), the Recursive Importance Sampling (Beron and Vijverberg,

2004) and the Generalized Method of Moments (Pinkse and Slade, 1998; Klier

3This matrix becomes doubly stochastic (in the linear algebra sense), although all the entries are non-
stochastic (in the statistical sense).
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and McMillen, 2008). For a review and comparison of these methods, see

Calabrese and Elkink (2014), LeSage and Pace (2009).

The possibility of different levels of spatial dependence between choices is

a specification issue with spatial discrete choice models that does not arise in

non-spatial models. We examine the utility differences between choices d and

p as captured by the n×1 vector u where, for simplicity, the individual utilities

follow a moving average process with different levels of spatial dependence ρd,

ρp as in (8). In (9) we assume iid choice utility variances and no covariances

among the individual choice utilities. The resulting variance-covariance matrix

Ω in (10) through (12) shows that the utility differences still follow a moving

average process, but with a different level of dependence ρa and variance σ2
a

as shown in (13).

u = εd − εp = (In + ρdW )1/2vd − (In + ρpW )1/2vp (8)

E(vdv
′
p) = 0n, E(vdv

′
d) = σ2

dIn, E(vpv
′
p) = σ2

pIn (9)

Ω = E(uu′) = (In + ρdW )σ2
d + (In + ρpW )σ2

p (10)

= In(σ
2
d + σ2

p) + (ρdσ
2
d + ρpσ

2
p)W (11)

= σ2
a · (In + ρa ·W ) (12)

ρa = fρd + (1− f)ρp, f = σ2
d/σ

2
a, σ

2
a = σ2

d + σ2
p (13)

In this situation the overall level of dependence averages the individual levels

of choice dependence by their relative variances. Of course, ρd = ρp results

in the conventional case. In addition, one can perform a similar analysis for
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other spatial specifications such as SAR and CAR. These become slightly more

complicated with averaging ρkd and ρkp for k = 1 · · ·∞, but show some of the

overall flavor of the simpler MA specification. This development highlights the

possibilities created with different levels of choice dependence, choice variances,

and spatial specifications4.

3 The FBSGEV Choice Model

To model borrowers’ choices, we compute the difference between the utilities

of two choice alternatives d and p

Ud −Up = X(βd − βp) + εd − εp. (14)

McFadden (1978) have assumed that the error term εj is Gumbel distributed

as the decision-maker’s objective is to maximize his or her utility and the Gum-

bel distribution is used to model the distribution of the maximum (Embrechts

et al. 2003). As the difference between two Gumbel random variables is a

logistic distribution (Johnson et al. 2005), the difference εd− εp is assumed to

be logistic distributed. The main limitation of this assumption is that it uses

a symmetric distribution for the difference of the error terms εd − εp.

There are several reasons supporting a skewed distribution for the error

term εd − εp. Firstly, if there is an omitted variable Z, the equation (14)

becomes

Ud − Up = X(βd − βp) + z(αd −αp) + εd − εp. (15)

4We are indebted to a reviewer for suggesting this situation and this opens up possibilities for new spatial
choice models.
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This means that the error term z(αd − αp) + εd − εp in the equation (15) is

skewed distributed if the omitted variable z is also asymmetrically distributed.

Secondly, even in the absence of omitted variables, if there is misspecification

of the independent variables X, such as using a model with the explanatory

variables in levels when they are in log-form, the error term εd − εp might

have a skewed distribution. Thirdly, if εd and εp have symmetric distribu-

tions, but unequal variances, the disturbances εd−εp will have an asymmetric

distribution.

To better understand the implications under different assumptions on the

distribution of the error term εd− εp, we perform a simulation study on three

possible distributions for the disturbances given by the Normal, Logistic and

the GEV. Table 1 shows that the GEV distribution gives more tail weight to

large disturbances than their symmetric counterparts (Normal and Logistic).

From a decision theory perspective, providing too little probability to rare

events with large losses, such as default, has a higher error cost than provid-

ing too little probability to common events with small profits such as a loan

repayment. Implicitly, using a skewed distribution combines the density and

loss functions together.

For all the reasons stated above, we choose the GEV distribution to model

the error term. As we point out in Section 2.1, we use a spatial binary choice

model to take into account omitted variables in mortgage default decisions

that are spatially dependent. This means that the equation (14) becomes

Ud −Up = X(βd − βp) + A(vd − vp) (16)
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Distributions 1 2 3 4

Normal 0.1587 0.0228 0.0014 0.0000
Logistic 0.1402 0.0259 0.0043 0.0007
GEV(0) 0.1442 0.0423 0.0119 0.0033
GEV(0.10) 0.1301 0.0429 0.0154 0.0061
GEV(0.20) 0.1124 0.0400 0.0168 0.0080
GEV(0.25) 0.1021 0.0372 0.0165 0.0083
GEV(0.30) 0.0904 0.0335 0.0154 0.0082
GEV(0.35) 0.0776 0.0289 0.0138 0.0077
GEV(0.40) 0.0627 0.0232 0.0114 0.0065
GEV(0.45) 0.0477 0.0175 0.0088 0.0052

Table 1: Upper Tail Probability P{ε > j · σ} with j = 1,2,3,4 and E(εε′) =
σ2In for different distributions of the error term ε. The results are based
on simulated data obtained from one billion standardized variates for each
distribution.

where the error component is GEV distributed with a cumulative distribution

function

FGEV(vij) =


exp

−
[
1 + τ

(
vij − µ
σ

)]−1

τ

+

 τ 6= 0

exp

[
−
(
vij − µ
σ

)]
τ = 0

(17)

where τ is the shape parameter, µ ∈ R is the location parameter, σ ∈ R+ is

the scale parameter and x+ = max(x,0). For simplicity, we consider µ = 0

and σ = 1.

