A SUBSPACE BASED SUBSPACE INCLUSION GRAPH ON VECTOR SPACE

MOHAMMAD ASHRAF, MOHIT KUMAR, AND GHULAM MOHAMMAD

Abstract

Let \mathcal{W} be a fixed k-dimensional subspace of an n-dimensional vector space \mathcal{V} such that $n-k \geq 1$. In this paper, we introduce a graph structure, called the subspace based subspace inclusion graph $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$, where the vertex $\operatorname{set} \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ is the collection of all subspaces \mathcal{U} of \mathcal{V} such that $\mathcal{U}+\mathcal{W} \neq \mathcal{V}$ and $\mathcal{U} \nsubseteq \mathcal{W}$, i.e., $\mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W} \neq$ $\mathcal{V}, \mathcal{U} \nsubseteq \mathcal{W}\}$ and any two distinct vertices \mathcal{U}_{1} and \mathcal{U}_{1} of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_{1}+\mathcal{W} \subset \mathcal{U}_{2}+\mathcal{W}$ or $\mathcal{U}_{2}+\mathcal{W} \subset \mathcal{U}_{1}+\mathcal{W}$. The diameter, girth, clique number, and chromatic number of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ are studied. It is shown that two subspace based subspace inclusion graphs $\mathcal{J}_{n}^{\mathcal{W}_{1}}(\mathcal{V})$ and $\mathcal{J}_{n}^{\mathcal{W}_{2}}(\mathcal{V})$ are isomorphic if and only if \mathcal{W}_{1} and \mathcal{W}_{2} are isomorphic. Further, some properties of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ are obtained when the base field is finite.

1. INTRODUCTION

Throughout this paper, \mathcal{V} denotes a finite dimensional vector space over a field \mathbb{F} and for any subspace \mathcal{W} of $\mathcal{V}, \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W} \neq \mathcal{V}$, $\mathcal{U} \nsubseteq \mathcal{W}\}$. Let $\mathcal{G}=(\mathcal{V}(\mathcal{G}), \mathcal{E}(\mathcal{G}))$ be a graph, where $\mathcal{V}(\mathcal{G})$ is the set of vertices and $\mathcal{E}(\mathcal{G})$ is the set of edges of \mathcal{G}. We say that \mathcal{G} is connected if there exists a path between any two distinct vertices of \mathcal{G}. For vertices a and b of \mathcal{G}, $\mathrm{d}(a, b)$ denotes the length of a shortest path from a to b. In particular, $\mathrm{d}(a, a)=0$ and $\mathrm{d}(a, b)=\infty$ if there is no such path. The diameter of \mathcal{G} is denoted by $\operatorname{diam}(\mathcal{G})=\sup \{\mathrm{d}(a, b) \mid a, b \in \mathcal{V}(\mathcal{G})\}$. A cycle in a graph \mathcal{G} is a path that begins and ends at the same vertex. A cycle of length n is denoted by \mathfrak{C}_{n}. The girth of \mathcal{G}, denoted by $\operatorname{gr}(\mathcal{G})$, is the length of a shortest cycle in $\mathcal{G}(\operatorname{gr}(\mathcal{G})=\infty$ if \mathcal{G} contains no cycle). A complete graph \mathcal{G} is a graph where all distinct vertices are adjacent. The complete graph with $|\mathcal{V}(\mathcal{G})|=n$ is denoted by \mathcal{K}_{n}. A graph \mathcal{G} is said to be complete k-bipartite if there is a partition $\cup_{i=1}^{k} \mathcal{V}_{i}=\mathcal{V}(\mathcal{G})$, such that $u-v \in \mathcal{E}(\mathcal{G})$ if and only if u and v are in different parts of partition. If $\left|\mathcal{V}_{i}\right|=n_{i}$, then \mathcal{G} is denoted by $\mathcal{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ and in particular \mathcal{G} is called complete bipartite if $k=2$. A graph $\mathcal{H}=(\mathcal{V}(\mathcal{H}), \mathcal{E}(\mathcal{H}))$ is said to be a subgraph of \mathcal{G} if $\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H}) \subseteq \mathcal{E}(\mathcal{G})$. Moreover, \mathcal{H} is said to be induced subgraph of \mathcal{G} if

