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Abstract 

The governing differential equations of the bending problem of simply supported shallow spherical shells on Winkler 

foundation are simplified to an independent equation of radial deflection. The independent equation of radial deflection 

is decomposed to two Laplace operators by intermediate variable. The R-function theory is applied to describe a shallow 

spherical shell on Winkler foundation with concave boundary, and then a quasi-Green’s function is established by using 

the fundamental solution and the normalized boundary equation. The quasi-Green’s function satisfies the homogeneous 

boundary condition of the problem. The Laplace operators of the problem are reduced to two simultaneous Fredholm 

integral equations of the second kind by the Green’s formula. The singularity of the kernel of the integral equation is 

eliminated by choosing a suitable form of the normalized boundary equation. The integral equations are discretized into 

the homogeneous linear algebraic equations to proceed numerical computing. The singular term in the discrete equation 

is eliminated by the integral method. Some numerical examples are given to verify the validity of the proposed method in 

calculating simple boundary conditions and polygonal boundary conditions. A comparison with the ANSYS finite 

element (FEM) solution shows a good agreement, and it demonstrates the feasibility and efficiency of the present 

method. 
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1. Introduction 

As a kind of structural forms, the shells and plates are widely used in various fields, such as, in the large-span roof, 

the underground foundation engineering, the hydraulic engineering, the large container manufacturing, the aviation, 

the shipbuilding, the missiles, the space technology, the chemical industry, and so on. Only few problems of the shells 

and plates with a regular geometric boundary and a simple differential equation can be solved with an analytical or a 

half analytical method. For most these problems with geometry of arbitrary shape and a complex boundary condition, 

only numerical methods can be used to solve the problems, such as the boundary element method [1], the Finite 

Element Method [2] and the finite difference method [3]. 

In the present paper, the R-function theory and the quasi-Green’s function method (QGFM) proposed by Rvachev 

[4] are utilized. The bending problem of simply supported dodecagon shallow spherical shells on Winkler foundation 

with concave boundary is studied. The governing differential equation of the problem is decomposed into two 

simultaneous differential equations of lower order by utilizing an intermediate variable. A quasi-Green’s function is 

established by using the fundamental solution and the boundary equation of the problem. This function satisfies the 
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homogeneous boundary condition of the problem, but it does not satisfy the fundamental differential equation. The 

key point of establishing the quasi-Green’s function consists in describing the boundary of the problem by a 

normalized equation 𝜔 = 0 and the domain of the problem by an inequality 𝜔 > 0. There are multiple choices for the 

normalized boundary equation. Based on a suitably chosen normalized boundary equation, a new normalized 

boundary equation can be established such that the singularity of the kernel of the integral equation is overcome. For 

any complicated domain, a normalized boundary equation can always be found according to the R-function theory. 

Thus, the problem can always be reduced to two simultaneous Fredholm integral equations of the second kind without 

the singularity. Using the R-function theory, Li and Yuan described successfully the rectangular, trapezoidal, 

triangular and parallelogrammic domains of plates [5-7] and shallow spherical shells [8, 9]. For the first time, the R-

function theory is applied to describe the dodecagon domain of the shallow spherical shells with concave boundary. 

The flowchart of research methodology is shown in the paper. The governing differential equations of the bending 

problem of simply supported shallow spherical shells on Winkler foundation are simplified to an independent equation 

of radial deflection. The intermediate variable is introduced, and then the independent equation of radial deflection is 

decomposed to two Laplace operators. The Laplace operators of the problem are reduced to two simultaneous 

Fredholm integral equations of the second kind by the Green’s formula. The singularity of the kernel of the integral 

equation is eliminated by choosing a suitable form of the normalized boundary equation. The integral equations are 

discretized into the homogeneous linear algebraic equations to proceed numerical computing. The singular term in the 

discrete equation is eliminated by the integral method. Some numerical examples are given to verify the validity of the 

proposed method in calculating simple boundary conditions and polygonal boundary conditions. A comparison with 

the FEM solution shows a good agreement, and it demonstrates the feasibility and efficiency of the present method. 

The R-function theory can be used to describe any more complex domains of the plates and shells. 

2. Research Methodology 

Flowchart of the research methodology has been presented in Figure 1. 

 
Figure 1. The flowchart of research methodology   

2.1. Fundamental Equations 

The governing differential equations of the bending problem of simply supported shallow spherical shells on 

Winkler foundation [9, 11-16] can be expressed as follows: 
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The simply supported boundary conditions can be written as: 

022 


ww  (3) 

Where 2

2

22

1

22 xx   is the Laplace operator, and   is the boundary of the domain  .Making use of 

Equations 1 and 3, we can easily obtain: 

RwEh /2    (4) 

Substituting Equation 4 into Equation 2 yields:  

ZPkwRwEhwD  24 /  (5) 

To decompose Equation 5, let us introduce the following intermediate variable; 
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Then, substituting Equation 6 into Equation 5, we obtain the following two simultaneous Laplace equations [17-20] 

of second rank: 

kwRwEhPM Z  22 / and DMw /2  ,    x  (7) 

The displacement and the bending moment should be equal to zero along the simply supported boundary of 

shallow spherical shells on Winkler foundation, which can be written as: 

0w  and 0M ,  x  (8) 

2.2. Integral Equations 

The complicated domain can be describing by Boolean operation. The Boolean operations ∨𝛼 , ∧𝛼 (disjunction and 

conjunction), which correspond to the union ∪ and intersection ∩. These R-operations are defined as follows [1]: 
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Where the parameter 𝛼 varies within −1 < 𝛼 ≤. For example, if the value 𝛼 is equal to zero, then the whole domain 

can be presented using R-function.  

