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A SUBSPACE BASED SUBSPACE INCLUSION GRAPH ON

VECTOR SPACE

MOHAMMAD ASHRAF, MOHIT KUMAR, AND GHULAM MOHAMMAD

Abstract. Let W be a fixed k-dimensional subspace of an n-dimensi-
onal vector space V such that n − k ≥ 1. In this paper, we introduce
a graph structure, called the subspace based subspace inclusion graph
IWn (V), where the vertex set V(IWn (V)) is the collection of all subspaces U

of V such that U+W 6= V and U *W, i.e., V(IWn (V)) = {U ⊆ V | U+W 6=
V,U *W} and any two distinct vertices U1 and U1 of IWn (V) are adjacent
if and only if either U1+W ⊂ U2+W or U2+W ⊂ U1+W. The diameter,
girth, clique number, and chromatic number of IWn (V) are studied. It is

shown that two subspace based subspace inclusion graphs IW1
n (V) and

IW2
n (V) are isomorphic if and only if W1 and W2 are isomorphic. Further,

some properties of IWn (V) are obtained when the base field is finite.

1. introduction

Throughout this paper, V denotes a finite dimensional vector space over
a field F and for any subspace W of V, V(IWn (V)) = {U ⊆ V | U + W 6= V,
U *W}. Let G = (V(G),E(G)) be a graph, where V(G) is the set of vertices
and E(G) is the set of edges of G. We say that G is connected if there exists
a path between any two distinct vertices of G. For vertices a and b of G,
d(a, b) denotes the length of a shortest path from a to b. In particular,
d(a, a) = 0 and d(a, b) = ∞ if there is no such path. The diameter of G is
denoted by diam(G) = sup{d(a, b) | a, b ∈ V(G)}. A cycle in a graph G is
a path that begins and ends at the same vertex. A cycle of length n is
denoted by Cn. The girth of G, denoted by gr(G), is the length of a shortest
cycle in G (gr(G) = ∞ if G contains no cycle). A complete graph G is a
graph where all distinct vertices are adjacent. The complete graph with
|V(G)| = n is denoted by Kn. A graph G is said to be complete k-bipartite
if there is a partition ∪ki=1Vi = V(G), such that u − v ∈ E(G) if and only if
u and v are in different parts of partition. If |Vi| = ni, then G is denoted
by Kn1,n2,...,nk

and in particular G is called complete bipartite if k = 2. A
graph H = (V(H),E(H)) is said to be a subgraph of G if V(H) ⊆ V(G)
and E(H) ⊆ E(G). Moreover, H is said to be induced subgraph of G if
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V(H) ⊆ V(G) and E(H) = {u − v ∈ E(G) | u, v ∈ V(H)} and is denoted by
G[V(H)]. Also G is called a null graph if E(G) = ∅. For a graph G, a complete
subgraph of G is called a clique. The clique number, ω(G), is the greatest
integer n > 1 such that Kn ⊆ G, and ω(G) = ∞ if Kn ⊆ G for all n > 1.
The chromatic number χ(G) of a graph G is the minimum number of colours
needed to colour all the vertices of G such that every two adjacent vertices
get different colours. A graph G is perfect if χ(H) = ω(H) for every induced
subgraph H of G. Graph-theoretic terms are presented as they appear in R.
Diestel [10].

Beside its combinatorial motivation, graph theory can also identify various
algebraic structures. The main task of studying graphs associated with
algebraic structures is to characterize algebraic structures with a graph and
vice versa. To date, there has been a lot of research, see [1, 2, 3], on simple
graph structures for commutative rings. Recently, some algebraic graphs
associated with vector spaces were studied (see [4, 5, 6, 7, 8]). Das [6]
defined the subspace inclusion graph In(V) on a vector space V, where the
set of vertices is a collection of all nontrivial subspaces of V and any two
distinct vertices W1 and W2 are adjacent if and only if either W1 ⊂ W2 or
W2 ⊂W1.

