

Volume 15, Number 2, Pages 73–83 ISSN 1715-0868

A SUBSPACE BASED SUBSPACE INCLUSION GRAPH ON VECTOR SPACE

MOHAMMAD ASHRAF, MOHIT KUMAR, AND GHULAM MOHAMMAD

ABSTRACT. Let \mathcal{W} be a fixed k-dimensional subspace of an n-dimensional vector space \mathcal{V} such that $n - k \geq 1$. In this paper, we introduce a graph structure, called the subspace based subspace inclusion graph $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$, where the vertex set $\mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V}))$ is the collection of all subspaces \mathcal{U} of \mathcal{V} such that $\mathcal{U} + \mathcal{W} \neq \mathcal{V}$ and $\mathcal{U} \not\subseteq \mathcal{W}$, i.e., $\mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})) = \{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U} + \mathcal{W} \neq \mathcal{V}, \mathcal{U} \not\subseteq \mathcal{W}\}$ and any two distinct vertices \mathcal{U}_1 and \mathcal{U}_1 of $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_1 + \mathcal{W} \subset \mathcal{U}_2 + \mathcal{W}$ or $\mathcal{U}_2 + \mathcal{W} \subset \mathcal{U}_1 + \mathcal{W}$. The diameter, girth, clique number, and chromatic number of $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ are studied. It is shown that two subspace based subspace inclusion graphs $\mathcal{J}_n^{\mathcal{W}_1}(\mathcal{V})$ and $\mathcal{J}_n^{\mathcal{W}_2}(\mathcal{V})$ are isomorphic if and only if \mathcal{W}_1 and \mathcal{W}_2 are isomorphic. Further, some properties of $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ are obtained when the base field is finite.

1. INTRODUCTION

Throughout this paper, \mathcal{V} denotes a finite dimensional vector space over a field \mathbb{F} and for any subspace \mathcal{W} of \mathcal{V} , $\mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})) = \{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U} + \mathcal{W} \neq \mathcal{V},$ $\mathcal{U} \not\subseteq \mathcal{W}$. Let $\mathcal{G} = (\mathcal{V}(\mathcal{G}), \mathcal{E}(\mathcal{G}))$ be a graph, where $\mathcal{V}(\mathcal{G})$ is the set of vertices and $\mathcal{E}(\mathcal{G})$ is the set of edges of \mathcal{G} . We say that \mathcal{G} is connected if there exists a path between any two distinct vertices of \mathcal{G} . For vertices a and b of \mathcal{G} , d(a, b) denotes the length of a shortest path from a to b. In particular, d(a, a) = 0 and $d(a, b) = \infty$ if there is no such path. The diameter of G is denoted by diam(\mathcal{G}) = sup{d(a, b) | $a, b \in \mathcal{V}(\mathcal{G})$ }. A cycle in a graph \mathcal{G} is a path that begins and ends at the same vertex. A cycle of length n is denoted by \mathcal{C}_n . The girth of \mathcal{G} , denoted by $\operatorname{gr}(\mathcal{G})$, is the length of a shortest cycle in $\mathcal{G}(\mathrm{gr}(\mathcal{G}) = \infty$ if \mathcal{G} contains no cycle). A complete graph \mathcal{G} is a graph where all distinct vertices are adjacent. The complete graph with $|\mathcal{V}(\mathcal{G})| = n$ is denoted by \mathcal{K}_n . A graph \mathcal{G} is said to be complete k-bipartite if there is a partition $\bigcup_{i=1}^{k} \mathcal{V}_i = \mathcal{V}(\mathcal{G})$, such that $u - v \in \mathcal{E}(\mathcal{G})$ if and only if u and v are in different parts of partition. If $|\mathcal{V}_i| = n_i$, then \mathcal{G} is denoted by $\mathcal{K}_{n_1,n_2,\ldots,n_k}$ and in particular \mathcal{G} is called complete bipartite if k=2. A graph $\mathcal{H} = (\mathcal{V}(\mathcal{H}), \mathcal{E}(\mathcal{H}))$ is said to be a subgraph of \mathcal{G} if $\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H}) \subset \mathcal{E}(\mathcal{G})$. Moreover, \mathcal{H} is said to be induced subgraph of \mathcal{G} if

©2020 University of Calgary

Received by the editors February 5, 2019, and in revised form October 25, 2019.

²⁰¹⁰ Mathematics Subject Classification. 13B99,05C07,05C69.

Key words and phrases. diameter; girth; connected graph; subspace.

 $\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H}) = \{u - v \in \mathcal{E}(\mathcal{G}) \mid u, v \in \mathcal{V}(\mathcal{H})\}$ and is denoted by $\mathcal{G}[\mathcal{V}(\mathcal{H})]$. Also G is called a null graph if $\mathcal{E}(\mathcal{G}) = \emptyset$. For a graph G, a complete subgraph of \mathcal{G} is called a clique. The clique number, $\omega(\mathcal{G})$, is the greatest integer $n \ge 1$ such that $\mathcal{K}_n \subseteq \mathcal{G}$, and $\omega(\mathcal{G}) = \infty$ if $\mathcal{K}_n \subseteq \mathcal{G}$ for all $n \ge 1$. The chromatic number $\chi(\mathcal{G})$ of a graph \mathcal{G} is the minimum number of colours needed to colour all the vertices of G such that every two adjacent vertices get different colours. A graph \mathcal{G} is perfect if $\chi(\mathcal{H}) = \omega(\mathcal{H})$ for every induced subgraph \mathcal{H} of \mathcal{G} . Graph-theoretic terms are presented as they appear in R. Diestel [10].