[^0]$\mathcal{V}(\mathcal{H}) \subseteq \mathcal{V}(\mathcal{G})$ and $\mathcal{E}(\mathcal{H})=\{u-v \in \mathcal{E}(\mathcal{G}) \mid u, v \in \mathcal{V}(\mathcal{H})\}$ and is denoted by $\mathcal{G}[\mathcal{V}(\mathcal{H})]$. Also \mathcal{G} is called a null graph if $\mathcal{E}(\mathcal{G})=\varnothing$. For a graph \mathcal{G}, a complete subgraph of \mathcal{G} is called a clique. The clique number, $\omega(\mathcal{G})$, is the greatest integer $n \geqslant 1$ such that $\mathcal{K}_{n} \subseteq \mathcal{G}$, and $\omega(\mathcal{G})=\infty$ if $\mathcal{K}_{n} \subseteq \mathcal{G}$ for all $n \geqslant 1$. The chromatic number $\chi(\mathcal{G})$ of a graph \mathcal{G} is the minimum number of colours needed to colour all the vertices of \mathcal{G} such that every two adjacent vertices get different colours. A graph \mathcal{G} is perfect if $\chi(\mathcal{H})=\omega(\mathcal{H})$ for every induced subgraph \mathcal{H} of \mathcal{G}. Graph-theoretic terms are presented as they appear in R. Diestel [10].

Beside its combinatorial motivation, graph theory can also identify various algebraic structures. The main task of studying graphs associated with algebraic structures is to characterize algebraic structures with a graph and vice versa. To date, there has been a lot of research, see $[1,2,3]$, on simple graph structures for commutative rings. Recently, some algebraic graphs associated with vector spaces were studied (see [4, 5, 6, 7, 8]). Das [6] defined the subspace inclusion graph $\mathcal{J}_{n}(\mathcal{V})$ on a vector space \mathcal{V}, where the set of vertices is a collection of all nontrivial subspaces of \mathcal{V} and any two distinct vertices \mathcal{W}_{1} and \mathcal{W}_{2} are adjacent if and only if either $\mathcal{W}_{1} \subset \mathcal{W}_{2}$ or $\mathcal{W}_{2} \subset \mathcal{W}_{1}$.

Motivated by the above study, we introduce the notion of a subspace based subspace inclusion graph for a vector space \mathcal{V} and denote it by $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. The graph $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is a simple (undirected) graph with vertex set $\mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ and any two distinct vertices \mathcal{U}_{1} and \mathcal{U}_{2} of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_{1}+\mathcal{W} \subset \mathfrak{U}_{2}+\mathcal{W}$ or $\mathcal{U}_{2}+\mathcal{W} \subset \mathcal{U}_{1}+\mathcal{W}$. Further we investigate some basic properties of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$.

2. FUNDAMENTAL PROPERTIES OF $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$

In this section, we study the fundamental properties of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. We show that $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is connected and $\operatorname{diam}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right) \leq 3$.
Definition 2.1. Let \mathcal{W} be a subspace of a vector space \mathcal{V}. Then the subspace based subspace inclusion graph $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is a simple (undirected) graph with vertex set $\mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ and any two distinct vertices \mathcal{U}_{1} and \mathcal{U}_{2} of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ are adjacent if and only if either $\mathcal{U}_{1}+\mathcal{W} \subset \mathcal{U}_{2}+\mathcal{W}$ or $\mathcal{U}_{2}+\mathcal{W} \subset \mathcal{U}_{1}+\mathcal{W}$.

We have the following theorems:
Theorem 2.2. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a field \mathbb{F}. Then the following statements hold:
(i) If $k=0$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})=\mathcal{J}_{n}(\mathcal{V})$.
(ii) If $\mathcal{W}_{1}, \mathcal{W}_{2}$ are two distinct vertices of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ such that $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)$, then \mathcal{W}_{1} is not adjacent to \mathcal{W}_{2}, i.e., $\mathcal{W}_{1} \nsim \mathcal{W}_{2}$ in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$.
(iii) If $n-k=2$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is an edgeless graph.
(iv) If $n-k=1$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is an empty graph.
(v) If $n-k \geq 4$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is triangulated.
(vi) $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is never complete.

