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Abstract 

  Seasonal and decadal monitoring of salt marsh at Slaughter Beach, DE documented 

long-term and short-term variations in number and sizes of salt ponds. Over 400 salt ponds 

ranging in size between 0.5 m2 to 0.11 km2 were identified on 5.5 km2 salt marsh platform. 

The purpose of this study is to quantify hydrologic conditions and measure groundwater 

discharge of a salt marsh, particularly the impact of tidal forces on groundwater fluctuation.  

  Four wells with nests of mini-piezometers with ONSET Pressure Transducers were 

installed along a transect crossing the largest salt pond (0.11 km2) in the study area. Nests of 

wells, installed at depths of 1 m, 3 m, and 6 m recorded groundwater hydraulic head at five-

minute intervals during a 90 day period. High resolution aerial imagery of the studied ponds 

was collected at peak high tide and low tide using an unmanned aerial system. Changes in 

groundwater elevation were correlated with tidal data recorded by the USGS stream gauge in 

Cedar Creek.  

  Our results document the presence of 2 aquifers; deep (3m) and shallow (1m). 

Relationship between groundwater elevation and tidal fluctuations is strong in the deep 

aquifer and weak in the shallow aquifer. Analysis of drone imagery reveal no changes in the 

shape or size of the pond during 1 tidal cycle. Groundwater elevation decreases in 

proportion to distance from Cedar Creek and decreases with depth. We suggest that the deep 

aquifer is confined. This study has established a baseline for hydrologic investigations 

within the salt marsh. 
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Introduction 

 Estuarine salt marshes provide a wide variety of ecosystem services. Coastal and 

estuarine communities rely on salt marsh ecosystems for protection from storm surges and 

coastal erosion (Barbier et al., 2011). Salt marshes absorb wave energy through stabilizing 

sediment with marsh grass roots and uptake extra water during high tides (Morgan et al, 2009). 

Salt marsh ecosystems are full of diverse flora and fauna. Many different species of fish, 

crustaceans, insects and waterfowl live and reproduce in these estuarine wetlands. Estuarine salt 

marshes also act as a coastal ocean filter. Salt marshes intercept large concentrations of nitrates 

from agricultural runoff before it enters the ocean (Nelson, 2012). In addition to storing nitrates, 

estuarine salt marshes effectively sequester large amounts of carbon in salt marsh plants by 

shifting the carbon cycle from a short-term cycle to a long-term cycle in the form of buried peat 

(Mayor and Hicks, 2008). The services that are provided by estuarine salt marshes makes them 

economically important areas to monitor and study. 

 The estuarine salt marshes of Delaware Bay have been around ~2000 years, since the late 

Holocene (Nikitina, 2015). Salt marshes develop on flat, coastal surfaces under conditions 

enabling a slow rate of sea level rise and sediment buildup, where the influx of sediments is 

higher than the erosion of the salt marsh platform (Townend et al, 2011). Estuarine salt marshes 

of Delaware Bay are at risk of inundation due to acceleration of sea level rise. The nearest tidal 

station in Lewes, Delaware, recorded a trend of 3.53 mm/year with a 95% confidence interval of 

+/- 0.23mm/year, based on 100 years of monthly sea level data (Figure 1). This is equivalent to a 

change of 0.35 meters over the past century (NOAA, 2020). The effects of sea level rise 

acceleration on estuarine salt marshes include erosion and salt marsh inundation (Reed, 1995). 
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Development of salt ponds on the marsh surface has been identified as one of the mechanisms of 

salt marsh inundation (Mariotti, 2016). 

 

Figure 1: Relative sea level trend from 1917 to 2020 at tidal station 8557380 in Lewes, DE. 

  

 Salt ponds are shallow depressions of unvegetated surface filled in with saline water 

(Mariotti, 2016). Salt ponds may form tidal flats that become surrounded by vegetation (primary 

origin), or they may form due to disturbances in the existing marsh vegetation (secondary origin) 

(Wilson et al, 2009). However, the mechanisms by which the salt ponds form and how they 

develop is still poorly understood. 

 Recent study of the Slaughter Beach salt marsh has documented over 1400 ponds ranging 

from 0.5m2 to 0.11km2 in size (Geyer, et al, 2018). The number of ponds has been changing 

seasonally and following storm events. Changes in salt pond size, circularity, and distribution 

have been observed after large storm events, such as hurricanes (Irene/Sandy). Seasonal 

observation of salt pond changes has shown progressive development of salt ponds from 

November 2017 to September 2018 (Cohen et al, 2019). Therefore, these landforms are dynamic 
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as they change their size and shape over time.  Sustained inundation and salt pond development 

could be an indicator of the resiliency of the marsh to continued sea level rise. 