Beside its combinatorial motivation, graph theory can also identify various algebraic structures. The main task of studying graphs associated with algebraic structures is to characterize algebraic structures with a graph and vice versa. To date, there has been a lot of research, see [1, 2, 3], on simple graph structures for commutative rings. Recently, some algebraic graphs associated with vector spaces were studied (see [4, 5, 6, 7, 8]). Das [6]defined the subspace inclusion graph $\mathcal{I}_n(\mathcal{V})$ on a vector space \mathcal{V} , where the set of vertices is a collection of all nontrivial subspaces of \mathcal{V} and any two distinct vertices \mathcal{W}_1 and \mathcal{W}_2 are adjacent if and only if either $\mathcal{W}_1 \subset \mathcal{W}_2$ or $\mathcal{W}_2 \subset \mathcal{W}_1.$

Motivated by the above study, we introduce the notion of a subspace based subspace inclusion graph for a vector space \mathcal{V} and denote it by $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$. The graph $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ is a simple (undirected) graph with vertex set $\mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V}))$ and any two distinct vertices \mathcal{U}_1 and \mathcal{U}_2 of $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_1 + \mathcal{W} \subset \mathcal{U}_2 + \mathcal{W}$ or $\mathcal{U}_2 + \mathcal{W} \subset \mathcal{U}_1 + \mathcal{W}$. Further we investigate some basic properties of $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$.

2. Fundamental properties of $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$

In this section, we study the fundamental properties of $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$. We show that $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ is connected and diam $(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})) \leq 3$.

Definition 2.1. Let W be a subspace of a vector space V. Then the subspace based subspace inclusion graph $\mathfrak{I}_n^{W}(\mathcal{V})$ is a simple (undirected) graph with vertex set $\mathcal{V}(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}))$ and any two distinct vertices \mathfrak{U}_1 and \mathfrak{U}_2 of $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_1 + \mathcal{W} \subset \mathcal{U}_2 + \mathcal{W}$ or $\mathcal{U}_2 + \mathcal{W} \subset \mathcal{U}_1 + \mathcal{W}$.

We have the following theorems:

Theorem 2.2. Let W be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a field \mathbb{F} . Then the following statements hold:

- (i) If k = 0, then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}) = \mathfrak{I}_n(\mathcal{V})$.
- (ii) If W_1, W_2 are two distinct vertices of $\mathfrak{I}_n^{W}(\mathcal{V})$ such that $\dim(\mathcal{W}_1 + \mathcal{W}) = \dim(\mathcal{W}_2 + \mathcal{W}), \text{ then } \mathcal{W}_1 \text{ is not adjacent to } \mathcal{W}_2, \text{ i.e.,}$ $\mathcal{W}_1 \nsim \mathcal{W}_2 \text{ in } \mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}).$
- (iii) If n k = 2, then $\mathcal{I}_n^{\mathbb{W}}(\mathcal{V})$ is an edgeless graph. (iv) If n k = 1, then $\mathcal{I}_n^{\mathbb{W}}(\mathcal{V})$ is an empty graph. (v) If $n k \ge 4$, then $\mathcal{I}_n^{\mathbb{W}}(\mathcal{V})$ is triangulated.

(vi) $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is never complete. Proof.

- (i) Obvious.
- (ii) Let $\mathcal{W}_1, \mathcal{W}_2 \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ be two distinct subspaces of \mathcal{V} and dim $(\mathcal{W}_1 + \mathcal{W}) = \dim(\mathcal{W}_2 + \mathcal{W}) = k$. If $\mathcal{W}_1 \sim \mathcal{W}_2$, then either $\mathcal{W}_1 + \mathcal{W} \subset \mathcal{W}_2 + \mathcal{W}$ or $\mathcal{W}_2 + \mathcal{W} \subset \mathcal{W}_1 + \mathcal{W}$. Since dim $(\mathcal{W}_1 + \mathcal{W}) = \dim(\mathcal{W}_2 + \mathcal{W}) = k$, we have $\mathcal{W}_1 + \mathcal{W} = \mathcal{W}_2 + \mathcal{W}$, which is a contradiction.
- (iii) Suppose that $\dim(\mathcal{V}) \dim(\mathcal{W}) = 2$ and let $\mathcal{W}_1, \mathcal{W}_2 \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$. Then $\dim(\mathcal{W}_1 + \mathcal{W}) = \dim(\mathcal{W}_2 + \mathcal{W}) = k + 1$ and by (ii), $\mathcal{W}_1 \nsim \mathcal{W}_2$ in $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$.
- (iv) Follows trivially.
- (v) Let $\mathcal{W}_1 \in \mathcal{V}(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}))$. We have the following cases:

Case 1: dim $(\mathcal{W} + \mathcal{W}_1) = k + 1$. There exist two subspaces $\mathcal{W}_2, \mathcal{W}_3$ of \mathcal{V} such that dim $(\mathcal{W} + \mathcal{W}_2) = k + 2$, dim $(\mathcal{W} + \mathcal{W}_3) = k + 3$ and $\mathcal{W} + \mathcal{W}_1 \subset \mathcal{W} + \mathcal{W}_2 \subset \mathcal{W} + \mathcal{W}_3$.

Case 2: dim $(\mathcal{W} + \mathcal{W}_1) = k + 2$. There exist two subspaces $\mathcal{W}_2, \mathcal{W}_3$ of \mathcal{V} such that dim $(\mathcal{W} + \mathcal{W}_2) = k + 1$, dim $(\mathcal{W} + \mathcal{W}_3) = k + 3$ and $\mathcal{W} + \mathcal{W}_2 \subset \mathcal{W} + \mathcal{W}_1 \subset \mathcal{W} + \mathcal{W}_3$.

Case 3: $\dim(W + W_1) = k + 3$. There exist two subspaces W_2, W_3 of V such that $\dim(W + W_2) = k + 1$, $\dim(W + W_3) = k + 2$ and $W + W_2 \subset W + W_3 \subset W + W_1$.

Thus in all the cases we can form a triangle with the vertices W_1, W_2, W_3 .

(vi) Since $\dim(\mathcal{V}) - \dim(\mathcal{W}) \geq 2$, there exist two linearly independent vectors $u, v \in \mathcal{V} \setminus \mathcal{W}$ such that $\operatorname{Span}\{u\} \nsim \operatorname{Span}\{v\}$ in $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$.

