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CLOSED FORMULAS AND IDENTITIES FOR THE BELL

POLYNOMIALS AND FALLING FACTORIALS

FENG QI, DA-WEI NIU, DONGKYU LIM, AND BAI-NI GUO

Abstract. The authors establish a pair of closed-form expressions for
special values of the Bell polynomials of the second kind for the falling
factorials, derive two pairs of identities involving the falling factorials,
find an equivalent expression between two special values for the Bell
polynomials of the second kind, and present five closed-form expressions
for the (modified) spherical Bessel functions.

1. Motivations

The Bell polynomials of the second kind, also known as partial Bell poly-
nomials, denoted by Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0, are defined
in [1, p. 134, Theorem A] by

(1.1) Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i
.

The Faà di Bruno formula [1, p. 139, Theorem C] can be described in terms
of the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

(1.2)
dn

dxn
f ◦ h(x) =

n∑
k=0

f (k)(h(x)) Bn,k

(
h′(x), h′′(x), . . . , h(n−k+1)(x)

)
.
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By (1.1), we can easily deduce that, for n ≥ k ≥ 0,

(1.3)

Bn,k(1, 0, . . . , 0) = Bn,k

(
d

dx
x,

d2

dx2
x, . . . ,

dn−k+1

dxn−k+1
x

)
=

(
0

n− k

)
=

{
1, n = k;

0, n 6= k.

In [10, Theorem 5.1] and [16, Section 3], it was established that the Bell
polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy

(1.4) Bn,k(x, 1, 0, . . . , 0) =
1

2n−k
n!

k!

(
k

n− k

)
x2k−n,

where n ≥ k ≥ 0,
(
0
0

)
= 1, and

(
p
q

)
= 0 for q > p ≥ 0. Since

(1.5)

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbn Bn,k(x1, x2, . . . , xn−k+1)

for n ≥ k ≥ 0, see [1, p. 135], we can rearrange (1.4) as

Bn,k

(
d

dx
x2,

d2

dx2
x2, . . . ,

dn−k+1

dxn−k+1
x2
)

= Bn,k(2x, 2, 0, . . . , 0)

= 2k Bn,k(x, 1, 0, . . . , 0) =
n!

k!

(
k

n− k

)
(2x)2k−n

for n ≥ k ≥ 0. This means that one can combine the Faà di Bruno for-
mula (1.2) with the formula (1.4) to compute the nth derivative for functions
of the type f

(
ax2 + bx+ c

)
, such as

(1.6)
e±x

2
, sin

(
x2
)
, cos

(
x2
)
, ln

(
1± x2

)
,(

1± x2
)α
, arcsinx, arccosx, arctanx,

and to investigate the generating functions

1√
1− 2xt+ t2

,
1

1− 2xt+ t2
,

1√
1− 6x+ x2

,

1− x−
√
x2 − 6x+ 1

2x
,

1 + x−
√
x2 − 6x+ 1

4
,

1− x−
√

1− 2x− 3x2

2x2
, e2xt−t

2
,

2ez

e2z + 1

of the Legendre polynomials, the Chebyshev polynomials of the second
kind, central Delannoy numbers, the large and little Schröder numbers, the
Motzkin numbers, the Hermite polynomials, the Euler numbers, and the
Rodrigues formulas for the Chebyshev polynomials of the first and second
kinds. This idea has been carried out and applied in [7, 8, 10, 14, 16] and
closely related references therein.

Now it is natural and significant to ask the following question: how to
compute the nth derivative of functions of the type f(xα) for α ∈ R and to
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apply the results? To answer such a question, by virtue of the Faà di Bruno
formula (1.2), we need to calculate

Bn,k

(
d

dx
xα,

d2

dx2
xα, . . . ,

dn−k+1

dxn−k+1
xα
)

= Bn,k

(
〈α〉1xα−1, 〈α〉2xα−2, . . . , 〈α〉n−k+1x

α−(n−k+1)
)

= xkα−n Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1),

where we used identity (1.5) and

(1.7) 〈α〉n =
n−1∏
k=0

(α− k) =

{
α(α− 1) · · · (α− n+ 1), n ≥ 1;

1, n = 0

is called the falling factorial.
In recent years, the first author and his coauthors discovered and applied

many closed-form expressions of special values for the Bell polynomials of
the second kind Bn,k(x1, x2, . . . , xn−k+1) in the papers [6, 7, 8, 9, 15] and
closely related references therein.

In this paper, we will establish a pair of closed-form expressions for the
Bell polynomials of the second kind Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1), derive
two pairs of identities involving the falling factorials 〈α〉`, find an equivalent
expression of Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1), and present five closed-form ex-

pressions for the (modified) spherical Bessel functions jn(z), yn(z), i
(1)
n (z),

i
(2)
n (z), and kn(z).