Proof.
(i) Obvious.
(ii) Let $\mathcal{W}_{1}, \mathcal{W}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ be two distinct subspaces of \mathcal{V} and $\operatorname{dim}\left(\mathcal{W}_{1}+\right.$ $\mathcal{W})=\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)=k$. If $\mathcal{W}_{1} \sim \mathcal{W}_{2}$, then either $\mathcal{W}_{1}+\mathcal{W} \subset \mathcal{W}_{2}+\mathcal{W}$ or $\mathcal{W}_{2}+\mathcal{W} \subset \mathcal{W}_{1}+\mathcal{W}$. Since $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)=k$, we have $\mathcal{W}_{1}+\mathcal{W}=\mathcal{W}_{2}+\mathcal{W}$, which is a contradiction.
(iii) Suppose that $\operatorname{dim}(\mathcal{V})-\operatorname{dim}(\mathcal{W})=2$ and let $\mathcal{W}_{1}, \mathcal{W}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$. Then $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)=k+1$ and by (ii), $\mathcal{W}_{1} \nsim \mathcal{W}_{2}$ in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$.
(iv) Follows trivially.
(v) Let $\mathcal{W}_{1} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$. We have the following cases:

Case 1: $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{1}\right)=k+1$. There exist two subspaces $\mathcal{W}_{2}, \mathcal{W}_{3}$ of \mathcal{V} such that $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{2}\right)=k+2, \operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{3}\right)=k+3$ and $\mathcal{W}+\mathcal{W}_{1} \subset \mathcal{W}+\mathcal{W}_{2} \subset \mathcal{W}+\mathcal{W}_{3}$.
Case 2: $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{1}\right)=k+2$. There exist two subspaces $\mathcal{W}_{2}, \mathcal{W}_{3}$ of \mathcal{V} such that $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{2}\right)=k+1, \operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{3}\right)=k+3$ and $\mathcal{W}+\mathcal{W}_{2} \subset \mathcal{W}+\mathcal{W}_{1} \subset \mathcal{W}+\mathcal{W}_{3}$.
Case 3: $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{1}\right)=k+3$. There exist two subspaces $\mathcal{W}_{2}, \mathcal{W}_{3}$ of \mathcal{V} such that $\operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{2}\right)=k+1, \operatorname{dim}\left(\mathcal{W}+\mathcal{W}_{3}\right)=k+2$ and $\mathcal{W}+\mathcal{W}_{2} \subset \mathcal{W}+\mathcal{W}_{3} \subset \mathcal{W}+\mathcal{W}_{1}$.

Thus in all the cases we can form a triangle with the vertices $\mathcal{W}_{1}, \mathcal{W}_{2}, \mathcal{W}_{3}$.
(vi) Since $\operatorname{dim}(\mathcal{V})-\operatorname{dim}(\mathcal{W}) \geq 2$, there exist two linearly independent vectors $u, v \in \mathcal{V} \backslash \mathcal{W}$ such that $\operatorname{Span}\{u\} \nsim \operatorname{Span}\{v\}$ in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$.

Theorem 2.3. Let \mathcal{W} be a subspace of a vector space \mathcal{V} such that $\operatorname{dim}(\mathcal{V})-$ $\operatorname{dim}(\mathcal{W}) \geq 3$. Then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is connected and $\operatorname{diam}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right) \leq 3$.