Theorem 2.3. Let \mathcal{W} be a subspace of a vector space \mathcal{V} such that $\dim(\mathcal{V}) - \dim(\mathcal{W}) \geq 3$. Then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is connected and $\operatorname{diam}(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})) \leq 3$.

Proof. Let dim(\mathcal{W}) = k and $\mathcal{W}_1, \mathcal{W}_2 \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$. If $\mathcal{W}_1 + \mathcal{W} \subset \mathcal{W}_2 + \mathcal{W}$ or $\mathcal{W}_2 + \mathcal{W} \subset \mathcal{W}_1 + \mathcal{W}$, then $\mathcal{W}_1 \sim \mathcal{W}_2$ and $d(\mathcal{W}_1, \mathcal{W}_2) = 1$. If $\mathcal{W}_1 \nsim \mathcal{W}_2$, then we have the following cases:

Case 1: dim $(\mathcal{W}_1 + \mathcal{W}) = dim(\mathcal{W}_2 + \mathcal{W}) = k + 1.$

Subcase 1: $W_1 + W = W_2 + W$. There exist $w \in \mathcal{V} \setminus (W_1 + W)$ and $(W_1 + W) \subset (\operatorname{Span}\{w\} + W_1 + W_2 + W) \supset (W_1 + W)$ such that $W_1 \sim (W_1 + W_2 + \operatorname{Span}\{w\}) \sim W_2$ is a path in $\mathcal{J}_n^W(\mathcal{V})$ and $d(W_1, W_2) = 2$. Subcase 2: $W_1 + W \neq W_2 + W$. Then $(W_1 + W) \subset (W_1 + W_2 + W) \supset (W_2 + W)$ and $W_1 \sim (W_1 + W_2) \sim W_2$ is a path in $\mathcal{J}_n^W(\mathcal{V})$ and $d(W_1, W_2) = 2$.

Case 2: dim $(W_1 + W) = k + 1$ and dim $(W_2 + W) > k + 1$.

Let $u \in W_2 + W \setminus W_1 + W$ and $\langle u \rangle + W = W_3$. Since dim $(W_1 + W_3 + W) = k + 2$, $W_1 + W_3 + W \neq V$ and $W_3 + W \subset W_2 + W$, we have $W_1 \sim W_1 + W_3 \sim W_3 \sim W_2$. Hence $d(W_1, W_2) \leq 3$.

Case 3: dim $(W_1 + W) > k + 1$ and dim $(W_2 + W) > k + 1$.

Subcase 1: $W_1 + W_2 + W \neq V$ or $(W_1 + W) + (W_2 + W) \neq W$. Then $W_1 \sim W_1 + W_2 \sim W_2$ or $W_1 \sim (W_1 + W) \cap (W_2 + W) \sim W_2$.

Subcase 2: $W_1 + W_2 + W = \mathcal{V}$ and $(W_1 + W) \cap (W_2 + W) = \mathcal{W}$. Let $v \in W_2 \setminus \mathcal{W}$. Since dim $(W_1 + \mathcal{W}) > k + 1$, dim $(W_2 + \mathcal{W}) > k + 1$ and $W_1 + \mathcal{W} + \mathcal{W}_2 + \mathcal{W} = \mathcal{V}$, $(W_1 + \mathcal{W}) \cap (W_2 + \mathcal{W}) = \mathcal{W}$, we have dim $(W_1 + \mathcal{W}) < n - 1$, dim $(W_2 + \mathcal{W}) < n - 1$, and $W_1 + \langle v \rangle + \mathcal{W} \neq \mathcal{V}$, $W_1 \sim W_1 + \langle v \rangle \sim \langle v \rangle \sim W_2$.

Hence $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is connected and $d(\mathcal{W}_1, \mathcal{W}_2) \leq 3$.

Theorem 2.4. If W is a subspace of a vector space \mathcal{V} such that $\dim(\mathcal{V}) - \dim(\mathcal{W}) \geq 3$, then $\dim(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})) = 3$.

Proof. Let W be a k dimensional subspace of V and $\{w_1, w_2, ..., w_k\}$ be a basis of W. This linearly independent subset can be extended to a basis for V. Let $\{w_1, w_2, ..., w_k, ..., w_n\}$ be a basis for V and $W_1 = \text{Span}\{w_{k+1}\}$, $W_2 = \text{Span}\{w_{k+2}, w_{k+3}, ..., w_n\}$. Clearly, $W_1, W_2 \in \mathcal{V}(\mathcal{I}_n^W(\mathcal{V})), W_1 \nsim W_2$ and $d(W_1, W_2) \neq 1$. If $d(W_1, W_2) = 2$, then there exists $W_3 \in \mathcal{V}(\mathcal{I}_n^W(\mathcal{V})) \setminus \{W_1, W_2\}$ such that $W_1 \sim W_3 \sim W_2$ is a path in $\mathcal{I}_n^W(\mathcal{V})$. Since $W_1 \sim W_3$, either $W_1 + W \subset W_3 + W$ or $W_1 + W \supset W_3 + W$. If $W_1 + W \supset W_3 + W$, then $W_3 \nsim W_2$ as $(W_1 + W) \cap (W_2 + W) = W$. Thus $W_1 + W \subset W_3 + W$. Again since $W_3 \sim W_2$, either $W_2 + W \subset W_3 + W$ or $W_2 + W \supset W_3 + W$. If $W_2 + W \supset W_3 + W$, then $W_3 \nsim W_1$ as $(W_1 + W) \cap (W_2 + W) = W$. Thus $W_2 + W \supset W_3 + W$. Therefore we find that $W_3 + W$ is a subspace of V which contains $W_1 + W$ as well as $W_2 + W$ i.e., $W_3 + W = V$, a contradiction. Thus $d(W_1, W_2) \ge 3$ and by Theorem 2.3, we get $d(W_1, W_2) \le 3$. Thus $\dim(\mathcal{I}_n^W(\mathcal{V})) = 3$. □

The following lemmas are essential to prove our next theorem.

