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FURTHER GENERALIZATIONS OF THE

PARALLELOGRAM LAW

ANTONIO M. OLLER-MARCÉN

Abstract. In a recent work of Alessandro Fonda, a generalization of
the parallelogram law in any dimension N ≥ 2 was given by consid-
ering the ratio of the quadratic mean of the measures of the (N − 1)-
dimensional diagonals to the quadratic mean of the measures of the
faces of a parallelotope. In this paper, we provide a further generaliza-
tion considering not only (N − 1)-dimensional diagonals and faces, but
the k-dimensional ones for every 1 ≤ k ≤ N − 1.

1. Introduction

If we consider the usual Euclidean space (Rn, ‖·‖), the well-known identity

(1.1) ‖a+ b‖2 + ‖a− b‖2 = 2(‖a‖2 + ‖b‖2)

is called the parallelogram law.
This identity can be extended to higher dimensions in several ways. For

example, it is straightforward to see that

(1.2) ‖a+b+c‖2+‖a+b−c‖2+‖a−b+c‖2+‖a−b−c‖2 = 4(‖a‖2+‖b‖2+‖c‖2)

with the subsequent analoguous identities arising inductively. There are
many works devoted to provide generalizations of (1.1) in many different
contexts [1, 3, 4].

Note that if we rewrite (1.1) as

(1.3)
‖a+ b‖2 + ‖a− b‖2

2
= 2

(‖a‖2 + ‖b‖2 + ‖a‖2 + ‖b‖2)

4

this means that in any parallelogram, the ratio of the quadratic mean of
the lengths of its diagonals to the quadratic mean of the lengths of its sides
equals

√
2. With this interpretation in mind, Alessandro Fonda [2] recently

proved the following interesting generalization.
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Theorem 1.1. Given linearly independent vectors a1, . . . , aN ∈ Rn, it holds
that

∑
i<j

∥∥∥∥∥∥(ai + aj) ∧
∧

k 6=i,j

ak

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥(ai − aj) ∧
∧

k 6=i,j

ak

∥∥∥∥∥∥
2 =

= (N − 1)

N∑
k=1

2 ‖a1 ∧ · · · ∧ âk ∧ · · · ∧ aN‖2 .

In other words, for any N -dimensional parallelotope, the ratio of the qua-
dratic mean of the (N − 1)-dimensional measures of its diagonals to the
quadratic mean of the (N − 1)-dimensional measures of its faces is equal to√

2.

In this work we extend this result to faces of dimension k for every 1 ≤
k ≤ N − 1 and to a suitable definition of the k-dimensional diagonal of a
parallelotope. Then Theorem 1.1 will be a particular case of our result for
k = N − 1. Indeed, our result can be stated as follows.

Theorem 1.2. Let us consider an N -dimensional parallelotope and let 1 ≤
k ≤ N − 1. The ratio of the quadratic mean of the k-dimensional measures
of its k-dimensional diagonals to the quadratic mean of the k-dimensional
measures of its k-dimensional faces is equal to

√
N − k + 1.

In fact, our generalization follows in line with the work [3] but instead
considers the definition of a diagonal face given in [2].

2. Notation and preliminaries

In this section, we introduce some notation and present some basic facts
that will be useful in the sequel. Let us consider a parallelotope P generated
by a family of linearly independent vectors B = {a1, a2, . . . , aN} ⊆ Rn. This
means that

P =

{
N∑
i=1

αiai : αi ∈ [0, 1]

}
.

Let us fix 1 ≤ k ≤ N−1. Given k different vectors S = {ai1 , . . . , aik} ⊆ B,
we can consider the face generated by them:

F(S) =

{∑
v∈S

αvv : αv ∈ [0, 1]

}
.

This face can now be translated by one or more of the remaining vectors
thus obtaining a face

FI(S) =

∑
v∈S

αvav +
∑

w∈B\S

αww ∈ P : αw ∈ {0, 1}

 ,
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where I = (αv)v 6∈S ∈ {0, 1}N−k. Since each choice of a set S ⊆ B and a

vector I ∈ {0, 1}N−k leads to a different face and every face can be obtained

in this way, it follows that P has exactly 2N−k
(
N
k

)
k-dimensional faces.

Moreover, it is clear that all the 2N−k different faces FI(S) are congruent
to the set generated by S, F(S).

Now, we focus on the k-dimensional diagonals which will be defined
following the ideas in [2]. Let us consider N − k + 1 different vectors
T = {ai1 , . . . , aiN−k+1

} ⊆ B and let T = T1 ∪ T2 be a decomposition of
T into two disjoint sets (either T1 or T2 could be empty). Then, the follow-
ing set

DT (T1, T2) =

α∑
v∈T1

v + (1− α)
∑
v∈T2

v +
∑

w∈B\T

αww : α, αw ∈ [0, 1]


is called the k-dimensional diagonal associated to (T , T1, T2). Clearly each
choice of a set T ⊆ B and a decomposition T = T1 ∪ T2 allows us to
define a diagonal. Since it is clear that DT (T1, T2) = DT (T2, T1), it readily

follows that P has exactly 2N−k
(

N
N−k+1

)
different k-dimensional diagonals.

Moreover, if we define the vector

VT (T1, T2) =
∑
v∈T1

v −
∑
v∈T2

v,

we have that

DT (T1, T2) =

αVT (T1, T2) +
∑
v∈T2

v +
∑

w∈B\T

αww : α, αw ∈ [0, 1]


and consequently, it is clear that the diagonal DT (T1, T2) is a translation of
the set generated by {VT (T1, T2), w : w ∈ B \ T } and hence it is congruent
to it.