2. A pair of closed-form expressions for Bell polynomials

Now we state a pair of closed-form expressions for the Bell polynomials
of the second kind Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) and its proof.

Theorem 2.1. For n ≥ k ≥ 0 and α ∈ R, the Bell polynomials of the
second kind Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) can be computed by

(2.1) Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈α`〉n

and

(2.2)

k∑
`=0

Bn,`(〈α〉1, 〈α〉2, . . . , 〈α〉n−`+1)

(k − `)!
=
〈αk〉n
k!

.

Proof. In [1, p. 133], it is listed that

(2.3)
1

k!

( ∞∑
m=1

xm
tm

m!

)k
=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!

for k ≥ 0. Taking xm = 〈α〉mxα−m for α ∈ R in (2.3) leads to
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∞∑
n=k

Bn,k

(
〈α〉1xα−1, 〈α〉2xα−2, . . . , 〈α〉n−k+1x

α−(n−k+1)
) tn
n!

=
xαk

k!

[ ∞∑
m=1

〈α〉m
m!

(
t

x

)m]k
=
xαk

k!

[(
1 +

t

x

)α
− 1

]k
.

Taking a = xα, b = 1
x , and xi = 〈α〉i for 1 ≤ i ≤ n−k+1 in the identity (1.5),

we obtain

Bn,k

(
〈α〉1xα−1, 〈α〉2xα−2, . . . , 〈α〉n−k+1x

α−(n−k+1)
)

= xkα−n Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1).

Consequently, it follows that
∞∑
n=k

xkα−n Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)
tn

n!
=
xαk

k!

[(
1 +

t

x

)α
− 1

]k
which can be rearranged as

∞∑
n=k

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)
sn

n!
=

[(1 + s)α − 1]k

k!

=
1

k!

k∑
`=0

(−1)k−`
(
k

`

)
(1 + s)α` =

(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
(1 + s)α`,

where s = t
x . Differentiating p ≥ k ≥ 0 times with respect to s at both ends

of the above equality gives

∞∑
n=k

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)
sn−p

(n− p)!

=
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈α`〉p(1 + s)α`−p.

Further letting s→ 0 on both sides of the above equality results in

Bp,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈α`〉p.

The formula (2.1) thus follows.
The binomial inversion theorem [1, pp. 143–144] reads

(2.4) sn =

n∑
k=0

(
n

k

)
Sk if and only if Sn =

n∑
k=0

(−1)n−k
(
n

k

)
sk

for n ≥ 0, where {sn, n ≥ 0} and {Sn, n ≥ 0} are sequences of complex
numbers. Applying this theorem to (2.1) readily produces (2.2). The proof
of Theorem 2.1 is complete. �
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Let

(x)n =

n−1∏
`=0

(x+ `) =

{
x(x+ 1) · · · (x+ n− 1), n ≥ 1;

1, n = 0

denote the rising factorial of x ∈ R. Since

(−x)n = (−1)n〈x〉n and 〈−x〉n = (−1)n(x)n,

we can now rewrite Theorem 2.1 in terms of the rising factorial (x)n as
follows.

Corollary 2.1. For n ≥ k ≥ 0 and α ∈ R, the Bell polynomials of the
second kind Bn,k((α)1, (α)2, . . . , (α)n−k+1) can be computed by

Bn,k((α)1, (α)2, . . . , (α)n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
(α`)n

and
k∑
`=0

Bn,`((α)1, (α)2, . . . , (α)n−`+1)

(k − `)!
=

(αk)n
k!

.

3. Two pairs of identities involving falling factorials

We now recover formula (1.3) from Theorem 2.1 as follows. Replacing α
by 1 in (2.1) leads to

Bn,k(〈1〉1, 〈1〉2, . . . , 〈1〉n−k+1) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈`〉n

which is equivalent to

Bn,k(1, 0, . . . , 0) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n∑
m=0

s(n,m)`m

=
n∑

m=0

s(n,m)

[
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
`m

]

=
n∑

m=0

s(n,m)S(m, k) =

(
0

n− k

)
,

where s(n, k) and S(n, k) denote the Stirling numbers of the first and second
kinds and we used the formulas

〈x〉n =

n∑
k=0

s(n, k)xk, S(n, k) =
1

k!

k∑
`=1

(−1)k−`
(
k

`

)
`n,

and
n∑

α=0

s(n, α)S(α, k) =

(
0

n− k

)
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in [1, p. 206] and [17, p. 171, Eq. (12.19)]. Formula (1.3) is thus recovered.
Now we state and prove two pairs of identities involving falling factorials.