The GEV distribution is very flexible with the shape parameter τ control-

ling the tail behavior, as shown by Figure (1). Three groups of distributions

are defined based on the value of the parameter τ . If τ → 0, the GEV dis-
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tribution is the Gumbel class used by McFadden (1978) in the logit choice

model. The distributions associated with τ > 0 are called Fréchet-type distri-

bution. Finally, in the case where τ < 0, the distribution class is Weibull. To

measure the skewness of the GEV distribution, we use the skewness measure

proposed by Arnold and Groenveld (1995) as it only requires the existence of

mode M . For a cumulative distribution function F , this skewness measure

is γM = 1 − 2F (M). The measure γM satisfies −1 < γM < 1, with 1(-1)

indicating extreme right (left) skewness. For the GEV distribution (17), we

obtain

γM = 1− 2 exp[−(1 + τ)] (18)

if τ > −1; otherwise, the mode does not exist. The GEV distribution has

negative skewness for τ < ln(2) − 1, it is positively skewed for τ > ln(2) − 1,

and near symmetric for τ = ln(2)− 1.

Figure 1 around here

A logit choice model provides the same contribution to data on defaults

(Yi = 1) and non-distressed mortgages (Yi = 0) (Calabrese et al. 2015; King

and Zeng, 2001). As the two groups of borrowers are imbalanced with a lower

percentage of defaults, an additional decision of default is more informative

than a payment choice. Hence, we assign more weight to default choices using

a GEV distribution instead of a logistic distribution. Moreover, the mortgage

default decisions are represented by the tail of the utility function. The GEV

random variable has been used in the literature to model the tail behavior

(Embrechts et al. 2003). Another important advantage of the GEV distribu-
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tion is that the marginal distributions of a multivariate GEV are also GEV

distributed (Johnson et al. 2005).

We point out that the GEV model proposed by McFadden (1978), more

properly defined as Gumbel model, suffers from the restriction of homoscedas-

tic disturbances across choice alternatives. In a choice model, if heteroscedas-

ticity across choices is ignored, the distribution of the error terms can be

skewed (Yatchew and Griliches, 1985). Bhat (1995) proposed an extreme

value model with heteroscedasticity across alternatives. This was further gen-

eralized by Zeng (2000), who developed a logit model with heteroscedasticity

across decision makers as well as across alternatives. This model is also re-

ferred to as the heteroscedastic logit model (DeShazo and Fermo, 2002) and the

parametrized heteroscedastic multinomial logit model (Hensher et al. 1999).

The homoscedasticity assumption across alternatives could be violated by

mortgage default choice, as the decision of default may have a higher level of

uncertainty than the choice of repayment. We remove the homoscedasticity

assumption across alternatives. In particular, we assume that the ratio be-

tween the variance of the disturbances for payment vip and the variance of the

error terms for the default alternative vid is almost zero, var(vip)/var(vid)≈0.

Under this assumption, the error component vd − vp in the equation (16) is

GEV distributed

vd − vp ∼ GEVn(µ = 0, In, τ) (19)

where In is the identity matrix. We define this model the Fast Binary Spatial

GEV (FBSGEV) choice model. The FBSGEV model includes a near symmet-

ric distribution for the error terms vd−vp as a special case when τ = ln(2)−1.
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3.1 The estimation procedure suitable for large sample size

To estimate the FBSGEV model, given the equation (19), we have to compute

the integral of a truncated n-dimensional GEV distribution

Fn,GEV(b) =

∫ bn

−∞

∫ bn−1

−∞
...

∫ b1

−∞
fn,GEV(v1,v2,...,vn)dv1dv2...dvn (20)

where vi = vid − vip, b = [b1,b2,...,bn], fn,GEV and Fn,GEV are, respectively, the

n-dimensional density and cumulative distribution function of a GEV random

variable.

This becomes a more difficult computational problem as the sample size

n increases. Different methods have been proposed for computing these inte-

grals, such as the frequency simulator and the Stern simulator (Borsch-Supan

and Hajivassiliou, 1993). A widely used technique is the smooth recursive

conditioning simulator, known also as the Geweke-Hajivassiliou-Keene (GHK)

simulator (Geweke, 1991; Hajivassiliou and McFadden, 1990; Keane, 1994).

The GHK method reduces the integral of a truncated multivariate normal to

a recursive sequence of n univariate integrals. Beron and Vijverberg (2004)

have used the GHK method to propose the Recursive Importance Sampling

(RIS) to estimate the parameters of a spatial probit. Using the Cholesky

decomposition, they obtain a Cholesky triangular matrix of n(n + 1)/2 non

zero elements. This means that the RIS requires O(n2) operations to compute

the multivariate integral, which becomes computationally intensive for large

sample sizes (of the order of thousands of observations).

Beron and Vijverberg (2004) have proposed a RIS estimator to evalu-

ate directly the n-dimensional integral. By using a decomposition of the

15



n-dimensional variance-covariance matrix that produces an upper-triangular

matrix, the sampler can proceed by exploiting the fact that the last observa-

tion is now independent of other observations. The second-last observation

is only dependent on the last, and so forth, thus allowing a recursive sam-

pling algorithm. The RIS-normal simulator is identical to what is sometimes

called the Geweke-Hajivassiliou-Keane (GHK) simulator (Borsch-Supan and

Hajivassiliou, 1993).

In spatial econometrics an observation depends only on a low number of

nearby observations. This means that the spatial weight matrix A in equation

(4) may contain a large proportion of zeros, so the matrix is defined as being

sparse. For example, if there are on average six neighbors for each observation,

the proportion of non-zeros in W is almost equal to 6/n. Pace and LeSage

(2016) have suggested to use the GHK algorithm for a sparse inverse variance-

covariance matrix, known as a precision matrix. In particular, the authors

consider the CAR model defined in equation (5) and show that if the precision

matrix Ψ = Σ−1 is sparse, the variance-covariance matrix Σ

E[(εd − εp)(εd − εp)′] = E(εdε
′
d) = ΣCAR = (In − ρW )−1 (21)

is not sparse. Note, the first identity in equation (21) follows from the het-

eroscedasticity assumption across alternatives (var(vid)/var(vip)≈0) presented

in the previous section.