Lemma 2.5. If \mathcal{W} is a subspace of a vector space \mathcal{V} such that $\dim(\mathcal{V}) - \dim(\mathcal{W}) = 3$, then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ does not contain any cycle of odd length.

Proof. Suppose that $W_1 \sim W_2 \sim \cdots \sim W_k \sim W_1$ is a cycle of odd length in $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$. Since $\dim(\mathcal{V}) - \dim(\mathcal{W}) = 3$, the dimension of each $W_i + \mathcal{W}$ is either $\dim(\mathcal{W}) + 1$ or $\dim(\mathcal{W}) + 2$ since any two distinct vertices $W_1, W_2 \in \mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V}))$ such that $W_1 + \mathcal{W} = W_2 + \mathcal{W}$ are not adjacent in $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$. Without loss of generality we may assume that $\dim(\mathcal{W}_1 + \mathcal{W}) = \dim(\mathcal{W}) + 1$ and we get $\dim(\mathcal{W}_k + \mathcal{W}) = \dim(\mathcal{W}) + 1$ and $\mathcal{W}_1 \nsim \mathcal{W}_k$, which is a contradiction. Hence $\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})$ does not contain any cycle of odd length. \Box

Lemma 2.6. Let \mathbb{N} be a clique in $\mathfrak{I}_n^{\mathbb{W}}(\mathbb{V})$. Then $\{\mathfrak{U} + \mathbb{W} \mid \mathfrak{U} \in \mathbb{N}\}$ is a chain of subspaces of \mathbb{V} .

Proof. The proof is trivial.

Theorem 2.7. Let \mathcal{W} be a subspace of a finite dimensional vector space \mathcal{V} . Then $\dim(\mathcal{V}) - (\dim(\mathcal{W}) + 1) = m$ if and only if $\omega(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})) = m$, where $m = \dim(\mathcal{V}) - (\dim(\mathcal{W}) + 1)$.

Proof. Let W be a k-dimensional subspace of n-dimensional vector space \mathcal{V} and $\{v_1, v_2, \ldots, v_k\}$, $\{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_{n-1}\}$ be the bases of W and \mathcal{V} , respectively. Let $W_j = \langle v_1, v_2, \ldots, v_j \rangle$ for $j = k + 1, k + 2, \ldots, n$. Clearly, $\mathcal{N} = \{\mathcal{W}_{k+1}, \mathcal{W}_{k+2}, \ldots, \mathcal{W}_{n-1}\}$ is a clique. If possible, let $\mathcal{N} \cup \{\mathcal{W}'\}$ be a clique where $\mathcal{W}' \in \mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V})) \setminus \mathcal{N}$. Thus by Lemma 2.6, there exists $i \in \{k + 1, k + 2, \ldots, n-2\}$ such that $\mathcal{W}_i \subset \mathcal{W}' + \mathcal{W} \subset \mathcal{W}_{i+1}$. Since the inclusion is proper and \mathcal{V} is finite dimensional, we have $\dim(\mathcal{W}_i) < \dim(\mathcal{W}' + \mathcal{W}) < \dim(\mathcal{W}_{i+1})$, i.e., $i < \dim(\mathcal{W}' + \mathcal{W}) < i + 1$, a contradiction. Thus \mathcal{N} is a clique of size n - (k + 1). If possible, let $\mathcal{N}' = \{\mathcal{U}_1, \mathcal{U}_2, \ldots, \mathcal{U}_{n-k}\}$ be a clique of size n - kand $\mathcal{U}_1 + \mathcal{W} \subset \mathcal{U}_2 + \mathcal{W} \subset \cdots \subset \mathcal{U}_{n-k} + \mathcal{W}$. Again as \mathcal{V} is finite dimensional and each inclusion is proper, we have $\dim(\mathcal{W}) < \dim(\mathcal{U}_1 + \mathcal{W}) < \dim(\mathcal{U}_2 + \mathcal{W}) < \cdots < \dim(\mathcal{U}_{n-k} + \mathcal{W})$. Since $\dim(\mathcal{U}_i + \mathcal{W})$ are distinct integers between k + 1and n - 1, we have n - k integers in [k + 1, n - 1], a contradiction. Thus, $\omega(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})) = n - (k + 1)$.

Conversely, suppose that $\omega(\mathfrak{I}_n^{W}(\mathfrak{V})) = m$. Let $\dim(\mathfrak{V}) - (\dim(\mathfrak{W}) + 1) = p \neq m$. Then by the directed part, $\omega(\mathfrak{I}_n^{W}(\mathfrak{V})) = p$ and hence p = m. This completes the proof.

Theorem 2.8. If \mathcal{W} is a k-dimensional subspace of an n-dimensional vector space \mathcal{V} , then $\chi(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})) = n - k - 1$.

Proof. By Theorem 2.7, $\omega(\mathfrak{I}_n^{\mathbb{W}}(\mathcal{V})) = n - k - 1$, and therefore $\chi(\mathfrak{I}_n^{\mathbb{W}}(\mathcal{V})) \ge n - k - 1$. To show the equality, we demonstrate a (n - k - 1) colouring of $\mathfrak{I}_n^{\mathbb{W}}(\mathcal{V})$. For any $\mathcal{U} \in \mathcal{V}(\mathfrak{I}_n^{\mathbb{W}}(\mathcal{V}))$, if $\dim(\mathcal{U} + \mathcal{W}) = k + j$, then color \mathcal{U} with the *j*th color. This coloring is proper since by Lemma 2.6, any two $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{V}(\mathfrak{I}_n^{\mathbb{W}}(\mathcal{V}))$ such that $\dim(\mathcal{U}_2 + \mathcal{W}) = \dim(\mathcal{U}_1 + \mathcal{W}) = k + j$ are never adjacent and hence the theorem follows.

Theorem 2.9. If W is a k-dimensional subspace of an n-dimensional vector space \mathcal{V} , then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ contains a graph \mathfrak{G}' such that $\mathfrak{G}' \cong \mathfrak{I}_{n-k}(\mathcal{V}/\mathcal{W})$.