Theorem 3.1. For n ≥ k ≥ 0, we have

(3.1)
k∑
`=0

(−1)k−`
(
k

`

)
〈2`〉n =

n!

2n−2k

(
k

n− k

)
and

(3.2)
k∑
`=0

4`
(
k

`

)(
`

n− `

)
=

2n

n!
〈2k〉n.

Proof. Replacing α by 2 in (2.1) and making use of (1.7) and (1.5) in se-
quence, we derive

Bn,k(〈2〉1, 〈2〉2, . . . , 〈2〉n−k+1) = Bn,k(2, 2, 0, . . . , 0)

= 2k Bn,k(1, 1, 0, . . . , 0) =
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)
〈2`〉n.

Comparing this with (1.4) for x = 1 yields (3.1).
Applying the binomial inversion theorem recited in (2.4) to (3.1) leads

to (3.2). The proof of Theorem 3.1 is complete. �

Theorem 3.2. For n ≥ k ≥ 0, we have

(3.3)
k∑
`=0

(−1)`
(
k

`

)〈
`

2

〉
n

= (−1)n
k![2(n− k)− 1]!!

2n

(
2n− k − 1

2(n− k)

)
and

(3.4)

k∑
`=0

(−1)`
[2(n− `)− 1]!!

(k − `)!

(
2n− `− 1

2(n− `)

)
= (−1)n

2n

k!

〈
k

2

〉
n

,

where the double factorial of negative odd integers −(2n+ 1) is defined by

(−2n− 1)!! =
(−1)n

(2n− 1)!!
= (−1)n

2nn!

(2n)!
, n ≥ 0.

Proof. The first paragraph in [14, Theorem 4] reads that the Bell polyno-
mials of the second kind Bn,k(x1, x2, . . . , xn−k+1) satisfy

(3.5) Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
= (−1)n+k[2(n− k)− 1]!!

(
b

2

)n(2n− k − 1

2(n− k)

)
1

(a+ bx)n−k/2
,

where n ∈ N and g(x) =
√
a+ bx for a, b ∈ R and b 6= 0. Taking a = 0,

b = 1, and x→ 1 in (3.5) results in
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(3.6) Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)
= (−1)n+k[2(n− k)− 1]!!

(
1

2

)n(2n− k − 1

2(n− k)

)
for n ∈ N. On the other hand, taking α = 1

2 in (2.1) reduces to

Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)
=

(−1)k

k!

k∑
`=0

(−1)`
(
k

`

)〈
`

2

〉
n

.

Identity (3.3) thus follows.
Applying the above mentioned binomial inversion theorem [1, pp. 143–144]

again to identity (3.3) gives

k∑
`=0

(−1)`
(
k

`

)
(−1)n

`![2(n− `)− 1]!!

2n

(
2n− `− 1

2(n− `)

)
=

〈
k

2

〉
n

which can be reformulated as identity (3.4). The proof of Theorem 3.2 is
complete. �

4. An equivalent expression

Formula (2.1) in Theorem 2.1 has an equivalent expression.

Theorem 4.1. For n ≥ k ≥ 0 and λ ∈ R, formula (2.1) and

(4.1) Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)

=
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(`− qλ)

are equivalent to each other.

Proof. The closed-form expression (4.1) has been applied in [8, Lemma 2.2],
[10, Remark 6.1], [11, Lemma 3], and [12, Lemma 2.6].

By identity (1.5), it is easy to see that

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
`=0

(1− `λ)

)

= Bn,k

(
1

λ
λ,

1

λ
λ2
(

1

λ
− 1

)
,

1

λ
λ3
(

1

λ
− 1

)(
1

λ
− 2

)
,

. . . ,
1

λ
λn−k+1

n−k∏
`=1

(
1

λ
− `
))
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= λn Bn,k

(
1

λ
,

1

λ

(
1

λ
− 1

)
,

1

λ

(
1

λ
− 1

)(
1

λ
− 2

)
, . . . ,

n−k∏
`=0

(
1

λ
− `
))

= λn Bn,k

(〈
1

λ

〉
1

,

〈
1

λ

〉
2

,

〈
1

λ

〉
3

, . . . ,

〈
1

λ

〉
n−k+1

)
.

Substituting this into the closed-form expression (4.1) and simplifying yield

Bn,k

(〈
1

λ

〉
1

,

〈
1

λ

〉
2

,

〈
1

λ

〉
3

, . . . ,

〈
1

λ

〉
n−k+1

)

=
(−1)k

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
q=0

(
`

λ
− q
)
.