An important property of the GEV distribution is that a multivariate GEV

random variable has GEV marginal distributions (Kotz et al. 2005). We can

use this property to simplify the integral (20) replacing the multivariate joint
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density with the product of n conditional densities where each conditional

density function depends only on prior variables in the sequence (22).

Fn,GEV(b)=

bn∫
−∞

bn−1∫
−∞

...

b1∫
−∞

fGEV(vn)fGEV(vn−1|vt>n−1)...fGEV(v1|vt>1)dv1dv2...dvn (22)

We apply the GHK algorithm to a CAR model, defined in equation (21),

and we compute the integral (22) using the Cholesky decomposition on the

precision matrix, which results in a lower triangular matrix L and an upper

triangular matrix Q, where Q is equal to the transpose of L (Q = L′). In

particular, we aim to multiply v = vd − vd, defined in equation (19), by a

matrix to obtain the vector ε = εd − εp of correlated GEV random variables

whose variance-covariance matrix is ΣCAR, given by equation (21). To achieve

this aim, we consider the following equations

Ψ = LQ = Σ−1

Σ = (LQ)−1 = Q−1L−1

ε = Q−1v = Lv (23)

E(εε′) = E(Q−1vv′L−1) = Σ.

From equations (22) and (23), we obtain

Qε = v s.t. εi < bi for i = 1,2,...,n.
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v1

v2

...

vn

 =


Q11 Q12 ... Q1n

...

Q(n−1)(n−1) Q(n−1)n

Qnn




ε1

ε2

...

εn

 s.t.


ε1

...

εn−1

εn

 <

b1

...

bn−1

bn

 (24)

We point out that if the GHK algorithm is applied to the precision matrix as

in (24), and not to the covariance matrix, the procedure begins with the last

observation n and works towards the first observation. We can rewrite the

system (24) in the following form

bn >
vn
Qnn

bn−1 >
vn−1 −Q(n−1)nεn

Q(n−1)(n−1)

...

b1 >
v1 −

∑n
t=2Q1tεt
Q11

The GHK procedure begins with the n-th observation that does not depend

on any other observation, so the calculation of the n-th probability becomes

an univariate problem

an = bnQnn

P n = FGEV[vn < an]

v∗n ∼ TGEV (an)

ε∗n =
v∗n
Qnn

where TGEV is a truncated GEV random variable. For the general i-th
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observation, the ε∗i+1, ..., ε∗n calculated in the previous steps are used as follows

a∗i = biQii +
n∑

t=i+1

Qitε
∗
t

P i = FGEV[vi < a∗i ]

v∗i ∼ TGEV (a∗i ) (25)

ε∗i =
v∗i −

∑n
t=i+1Qitε

∗
n

Qit
. (26)

For the first observation (last in the process), v∗1 and ε∗1, defined respectively

in (25) and (26) do not need to be computed. If we repeat this procedure R

times, we can follow Pace and LeSage (2016)’s proposal of computing the joint

probability P as follows

P =
n∑
i=1

ln

(∑R
d=1 P i(d)

R

)
.

We propose the previous procedure to estimate the unknown parameters of

the FBSGEV model defined in equation (14) via a standard outer-product-of-

the-gradient (OPG) method of optimization. We could use this procedure to

estimate also the shape parameter τ of the GEV distribution (17). However,

usual asymptotic properties associated with the maximum likelihood estimator

are not satisfied when τ < −0.5 (Smith, 1985). Hence, we propose fitting as

many FBSGEV models as the number of a set of sensibly chosen values of the

parameter τ and then select the model that yields the best empirical predictive

performance.
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4 Empirical analysis

4.1 Data

We selected Clark County, in the US state of Nevada, as the study area for this

analysis because (a) it epitomized the mortgage crisis and (b) the Metropolitan

Statistical Area (MSA) lies entirely in a single county. Therefore, we only

need to obtain one county of property records to analyze a large city. This

is in contrast to cities such as Denver, Colorado (10 counties); Charlotte,

North Carolina (6 counties); or Dallas, Texas (12 counties). Las Vegas, the

most populous city in Clark County, has the largest concentration of subprime

mortgage origination in the country (Mayer and Pence, 2008), therefore it was

hit hard by mortgage foreclosures and collapsing prices.

We collected information about individual homeownership and housing

transactions from the Clark County Property Assessor’s Office records. These

records are comprised of three distinct data sets. The first file contains infor-

mation on the physical characteristics of each single-family property located

within Clark County such as the year the property was built, the square footage

of the house, and the lot size. The second file contains transactions informa-

tion for each of these properties. We can observe all transactions on a property

between 2000-2011. Therefore, if we see that a mortgage has been originated

in association with a property during this time period and there is no record

of the loan being repaid during the same period, the loan will be included in

our sample. Additionally, we can see information about the loan type (fixed

or adjustable rate mortgage) and estimates on the current market value of the
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property derived from tax assessment records.

The final data set contains information on mortgage default. The specific

record we observe is the formal filing of a notice of default. This is a notice

sent by mortgagee to the mortgagor when the borrower is 90 days or more

delinquent in payment. The lender is not obligated to send this notice at

the point of 90 days delinquency; the lender may rationally choose to offer a

modification or some other loan workout to the borrower. However, sending

this legal notice is a necessary precursor for the lender to initiate foreclosure

proceedings. We can observe the property each notice is associated with as

well as the date that the notice was sent. Collectively, these records include

information on property transactions for every single family property in Clark

County. Default records include the date of each notice of default filed against

each property in Clark County. Using this information, we can ascertain if an

individual received a notice of default during the relevant time period or not.