Let 𝜔 = 0 be the normalized boundary equation of the first-order on the boundary  , i.e. [4]: 

0)( x , 1 ,   x  and 0)( x ,    x  (9) 

The quasi-Green’s function can be established as follows: 
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the quasi-Green’s function ),( ξxG  satisfies the following condition: 
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To reduce the boundary value problems Equations 7 and 8 into the integral equations, the following Green’s 

formula of sets of function )(2 C , i.e., U and )(2  CV , is applied: 
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From Equations 7, 8, 11 and 12, and noticing that rln)21(   is the fundamental solution [21] of the Laplace 

operator, then the following integral equations are obtained: 
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Where )(ξ  , 
ξ ; and jir )()( 2211 xx   , in which i  and j  denote unit vectors in 

1x  and 
2x  

directions, respectively. 

),( ξxK  in Equation 15 appears discontinuous only if 0R , i.e., both ξx   and 0  come into existence. 

Actually, when ξx  , Equation 15 can be reduced to:  
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ξxK  (16) 

To make the kernel of the integral equations )(),(  CK ξx , A normalized boundary equation will be 

constructed to ensure the continuity of ),( ξxK  in the following. It can be easily testified that: 
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Where 00   is the normalized equation on the boundary  , i.e., 
0  satisfies Equation 9. Obviously, equation   

is also a normalized boundary equation of the first-order. 

Based on a suitably chosen normalized boundary equation 00  , a new normalized boundary equation 0  

can be constructed by using Equation 17, which ensure the continuity of the integral kernel ),( ξxK  in the integral 

domain. 

2.3. Discrete Integral Equations 

In order to discrete the integral Equations 13 and 14 of the bending problem of shallow spherical shell on Winkler 

foundation, the integral domain   is divide into several subdomains ),......,2,1( Nii  , and in each subdomain the 

rectangular quadrature formula is applied. Finally, integral Equations 13 and 14 are discretized into the following 

homogeneous linear algebraic equations: 
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In which 
iA  denotes the area of the i th subdomain. 

When ii ξx  , r =0 of Equation 10, so the quasi-Green’s function ),( iiG ξx  is singular item in Equation 10. In 

order to eliminate the singular term in the discrete Equation 18 of the integral equation, the integral formula of the 

subdomain is integrated, and the specific derivation process is as follows.  

When ii x , the integral formula of the 
i subdomain is integrated: 
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The first item of Equation 19 is singular item, in order to eliminate the singularity of this item, divide the 

subdomain into four small regions and integrate the item by parts (as Figure 2). 
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Figure 2. Rectangular subdomains 
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Substituting Equations 21 and 22 into Equation 20 gives: 
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Then, Equation 23 is the treatment of singular terms in the discretization equation. Subdomains of other shapes, 

such as triangle and trapezoid, can also be transformed into rectangular subdomains to eliminate singular terms in the 

discrete form of integral equation. 

Then, the radial deflection 𝑤(𝑥𝑙) and intermediate variable 𝑀(𝑥𝑙)  can be obtained by solving the algebraic 

equations. 

Some numerical examples are given to verify the validity of the proposed method in calculating simple boundary 

conditions and concave boundary conditions as follow.  

3. Results and Discussion 

Example 1: Figure 3 shows the shallow spherical shell with rectangular bottom on Winkler foundation, and its A-A 

section is shown in Figure 4. We set 𝑎 = 𝑏 2⁄ = 100. The following reference parameters are used: the radius of 

curvature of the shell 𝑅 = 200, the elastic coefficient of the foundation 𝑘 = 200, thickness of shell ℎ = 2, Poisson’s 

ratio 𝜇 = 0.3, Young’s modulus 𝐸 = 2.1 × 106, the radial load 𝑃𝑍 = 70. According to the R-function theory [4], a 

normalized boundary equation of the first rank can be constructed from the following equation: 
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𝜔1 = 0 and 𝜔2 = 0 denote various parts of the boundary of square shallow spherical shell on Winkler foundation, 

respectively. The radial deflection curves of line 𝑥2 = 100 by the QGFM with four kinds of different square network 

collocations (as shown in Figure 5) are shown in Figure 6, and the results are compared with those of ANSYS Finite 

Element Method (FEM). The radial deflection curves of line 𝑥2 = 0 for different 𝑘 and different 𝑅 by the QGFM with 

121(11 × 11) square network and by the ANSYS Finite Element Method (FEM) are shown in Figures 7 and 8 for a 

comparison, respectively; a good agreement is observed between the two methods. 