 In addition to rising sea level, the Slaughter Beach salt marsh has been modified by 

humans. Historical dredging of Delaware Bay, ditching of the salt marsh, and jetty construction 

have directly impacted sediment fluxes and tidal flow to the salt marsh platform. The human 

impact on sediment supply and hydrologic regime of the marshes certainly contributed to 

changes of the salt marsh landscape and needed to be explored further in the effort of ecosystem 

conservation.  

 Further understanding of the hydrologic interactions between surface water and 

groundwater is also needed to assess the vulnerability of the salt marsh platform. 

 While the surface hydrology of the Slaughter Beach salt marsh has been monitored 

through historical and aerial drone imagery (Geyer, et al, 2018), little is known about the 

groundwater dynamics. Groundwater maps developed for the state of Delaware are too general to 

capture the localized groundwater flow active in the Slaughter Beach salt marsh.  

The purpose of this study is to establish and quantify hydrologic conditions 

operating on a salt marsh, particularly the effect of tidal forces on saline groundwater fluctuation. 

Results of this study will create a baseline for hydrogeologic conditions active in the Slaughter 

Beach salt marsh.  

 

Study Area 

 The Slaughter Beach salt marsh is located directly west of the town of Slaughter Beach, 

Delaware, on the southeast side of Delaware Bay (Figure 2). The study area covers 

approximately 5.5km2 of salt marsh platform, between Slaughter Beach and Cedar Creek. The 
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marsh landscape includes tidal creeks, mosquito ditches, Cedar Creek channel, salt ponds and a 

wooded highland known as Sheppard’s Island. Most of the Delaware estuarine salt marshes, 

including Slaughter Beach marsh, are vegetated by Sp. Alterniflora, Sp. Patens, and Distichlis 

Spicata species of salt-marsh grasses. (Nikitina, 2014). Salt marsh surface is subdivided into the 

high marsh and low marsh floral zones based on elevation and duration of tidal inundation. High 

marsh zones are at slightly higher elevations on the relatively flat marsh surface, and experience 

less tidal influx of sediment and saline water, which promotes the growth of Sp. Patens and 

Distichlis Spicata, which are less saline tolerant. Low marsh zones; located near salt ponds, tidal 

channels, and mosquito ditches, experience sustained periods of tidal flooding and are dominated 

by Sp. Alterniflora species of marsh grasses (Silvestri et al, 2005).  

 The Slaughter Beach salt marsh is underlain by the St. Marys formation, the uppermost 

formation of the Chesapeake Group (Ramsey, 1997). The late-Miocene age St. Marys formation 

is defined by bluish-gray silt with fine quartz sand and some shell beds. Overlying the 

Chesapeake Group is the Pleistocene Columbia Formation, described as a light reddish brown to 

white, cross-bedded medium to coarse sand with scattered thin beds of pebbles and gravel. The 

Columbia formation can range from 0 – 80ft in thickness across the state of Delaware.  

 The regional aquifer identified in the Slaughter Beach salt marsh area is the surficial 

Columbia aquifer (Kasper, 2017). The Columbia aquifer occurs predominantly in Pleistocene to 

Pliocene age sediments of the Columbia Formation. 
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Figure 2: A: Map of study area on the coast of Delaware. B: Detailed map of the Slaughter 

Beach salt marsh. 

 The Slaughter Beach salt marsh has been modified by humans for 150 years or so. 

According to Beers Atlas (1868), the study area was drained by Cedar Creek, which flowed 

across the marsh into Delaware Bay (Figure 3). Over 150 years Cedar Creek has been altered by 

dredging, widening, and construction of a jetty at the mouth (Smith, 1988). A channel was cut 

from Cedar Creek extending North to the Mispillion River in 1869, preventing Cedar Creek from 

emptying into Delaware Bay through the Slaughter Beach salt marsh (Scharf, 1888). During the 

1930’s, the Slaughter Beach salt marsh was significantly changed by digging a network of 

mosquito ditching in order to control mosquito populations (Bourn and Cottam, 1950). Over 

time, some of those ditches have widened, some of turned into tidal creeks, and some have 

merged with salt ponds. 
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Figure 3: Modification of Cedar Creek into a man-made channel. Original course of Cedar 

Creek documented in Beers Atlas (1868), georeferenced to the WGS84 Geodetic Datum. 

Georeferencing and analysis provided by Cameron Knight. 