We use this information as the dependent variable in the empirical specifica-

tions predicting default.

We only include property sales records from individuals owning residential

property. If the owner’s name included any word indicating a business, we

excluded the associated record. Those words include: LLC, Inc, Residential,

Property, Properties, Construction, Finance, Resort, Vacation, Mortgage, Fi-

nancial, Global, Bank, Home, Security, Securities, Services, Servicing, Nevada,

Fund, Wells Fargo, Consultant, or Series. Properties that do not have a mort-

gage in place at the time of analysis are excluded from the sample. In addition,

we required observations to have loan-to-value ratios between 0 and 4, to have
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only a senior mortgage loan, to have complete data on the interest rate type

and on the location of the property.5

The final data set included 282,366 observations. We look to variables from

the 2010 American Community Survey (ACS) estimates for Clark County to

ascertain whether this number of observations is in line with the true pop-

ulation. According to the ACS, there were 303,652 owner-occupied housing

units with a mortgage. Of this number, 24,737 are reported to have a second

mortgage. The different between these two measures yields 278,915 observa-

tions; given that the stated margin of error is +/ − 7,730 for the number of

mortgages and +/ − 2,377 for the number of second mortgages, we conclude

that the data set we construct from Assessor’s Office records is well in line

with the true number of owner-occupied properties with a mortgage, but no

second mortgage.6

We code payments as ones and default as zeros. We estimate a model for

2009 and one for 2010 to analyze the performance of the FBSGEV model for

different percentages of default. If we observe the dependent variable in 2009,

the default rate is 2.7%. We added the defaulted mortgage loans in 2010 to

the defaults in 2009, therefore the default rate in 2010 increases to 5.54%.

The Las Vegas borrowers preferred fixed rate loans (82.1%) as opposed to

adjustable rate loans (17.9%). In 2009-10 most of the borrowers already owed

more on their mortgages than the estimated market value of their house. The

median loan-to-value ratio was 1.038, and 22.5% of the borrowers had equity

5Observations with a recorded second mortgage are excluded from the sample.
6Additionally, 2010 Census reports that Clark County has a population of 1,951,269 persons organized into

735,475 households. Combined with ACS data from 2010 stating that approximately 70% of housing units in
Clark County in 2010 have some form of mortgage associated with the property and additionally, the home
ownership rate for Clark County, 59%, we get to approximately the same number of mortgage observations.
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positions of one-third or less relative to their obligation. Nonetheless, the rate

of observed delinquency was not as high one might expect. This is largely due

to the stringent definition of measure of delinquency we use.

To summarize our prior discussions of the model and to give the actual em-

pirical specification, we restate the model assumptions in (27) through (31).

Specifically, in (27) we posit that the latent utility difference between default

and payment for individual i depends on ln(L/T ), the logarithm of loan-to-

value, and FR, a dummy variable for a fixed rate mortgage as well as the dif-

ference in the disturbances associated with the default and payment choices.

In (28) and (29) we associate the observed binary choice Yi with the latent

utility difference ∆Ui. In (30) we assume the marginal distribution of the dis-

turbances follows a Generalized Extreme Value distribution with an expected

value of 0 and a scale of 1. As discussed in Train (2009), for identification

binary choice models typically impose a fixed scale as in (30). Finally, in (31)

A specifies spatial dependence as a function of a parameter ρ ∈ [0,1).

From the equation (2), we estimate the following model

∆Ui = β1 + ln(L/T ) · β2 + FR · β3 + A(ρ)∆εi (27)

∆Ui > 0→ Yi = 1 (28)

∆Ui < 0→ Yi = 0 (29)

∆ε ∼ GEV (τ,0,1) (30)

A(ρ) = (In − ρW )−1/2 (31)

We also address matched the observations to obtain locational coordinates
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used to create the spatial weight matrix W . In all our analysis we use a De-

launay triangle routine to determine a contiguity-based W (the most common

in the literature, see for example LeSage and Pace, 2009) and standardize it so

that the rows and columns sum to 1. The resulting W contains non-negative

elements when observations i and j neighbor each other. Following the litera-

ture, we do not allow observations to neighbor themselves and thus set wii = 0

for i . . . n. Therefore, W is a non-negative, doubly stochastic, and symmetric

matrix where tr(W ) = 0.

4.2 Empirical results

We examine the performance of a number of binary choice models on the Las

Vegas mortgage data for different percentages of borrowers who defaulted on

their mortgage loans. In 2009 the percentage of default is 2.7%, in 2009-2010

it increases to 5.54%. The dependent variable Y is coded as 1 if the borrower

decided to repay his/her mortgage loan, 0 otherwise.

The tail of the response curve for values close to 0 represents features.

Hence, a positive skewed GEV distribution is more suitable for an imbalanced

binary sample with a low percentage of zeros, such as in this empirical analysis.

Otherwise, a negative skewness is preferred if one represents the rare event.

For this reason, we choose values of the parameter τ such that the GEV

distribution is positive skewed (τ = 0.45, 0.35, 0.30, 0.25, 0.20). We compare

the performance of FBSGEV(τ) with those of spatial probit, independent and

identically distributed (iid) probit, logit, and loglog estimators. Table 2 shows

the estimates.
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The alternative with the highest utility is the same no matter how utility

is scaled. Therefore, adding a constant to the utility of all the alternatives or

multiplying each borrower’s utility by a constant does not change the decision

maker’s choice. To take account of this, the scale of utility must be normalized,

so that it is equivalent to normalizing the variance of the error terms (Train,

2009). As the variance of the disturbances changes in the models analyzed

in Table 2, the estimated parameters have an arbitrary identification. To

deal with the identification issue, one can focus on the t values or on the

relative parameter estimates as in Table 3. In contrast, the spatial parameter

is identified. The various spatial GEV estimates show similarities in both their

estimated t values and in their relative parameter estimates. In Table 3 we

record the change in the log-likelihood from the estimator giving the highest

log-likelihood value (FBSGEV(0.40)) in column ∆L. Finally, we give the

running times of the various estimators in terms of minutes in the column

labeled Time.