 

 

Figure 5. Subdomain division diagram of rectangular integral domain 
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Figure 3. Rectangular shallow spherical shell 
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Figure 4. A-A Section 
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Figure 6. Radial deflection curves of line 𝒙𝟐 = 𝟏𝟎𝟎 in Figure 2 for different square network 
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Example 2: When we set 𝑎 = 𝑒 = 100, 𝑏 = 𝑑 = 60, 𝑐 = 80, the shallow spherical shell shown in Figure 3 is a 

trapezoid shell. The other parameters have the same values as in Example 2. According to the R-function theory [4], a 

normalized boundary equation of the first rank can be constructed from the following equation:   
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𝜔1 = 0, 𝜔2 = 0 and 𝜔3 = 0 denote various parts of the boundary of trapezoidal shallow spherical shell on Winkler 

foundation, respectively. The radial deflection curves of line 𝑥2 = 40 and 𝑥1 = 0 by the QGFM using four kinds of 

different trapezoidal network collocations (as shown in Figure 8) are shown in Figures 10 and 11, and the results are 

compared with those of ANSYS Finite Element Method (FEM). The radial deflection curves of line  𝑥2 = 40 and 

𝑥1 = 0 for different 𝑘 and different 𝑅  by the QGFM with 121(11 × 11) trapezoidal network and by the ANSYS 

Finite Element Method (FEM) are shown in Figures 12 to 15 for a comparison, respectively; a good agreement is 

observed between the two methods. 

 
Figure 9. Subdomain division diagram of trapezoidal domain 
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Example 3: Figure 16 shows the hexagonal bottom shallow spherical shell on Winkler foundation. We set 𝑎 = 𝑑 =
60, 𝑏 = 100, 𝑐 = 80, 𝑒 = 160. The other parameters have the same values as in Example 1. According to the R-

function theory [4], a normalized boundary equation of the first rank can be constructed from the following equation:   
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Figure 10. Radial deflection curves of line 𝒙𝟐 = 𝟒𝟎 in 

Figure 8 for different trapezoidal network 
 

Figure 11. Radial deflection curves of line  𝒙𝟏 = 𝟎 in Figure 8 

for different trapezoidal network 
 

Figure 12. The deflection curve of line 𝒙𝟐 = 𝟒𝟎 

in Figure 8 for different 𝒌 

Figure 13. The deflection curve of line 𝒙𝟏 = 𝟎 

in Figure 8 for different 𝒌 

Figure 14. The deflection curve of line 𝒙𝟐 = 𝟒𝟎 

in Figure 8 for different 𝑹 
Figure 15. The deflection curve of line 𝒙𝟏 = 𝟎 

in Figure 8 for different 𝑹 
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𝜔1 = 0, 𝜔2 = 0, 𝜔3 = 0, 𝜔4 = 0 and 𝜔5 = 0 denote various parts of the boundary of hexagonal shallow spherical 

shell on Winkler foundation, respectively. The radial deflection curves of line 𝑥2 = 𝑐 and 𝑥1 = 0 for different 𝑘 and 

different 𝑅 by the QGFM and by the ANSYS Finite Element Method (FEM) are shown in Figures 17 to 20 for a 

comparison, respectively; a good agreement is observed between the two methods. 

 

    

 

 

 

4. Conclusion 

The radial deflection curves of line 𝑥2 = 100  by the QGFM with four kinds of different square network 

collocations (as shown in Figure 5) are shown in Figure 6, and the results are compared with those of ANSYS Finite 

Element Method (FEM), which shows the convergence of the present method. The radial deflection curves of line 

𝑥2 = 40 and 𝑥1 = 0 by the QGFM using four kinds of different trapezoidal network collocations (as shown in Figure 

8) are shown in Figures 10 and 11, and the results are compared with those of ANSYS Finite Element Method (FEM), 
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Figure 16. Hexagonal bottom 
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Figure 17. The deflection curve of line 𝒙𝟐 = 𝒄 

in Figure 15 for different 𝒌 

Figure 18. The deflection curve of line 𝑥1 = 0 

in Figure 15 for different 𝒌 

Figure 19. The deflection curve of line 𝑥2 = 𝑐 

in Figure 15 for different 𝑹 
Figure 20. The deflection curve of line 𝑥1 = 0 

in Figure 15 for different 𝑹 
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which also shows the convergence of the method. Which shown that the singularity of the kernel of the integral 

equation and the singular term in the discrete equation are eliminated very good. From the numerical results of the 

examples, the deflection value decreases with the increase of k and increases with the increase of R. The numerical 

calculation accuracy is very good, and the results are coincided to the results of FEM nicely. 

In the present paper, the R-function theory is used to describe a shallow spherical shell on Winkler foundation with 

polygonal boundary, and it is applied to construct a quasi-Green’s function. The numerical results of the QGFM 

demonstrate its feasibility, efficiency and rationality by comparing with the FEM solution. The R-function theory can 

also be applied to effectively solve various boundary value problems of the plates and shells by constructing a trial 

function that satisfies the complicated boundary shape and by combining with the other method of weighted residuals 

such as the variational method [22], the spline-approximation [23] and the Ritz method [24]. 
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