Original Course of Cedar 

Creek from Beers’ 1868 Atlas 

of Delaware 
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 Salt pond development on the Slaughter Beach salt marsh surface has been the focus of 

recent studies. Between 1400 to 1500 salt ponds ranging in size from 0.03m2 to 73,477m2 were 

documented within the Slaughter Beach salt marsh (Cohen et. al, 2019). In order to conduct a 

more detailed analysis of salt pond morphology, we selected a small study area ~ 0.15km2 

around the largest pond at the Slaughter Beach salt marsh (Figure 4) and   collected drone 

imagery for ~ 10 months (November 2017 to September 2018) to monitor seasonal changes and 

tidal influence of the ponds of various sizes.  During the observation period, the total number of 

ponds changed from 26 ponds to 414 ponds within the immediate area around the largest pond. 

Of the 0.15km2 area, salt ponds made up approximately 31% of the marsh surface (Figure 3). 

Most of the ponds are no larger than 10m2 in surface area.   

 Stratigraphy below the salt ponds indicated that most of the ponds in the study area are 

developed during the last several hundred years, or at least not at the same time as the salt marsh 

began to develop in the study area (Cohen et al., 2019).  
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Figure 4: Study area (0.15km2) includes the largest pond on the Slaughter Beach salt marsh. 

Imagery provided by Cameron Knight. 

 

Methods 

Well Installation and Stratigraphic Investigation 

 The largest pond on the surface was chosen as the focus of this tidal-groundwater study 

(Figure 4). A transect passing through the large pond, as well as two other adjacent ponds, was 

set (Figure 5). Eleven sediment cores were collected along the transect to document the 

stratigraphy and sediment characteristics. Cores were collected using a 5cm diameter Eijelkamp 

auger. Sediments were described in the field by visual inspection of color, amount of organic 

matter and grain sizes. Based on stratigraphy and proximity to ponds, four piezometer nests were 

installed along the transect in the Summer of 2019 (Figure 4). Piezometers were constructed 
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using 1.5-meter lengths of 2.5cm diameter Schedule 40 PVC. The screened section of the well 

casing is slotted at 10mm intervals. Well boreholes were cored using a 10cm diameter Eijelkamp 

auger. Boreholes were cored in 1m increments. Well boreholes were lined with #1/20 Uniform 

Packing Sand. The top of the borehole was packed with B-20 Mesh Granular Bentonite to ensure 

a tight seal. Piezometer nests MW-1 and MW-2 contained three wells, installed to depths of 

~1m, 3m and 5m. Piezometer nests MW-3 and MW-4 each contained two wells, installed to 

depths of ~1m and 3m (Table 1).  
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Figure 5: Detailed map of study area, showing locations of piezometer nests and sediment core 

locations used to construct the stratigraphic cross section. 
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Table 1: Well Dimensions. Well elevation was measured from top of casing and referenced to NAVD88 Geodetic Datum.

 Nest-1 Nest-2 Nest-3 Nest-4 

Well ID MW-1S MW-1D MW-1DD MW-2S MW-2D MW-2DD MW-3S MW-3D MW-4S MW-4D 

Lat./Long. 38.9142 N 

75.31712 W 

38.9142 N 

75.31712 W 

38.9142 N 

75.31712 W 

38.91672 N 

75.31604 W 

38.91672 N 

75.31604 W 

38.91672 N 

75.31604 W 

38.91707 N 

75.31504 W 

38.91707 N 

75.31504 W 

38.91828 N 

75.31419 W 

38.91828 N 

75.31419 W 

Well Elevation 

(cm) 

202.110 202.103 202.467 202.194 202.260 202.543 202.368 202.486 202.319 202.278 

Borehole Depth 

(cm) 

100 300 500 100 300 500 100 300 100 300 

Casing Depth 

(cm) 

96.01 243.84 361.20 86.40 230.80 353.20 75.40 217.80 76.40 243.84 

Transducer Depth 

(cm) 

100 298 425 145 292 424 150 294 135 292 
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 Well surface elevation was measured using a Sokkia SET530R Total Survey Station. In 

order to reference well elevation to a common datum, a temporal survey benchmark was set up 

using an Emlid Reach RS+ GPS survey system. Its elevation was measured using real-time 

kinematic (RTK) satellite positioning and referenced to the NAVD88 Vertical Geodetic Datum. 

The nearest United States Geodetic Survey benchmark, HU0180, was found to be inaccessible. 

 ONSET Pressure transducers were installed within each piezometer at 90% of the depth 

of the well, connected with steel cable to locking plugs at the top of the well casing. One 

transducer was set above the water level to record barometric pressure for data correction. The 

transducers were each set to record the water column length at 5-minute intervals. A bail-down 

slug test was conducted at each piezometer. Approximately 0.25 liters was bailed from each 

piezometer. The rising hydraulic head was recorded by the transducer in each well. The 

transducers continued to record the water level in each well from May 15, 2019 to July 27, 2019. 