Table 2 exhibits some trends across choice models. First, the spatial esti-

mators show greater precision for the non-constant explanatory variables, with

the log of the loan-to-value ratio tL/V showing material changes from around

−36.72 for the iid GEV model with the highest likelihood to −49.48 for the

highest likelihood spatial estimator (FBSGEV(0.40)). The literature on mort-

gage defaults has widely recognized the loan-to-value ratio as one of the most

important determinants of borrowers’ decisions (Garmaise, 2015; Elul, 2016;

Lin, 2014; Kau et al. 2014). The ρ parameter estimates range from a high

of 0.484 for spatial probit to 0.389 for FBSGEV(0.45). The ρ and τ param-
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β̃C β̃F β̃L/V ρ̃

Probit 1.738 0.269 −0.324
153.645 20.829 −33.450

Logit 3.204 0.606 −0.885
125.377 20.993 −36.340

GEV(0) 3.229 0.594 −0.877
129.536 21.088 −36.719

SProbit 1.793 0.279 −0.340 0.485
147.440 22.755 −54.417 20.945

SGEV(0.45) 9.155 2.126 −4.692 0.388
86.014 21.258 −49.148 31.738

SGEV(0.40) 8.135 1.851 −4.024 0.409
89.948 21.539 −49.664 31.665

SGEV(0.35) 7.243 1.620 −3.433 0.432
92.640 21.870 −50.226 29.057

SGEV(0.30) 6.468 1.414 −2.907 0.448
95.269 22.174 −51.029 27.009

SGEV(0.25) 5.794 1.234 −2.442 0.461
97.812 22.459 −51.790 25.589

SGEV(0.20) 5.204 1.076 −2.032 0.470
99.684 22.713 −52.470 24.090

Table 2: Estimate of Probability of Payment (Y = 1) Across Estimators Based
on the Observations in 2009 (the Default Rate is 2.7%).
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β̃F/β̃C β̃L/V /β̃C β̃F/β̃L/V ∆L Time

Probit 0.155 −0.186 −0.829 −419.919 0.009
Logit 0.189 −0.276 −0.685 −303.462 0.004
GEV(0) 0.184 −0.272 −0.676 −294.201 0.004
SProbit 0.156 −0.190 −0.820 −287.932 20.764
SGEV(0.45) 0.232 −0.512 −0.453 −0.924 11.615
SGEV(0.40) 0.228 −0.495 −0.460 0.000 10.121
SGEV(0.35) 0.224 −0.474 −0.472 −5.824 10.141
SGEV(0.30) 0.219 −0.449 −0.486 −19.535 8.686
SGEV(0.25) 0.213 −0.421 −0.505 −39.382 10.068
SGEV(0.20) 0.207 −0.391 −0.530 −64.707 25.943

Table 3: Relative Estimates of Probability of Payment (Y = 1) , Difference
in Log-Likelihood, and Timing (Minutes) Across Estimators Based on the
Observations in 2009 (the Default Rate is 2.7%).

eter vary inversely. The t statistic for ρ always exceeds that for the fixed

rate dummy for all the FBSGEV estimators, which indicates its importance

in terms of the fit. All of the iid choice models show a lower likelihood than

the spatial methods, and all the FBSGEV models show a higher likelihood.

The difference between the log-likelihoods of the spatial probit and the FB-

SGEV(0.40) is large and statistically significant (283.658). Furthermore, the

τ parameter makes a large difference in the log-likelihood. For example, the

FBSGEV(0.40) shows a log-likelihood that is 60.35 above the FBSGEV(0.20).

These results show the advantage of using a flexible asymmetric distribution

with fat tails as the GEV distribution for the error terms.

Naturally, the iid choice models have trivial running times. However, the

running times of the spatial models seem quite reasonable given the repeated

computation of a 282,366 dimensional integral. Due to quicker convergence,
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the running times typically fall as the log-likelihood rises. In fact, the estima-

tion time for FBSGEV(40) is less than half the running time for the spatial

probit. We do not estimate the FBSGEV(0) because of poor convergence for

these very imbalanced data.

4.3 Credit risk assessment

Figure 2 around here

Financial institutions use binary choice models to classify potential default

decisions. We compare the distributions of the estimated probability of repay-

ment obtained under the different choice models. We show them in the box

plots in Figure 2. By the nature of binary models, the estimated probabilities

of repayment have the same means. However, the distribution in the tails

varies substantially from iid probit, with a minimum estimated probability of

around 0.9, to FBSGEV(0.45) with a minimum estimated probability of repay-

ment around 0.25. Although risk managers can understand that the estimated

probabilities from models may show less variation than the true probabilities,

a naive user might interpret the iid estimated probabilities as indicating that

there was little scope for default, which would have been the wrong conclusion

for Las Vegas during the financial crisis. Introducing neighborhood effects in

a probit model slightly increases the range of the estimated probabilities (the

minimum of the probability of repayment reaches 0.75). Among the estimators

considered herein only the FBSGEV approach can accurately model the left

tail behaviors of the estimates, which is a crucial issue in the risk management

of a mortgage portfolio as the left tails represent the defaulted borrowers.
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Figure 3 around here

Misclassifying a defaulted mortgage loan (rare event) as a performing loan

(common event) represents the most expensive form of error for the risk man-

agement of a credit portfolio. Figure 3 shows the performance of Probit,

GEV(0)7, spatial Probit, and FBSGEV(0.45) in terms of this form of misclas-

sification as the rejection rate increases. For rejecting a small percentage of

loans (less than 5%), the two iid models, probit and GEV(0), outperformed

the spatial models by about one percent or less. However, as the percent-

age of rejected loans increases, the FBSGEV(0.45) begins to dominate the iid

models.