Proof. We know that proper subspaces of \mathcal{V} containing \mathcal{W} are in one-toone correspondence with the nontrivial subspaces of \mathcal{V}/\mathcal{W} , i.e., $\mathfrak{A} = \{\mathcal{U} \subset \mathcal{V} \mid \mathcal{W} < \mathcal{U} < \mathcal{V}\} \longleftrightarrow \mathfrak{B} = \{\mathcal{U}' \subset \mathcal{V}/\mathcal{W} \mid (0) < \mathcal{U}' < \mathcal{V}/\mathcal{W}\}$. Clearly, $\mathfrak{A} \subseteq \mathcal{V}(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}))$ and $\mathfrak{B} = \mathcal{V}(\mathfrak{I}_n(\mathcal{V}/\mathcal{W}))$. Now if we define \mathfrak{G}' on \mathfrak{A} by $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})[\mathfrak{A}]$, then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})[\mathfrak{A}] \cong \mathfrak{I}_{n-k}(\mathcal{V}/\mathcal{W})$ and hence the theorem follows. \Box

Theorem 2.10. If W is a k-dimensional subspace of an n-dimensional vector space V such that $n - k \geq 3$, then $\mathfrak{I}_n^{W}(V)$ is not planar.

Proof. We know that by Theorem 2.9, $\mathfrak{I}_n^{W}(\mathcal{V})$ contains a graph \mathfrak{G}' such that $\mathfrak{G}' \cong \mathfrak{I}_{n-k}(\mathcal{V}/\mathcal{W})$, by Theorem 5.2 of [7], $\mathfrak{I}_n^{W}(\mathcal{V})$ contains a graph which is not planar, and by Kuratowski's theorem, $\mathfrak{I}_n^{W}(\mathcal{V})$ is not planar.

Theorem 2.11. Let W_1 and W_2 be two subspaces of a finite dimensional vector space V. Then $\mathfrak{I}_n(W_1) \simeq \mathfrak{I}_n(W_2)$ if and only if $\dim(W_1) = \dim(W_2)$.

Proof. Suppose that W_1 and W_2 are two k-dimensional subspaces of an *n*-dimensional vector space \mathcal{V} and let $\{u_1, u_2, \ldots, u_k\}, \{v_1, v_2, \ldots, v_k\}$ be the bases for W_1, W_2 , respectively and $\mathfrak{A} = \{u_1, u_2, \ldots, u_k, u_{k+1}, \ldots, u_n\}, \mathfrak{B} = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ be the extended bases for \mathcal{V} . Define a map $\mathfrak{f} : \mathfrak{A} \longrightarrow \mathfrak{B}$ by $\mathfrak{f}(u_i) = v_i$ for $i = 1, 2, \ldots, n$. Clearly, the map $\mathfrak{g} : \mathcal{V}(\mathfrak{I}_n(W_1)) \longrightarrow \mathcal{V}(\mathfrak{I}_n(W_2))$ defined by $\mathfrak{g}(\mathcal{U}) = \mathfrak{f}(\mathcal{U})$ for $\mathcal{U} \in \mathcal{V}(\mathfrak{I}_n(W_1))$ is bijective and adjacency preserving and hence $\mathfrak{I}_n(W_1) \simeq \mathfrak{I}_n(W_2)$.

Conversely, assume that $\mathcal{J}_n(\mathcal{W}_1) \simeq \mathcal{J}_n(\mathcal{W}_2)$ and $\dim(\mathcal{W}_1) = k_1$, $\dim(\mathcal{W}_2) = k_2$. Then by Theorem 2.7, $\omega(\mathcal{J}_n^{\mathcal{W}_1}(\mathcal{V}))$ and $\omega(\mathcal{J}_n^{\mathcal{W}_2}(\mathcal{V}))$ are $n - k_1 - 1$ and $n - k_2 - 1$, respectively. Since $\mathcal{J}_n(\mathcal{W}_1) \simeq \mathcal{J}_n(\mathcal{W}_2)$, we have $n - k_1 - 1 = n - k_2 - 1$ and hence $k_1 = k_2$.

3. When the base field $\mathbb F$ is finite

In this section, we study some basic properties of $\mathcal{J}_n^{\mathcal{W}}(\mathcal{W})$ if the base field \mathbb{F} is finite, i.e., $|\mathbb{F}| = q$ and $q = p^r$ for some prime p.

Theorem 3.1. Let W be a k-dimensional subspace of an n-dimensional vector space V over a finite field \mathbb{F} with q elements. Then the set containing those subspaces \mathfrak{U} of V such that $\mathfrak{U} + \mathcal{W} = \mathcal{V}$ i.e., $\{\mathfrak{U} \subseteq \mathcal{V} \mid \mathfrak{U} + \mathcal{W} = \mathcal{V}\}$ has $(\sum_{r=0}^{k-1} n_r + 1)$ elements, where

$$n_r = \frac{(q^k - 1)(q^k - q)\cdots(q^k - q^{r-1})(q^n - q^k)(q^n - q^{k+1})\cdots(q^n - q^{n-1})}{(q^{n-k+r} - 1)(q^{n-k+r} - q)\cdots(q^{n-k+r} - q^{n-k+r-1})}.$$