 Collected transducer data was used to construct the equipotential lines of groundwater 

flow in the stratigraphic cross section. Groundwater elevation values recorded for the peak of the 

Spring Tide at 9:57 PM on June 3rd, 2019. Equipotential lines were drawn on the cross section 

with a contour interval of 20 centimeters. 

 

Drone Imagery Collection 

 In order to document the influence of tidal fluctuations on pond size, aerial photographs 

with a spatial resolution of 2in. per pixel were captured using a Zenmuse X3 EO Gimbal Camera 

mounted on a DJI Inspire 1 Unmanned Aerial System (drone) at high and low tides. The imagery 

collection flights were conducted on June 2nd, 2019 at 8:58 AM to capture peak high tide, and 

2:52 PM for peak low tide. Flight paths were acquired using Drone Deploy and DJI Go software 
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that calculated the transect flights required to collect imagery of the study area. The drone flew 

both flights at an altitude of 400 feet above sea level. Approximately 175 images were captured 

over a surface area of ~0.11 km2. Drone Deploy used photogrammetry to process the collected 

images and convert them into geoTIFF files. Both flights were referenced to the WGS84 Datum.  

 Adobe Photoshop software was used to identify and digitize salt ponds on the collected 

imagery from both flights. The boundaries of the large pond and surrounding smaller ponds were 

delineated and their areas quantified. Quantitative comparison between the data collected at high 

and low tide were performed to establish relationship between pond size and tidal cycle. 

 

Hydrologic Data Processing 

 Pressure transducers were collected from the piezometers in August 2019. Data recorded 

on the ONSET pressure transducers was downloaded into a .csv format. Transducer data was 

corrected for barometric pressure through HOBOware groundwater software. Total hydraulic 

head was calculated from depth to water subtracted from the surveyed well elevation. 

 Tidal data was collected from the USGS Stream Gauge 01484235 in Cedar Creek, that 

covered the duration of the study period (USGS, 2019). All data was normalized in the NAVD88 

Vertical Datum. The tidal station records water levels at 6-minute intervals, therefore, 

groundwater data from the study area was normalized into a similar time base. Once a similar 

time base was established, tidal data and groundwater observation data were plotted on a time 

series chart. 

 Precipitation data was collected for the study period from May 2019 through July 2019 

from the Delaware Environmental Observing System weather station (DEOS, 2019). Data was 

only available for June 2019 and July 2019, due to damage that occurred to the station in May. 
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Significant precipitation events were plotted on the same time series chart with the groundwater 

observation data. 

 Groundwater observation data was analyzed through the Hvorslev Method for Bail-down 

Slug Tests (Hvorslev, 1951). Prior to installing the pressure transducer in the piezometer, static 

water level was recorded and then the piezometer was purged. The recharge from the purged 

water level back to the static water level was recorded by the transducer. The Hvorslev Method 

normalizes each recorded water level of recharge into a fraction of the total drawdown (Table 2). 

Calculated values were plotted over time taken to recharge to static water level (Figure 6). 

 

Depth to Water 

(cm) 

Drawdown s (cm) s/smax Elapsed Time 

(minutes) 

223.9031 49.25272 1 1 

222.9278 48.27736 0.980197 5 

221.8305 47.18008 0.957918 10 

219.8798 45.22936 0.918312 15 

218.813 44.16256 0.896652 20 

217.6547 43.00432 0.873136 25 

216.405 41.75464 0.847763 30 

 

Table 2: Detailing the process of creating the Hvorslev Drawdown curve for MW-1D. 

Maximum drawdown (smax) was divided into each drawdown measurement until the initial static 

water level was reached. Static water level for MW-1D was recorded as 174.76cm DTW. 
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Figure 6: Hvorslev Drawdown curve for MW-1D. The curve was used to find point t0, to 

determine the hydraulic conductivity of the well. 

 

 Hydraulic conductivity (K) was calculated for each piezometer using the Hvorslev Slug 

Test Solution (Equation 1). 

 (Equation 1)   𝐾 =  
𝑟2ln (

𝐿

𝑅
)

2𝐿𝑡0
 

Where (K) is the hydraulic conductivity, (r) is the screen radius, (R) is the radius of the well 

casing, (L) is the length of the screened interval, and (t0) is determined from the Hvorslev 

drawdown curve (Figure 6). 

 Due to the tidal influence of nearby Cedar Creek, the Jacob’s Tidal Method was found to 

be the method to determine diffusivity (Jacob, 1950). Diffusivity was calculated (Equation 2) for 
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each piezometer based on a co-series chart detailing tidal amplitude and groundwater fluctuation 

on May 27, 2019 (Figure 7). 