According to an analysis conducted by Timiraos and Tamman (2011) on

mortgage data filed with banking regulators, the 10 largest mortgage lenders

in the US denied 23.5% of mortgage applications in 2009 and 26.8% in 2010.

Therefore, if these observations represented potential applicants, at a rejection

rate of 25%, FBSGEV(0.45) shows more than a 4% improvement in misclas-

sification of defaulted mortgages relative to the probit models (spatial and iid

methods) and more than a 2% improvement relative to the iid cloglog model.

As the rejection rate increases from 30%, the performance of the cloglog model

is poorer and the non-spatial methods do worse than the spatial approaches.

In this range, FBSGEV(0.45) shows around a 6% improvement in misclassi-

fication of the rare event relative to the iid models. At a 99% rejection rate

(cherry picking the top 1% of the highest ranked loans for each method), the

FBSGEV(0.45) does very well with a performance improvement of over 8% in

misclassification relative to the iid methods.
7The GEV(0) corresponds to the cloglog model (Agresti, 2002).
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To analyze the performance of FBSGEV as the percentage of the rare event

changes in the sample, we examine the loans over the period of 2009-10 where

the average of Y equals 0.9446, or a default rate of 5.54%. Table 4 displays

that, also in this case, the FBSGEV models shows a higher log-likelihood.

Particularly, FBSGEV(0.35) shows the highest log-likelihood, while iid probit

shows the smallest log-likelihood. From equation (18), we compute the skew-

ness measure proposed by Arnold and Groeneveld (1995). We obtain 0.4815

for FBSGEV(0.35) and 0.5068 for FBSGEV(0.40). In line with expectations,

with a less imbalanced Y the skewness of the FBSGEV model with the best

performance decreases.

In contrast with the previous results for 2009 data, the iid logit and GEV(0)

show higher log-likelihoods than the spatial probit model. The estimation

times in Table 4 decrease relative to those in Table 2, consistent with the

added information coming from a less imbalanced binary sample. Also in

this case, the estimation time for the FBSGEV(0.35) models is very low in

comparison with the time for the spatial probit, the first is less than half of

the latter. There is still an inverse relationship between the parameters ρ and

τ . The estimates of ρ are higher than those shown in Table 2, preserving their

ordering. In line with the results in 2009, the t statistic for ρ exceeds that for

the fixed rate dummy for all the FBSGEV models. Instead, the spatial probit

model shows a lower t statistic for ρ than that for the fixed rate dummy.

Figure 4 around here

We represent the estimated probabilities of mortgage payment in the box

plots in Figure 4. In line with the previous results, the iid models show a
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tC tF tL/V ρ tρ ∆L Time

Probit 153.957 25.771 −48.846 685.940 0.008
Logit 134.037 25.679 −53.005 438.106 0.003
GEV(0) 143.676 25.840 −54.103 401.460 0.004
SProbit 157.201 28.056 −78.443 0.437 25.784 501.833 18.790
FBSGEV(0.45) 111.763 25.313 −72.719 0.348 35.178 19.791 8.870
FBSGEV(0.40) 114.758 25.788 −72.805 0.368 35.969 2.084 7.360
FBSGEV(0.35) 117.184 26.175 −73.045 0.384 34.732 0.000 7.346
FBSGEV(0.30) 119.386 26.594 −73.643 0.398 33.550 11.777 8.827
FBSGEV(0.25) 121.809 26.966 −74.532 0.412 32.795 35.819 11.792
FBSGEV(0.20) 123.788 27.332 −75.458 0.424 31.940 74.999 17.647

Table 4: Estimate of Probability of Payment (y = 1) Across Estimators based
on the Observations in 2009-10 (the default rate is 5.54%).

lower variability of the estimated probabilities of loan payment than those

obtained by the FBSGEV models. For example, the minimum probability of

repayment for the iid probit model is around 0.8. Therefore, ignoring spatial

dependence could be the cause of incorrect decisions when assessing default

risk for mortgage borrowers. Even if we include the neighborhood effects in a

probit model, the minimum estimated probability of being a performing loan is

about 0.6. This result is in line with those obtained in a non-spatial framework

by King and Zeng (2001), Wang and Dey (2010) and Calabrese et al. (2015).

Probit and logit have relatively thin tails and for imbalanced samples with

rare events, these models do not assign much probability to the rare event.

Credit standards lead to this imbalance and therefore logit and probit may

experience difficulties when dealing with mortgage data.

Figure 5 around here
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Figure 5 shows the performance of Probit, FBSGEV(0), spatial Probit,

and FBSGEV(0.45) in terms of the misclassification of default as the rejection

rate increases. For rejecting a small percentage of loans (less than 5%), the

two iid models, probit and GEV(0), outperform the spatial models by about

1% or less. However, as the percentage of rejected loans goes over 5%, the

FBSGEV begins to dominate the iid approaches and the spatial probit model.

At a rejection rate of 25% (Timirao and Tamman, 2011), the FBSGEV(0.45)

shows about a 3% improvement in misclassification of a rare event relative

to the iid and spatial probit models. The improvement increases at 5% at

a rejection rate of 50%. As the rejection rate increases from 40%, spatial

probit begins to improve and actually does about the same at around 90%

as FBSGEV(0.45). At the 99% rejection (cherry picking the top 1% of the

highest ranked loans for each method), the FBSGEV(0.45) does very well

with a performance improvement of over 6% in misclassification relative to

the iid methods.