Motivated by the above study, we introduce the notion of a subspace
based subspace inclusion graph for a vector space V and denote it by IWn (V).
The graph IWn (V) is a simple (undirected) graph with vertex set V(IWn (V))
and any two distinct vertices U1 and U2 of IWn (V) are adjacent if and only if
either U1 +W ⊂ U2 +W or U2 +W ⊂ U1 +W. Further we investigate some
basic properties of IWn (V).

2. fundamental properties of IWn (V)

In this section, we study the fundamental properties of IWn (V). We show
that IWn (V) is connected and diam(IWn (V)) ≤ 3.

Definition 2.1. Let W be a subspace of a vector space V. Then the subspace
based subspace inclusion graph IWn (V) is a simple (undirected) graph with
vertex set V(IWn (V)) and any two distinct vertices U1 and U2 of IWn (V) are
adjacent if and only if either U1 + W ⊂ U2 + W or U2 + W ⊂ U1 + W.

We have the following theorems:

Theorem 2.2. Let W be a k-dimensional subspace of an n-dimensional
vector space V over a field F. Then the following statements hold:

(i) If k = 0, then IWn (V) = In(V).
(ii) If W1,W2 are two distinct vertices of IWn (V) such that

dim(W1 +W) = dim(W2 +W), then W1 is not adjacent to W2, i.e.,
W1 �W2 in IWn (V).

(iii) If n− k = 2, then IWn (V) is an edgeless graph.
(iv) If n− k = 1, then IWn (V) is an empty graph.
(v) If n− k ≥ 4, then IWn (V) is triangulated.
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(vi) IWn (V) is never complete.
Proof.

(i) Obvious.
(ii) Let W1,W2 ∈ V(IWn (V)) be two distinct subspaces of V and dim(W1+

W) = dim(W2+W) = k. If W1 ∼W2, then either W1+W ⊂W2+W

or W2 +W ⊂W1 +W. Since dim(W1 +W) = dim(W2 +W) = k, we
have W1 + W = W2 + W, which is a contradiction.

(iii) Suppose that dim(V) − dim(W) = 2 and let W1,W2 ∈ V(IWn (V)).
Then dim(W1 + W) = dim(W2 + W) = k + 1 and by (ii), W1 �W2

in IWn (V).
(iv) Follows trivially.
(v) Let W1 ∈ V(IWn (V)). We have the following cases:

Case 1: dim(W + W1) = k + 1. There exist two subspaces W2,W3

of V such that dim(W + W2) = k + 2, dim(W + W3) = k + 3 and
W + W1 ⊂W + W2 ⊂W + W3.
Case 2: dim(W + W1) = k + 2. There exist two subspaces W2,W3

of V such that dim(W + W2) = k + 1, dim(W + W3) = k + 3 and
W + W2 ⊂W + W1 ⊂W + W3.
Case 3: dim(W + W1) = k + 3. There exist two subspaces W2,W3

of V such that dim(W + W2) = k + 1, dim(W + W3) = k + 2 and
W + W2 ⊂W + W3 ⊂W + W1.

Thus in all the cases we can form a triangle with the vertices
W1,W2,W3.

(vi) Since dim(V) − dim(W) ≥ 2, there exist two linearly independent
vectors u, v ∈ V \W such that Span{u} � Span{v} in IWn (V).

�

Theorem 2.3. Let W be a subspace of a vector space V such that dim(V)−
dim(W) ≥ 3. Then IWn (V) is connected and diam(IWn (V)) ≤ 3.

Proof. Let dim(W) = k and W1,W2 ∈ V(IWn (V)). If W1 + W ⊂ W2 + W or
W2 + W ⊂W1 + W, then W1 ∼W2 and d(W1,W2) = 1. If W1 �W2, then
we have the following cases:

Case 1: dim(W1 + W) = dim(W2 + W) = k + 1.
Subcase 1: W1 + W = W2 + W. There exist w ∈ V \ (W1 + W) and
(W1 + W) ⊂ (Span{w} + W1 + W2 + W) ⊃ (W1 + W) such that W1 ∼
(W1 + W2 + Span{w}) ∼W2 is a path in IWn (V) and d(W1,W2) = 2.
Subcase 2: W1+W 6= W2+W. Then (W1+W) ⊂ (W1+W2+W) ⊃ (W2+
W) and W1 ∼ (W1 + W2) ∼W2 is a path in IWn (V) and d(W1,W2) = 2.