 

 (Equation 2)   𝐷 =  
𝜋𝑥2

𝑡0[ln(
ℎ0
ℎ𝑥

)]2
 

Where (D) is hydraulic diffusivity, (x) is distance from nearest tidal source, (h0) is the tidal 

amplitude during one complete tidal cycle, (hx) is the head fluctuation within the well during the 

same tidal cycle, and (t0) is the time lag between the peak of high tide to the peak of hydraulic 

head.  

 

Figure 7: Co-series chart detailing the process to establish a common time base for MW-1D, as 

well as calculate the values for h0, hx, and t0. Normalized groundwater fluctuation values occur at 

the same time tidal fluctuation data is recorded. 
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Salinity sampling 

 Upon completion of the hydraulic head data collection, groundwater samples were 

collected using a 2cm diameter bailer. All samples were tested for salinity using a Sybon Opticon 

Series salinity refractometer. Samples were chilled to ~6.5o C prior to salinity testing. Salinity 

data was recorded and plotted by well location and distance from Cedar Creek. 

 

Results 

Stratigraphy of Slaughter Beach salt marsh 

 Five major lithostratigraphic units were identified in core logs based on sediment grain 

size, recognizable plant macro-fossils and position within the sediment column: high marsh peat, 

low marsh peat, basal peat, tidal mud, and sand. These units were correlated across the study area 

transect to form a stratigraphic cross section (Figure 8). 

 The Slaughter Beach tidal sediments are uniformly underlain by a layer of pre-Holocene, 

fine to medium grain, gray sand. Overlying the sand is a dark brown to black layer of basal peat, 

that is found at elevations of -2.5m to -5.5m NAVD88. The basal peat was found in all cores 

with the exception of cores SP-1 and GWSB-2. Low marsh peat sediments, represented by gray 

brown muddy peat and root stem fragments of Sp. Alt., overlay the basal peat from -2.5m to the 

surface of the marsh platform toward the Delaware Bay coast. High marsh peat sediments 

overlay the low marsh peat on the Cedar Creek side of the Slaughter Beach salt marsh. High 

marsh peat is described as a fibrous peat with fragments of Sp. Patens. Finally, interbedded 

layers of gray mud, that represent open water environments were identified at various depths 

within the Slaughter Beach salt marsh deposits. These mud units represent tidal flat or tidal 
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channel depositional environments. Lenses of coarse sands interbedded between low-salt marsh 

peat found in core GWSB-2 indicate the presence of over-wash storm deposits. 
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Figure 8: Detailed stratigraphic cross section constructed from core logs taken along the transect A-A’.
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Drone Flight Imagery Analysis 

 Comparison of drone imagery collected at low and high tide documented an increase of 

the number of ponds from175 ponds at peak low tide to 205 ponds at peak high tide. Conversely, 

the total surface area of ponds decreased from 25.08% at low tide to 25.07% at peak high tide 

(Figure 9). Normalized circularity and the range of salt pond area were also calculated (Table 3). 

 

 

 

Figure 9: Surface area of 0.15km2 around the large pond in the study area. Ponds digitized from 

drone flight imagery collected at low tide (9A) and high tide (9B). 

9A 

9B 



21 
 

 

 

Table 3: Number of salt ponds and their characteristics documented by imagery analysis of the 0.15km2 study area surrounding the 

large pond. Data analysis provided by Cameron Knight.

   Range of salt pond size (m2) Normalized circularity of salt ponds 

 Total number 

of ponds 

Total surface 

area of ponds 

(km2) 

0-10 10-100 100-1000 0-0.33 0.33-0.66 0.66-1 

Low Tide 175 0.0387 142 28 4 106 58 11 

High Tide 205 0.0376 153 48 3 171 28 6 
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Groundwater and Tidal Fluctuation 

 Observation well data plotted on a co-series chart revealed cyclic head fluctuation in all 

of the wells (Figure 10). Hydraulic head in the shallow wells decreased with distance from Cedar 

Creek with an overall hydraulic gradient of 9.41 x 10-4 from MW-1 to MW-4. The vertical 

hydraulic gradient was 0.4. Amplitudes of head fluctuation were calculated to follow the tidal 

cycle (Table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

 

 

Figure 10: Time series chart depicting hydraulic head in each well along with the stage of Cedar Creek. Well nests are color coded.
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 Head at High Tide (cm) Head at Low Tide (cm) Tidal Amplitude (cm) 

MW-1S 93.10 91.25 1.85 

MW-1D 76.80 76.25 0.55 

MW-1DD -9.25 -12.05 2.80 

MW-2S 69.00 63.38 5.62 

MW-2D 43.71 40.64 3.07 

MW-2DD -14.27 -14.87 0.60 

MW-3S 43.63 41.51 2.12 

MW-3D 23.90 23.25 0.65 

MW-4S 44.45 40.32 4.13 

MW-4D 66.90 66.10 0.80 

 

Table 4: Calculated tidal amplitude for each well during the tidal cycle on May 27, 2019. 