Proof. Let $\operatorname{dim}(\mathcal{W})=k$ and $\mathcal{W}_{1}, \mathcal{W}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$. If $\mathcal{W}_{1}+\mathcal{W} \subset \mathcal{W}_{2}+\mathcal{W}$ or $\mathcal{W}_{2}+\mathcal{W} \subset \mathcal{W}_{1}+\mathcal{W}$, then $\mathcal{W}_{1} \sim \mathcal{W}_{2}$ and $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)=1$. If $\mathcal{W}_{1} \nsim \mathcal{W}_{2}$, then we have the following cases:
Case 1: $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)=k+1$.
Subcase 1: $\mathcal{W}_{1}+\mathcal{W}=\mathcal{W}_{2}+\mathcal{W}$. There exist $w \in \mathcal{V} \backslash\left(\mathcal{W}_{1}+\mathcal{W}\right)$ and $\left(\mathcal{W}_{1}+\mathcal{W}\right) \subset\left(\operatorname{Span}\{w\}+\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{W}\right) \supset\left(\mathcal{W}_{1}+\mathcal{W}\right)$ such that $\mathcal{W}_{1} \sim$ $\left(\mathcal{W}_{1}+\mathcal{W}_{2}+\operatorname{Span}\{w\}\right) \sim \mathcal{W}_{2}$ is a path in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ and $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)=2$.
Subcase 2: $\mathcal{W}_{1}+\mathcal{W} \neq \mathcal{W}_{2}+\mathcal{W}$. Then $\left(\mathcal{W}_{1}+\mathcal{W}\right) \subset\left(\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{W}\right) \supset\left(\mathcal{W}_{2}+\right.$ \mathcal{W}) and $\mathcal{W}_{1} \sim\left(\mathcal{W}_{1}+\mathcal{W}_{2}\right) \sim \mathcal{W}_{2}$ is a path in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ and $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)=2$.
Case 2: $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=k+1$ and $\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)>k+1$.
Let $u \in \mathcal{W}_{2}+\mathcal{W} \backslash \mathcal{W}_{1}+\mathcal{W}$ and $\langle u\rangle+\mathcal{W}=\mathcal{W}_{3}$. Since $\operatorname{dim}\left(\mathcal{W}_{1}+\right.$ $\left.\mathcal{W}_{3}+\mathcal{W}\right)=k+2, \mathcal{W}_{1}+\mathcal{W}_{3}+\mathcal{W} \neq \mathcal{V}$ and $\mathcal{W}_{3}+\mathcal{W} \subset \mathcal{W}_{2}+\mathcal{W}$, we have $\mathcal{W}_{1} \sim \mathcal{W}_{1}+\mathcal{W}_{3} \sim \mathcal{W}_{3} \sim \mathcal{W}_{2}$. Hence d $\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right) \leq 3$.
Case 3: $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)>k+1$ and $\operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)>k+1$.

Subcase 1: $\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{W} \neq \mathcal{V}$ or $\left(\mathcal{W}_{1}+\mathcal{W}\right)+\left(\mathcal{W}_{2}+\mathcal{W}\right) \neq \mathcal{W}$. Then $\mathcal{W}_{1} \sim \mathcal{W}_{1}+\mathcal{W}_{2} \sim \mathcal{W}_{2}$ or $\mathcal{W}_{1} \sim\left(\mathcal{W}_{1}+\mathcal{W}\right) \cap\left(\mathcal{W}_{2}+\mathcal{W}\right) \sim \mathcal{W}_{2}$.
Subcase 2: $\mathcal{W}_{1}+\mathcal{W}_{2}+\mathcal{W}=\mathcal{V}$ and $\left(\mathcal{W}_{1}+\mathcal{W}\right) \cap\left(\mathcal{W}_{2}+\mathcal{W}\right)=\mathcal{W}$. Let $v \in \mathcal{W}_{2} \backslash \mathcal{W}$. Since $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)>k+1, \operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)>k+1$ and $\mathcal{W}_{1}+\mathcal{W}+\mathcal{W}_{2}+\mathcal{W}=\mathcal{V},\left(\mathcal{W}_{1}+\mathcal{W}\right) \cap\left(\mathcal{W}_{2}+\mathcal{W}\right)=\mathcal{W}$, we have $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)<n-1, \operatorname{dim}\left(\mathcal{W}_{2}+\mathcal{W}\right)<n-1$, and $\mathcal{W}_{1}+\langle v\rangle+\mathcal{W} \neq \mathcal{V}$, $\mathcal{W}_{1} \sim \mathcal{W}_{1}+\langle v\rangle \sim\langle v\rangle \sim \mathcal{W}_{2}$.
Hence $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is connected and $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right) \leq 3$.

Theorem 2.4. If \mathcal{W} is a subspace of a vector space \mathcal{V} such that $\operatorname{dim}(\mathcal{V})-$ $\operatorname{dim}(\mathcal{W}) \geq 3$, then $\operatorname{diam}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=3$.