Proof. Since $\dim(W) = k < n$ for any subspace $W' \in \{\mathcal{U} \subset \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}\}$ of \mathcal{V} has dimension at least n - k, i.e., if $W' \in \{\mathcal{U} \subset \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}\}$, then $\dim(W') = n - k + r$ and $\dim(W' \cap \mathcal{W}) = r$ where $0 \le r \le k - 1$. To find such subspaces W', we choose r linearly independent vectors from \mathcal{W} and n - k linearly independent vectors from $\mathcal{V} \setminus \mathcal{W}$, and generate W' with these n - k + r linearly independent vectors. Since the number of ways we can choose r linearly independent vectors from \mathcal{W} is $(q^k - 1)(q^k - q) \cdots (q^k - q^{r-1})$, the number of ways we can choose n - k linearly independent vectors from $\mathcal{V} \setminus \mathcal{W}$ is $(q^n - q^k)(q^n - q^{k+1}) \cdots (q^n - q^{n-1})$. The number of bases of an (n - k + r)-dimensional subspace is $(q^{n-k+r} - 1)(q^{n-k+r} - q) \cdots (q^{n-k+r} - q^{n-k+r-1})$, the number of subspaces \mathcal{W}' with $\dim(\mathcal{W}') = n - k + r$ and $\dim(\mathcal{W} \cap \mathcal{W}') = r$ is

$$n_r = \frac{(q^k - 1)(q^k - q)\cdots(q^k - q^{r-1})(q^n - q^k)(q^n - q^{k+1})\cdots(q^n - q^{n-1})}{(q^{n-k+r} - 1)(q^{n-k+r} - q)\cdots(q^{n-k+r} - q^{n-k+r-1})}.$$

If r = k, then \mathcal{V} is the only subspace which satisfies the given condition. Since $0 \le r \le k - 1$,

$$|\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}\}| = \sum_{r=0}^{k-1} n_r + 1.$$

Theorem 3.2. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a finite field \mathbb{F} of order q. Then $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is a graph of

order $\mathfrak{G}(n,q) - (\mathfrak{G}(k,q) + \sum_{r=0}^{k-1} n_r + 1)$, where

$$n_r = \frac{(q^k - 1)(q^k - q) \cdots (q^k - q^{r-1})(q^n - q^k)(q^n - q^{k+1}) \cdots (q^n - q^{n-1})}{(q^{n-k+r} - 1)(q^{n-k+r} - q) \cdots (q^{n-k+r} - q^{n-k+r-1})}$$

and $\mathfrak{G}(n,q)$ is the Galois number. In particular, when $\mathfrak{W} = (0)$, the order of $\mathfrak{I}_n^{\mathfrak{W}}(\mathfrak{V})$ is $\mathfrak{G}(n,q) - 2$.

Proof. By the definition of the graph $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$, $\mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})) = {\mathcal{U} \subset \mathcal{V}} \setminus ({\mathcal{U}' \subset \mathcal{W}}) \cup {\mathcal{U} \subset \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}})$. Since the number of *r*-dimensional subspaces of a *n*-dimensional vector space over a finite field of order *q* is the binomial coefficient (see [7])

$$[^{n}_{r}]_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)},$$

the total number of subspaces of \mathcal{V} is given by

$$\sum_{r=0}^{n} {n \brack r}_{q} = \mathfrak{G}(n,q) - 2$$

Similarly, the total number of subspaces of \mathcal{W} is given by

$$\sum_{r=0}^{k} [{}^{k}_{r}]_{q} = \mathfrak{g}(k,q) - 2.$$

By Theorem 3.1, $\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}\}$ has $\sum_{r=0}^{k-1} n_r + 1$ elements, where

$$n_r = \frac{(q^k - 1)(q^k - q)\cdots(q^k - q^{r-1})(q^n - q^k)(q^n - q^{k+1})\cdots(q^n - q^{n-1})}{(q^{n-k+r} - 1)(q^{n-k+r} - q)\cdots(q^{n-k+r} - q^{n-k+r-1})}.$$

Since $\{\mathcal{U}' \subset \mathcal{W}\} \cap \{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U} + \mathcal{W} = \mathcal{V}\} = \emptyset$, the order of $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is $\mathfrak{G}(n,q) - (\mathfrak{G}(k,q) + \sum_{r=0}^{k-1} n_r + 1)$, where

$$n_r = \frac{(q^k - 1)(q^k - q)\cdots(q^k - q^{r-1})(q^n - q^k)(q^n - q^{k+1})\cdots(q^n - q^{n-1})}{(q^{n-k+r} - 1)(q^{n-k+r} - q)\cdots(q^{n-k+r} - q^{n-k+r-1})}$$

and $\mathfrak{G}(n,q)$ is the Galois number. Trivially, when $\mathcal{W} = (0)$, the order of $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is $\mathfrak{G}(n,q) - 2$.

Theorem 3.3. Let W be a k-dimensional subspace of a n-dimensional vector space of V over a finite field \mathbb{F} of order q and $U \in \mathcal{V}(\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\dim(\mathcal{U} + \mathcal{W}) = l$. Then

$$\deg(\mathcal{U}) = \sum_{r=1}^{l-k-1} {\binom{l-k}{r}}_q (\sum_{i=0}^{k-1} n_i + 1) + \sum_{s=1}^{n-l-1} {\binom{n-l}{s}}_q (\sum_{i=0}^{k-1} p_i + 1),$$

where

$$n_{i} = \frac{(q^{k} - 1)(q^{k} - q) \cdots (q^{k} - q^{i-1})}{(q^{r+i} - 1)(q^{r+i} - q)} \times \frac{(q^{k+r} - q^{k})(q^{k+r} - q^{k+1}) \cdots (q^{k+r} - q^{k+r-1})}{(q^{r+i} - q^{2}) \cdots (q^{r+i} - q^{r+i-1})}$$

and

$$p_{i} = \frac{(q^{k} - 1)(q^{k} - q) \cdots (q^{k} - q^{i-1})}{(q^{l+s-k+i} - 1)(q^{l+s-k+i} - q)}.$$
$$\times \frac{(q^{l+s} - q^{k})(q^{l+s} - q^{k+1}) \cdots (q^{l+s} - q^{l+s-1})}{(q^{l+s-k+i} - q^{2}) \cdots (q^{l+s-k+i} - q^{l+s-k+i-1})}.$$