Case 2 : dim(W1 + W) = k + 1 and dim(W2 + W) > k + 1.
Let u ∈ W2 + W \W1 + W and < u > +W = W3. Since dim(W1 +

W3 + W) = k + 2, W1 + W3 + W 6= V and W3 + W ⊂W2 + W, we have
W1 ∼W1 + W3 ∼W3 ∼W2. Hence d(W1,W2) ≤ 3.

Case 3: dim(W1 + W) > k + 1 and dim(W2 + W) > k + 1.
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Subcase 1: W1 + W2 + W 6= V or (W1 + W) + (W2 + W) 6= W. Then
W1 ∼W1 + W2 ∼W2 or W1 ∼ (W1 + W) ∩ (W2 + W) ∼W2.
Subcase 2: W1 + W2 + W = V and (W1 + W) ∩ (W2 + W) = W. Let
v ∈ W2 \ W. Since dim(W1 + W) > k + 1, dim(W2 + W) > k + 1
and W1 + W + W2 + W = V, (W1 + W) ∩ (W2 + W) = W, we have
dim(W1 + W) < n− 1, dim(W2 + W) < n− 1, and W1 + 〈v〉+ W 6= V,
W1 ∼W1 + 〈v〉 ∼ 〈v〉 ∼W2.

Hence IWn (V) is connected and d(W1,W2) ≤ 3.
�

Theorem 2.4. If W is a subspace of a vector space V such that dim(V) −
dim(W) ≥ 3, then diam(IWn (V)) = 3.

Proof. Let W be a k dimensional subspace of V and {w1, w2, . . . , wk} be a
basis of W. This linearly independent subset can be extended to a basis for
V. Let {w1, w2, . . . , wk, . . . , wn} be a basis for V and W1 = Span{wk+1},
W2 = Span{wk+2, wk+3, . . . , wn}. Clearly, W1,W2 ∈ V(IWn (V)), W1 � W2

and d(W1,W2) 6= 1. If d(W1,W2) = 2, then there exists W3 ∈ V(IWn (V)) \
{W1,W2} such that W1 ∼ W3 ∼ W2 is a path in IWn (V). Since W1 ∼ W3,
either W1 + W ⊂ W3 + W or W1 + W ⊃ W3 + W. If W1 + W ⊃ W3 + W,
then W3 � W2 as (W1 + W) ∩ (W2 + W) = W. Thus W1 + W ⊂ W3 + W.
Again since W3 ∼W2, either W2 + W ⊂W3 + W or W2 + W ⊃W3 + W. If
W2 + W ⊃ W3 + W, then W3 � W1 as (W1 + W) ∩ (W2 + W) = W. Thus
W2 +W ⊂W3 +W. Therefore we find that W3 +W is a subspace of V which
contains W1 + W as well as W2 + W i.e., W3 + W = V, a contradiction.
Thus d(W1,W2) ≥ 3 and by Theorem 2.3, we get d(W1,W2) ≤ 3. Thus
diam(IWn (V)) = 3. �

The following lemmas are essential to prove our next theorem.

Lemma 2.5. If W is a subspace of a vector space V such that dim(V) −
dim(W) = 3, then IWn (V) does not contain any cycle of odd length.

Proof. Suppose that W1 ∼W2 ∼ · · · ∼Wk ∼W1 is a cycle of odd length in
IWn (V). Since dim(V)− dim(W) = 3, the dimension of each Wi +W is either
dim(W)+1 or dim(W)+2 since any two distinct vertices W1,W2 ∈ V(IWn (V))
such that W1 + W = W2 + W are not adjacent in IWn (V). Without loss of
generality we may assume that dim(W1 + W) = dim(W) + 1 and we get
dim(Wk +W) = dim(W)+1 and W1 �Wk, which is a contradiction. Hence
IWn (V) does not contain any cycle of odd length. �

Lemma 2.6. Let N be a clique in IWn (V). Then {U+W | U ∈ N} is a chain
of subspaces of V.