As Value-at-Risk (VaR) is the official measure of credit risk and constitutes

the central point to the determination of capital requirements (Basel Commit-

tee on Banking Supervision, 2010), we compute the VaR for the Loss Distri-

bution for different confidence levels. Basel II and III guidelines establish that

the loss is the product between the Probability of Default (PD), Loss Given

Default (LGD) and Exposure at Default (EAD) Loss = PD · LGD · EAD.

As we do not have any information about the LGD and our aim is to perform

a comparative analysis, we consider the loss as the product between PD and

the loan value. Therefore, we assume that LGD is constant proportion for all
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Confidence level 0.95 0.99 0.999

Models 1 < LTV < 2

Probit 13,797.431 23,276.440 38,100.510
Logit 14,402.015 25,310.349 43,658.394
GEV(0) 14,442.268 25,390.815 44,150.333
SProbit 14,043.111 24,116.328 44,101.706
FBSGEV(0.45) 13,663.965 26,353.052 61,490.107
FBSGEV(0.40) 13,938.036 27,117.590 62,425.963
FBSGEV(0.35) 14,211.432 27,604.684 62,805.543
FBSGEV(0.30) 14,386.410 27,583.467 62,863.133
FBSGEV(0.25) 14,564.271 27,742.540 60,610.901
FBSGEV(0.20) 14,711.730 27,511.061 59,199.712

Models LTV > 2

Probit 13,282.077 22,041.712 36,653.456
Logit 13,918.716 23,979.318 41,194.576
GEV(0) 13,983.279 24,224.738 42,096.184
SProbit 13,640.904 22,492.317 41,389.561
FBSGEV(0.45) 13,266.947 25,386.768 54,613.227
FBSGEV(0.40) 13,525.560 25,947.909 55,302.474
FBSGEV(0.35) 13,833.506 26,335.914 55,723.940
FBSGEV(0.30) 14,014.923 26,296.526 55,375.011
FBSGEV(0.25) 14,145.043 26,269.438 54,623.861
FBSGEV(0.20) 14,239.471 26,393.733 55,058.068

Table 5: VaR for the Loss Distribution Across Models on Data in 2009 For
Different Levels of Confidence and Buckets Based on loan-to-value (LTV).
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loans in a given loan-to-value range, analogous to the standardized internal

ratings based (IRB) approach under the Basel II guidelines (Basel Committee

on Banking Supervision, 2005). We compute the VaR of the loss distribution

at different levels of confidence and loan-to-value (LTV) on the data observed

in 2009. We report the results in Table 5. Within each range of loan-to-value

ratios, the difference between the VaR computed under independence and a

symmetric distribution increases as the level of confidence increases. As the

capital requirements are based on such estimates, this implies that financial

institutions could underestimate the levels of credit risk on their portfolios

and, hence, their regulatory capital.

We illustrate this further with some figures from Table 5. If the LGD is

a constant proportion for all loans in a given range of loan-to-value, it will

cancel when examining a ratio of two estimates of VaR. So for loans in 2009

having loan-to-value ratios between 1 and 2 and with a confidence of 0.999,

logit would yield an estimated VaR of $43,658 while the highest likelihood

FBSGEV with a τ = 0.4 would yield an estimated VaR of $62,425. Therefore,

the highest performing FBSGEV with τ = 0.4 had a 43% higher VaR estimate

than logit.

5 Robustness Checks

In this section we examine variations in the base or reference regression in

Table 4. Specfically, we look at the effects of changing the number of random

replications R as well as the type (pseudo-random, quasi-random), different

weight matrices, and expanding the number of explanatory variables. We begin
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with Table 6 where in Panel A we examine using R equal to 25,50,100, and

200 in the calculation of the GHK using a uniform random number generator

(rand in Matlab 2017b). In Panel A the estimate of ρ rises from 0.381 to

0.392 as R goes from 25 to 100, but declines to 0.391 for R = 200. The

range of estimates equals 0.011 which lies below the statistical noise in the

estimation of ρ. Various authors have suggested using quasi-random numbers

as an improvement over pseudo-random numbers in the GHK. We examine

quasi-random numbers using Halton and Sobol sets in Panels B and C.8 These

show very little change from using the typical pseudo-random numbers in this

application.

8We used the example setting for these from the Matlab commands haltonset and sobolset.
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R β̃C β̃F β̃L/V ρ̃ Time

Panel A: Pseudo-Random Uniform
25 5.169 1.058 −2.644 0.381 4.214
50 5.176 1.055 −2.654 0.387 5.341

100 5.184 1.054 −2.664 0.392 7.203
200 5.183 1.054 −2.662 0.391 10.790

Panel B: Halton Quasi-Random
25 5.178 1.051 −2.656 0.381 4.222
50 5.174 1.055 −2.659 0.389 5.348

100 5.179 1.056 −2.662 0.391 7.161
200 5.181 1.055 −2.662 0.390 10.832

Panel C: Sobol Quasi-Random
25 5.171 1.057 −2.650 0.379 4.206
50 5.179 1.055 −2.660 0.386 5.348

100 5.187 1.051 −2.664 0.388 7.174
200 5.184 1.054 −2.664 0.390 10.851

Table 6: Variation in Estimates by Number of Repetitions R and Type
(Pseudo-Random, Quasi-Random)
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In Table 7 we examine using nearest neighbor weight matrices instead on

the contiguity weight matrix. Specifically, we look at 4, 6,8, 10, and 12 nearest

neighbors. We see similar estimates of β for all the specifications, although

the likelihood rises with the number of neighbors and so does ρ̃ as well as

the calculation time. The highest log-likelihood was for 12 nearest neighbors

(L = −57,216.37), but this likelihood was less than the log-likelihood of the

contiguity W ( L = −57,156.58).