Proof. First we find the subspaces of \mathcal{V} which properly contains \mathcal{W} as a subspace and properly contained in $\mathcal{U} + \mathcal{W}$. We know that there is a one-to-one correspondence between the (k + r)-dimensional subspaces of $\mathcal{U} + \mathcal{W}$ containing \mathcal{W} and the *r*-dimensional subspaces of $(\mathcal{U} + \mathcal{W})/\mathcal{W}$, i.e., $\mathfrak{A} = \{\mathcal{A} \mid \mathcal{W} < \mathcal{A} < \mathcal{U} + \mathcal{W}\} \longleftrightarrow \mathfrak{B} = \{\mathcal{B} \mid (0) < \mathcal{B} < (\mathcal{U} + \mathcal{W})/\mathcal{W}\}$. It may be noted that the number of *r*-dimensional subspaces of (l - k)-dimensional vector space $(\mathcal{U} + \mathcal{W})/\mathcal{W}$ over a finite field of order *q* is the binomial coefficient

$$\begin{bmatrix} l-k\\r \end{bmatrix}_q = \frac{(q^{l-k}-1)(q^{l-k-1}-1)\cdots(q^{l-k-r+1}-1)}{(q^r-1)(q^{r-1}-1)\cdots(q-1)}.$$

Corresponding to each r-dimensional subspace in \mathfrak{B} , there is a (k + r)-dimensional subspace in \mathfrak{A} and therefore the number of (k + r)-dimensional subspaces in \mathfrak{A} is given by

$$[r^{l-k}]_q = \frac{(q^{l-k}-1)(q^{l-k-1}-1)\cdots(q^{l-k-r+1}-1)}{(q^r-1)(q^{r-1}-1)\cdots(q-1)}$$

Let $\mathcal{W}' \in \mathfrak{A}$ be a (k+r)-dimensional subspace of $\mathcal{U} + \mathcal{W}$. If $\mathcal{W}_i \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{W}_i + \mathcal{W} = \mathcal{W}'$, then $\mathcal{W}_i \subseteq \mathcal{W}'$. Therefore by Theorem 3.1, the number of $\mathcal{W}_i \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{W}_i + \mathcal{W} = \mathcal{W}'$ is given by $\sum_{i=0}^{k-1} n_i$, where

$$n_{i} = \frac{(q^{k} - 1)(q^{k} - q) \cdots (q^{k} - q^{i-1})}{(q^{r+i} - 1)(q^{r+i} - q)} \times \frac{(q^{k+r} - q^{k})(q^{k+r} - q^{k+1}) \cdots (q^{k+r} - q^{k+r-1})}{(q^{r+i} - q^{2}) \cdots (q^{r+i} - q^{r+i-1})}.$$

Therefore, we have $[{}_{r}^{l-k}]_{q} - (k+r)$ -dimensional subspaces, where r = 1, $2, \ldots, l-k-1$. Thus the number of subspaces $\mathcal{U}' \in \mathcal{V}(\mathcal{I}_{n}^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{U}' + \mathcal{W} \subset \mathcal{U} + \mathcal{W}$ is $\sum_{r=1}^{l-k-1} [{}_{r}^{l-k}]_{q} (\sum_{i=0}^{k-1} n_{i}+1)$. Now we find the subspaces of \mathcal{V} which properly contains $\mathcal{U} + \mathcal{W}$ as a subspace and is properly contained in \mathcal{V} . There is a one-to-one correspondence between the (l+s)-dimensional subspace of \mathcal{V} containing $\mathcal{U} + \mathcal{W}$ and the s-dimensional subspace of $\mathcal{V}/(\mathcal{U} + \mathcal{W})$, i.e., $\mathfrak{C} = \{\mathcal{A}' \mid \mathcal{U} + \mathcal{W} < \mathcal{A}' < \mathcal{V}\} \longleftrightarrow \mathfrak{D} = \{\mathcal{B}' \mid (\mathcal{U} + \mathcal{W}) < \mathcal{B} < \mathcal{V}/(\mathcal{U} + \mathcal{W})\}$.

80

Note that the number of s-dimensional subspaces of the (n-l)-dimensional vector space $\mathcal{V}/(\mathcal{U}+\mathcal{W})$ over a finite field of order q is the binomial coefficient

$${[}_{s}^{n-l}]_{q} = \frac{(q^{n-l}-1)(q^{n-l-1}-1)\cdots(q^{n-l-s+1}-1)}{(q^{s}-1)(q^{s-1}-1)\cdots(q-1)}$$

Corresponding to each s-dimensional subspace in \mathfrak{D} , there is a (l+s)dimensional subspace in \mathfrak{C} . Therefore the number of (l+s)-dimensional subspaces in \mathfrak{C} is given by

$$[^{n-l}_s]_q = \frac{(q^{n-l}-1)(q^{n-l-1}-1)\cdots(q^{n-l-s+1}-1)}{(q^s-1)(q^{s-1}-1)\cdots(q-1)}.$$

Let $\mathcal{W}' \in \mathfrak{C}$ be a (l+s)-dimensional subspaces of \mathcal{V} . If $\mathcal{W}_i \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{W}_i + \mathcal{W} = \mathcal{W}'$, then $\mathcal{W}_i \subseteq \mathcal{W}'$. Therefore by Theorem 3.1, the number of $\mathcal{W}_i \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{W}_i + \mathcal{W} = \mathcal{W}'$ is given by $\sum_{i=0}^{k-1} p_i + 1$, where

$$p_{i} = \frac{(q^{k} - 1)(q^{k} - q) \cdots (q^{k} - q^{i-1})}{(q^{l+s-k+i} - 1)(q^{l+s-k+i} - q)} \times \frac{(q^{l+s} - q^{k})(q^{l+s} - q^{k+1}) \cdots (q^{l+s} - q^{l+s-1})}{(q^{l+s-k+i} - q^{2}) \cdots (q^{l+s-k+i} - q^{l+s-k+i-1})}.$$

Therefore we have $\binom{n-l}{s}_q - (l+s)$ -dimensional subspaces, where s = 1, 2,..., n - l - 1. Thus the number of subspaces $\mathcal{U}' \in \mathcal{V}(\mathcal{J}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\mathcal{U} + \mathcal{W} \subset \mathcal{U}' + \mathcal{W}$ is $\sum_{s=1}^{n-l-1} [{n-l \choose s}]_q (\sum_{i=0}^{k-1} p_i + 1)$. Hence

$$\deg(\mathcal{U}) = \sum_{r=1}^{l-k-1} {\binom{l-k}{r}}_q (\sum_{i=0}^{k-1} n_i + 1) + \sum_{s=1}^{n-l-1} {\binom{n-l}{s}}_q (\sum_{i=0}^{k-1} p_i + 1).$$

Theorem 3.4. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a finite field with q elements. Then the following statements hold.