Proof. The proof is trivial. �

Theorem 2.7. Let W be a subspace of a finite dimensional vector space
V. Then dim(V) − (dim(W) + 1) = m if and only if ω(IWn (V)) = m, where
m = dim(V)− (dim(W) + 1).
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Proof. Let W be a k-dimensional subspace of n-dimensional vector space V

and {v1, v2, . . . , vk}, {v1, v2, . . . , vk, vk+1, . . . , vn−1} be the bases of W and
V, respectively. Let Wj = 〈v1, v2, . . . , vj〉 for j = k+ 1, k+ 2, . . . , n. Clearly,
N = {Wk+1,Wk+2, . . . ,Wn−1} is a clique. If possible, let N∪{W′} be a clique
where W′ ∈ V(IWn (V)) \N. Thus by Lemma 2.6, there exists i ∈ {k + 1, k +
2, . . . , n− 2} such that Wi ⊂W′ + W ⊂Wi+1. Since the inclusion is proper
and V is finite dimensional, we have dim(Wi) < dim(W′+W) < dim(Wi+1),
i.e., i < dim(W′ + W) < i + 1, a contradiction. Thus N is a clique of size
n− (k+ 1). If possible, let N′ = {U1,U2, . . . ,Un−k} be a clique of size n− k
and U1+W ⊂ U2+ W ⊂ · · · ⊂ Un−k+W. Again as V is finite dimensional and
each inclusion is proper, we have dim(W) < dim(U1 +W) < dim(U2 +W) <
· · · < dim(Un−k +W). Since dim(Ui +W) are distinct integers between k+1
and n − 1, we have n − k integers in [k + 1, n − 1], a contradiction. Thus,
ω(IWn (V)) = n− (k + 1).

Conversely, suppose that ω(IWn (V)) = m. Let dim(V) − (dim(W) + 1) =
p 6= m. Then by the directed part, ω(IWn (V)) = p and hence p = m. This
completes the proof. �

Theorem 2.8. If W is a k-dimensional subspace of an n-dimensional vector
space V, then χ(IWn (V)) = n− k − 1.

Proof. By Theorem 2.7, ω(IWn (V)) = n − k − 1, and therefore χ(IWn (V)) >
n − k − 1. To show the equality, we demonstrate a (n − k − 1) colouring
of IWn (V). For any U ∈ V(IWn (V)), if dim(U + W) = k + j, then color U

with the jth color. This coloring is proper since by Lemma 2.6, any two
U1,U2 ∈ V(IWn (V)) such that dim(U2 +W) = dim(U1 +W) = k+ j are never
adjacent and hence the theorem follows. �

Theorem 2.9. If W is a k-dimensional subspace of an n-dimensional vector
space V, then IWn (V) contains a graph G′ such that G′ ∼= In−k(V/W).

Proof. We know that proper subspaces of V containing W are in one-to-
one correspondence with the nontrivial subspaces of V/W, i.e., A = {U ⊂
V | W < U < V} ←→ B = {U′ ⊂ V/W | (0) < U′ < V/W}. Clearly,
A ⊆ V(IWn (V)) and B = V(In(V/W)). Now if we define G′ on A by IWn (V)[A],
then IWn (V)[A] ∼= In−k(V/W) and hence the theorem follows. �

Theorem 2.10. If W is a k-dimensional subspace of an n-dimensional vec-
tor space V such that n− k ≥ 3, then IWn (V) is not planar.

Proof. We know that by Theorem 2.9, IWn (V) contains a graph G′ such that
G′ ∼= In−k(V/W), by Theorem 5.2 of [7], IWn (V) contains a graph which is
not planar, and by Kuratowski’s theorem, IWn (V) is not planar. �

Theorem 2.11. Let W1 and W2 be two subspaces of a finite dimensional
vector space V. Then In(W1) ' In(W2) if and only if dim(W1) = dim(W2).