m β̃C β̃F β̃L/V ρ̃ ∆L Time

4 5.188 1.055 −2.586 0.353 −61.521 7.596
6 5.159 1.057 −2.650 0.375 −13.710 10.229
8 5.150 1.039 −2.672 0.386 −12.673 10.441
10 5.140 1.040 −2.696 0.394 −1.412 21.221
12 5.141 1.027 −2.709 0.401 0.000 51.262

Table 7: Estimates by W with Different Number of Nearest Neighbors
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Finally, in Table 8 we explored the effects of adding other explanatory

variables. Specifically, we added Age, Marital Status, and Gender, spatial lags

of these variables as well as the FRM and logged L/V ratio, and a five degree

polynomial in terms of the locational coordinates. Although Age, Marital

Status, and Gender could have various effects, one possible channel to have

an influence of mortgage behavior is through wealth and these variables are

associated with wealth. Specifically, older couples tend to have the highest

levels of wealth and younger, singles tend to have the lowest levels of wealth.

Wealth provides the wherewithal to pay a loan, but also exposes the borrower

to the potential to pay delinquency judgments should they decide to default.

Therefore, wealth tends to lower the propensity to default in multiple ways. We

see that age tends to increase the propensity to pay and that being single tends

to reduce the propensity to pay. In terms of the spatially lagged explanatory

variables all of these have the same signs as the individual variables and so

the indirect effects reinforce the direct effects. As typical, these have lower

levels of precision than the individuals direct effects. The fixed locational

effects from the five degree polynomial and the constant term do not appear

particularly important given the sample size and the parameter estimates from

the expanded regression are comparable in magnitude to the estimates from

the base regression. In particular, the ρ̃ is 0.389 with a t value of 35.42 in the

base regression and is 0.399 with a t value of 36.49 in the expanded regression.
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β̃ t β̃base tbase

FRM 1.060 26.923 1.052 26.173
lnL/V −2.323 −63.504 −2.651 −75.781
Age 0.816 16.866
Single −0.695 −17.729
Female 0.343 7.782

W · FRM 0.224 2.112
W · lnL/V −0.208 −4.070
W · Age 0.368 3.456
W · Single −0.077 −0.900
W · Female 0.231 2.462

p1 66.204 4.586
p2 −35.790 −1.987
p3 5.394 0.437
p4 −33.222 −2.617
p5 20.393 1.403
Constant 0.529 1.181 5.179 117.379

ρ̃ 0.399 36.487 0.389 35.421

L −56,687.954 −57,156.580

τ 0.35 0.35

n 282,366
Time (mins) 55.83 7.111

Table 8: Estimate of Probability of Payment (y = 1) Across Estimators based
on the Observations in 2009-10 (the default rate is 5.54%) Using an Expanded
Model.
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6 Conclusion

We introduced a spatial choice model that is accurate in classifying binary rare

events and can handle large sample sizes. The proposed approach is based on

a skewed and flexible distribution of the error terms, given by the GEV ran-

dom variable. The tail behavior of the error distribution is determined by the

rarity of the event in the sample, i.e. higher imbalanced samples are associated

with higher skewness of the error distribution. If the dependent variable at

each spatial location is binary, but the underlying latent variable is contin-

uous, evaluating the likelihood function involves the integral of a truncated

multivariate distribution of a dimension equal to the sample size. For large

sample sizes, this becomes a difficult computational problem. Fortunately,

each observation located in space may depend upon a small number of neigh-

bors. This implies that the inverse of the variance-covariance matrix, known

as a precision matrix, could be sparse. We exploit this sparsity by applying

the Cholesky decomposition to the precision matrix. Therefore, we propose

a variant of the Geweke-Hajivassiliou-Keane (GHK) algorithm, obtaining a

number of computations almost linearly with the sample size (O(n)). Instead,

spatial probit models using non-sparse methods based on the GHK algorithm

require at least O(n2) computations. We define the suggested approach as the

Fast Binary Spatial Generalized Extreme Value (FBSGEV) model.

Our proposal and its competitors were applied to data on 282,366 mortgages

from 2009-2010 in Clark County, one of the areas with the largest concentration

of subprime mortgages in the US. The empirical results confirmed that the

main advantage of the FBSGEV model lies in its superior performance in
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classifying potentially defaulted mortgages for different default rates in the

sample. Another strength of this approach is that it provides more reliable

estimates of the probabilities of repayment compared to classic alternatives.

The empirical analysis also shows that spatial dependence had an important

impact on model fit, as the t statistic for the spatial dependence parameter

exceeded the t statistic associated with the fixed rate dummy.

The adoption of the FBSGEV model to analyze mortgage decisions can lead

to some significant insights. Conventional models that ignore neighborhood ef-

fects can overestimate the probability of mortgage repayment. This is because

a borrower has a higher propensity to repay, holding other things constant,

when her/his neighbors also have a high propensity to repay. Therefore, the

FBSGEV model can improve the internal assessments of financial institutions

when they are evaluating mortgage decisions. It can also provide accurate

evaluations of risk generated by relaxing mortgage underwriting standards,

which occurred during the 2008/2009 financial crisis.
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Figure 1: The GEV Density Functions for Different Values of the Shape Pa-
rameter τ .
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Figure 2: Box Plot of Estimated Probabilities of Repayment by Model based
on the Data in 2009 (the default rate is 2.7%).
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Figure 3: Relative Misclassification of Defaulted Mortgages by Model based
on the Data in 2009 (the default rate is 2.7%).
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Figure 4: Box Plot of Estimated Probabilities of Repayment by Model based
on the Data in 2009-10 (the default rate is 5.54%).
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Figure 5: Relative Misclassification of Defaulted Mortgages by Model based
on the Observations in 2009-10 (the default rate is 5.54%)
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