 

 Tidal data collected from the USGS Stream Gauge 01484235 in Cedar Creek reflected a 

semidiurnal tidal cycle. Cedar Creek experiences a cycle of two nearly equal high tides and two 

nearly equal low tides each lunar day with tidal range of 1.4m (Figure 10). The tidal elevation 

ranged from ~ -50cm NAVD88 to nearly 90cm NAVD88. 

 Head fluctuations in wells correlated with tide cycles. Groundwater in deep wells (MW-

1DD and MW-2DD) responded to both high tides and both low tides during the lunar day. 

 Hydraulic head in shallow wells (MW-1S, MW-2S, MW-3S, and MW-4S) and 

intermediate wells (MW-1D, MW-2D, MW-3D, and MW-4D), recorded a similar pattern to each 

other during the tidal cycle. Hydraulic head increased rapidly in these wells at the highest tide 

during the day and head continued to fall until the next highest tide the following day.  
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 Values for hydraulic conductivity (K) and hydraulic diffusivity (D), were calculated 

(Table 5). These values are in a good agreement with other salt marsh groundwater studies 

(Hughes, 2016). The shallow wells had an instantaneous recharge after purging, and therefore 

could not be analyzed using the Hvorslev Method. 

 

 Distance from Tidal Source 

(m) 

Diffusivity (m2/day) Hydraulic 

Conductivity (m/s) 

MW-1S 30 1426.124 1.100 x 10-4 

MW-1D 30 1127.024 1.208 x 10-7 

MW-1DD 30 646.448 1.381 x 10-7 

MW-2S 11 191.735 1.467 x 10-5 

MW-2D 11 177.942 2.490 x 10-7 

MW-2DD 11 176.218 2.531 x 10-7 

MW-3S 19 168.484 1.333 x 10-5 

MW-3D 19 361.144 2.411 x 10-7 

MW-4S 16 240.147 1.867 x 10-5 

MW-4D 16 402.436 5.360 x 10-8 

 

Table 5: Calculated hydraulic characteristics for each well in the study area. Hydraulic 

Conductivity for shallow wells was calculated using the tidal method, due to their rapid recharge. 

 

Precipitation Events 

 The groundwater observation data was compared with precipitation recorded by the 

Slaughter Beach weather station. During the study period it rained only 10 times (Figure 11). 

Eight out of ten days had >/= 1.75cm of rainfall recorded. The other two precipitation events 

were minor, with only < .25cm of rainfall.  
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 Hydraulic head in all but the deepest wells (MW-1DD and MW-2DD) increased in 

response to precipitation events (Figure 11). Sharp increases in hydraulic head were observed 

immediately following most precipitation events during the study period (Table 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

 

Figure 11: Time series chart depicting well hydraulic head versus Slaughter Beach daily precipitation. Data was not available from 

May 28 to June 3 due to weather station damage
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 Head prior to rainfall (cm) Head post rainfall (cm) Head difference (cm) 

MW-1S 78 92 14 

MW-1D 72 80 8 

MW-2S 48 68 20 

MW-2D 29 39 10 

MW-3S 26 43 17 

MW-3D 6 23 17 

MW-4S 45 52 7 

MW-4D 63 66 3 

 

Table 6: Response in hydraulic head to the rainfall event that occurred on June 29, 2019. 

 

Salinity 

 Groundwater flowing through the Slaughter Beach salt marsh appeared to be saline with 

the salinity values ranging between 21ppt and 35ppt. Salinity varied between well locations and 

depth (Figure 12). Salinity in Well Nest 1 decreased with depth, ranging from 31.5ppt in MW-1S 

to 26.8ppt in MW-1DD. The highest salinity values were recorded in Well Nest 2, with 34ppt 

measured in MW-2S, 34.9ppt recorded in MW-2D and 32.9ppt measured in MW-2DD. These 

values are comparable to the average salinity of ocean water (35ppt) (Manning, 2016). Values 

recorded in Well Nest 3 are significantly lower with 27ppt measured in MW-3S and 28.6ppt in 

MW-3D. The lowest salinity values of 22.4ppt and 21.1ppt were recorded in Well Nest 4 (MW-

4S and MW-4D). 
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Figure 12: Salinity values for groundwater samples taken from each of the wells. Salinity 

decreases with distance from Cedar Creek, with the exception of Well Nest 2. 