Proof. Suppose that W1 and W2 are two k-dimensional subspaces of an
n-dimensional vector space V and let {u1, u2, . . . , uk}, {v1, v2, . . . , vk} be
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the bases for W1,W2, respectively and A = {u1, u2, . . . , uk, uk+1, . . . , un},
B = {v1, . . . , vk, vk+1, . . . , vn} be the extended bases for V. Define a map f :
A −→ B by f(ui) = vi for i = 1, 2, . . . , n. Clearly, the map g : V(In(W1)) −→
V(In(W2)) defined by g(U) = f(U) for U ∈ V(In(W1)) is bijective and adja-
cency preserving and hence In(W1) ' In(W2).

Conversely, assume that In(W1) ' In(W2) and dim(W1) = k1, dim(W2) =
k2. Then by Theorem 2.7, ω(IW1

n (V)) and ω(IW2
n (V)) are n − k1 − 1 and

n−k2−1, respectively. Since In(W1) ' In(W2), we have n−k1−1 = n−k2−1
and hence k1 = k2. �

3. When the base field F is finite

In this section, we study some basic properties of IWn (W) if the base field
F is finite, i.e., |F| = q and q = pr for some prime p.

Theorem 3.1. Let W be a k-dimensional subspace of an n-dimensional
vector space V over a finite field F with q elements. Then the set containing
those subspaces U of V such that U+W = V i.e., {U ⊆ V | U+W = V} has

(
∑k−1

r=0 nr + 1) elements, where

nr =
(qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)
.

Proof. Since dim(W) = k < n for any subspace W′ ∈ {U ⊂ V | U + W = V}
of V has dimension at least n− k, i.e., if W′ ∈ {U ⊂ V | U + W = V}, then
dim(W′) = n−k+r and dim(W′∩W) = r where 0 ≤ r ≤ k−1. To find such
subspaces W′, we choose r linearly independent vectors from W and n − k
linearly independent vectors from V\W, and generate W′ with these n−k+r
linearly independent vectors. Since the number of ways we can choose r
linearly independent vectors from W is (qk − 1)(qk − q) · · · (qk − qr−1), the
number of ways we can choose n−k linearly independent vectors from V\W
is (qn−qk)(qn−qk+1) · · · (qn−qn−1). The number of bases of an (n−k+r)-
dimensional subspace is (qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1),
the number of subspaces W′ with dim(W′) = n−k+r and dim(W∩W′) = r
is

nr =
(qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)
.

If r = k, then V is the only subspace which satisfies the given condition.
Since 0 ≤ r ≤ k − 1,

|{U ⊆ V | U + W = V}| =
k−1∑
r=0

nr + 1.

�

Theorem 3.2. Let W be a k-dimensional subspace of an n-dimensional
vector space V over a finite field F of order q. Then IWn (V) is a graph of
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order G(n, q)− (G(k, q) +
∑k−1

r=0 nr + 1), where

nr =
(qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)

and G(n, q) is the Galois number. In particular, when W = (0), the order of
IWn (V) is G(n, q)− 2.

Proof. By the definition of the graph IWn (V), V(IWn (V)) = {U ⊂ V} \ ({U′ ⊂
W} ∪{U ⊂ V | U + W = V}). Since the number of r-dimensional subspaces
of a n-dimensional vector space over a finite field of order q is the binomial
coefficient (see [7])

[nr ]q =
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
,

the total number of subspaces of V is given by

n∑
r=0

[nr ]q = G(n, q)− 2.

Similarly, the total number of subspaces of W is given by

k∑
r=0

[kr ]q = G(k, q)− 2.

By Theorem 3.1, {U ⊆ V | U + W = V} has
∑k−1

r=0 nr + 1 elements, where

nr =
(qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)
.

Since {U′ ⊂ W} ∩ {U ⊆ V | U + W = V} = ∅, the order of IWn (V) is

G(n, q)− (G(k, q) +
∑k−1

r=0 nr + 1), where

nr =
(qk − 1)(qk − q) · · · (qk − qr−1)(qn − qk)(qn − qk+1) · · · (qn − qn−1)

(qn−k+r − 1)(qn−k+r − q) · · · (qn−k+r − qn−k+r−1)

and G(n, q) is the Galois number. Trivially, when W = (0), the order of
IWn (V) is G(n, q)− 2.