Replacing 1
λ by α in the above equation leads to formula (2.1). Conversely,

each equality and every step above are invertible. The proof of Theorem 4.1
is complete. �

5. Closed-form expressions for spherical Bessel functions

In [2, 3, 5, 18, 19] and closely related references therein, the nth derivatives
of the functions

1

1− λeµx
, cotx, tanx, secx, cscx,

tanhx, cothx, sechx, cschx

were computed by various approaches. If replacing x by xα for α ∈ R in
these functions and those listed in (1.6), we obtain the functions

e±x
α
, sin(xα), cos(xα), ln(1± xα), (1± xα)β, arcsin(xα),

arccos(xα), arctan(xα),
1

1− λeµxα
, cot(xα), tan(xα),

sec(xα), csc(xα), tanh(xα), coth(xα), sech(xα), csch(xα).

The nth derivatives for these functions and others of the type f(xα) can
be alternatively and explicitly calculated by combining the Faà di Bruno
formula (1.2), the identity (2.1), and other techniques appeared in the above
mentioned references.

In [4, p. 266, Section 10.56], it is listed that

cos
√
z2 − 2zt

z
=

cos z

z
+

∞∑
n=1

tn

n!
jn−1(z),

sin
√
z2 − 2zt

z
=

sin z

z
+
∞∑
n=1

tn

n!
yn−1(z),

cosh
√
z2 + 2izt

z
=

cosh z

z
+

∞∑
n=1

(it)n

n!
i
(1)
n−1(z),
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sinh
√
z2 + 2izt

z
=

sinh z

z
+

∞∑
n=1

(it)n

n!
i
(2)
n−1(z),

exp
(
−
√
z2 + 2izt

)
z

=
e−z

z
+

2

π

∞∑
n=1

(−it)n

n!
kn−1(z)

for 2|t| < |z|, where jn(z) and yn(z) denote the spherical Bessel functions of

the first and second kinds and i
(1)
n (z), i

(2)
n (z), and kn(z) denote the modified

spherical Bessel functions.

Theorem 5.1. For n ∈ N and z 6= 0, we have

jn−1(z) = (−1)n
n∑
`=0

(−1)`(2`− 1)!!

(
n+ `− 1

2`

)
cos

(
z +

(n− `)π
2

)
1

z`+1
,

(5.1)

yn−1(z) = (−1)n
n∑
`=0

(−1)`(2`− 1)!!

(
n+ `− 1

2`

)
sin

(
z +

(n− `)π
2

)
1

z`+1
,

(5.2)

i
(1)
n−1(z) =

n∑
`=0

(−1)`(2`− 1)!!

(
n+ `− 1

2`

)

×
[

1− (−1)n−`

2
sinh z +

1 + (−1)n−`

2
cosh z

]
1

z`+1
,

(5.3)

i
(2)
n−1(z) =

n∑
`=0

(−1)`(2`− 1)!!

(
n+ `− 1

2`

)

×
[

1− (−1)n−`

2
cosh z +

1 + (−1)n−`

2
sinh z

]
1

z`+1
,

(5.4)

kn−1(z) = (−1)n
π

2
e−z

n∑
`=0

(2`− 1)!!

(
n+ `− 1

2`

)
1

z`+1
.(5.5)

Proof. For n ∈ N, by virtue of the formula (1.2), the identity (1.5), and the
formula (3.6) in sequence, we have

jn−1(z) =
1

z
lim
t→0

dncos
√
z2 − 2zt

dtn
=

1

z
lim
t→0

n∑
k=0

(cosu)(k)

×Bn,k

(
(−2z)

〈
1

2

〉
1

(
z2 − 2zt

)−1/2
, (−2z)2

〈
1

2

〉
2

(
z2 − 2zt

)−3/2
, . . . ,

(−2z)n−k+1

〈
1

2

〉
n−k+1

(
z2 − 2zt

)1/2−(n−k+1)
)

=
1

z
lim
t→0

n∑
k=0

cos

(
u+

kπ

2

)
(−2z)n

(
z2 − 2zt

)k/2−n
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×Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)
=

1

z

n∑
k=0

cos

(
z +

kπ

2

)
(−2z)nzk−2n Bn,k

(〈
1

2

〉
1

,

〈
1

2

〉
2

, . . . ,

〈
1

2

〉
n−k+1

)

=
(−2)n

zn+1

n∑
k=0

(−1)n+k[2(n− k)− 1]!!

(
1

2

)n(2n− k − 1

2(n− k)

)
cos

(
z +

kπ

2

)
zk

=
1

zn+1

n∑
k=0

(−1)k[2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
cos

(
z +

kπ

2

)
zk,

where u = uz(t) =
√
z2 − 2zt . Formula (5.1) is thus proved.

By the same arguments as above, we can derive the formulas (5.2), (5.3),
(5.4), and (5.5) immediately. The proof Theorem 5.1 is complete. �

Remark 5.1. This paper is a revised version of the electronic preprint [13].
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