 

Discussion 

Slaughter Beach Stratigraphy 

 The stratigraphy of the Slaughter Beach salt marsh reveals ~2.5 – 3m thick high marsh 

sediment deposits onlapping ~4 – 5m thick low marsh deposits. A layer of tidal mud extending 

across the sequence at the depth of -25cm could possibly act as an aquitard. The aquitard is 

separating two hydrologic units: an unconfined surficial aquifer recharged by tidal flooding and 

precipitation and the confined deep aquifer recharged by Cedar Creek and regional groundwater 

flow from the uplands, which is evident in the lower salinity measured in MW-1DD. Lenses of 

coarse sands found in core GWSB-4 are most likely over-wash storm deposits. 
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Tidal Influence on Salt Ponds 

 While previous studies showed seasonal changes in salt pond morphology (Geyer et al, 

2018, Cohen et al., 2019), the drone imagery analysis performed to compare changes of salt pond 

size during the tidal cycle did not show significant change in the size of the large pond in the 

Slaughter Beach salt marsh between high tide and low tide. However, the number of ponds 

within the study area increased between high and low tides.  

 

Hydrologic Characteristics 

 Studies conducted in coastal marsh ecosystems discovered tidal forcing as the main 

control of head variation in the mid to high marsh (Hughes, 2016). However, the relationship 

between salt pond development and groundwater fluctuations were never established. Hydraulic 

head fluctuations in all monitoring wells in the Slaughter Beach salt marsh show an overall 

correlation with tidal cycles. However, there are significant differences in groundwater response 

to tides based on its depth. In the shallow (1m) wells (MW-1S, MW-2S, MW-3S, and MW-4S) 

changes in hydraulic head corresponded to the highest of the two high tides during each day, 

rising rapidly and draining slowly until the next highest tide. In the intermediate depth (3m) 

wells (MW-1D, MW-2D, and MW-3D) hydraulic head displayed minor changes in response to 

tides. The most noticeable change in hydraulic head in response to tidal influence was recorded 

in MW-1DD, one of the deepest wells (5m), and the closest to Cedar Creek. We assume that it is 

directly connected to groundwater flow from Cedar Creek. This also indicates that Cedar Creek 

is a losing stream, rather than a gaining stream. 

 Changes in hydraulic head in all but the deepest wells (MW-1DD and MW-2DD) were 

documented in response to precipitation events (Figure 11). Sharp increases in hydraulic head 
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was observed immediately following most precipitation events during the study period. Records 

from the shallow wells documented the greatest increase in head following precipitation, ranging 

from a head difference of 14cm to 20cm. This supports the hypothesis of 2 existing aquifers, 

with the shallow aquifer being recharged through semidiurnal tidal flooding and precipitation 

and the deep aquifer being recharged by regional groundwater flow from the uplands and Cedar 

Creek. 

 Calculated values for hydraulic conductivity (K) and hydraulic diffusivity (D), reflected 

the typical hydrologic characteristics of estuarine marsh soils (Fetter, 2018), which typically 

range from 10-5 m/s to 10-9m/s for hydraulic conductivity (Table 5). The shallow wells had an 

instantaneous recharge after purging, and therefore were analyzed using the tidal method for 

diffusivity, rather than the Hvorslev Method for hydraulic conductivity. This suggests that the 

surficial aquifer is directly connected to surface water on the marsh. 

 Hydraulic head fluctuation during the tidal cycle did not significantly impact 

groundwater flow direction. Groundwater elevation decreases in proportion to distance from 

Cedar Creek and decreases with depth with the exception of the eastern marsh falling in the dune 

recharge area. 

 One possible explanation for the upward vertical gradient in Well Nest 4 could be 

stratigraphic controls. The intermediate (3m) depth well MW-4D penetrates the aquitard layer of 

tidal mud. The tidal mud consists of fine, low permeability silt and clay; which will restrict 

groundwater flow. Confining pressure from this lithostratigraphic unit could increase the 

pressure head within MW-4D.    

 Hydrogeologic cross sections constructed for the study area reflect an overall downward 

vertical gradient in hydraulic head (Figure 13). Groundwater flows away from Cedar Creek and 
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moves towards Delaware Bay in the deep aquifer. Based on groundwater flow patterns, the 

ponds on the salt marsh surface are losing ponds; water drains from them into the groundwater 

system of the shallow aquifer, that is underlain by a semi-impermeable silty-clay layer. 

 

 

Figure 13: Hydrogeologic cross section of the study area. The spring tide occurring at 9:57 PM 

on June 3rd, 2019 was used to construct the equipotential lines.  
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 The groundwater flow pattern reflects the presence of two local aquifers: a shallow 

aquifer, consisting of salt marsh peat units (1-1.5m deep) and a deep aquifer (3-4m deep). The 

deep aquifer is confined by a 0.5m thick layer of tidal mud and seems to extend into the pre-

Holocene sand underlying the Slaughter Beach salt marsh sediment deposits. The shallow 

aquifer has limited flow due to the tidal mud deposits, which do not readily transmit flow. The 

deep aquifer is most likely transmitting regional groundwater flow from the headlands and 

experiencing tidal influence from Cedar Creek, since its’ head is changing in proportion to tidal 

fluctuation. The shallow aquifer is recharged by tidal flooding from the network of shallow tidal 

creeks and mosquito ditches of the marsh surface and precipitation.  