Example. Let us see how the definition of D(T1, T2) applies in the case of
lower dimensions; i.e, if N = 2, 3.

In the case N = 2, we only consider k = 1. If we consider the parallel-
ogram P generated by B = {a1, a2} ⊆ RN , then clearly T = B (because
k = 1) and P has two different diagonals which are defined by the two
possible decompositions T = {a1} ∪ {a2} and T = T ∪ ∅. In fact,

DB({a1}, {a2}) = {αa1 + (1− α)a2 : α ∈ [0, 1]}
= a2 + {α(a1 − a2) : α ∈ [0, 1]} ,

DB(B, ∅) = {α(a1 + a2) : α ∈ [0, 1]} .

Figure 1 shows how we obtain the two diagonals of the parallelogram. Note
that, in this case, VB(B, ∅) = a1 + a2 and VB({a1}, {a2}) = a1 − a2.
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a2 DB(B, ∅)
DB({a1}, {a2})

a1

Figure 1. The case N = 2, k = 1.

a2

a3

a1

a2

a3

a1

Figure 2. The case N = 3, k = 1 (left) and k = 2 (right).

Now, if N = 3 and k = 1, let us consider the parallelepiped P generated
by B = {a1, a2, a3} ⊆ RN . Again, T = B but in this case there are four
different 1-dimensional diagonals which are defined by the decompositions
T = {a1, a2}∪{a3}, T = {a1, a3}∪{a2}, T = {a2, a3}∪{a1}, and T = T ∪∅.
In fact,

DB({a1, a2}, {a3}) = {α(a1 + a2) + (1− α)a3 : α ∈ [0, 1]}
= a3 + {α(a1 + a2 − a3) : α ∈ [0, 1]} ,

DB({a1, a3}, {a2}) = {α(a1 + a3) + (1− α)a2 : α ∈ [0, 1]}
= a2 + {α(a1 − a2 + a3) : α ∈ [0, 1]} ,

DB({a2, a3}, {a1}) = {α(a2 + a3) + (1− α)a1 : α ∈ [0, 1]}
= a1 + {α(−a1 + a2 + a3) : α ∈ [0, 1]} ,

DB(B, ∅) = {α(a1 + a2 + a3) : α ∈ [0, 1]} .

On the left hand side of Figure 2, we can see the above four 1-dimensional
diagonals of P (in red, purple, green, and blue, respectively). Note that,
in this case, VB(B, ∅) = a1 + a2 + a3, VB({a1, a2}, {a3}) = a1 + a2 − a3,
VB({a1, a3}, {a2}) = a1 − a2 + a3, and VB({a2, a3}, {a1}) = −a1 + a2 + a3.
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In the same way, if N = 3 and k = 2, we could define the six 2-dimensional
diagonals of P. On the right hand side of Figure 2 we see, for instance,
D{a1,a3}({a1}, {a3}) in red and D{a2,a3}({a2}, {a2}) in blue.

3. Proof of Theorem 1.2

After introducing the notation and the basic objects involved in this work,
we are now ready to prove the main result of the paper.

Let P be a parallelotope generated by B = {a1, a2, . . . , aN} ⊆ Rn. We
first compute the quadratic mean of the k-dimensional measures of its k-
dimensional faces. We first note that for every S = {ai1 , . . . , aik} ⊆ B, the
k-dimensional measure of the face F(S) is ‖ai1 ∧ · · · ∧ aik‖. In the previous

section we have seen that P has exactly 2N−k
(
N
k

)
k-dimensional faces and

moreover, there are exactly 2N−k copies of each face F(S). Consequently,
the quadratic mean of the k-dimensional measures of the k-dimensional faces
of P is:

(3.1)

√√√√√√2N−k
∑
‖ai1 ∧ · · · ∧ aik‖

2

2N−k
(
N

k

) .

Now we have to compute the quadratic mean of the k-dimensional mea-
sures of the k-dimensional diagonals of P. First of all, recall that P has
exactly 2N−k

(
N

N−k+1

)
different k-dimensional diagonals. Each of them is

a translation of the set generated by {VT (T1, T2), w : w ∈ B \ T } for ex-
actly one choice of (T , T1, T2). The k-dimensional measure of this latter

set is
∥∥∥VT (T1, T2) ∧

∧
w∈B\T w

∥∥∥. Consequently, the quadratic mean of the

k-dimensional measures of the k-dimensional diagonals of P is:

(3.2)

√√√√√√√√√√
∑
T ,T1,T2

∥∥∥∥∥∥VT (T1, T2) ∧
∧

w∈B\T

w

∥∥∥∥∥∥
2

2N−k
(

N

N − k + 1

) .

Using the bilinearity of the scalar product and taking into account the def-
inition of VT (T1, T2), it can be easily seen that when we vary (T , T1, T2),
we get the term ‖ai1 ∧ · · · ∧ aik‖2 exactly 2N−kk times for every possible
choice of {ai1 , . . . , aik} ⊆ B. This implies that the quadratic mean of the
k-dimensional measures of the k-dimensional diagonals of P (3.2) can be
written as:

(3.3)

√√√√√√2N−kk
∑
‖ai1 ∧ · · · ∧ aik‖

2

2N−k
(

N

N − k + 1

) .
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Finally to obtain Theorem 1.2, it is enough to divide (3.3) by (3.1) to get√√√√ k
(
N
k

)(
N

N−k+1

) =
√
N − k + 1.

References
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