- (i) If q is odd, then J^W_n(𝔅) is Eulerian.
 (ii) If q is even, then J^W_n(𝔅) is Eulerian if and only if n − k even.

Proof. (i) It can be easily seen that from [11, Proposition 7.1, p. 25]: G(n + 1) $1,q) = 2G(n,q) + (q^n - 1)G(n - 1,q)$ with G(0,q) = 1 and G(1,q) = 2. Thus if q is odd, then all Galois numbers are even. Let $\mathcal{W} \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that $\dim(\mathcal{W}_1 + \mathcal{W}) = \ell$. Thus by Theorem 3.3, $\deg(\mathcal{U})$ in $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ is

$$(G(\ell - k, q) - 2)(\sum_{i=0}^{k-1} n_i + 1) + ((G(n - \ell, q) - 2))(\sum_{i=0}^{k-1} p_i + 1),$$

an even number. Thus the degree of each vertex of $\mathfrak{I}^{\mathcal{W}}_{n}(\mathcal{V})$ is even and hence $\mathfrak{I}_n^{\mathcal{W}}(\mathcal{V})$ is Eulerien.

(ii) If q is even, then by [11, Proposition 7.1, p. 25], G(2m,q) is odd and G(2m+1,q) is even for $m \in \mathbb{N} \cup \{0\}$. Now, if $\mathcal{U} \in \mathcal{V}(\mathcal{I}_n^{\mathcal{W}}(\mathcal{V}))$ such that

 $\dim(\mathcal{U} + \mathcal{W}_1) = \ell, \text{ then } \deg(\mathcal{U}) \text{ is } (G(\ell - k, q) - 2)(\sum_{i=0}^{k-1} n_i + 1) + ((G(n - \ell, q) - 2))(\sum_{i=0}^{k-1} p_i + 1).$

If n-k is even, then $G(n-\ell,q)$ and $G(\ell-k,q)$ are both either even or odd and hence the degree of \mathcal{U} is even.

If n - k is odd, then we have the following cases.

Case 1: n is even, k is odd, and ℓ is even.

Then $G(n-\ell,q)$ is odd and $G(\ell-k,q)$ is even, and the degree of \mathcal{U} is odd.

Case 2: n is even, k is odd, and ℓ is odd.

Then $G(n-\ell,q)$ is even and $G(\ell-k,q)$ is odd and the degree of \mathcal{U} is odd.

Case 3: n is odd, k is even and ℓ is even.

Then $G(n-\ell,q)$ is even and $G(\ell-k,q)$ is odd and the degree of \mathcal{U} is odd.

Case 4: n is odd, k is even and ℓ is odd.

Then $G(n-\ell,q)$ is odd and $G(\ell-k,q)$ is even and the degree of \mathcal{U} is odd.

Thus in all the cases degree of \mathcal{U} is odd and hence $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ is not Eulerian. \Box

4. Conclusion

In this paper, we have introduced a subspace based subspace inclusion graph on the vector space $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ of a finite dimensional vector space \mathbb{V} and investigated various interrelationships between $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ (as a graph) and \mathbb{V} (as a vector space). The diameter, girth, clique number, and chromatic number of $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ have been studied. It is shown that two subspace based subspace inclusion graphs $\mathcal{I}_n^{W_1}(\mathcal{V})$ and $\mathcal{I}_n^{W_2}(\mathcal{V})$ are isomorphic if and only if \mathcal{W}_1 and \mathcal{W}_2 are isomorphic. Further, some properties of $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ have also been obtained when the base field is finite. As an area of further research, one can look into the structure of the automorphism group of $\mathcal{I}_n^{\mathcal{W}}(\mathcal{V})$ in case of a finite field.

Acknowledgment

The authors are grateful to the anonymous referee for his/her valuable comments and suggestions, which have helped us improve the previous version of the paper.

References

- D. F. Anderson and A. Badawi, On the zero-divisor graph of a commutative ring, Comm. Algebra, 36(8) (2008), 3073–3092.
- A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42(1) (2014), 108–121.
- 3. ____, On the dot product graph of a commutative ring, Comm. Algebra, 43(1) (2015), 43–50.
- A. Das, Nonzero component graph of a finite demensional vector space, Comm. Algebra, 44(9) (2016), 3918–3926.

- 5. _____, Non-zero component union graph of a finite demensional vector space, Linear Multinear Algebra, **65(6)** (2017), 1276–1287.
- 6. _____, Subspace inclusion graph of a vector space, Comm. Algebra, 44 (2016), 4724–4731.
- 7. _____, On subspace inclusion graph of a vector space, Linear Multinear Algebra, **66(3)** (2018), 554–564.
- 8. _____, On non-zero component graph of vector spaces over finite fields, J. Algebra Appl., **16(1)** (2017), 1750007.
- 9. G. Chartrand and P. Zhang, *Introduction to Graph Theory*, Tata McGraw Hill, Edition New Delhi, 2006.
- 10. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
- 11. V. Kac and P. Cheung, Quantum calculus, Springer Universitext, 2001.
- 12. D. W. West, *Introduction to Graph Theory*, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India

$E\text{-}mail\ address: \texttt{mashraf80@hotmail.com}$

Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India

 $E\text{-}mail\ address:\ \texttt{mohitkumaramu123} \texttt{@gmail.com}$

Department of Mathematics, Aligarh Muslim University, Aligarh-202002

India

E-mail address: mohdghulam202@gmail.com