 Salinity values from groundwater samples reflect a more saline deep aquifer and a more 

brackish shallow aquifer. Deep and intermediate wells in the center of the study area (MW-1D, 

MW-2D, MW-2DD, and MW-3D) have significantly higher salinity values. This is most likely 

due to direct recharge from Cedar Creek into the deep aquifer as well as groundwater mixing 

from Delaware Bay. Although MW-1DD penetrates the deep aquifer, it has a lower salinity. This 

is most likely due to regional freshwater discharge from the headlands mixing with saline water 

discharged from Cedar Creek, which supports the hypothesis of two separate aquifers. MW-4S 

and MW-4D recorded the lowest salinity values. The most likely explanation for this would be 

freshwater run-off from the dune, where precipitation discharges beneath the tidal mud 

sediments into the aquifer from the dune sands. Although MW-2S was bored into the shallow 

aquifer, the salinity recorded there is high, probably because of the proximity of two salt ponds 

and a tidal channel. MW-2 is closer to a tidal channel than any other wells and most likely 

receives a steady influx of saline water from the surface. 

 



34 
 

Conclusion 

 Drone imagery collected from flights at high tide and low tide did not document major 

change in size of the large pond within the study area, however the number of small ponds (0 – 

10m2) increased from 142 to 153 during the tidal cycle. 

 This study documented two local hydrologic units: a shallow unconfined aquifer, and 

deep confined aquifer that extends into the pre-Holocene sand. The overall direction of 

groundwater flow in the Slaughter Beach salt marsh is in the northeast direction towards 

Delaware Bay, with a hydraulic gradient of 9.41 x 10-4 and a vertical gradient of 0.4. The 

hydrogeologic cross section constructed for the study area indicates that Cedar Creek is a losing 

stream. Saline water enters the creek from Delaware Bay and floods the marsh through the tidal 

channel and mosquito ditch network, as well as seeps into the stream banks into the marsh 

sediments. 

 The deep aquifer extends from the depth of ~4.5m into the surficial Columbia aquifer of 

Delaware. The deep aquifer is confined by a 0.5m thick unit of tidal mud that extends throughout 

the salt marsh platform. The shallow aquifer is approximately 2.5m thick and extends to the tidal 

mud aquitard sediments, which limit its downward flow. 

 The salinity of the deep aquifer ranges from 27ppt to 35ppt indicating the connection to 

regional freshwater flow from the headlands and tidal influence from Cedar Creek. The shallow 

aquifer salinity ranges from 21ppt to 31ppt, reflecting recharge from freshwater precipitation 

run-off and tidal flooding from the network of mosquito ditches and tidal channels. 

 The network of wells monitoring groundwater fluctuation over the period of two full 

lunar cycles from May 15 to July 27, 2019 at depths of 1m, 3m, and 5m documented that 

changes in hydraulic head follow the tidal cycles in both aquifers. Comparison of head 
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fluctuations with precipitation data indicated that the shallow aquifer receives freshwater run-off 

from the dune while the deep aquifer does not.  

 Our short-term (2.5 month) study of groundwater flow in combination with drone 

imagery and stratigraphy has not documented any major salt pond changes, except the response 

of small ponds to high tide. The salt ponds are developed at the surface of the shallow 

unconfined aquifer and recharged by tides and precipitation with a limited connection to the deep 

aquifer. Ponds become fully charged throughout the tidal cycle due to the tidal mud aquitard. 

Therefore, their changes are related to changes in the volume of tidal flow and hydrologic regime 

of a shallow tidal drainage network. As sea level continues to rise salt ponds will develop, merge 

with other ponds and grow in size, reducing the vegetated surface of the salt marsh platform. 

Rapid development of salt ponds could reduce the marshes ability to accommodate to sea level 

rise. 

 This study has established a baseline for quantitative and qualitative analysis of the 

groundwater hydrology active within the Slaughter Beach salt marsh. Continued monitoring of 

the site will be necessary to provide understanding of the localized groundwater flow and salt 

pond morphology in the study area.  
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Appendix A: Hvorslev Drawdown Curves 

 

Figure 14:  Hvorslev drawdown curve for MW-1D and MW-1DD 

 

 

 

Figure 15: Hvorslev drawdown curve for MW-2D and MW-2DD. 
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Figure 16: Hvorslev drawdown curve for MW-3D. 

 

Figure 17: Hvorslev drawdown curve for MW-4D. 
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