�

Theorem 3.3. Let W be a k-dimensional subspace of a n-dimensional vector
space of V over a finite field F of order q and U ∈ V(IWn (V)) such that
dim(U + W) = l. Then

deg(U) =
l−k−1∑
r=1

[l−kr ]q(
k−1∑
i=0

ni + 1) +
n−l−1∑
s=1

[n−ls ]q(
k−1∑
i=0

pi + 1),
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where

ni =
(qk − 1)(qk − q) · · · (qk − qi−1)

(qr+i − 1)(qr+i − q)

× (qk+r − qk)(qk+r − qk+1) · · · (qk+r − qk+r−1)

(qr+i − q2) · · · (qr+i − qr+i−1)

and

pi =
(qk − 1)(qk − q) · · · (qk − qi−1)
(ql+s−k+i − 1)(ql+s−k+i − q)

.

× (ql+s − qk)(ql+s − qk+1) · · · (ql+s − ql+s−1)

(ql+s−k+i − q2) · · · (ql+s−k+i − ql+s−k+i−1)
.

Proof. First we find the subspaces of V which properly contains W as a
subspace and properly contained in U + W. We know that there is a one-
to-one correspondence between the (k+ r)-dimensional subspaces of U+W

containing W and the r-dimensional subspaces of (U + W)/W, i.e., A =
{A | W < A < U + W } ←→ B = {B | (0) < B < (U + W)/W }. It may
be noted that the number of r-dimensional subspaces of (l− k)-dimensional
vector space (U+W)/W over a finite field of order q is the binomial coefficient

[l−kr ]q =
(ql−k − 1)(ql−k−1 − 1) · · · (ql−k−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)
.

Corresponding to each r-dimensional subspace in B, there is a (k + r)-
dimensional subspace in A and therefore the number of (k+ r)-dimensional
subspaces in A is given by

[l−kr ]q =
(ql−k − 1)(ql−k−1 − 1) · · · (ql−k−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)
.

Let W′ ∈ A be a (k + r)-dimensional subspace of U + W. If Wi ∈ V(IWn (V))
such that Wi + W = W′, then Wi ⊆ W′. Therefore by Theorem 3.1, the

number of Wi ∈ V(IWn (V)) such that Wi + W = W′ is given by
∑k−1

i=0 ni,
where

ni =
(qk − 1)(qk − q) · · · (qk − qi−1)

(qr+i − 1)(qr+i − q)

× (qk+r − qk)(qk+r − qk+1) · · · (qk+r − qk+r−1)

(qr+i − q2) · · · (qr+i − qr+i−1)
.

Therefore, we have [l−kr ]q − (k + r)-dimensional subspaces, where r = 1,

2, . . . , l − k − 1. Thus the number of subspaces U′ ∈ V(IWn (V)) such that

U′+W ⊂ U+W is
∑l−k−1

r=1 [l−kr ]q(
∑k−1

i=0 ni+1). Now we find the subspaces of
V which properly contains U+W as a subspace and is properly contained in
V. There is a a one-to-one correspondence between the (l + s)-dimensional
subspace of V containing U+W and the s-dimensional subspace of V/(U+W),
i.e., C = {A′ | U+W < A′ < V} ←→ D = {B′ | (U+W) < B < V/(U+W) }.
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Note that the number of s-dimensional subspaces of the (n− l)-dimensional
vector space V/(U+W) over a finite field of order q is the binomial coefficient

[n−ls ]q =
(qn−l − 1)(qn−l−1 − 1) · · · (qn−l−s+1 − 1)

(qs − 1)(qs−1 − 1) · · · (q − 1)
.

Corresponding to each s-dimensional subspace in D, there is a (l + s)-
dimensional subspace in C. Therefore the number of (l + s)-dimensional
subspaces in C is given by

[n−ls ]q =
(qn−l − 1)(qn−l−1 − 1) · · · (qn−l−s+1 − 1)

(qs − 1)(qs−1 − 1) · · · (q − 1)
.

Let W′ ∈ C be a (l + s)-dimensional subspaces of V. If Wi ∈ V(IWn (V)) such
that Wi + W = W′, then Wi ⊆W′. Therefore by Theorem 3.1, the number

of Wi ∈ V(IWn (V)) such that Wi + W = W′ is given by
∑k−1

i=0 pi + 1, where

pi =
(qk − 1)(qk − q) · · · (qk − qi−1)
(ql+s−k+i − 1)(ql+s−k+i − q)

× (ql+s − qk)(ql+s − qk+1) · · · (ql+s − ql+s−1)

(ql+s−k+i − q2) · · · (ql+s−k+i − ql+s−k+i−1)
.

Therefore we have [n−ls ]q − (l + s)-dimensional subspaces, where s = 1,

2, . . . , n − l − 1. Thus the number of subspaces U′ ∈ V(IWn (V)) such that

U + W ⊂ U′ + W is
∑n−l−1

s=1 [n−ls ]q(
∑k−1

i=0 pi + 1). Hence

deg(U) =

l−k−1∑
r=1

[l−kr ]q(

k−1∑
i=0

ni + 1) +

n−l−1∑
s=1

[n−ls ]q(

k−1∑
i=0

pi + 1).

�

Theorem 3.4. Let W be a k-dimensional subspace of an n-dimensional vec-
tor space V over a finite field with q elements. Then the following statements
hold.

(i) If q is odd, then IWn (V) is Eulerian.
(ii) If q is even, then IWn (V) is Eulerian if and only if n− k even.

Proof. (i) It can be easily seen that from [11, Proposition 7.1, p. 25]: G(n+
1, q) = 2G(n, q)+(qn−1)G(n−1, q) with G(0, q) = 1 and G(1, q) = 2. Thus
if q is odd, then all Galois numbers are even. Let W ∈ V(IWn (V)) such that
dim(W1 + W) = `. Thus by Theorem 3.3, deg(U) in IWn (V) is

(G(`− k, q)− 2)(
k−1∑
i=0

ni + 1) + ((G(n− `, q)− 2))(
k−1∑
i=0

pi + 1),

an even number. Thus the degree of each vertex of IWn (V) is even and hence
IWn (V) is Eulerien.

(ii) If q is even, then by [11, Proposition 7.1, p. 25], G(2m, q) is odd and
G(2m + 1, q) is even for m ∈ N ∪ {0}. Now, if U ∈ V(IWn (V)) such that
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dim(U + W1) = `, then deg(U) is (G(` − k, q) − 2)(
∑k−1

i=0 ni + 1)+((G(n −
`, q)− 2))(

∑k−1
i=0 pi + 1).

If n− k is even, then G(n− `, q) and G(`− k, q) are both either even or
odd and hence the degree of U is even.

If n− k is odd, then we have the following cases.
Case 1 : n is even, k is odd, and ` is even.

Then G(n− `, q) is odd and G(`− k, q) is even, and the degree of U is
odd.

Case 2 : n is even, k is odd, and ` is odd.
Then G(n− `, q) is even and G(`− k, q) is odd and the degree of U is

odd.
Case 3 : n is odd, k is even and ` is even.

Then G(n− `, q) is even and G(`− k, q) is odd and the degree of U is
odd.

Case 4 : n is odd, k is even and ` is odd.
Then G(n− `, q) is odd and G(`− k, q) is even and the degree of U is

odd.
Thus in all the cases degree of U is odd and hence IWn (V) is not Eulerian. �

4. Conclusion

In this paper, we have introduced a subspace based subspace inclusion
graph on the vector space IWn (V) of a finite dimensional vector space V and
investigated various interrelationships between IWn (V) (as a graph) and V (as
a vector space). The diameter, girth, clique number, and chromatic number
of IWn (V) have been studied. It is shown that two subspace based subspace
inclusion graphs IW1

n (V) and IW2
n (V) are isomorphic if and only if W1 and W2

are isomorphic. Further, some properties of IWn (V) have also been obtained
when the base field is finite. As an area of further research, one can look
into the structure of the automorphism group of IWn (V) in case of a finite
field.
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