Proof. Let \mathcal{W} be a k dimensional subspace of \mathcal{V} and $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a basis of \mathcal{W}. This linearly independent subset can be extended to a basis for \mathcal{V}. Let $\left\{w_{1}, w_{2}, \ldots, w_{k}, \ldots, w_{n}\right\}$ be a basis for \mathcal{V} and $\mathcal{W}_{1}=\operatorname{Span}\left\{w_{k+1}\right\}$, $\mathcal{W}_{2}=\operatorname{Span}\left\{w_{k+2}, w_{k+3}, \ldots, w_{n}\right\}$. Clearly, $\mathcal{W}_{1}, \mathcal{W}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right), \mathcal{W}_{1} \nsim \mathcal{W}_{2}$ and $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right) \neq 1$. If $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)=2$, then there exists $\mathcal{W}_{3} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right) \backslash$ $\left\{\mathcal{W}_{1}, \mathcal{W}_{2}\right\}$ such that $\mathcal{W}_{1} \sim \mathcal{W}_{3} \sim \mathcal{W}_{2}$ is a path in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. Since $\mathcal{W}_{1} \sim \mathcal{W}_{3}$, either $\mathcal{W}_{1}+\mathcal{W} \subset \mathcal{W}_{3}+\mathcal{W}$ or $\mathcal{W}_{1}+\mathcal{W} \supset \mathcal{W}_{3}+\mathcal{W}$. If $\mathcal{W}_{1}+\mathcal{W} \supset \mathcal{W}_{3}+\mathcal{W}$, then $\mathcal{W}_{3} \nsim \mathcal{W}_{2}$ as $\left(\mathcal{W}_{1}+\mathcal{W}\right) \cap\left(\mathcal{W}_{2}+\mathcal{W}\right)=\mathcal{W}$. Thus $\mathcal{W}_{1}+\mathcal{W} \subset \mathcal{W}_{3}+\mathcal{W}$. Again since $\mathcal{W}_{3} \sim \mathcal{W}_{2}$, either $\mathcal{W}_{2}+\mathcal{W} \subset \mathcal{W}_{3}+\mathcal{W}$ or $\mathcal{W}_{2}+\mathcal{W} \supset \mathcal{W}_{3}+\mathcal{W}$. If $\mathcal{W}_{2}+\mathcal{W} \supset \mathcal{W}_{3}+\mathcal{W}$, then $\mathcal{W}_{3} \nsim \mathcal{W}_{1}$ as $\left(\mathcal{W}_{1}+\mathcal{W}\right) \cap\left(\mathcal{W}_{2}+\mathcal{W}\right)=\mathcal{W}$. Thus $\mathcal{W}_{2}+\mathcal{W} \subset \mathcal{W}_{3}+\mathcal{W}$. Therefore we find that $\mathcal{W}_{3}+\mathcal{W}$ is a subspace of \mathcal{V} which contains $\mathcal{W}_{1}+\mathcal{W}$ as well as $\mathcal{W}_{2}+\mathcal{W}$ i.e., $\mathcal{W}_{3}+\mathcal{W}=\mathcal{V}$, a contradiction. Thus $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right) \geq 3$ and by Theorem 2.3 , we get $\mathrm{d}\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right) \leq 3$. Thus $\operatorname{diam}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=3$.

The following lemmas are essential to prove our next theorem.
Lemma 2.5. If \mathcal{W} is a subspace of a vector space \mathcal{V} such that $\operatorname{dim}(\mathcal{V})-$ $\operatorname{dim}(\mathcal{W})=3$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ does not contain any cycle of odd length.

Proof. Suppose that $\mathcal{W}_{1} \sim \mathcal{W}_{2} \sim \cdots \sim \mathcal{W}_{k} \sim \mathcal{W}_{1}$ is a cycle of odd length in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. Since $\operatorname{dim}(\mathcal{V})-\operatorname{dim}(\mathcal{W})=3$, the dimension of each $\mathcal{W}_{i}+\mathcal{W}$ is either $\operatorname{dim}(\mathcal{W})+1$ or $\operatorname{dim}(\mathcal{W})+2$ since any two distinct vertices $\mathcal{W}_{1}, \mathcal{W}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{W}_{1}+\mathcal{W}=\mathcal{W}_{2}+\mathcal{W}$ are not adjacent in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. Without loss of generality we may assume that $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\operatorname{dim}(\mathcal{W})+1$ and we get $\operatorname{dim}\left(\mathcal{W}_{k}+\mathcal{W}\right)=\operatorname{dim}(\mathcal{W})+1$ and $\mathcal{W}_{1} \nsim \mathcal{W}_{k}$, which is a contradiction. Hence $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ does not contain any cycle of odd length.

Lemma 2.6. Let \mathcal{N} be a clique in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. Then $\{\mathcal{U}+\mathcal{W} \mid \mathcal{U} \in \mathcal{N}\}$ is a chain of subspaces of \mathcal{V}.

Proof. The proof is trivial.
Theorem 2.7. Let \mathcal{W} be a subspace of a finite dimensional vector space \mathcal{V}. Then $\operatorname{dim}(\mathcal{V})-(\operatorname{dim}(\mathcal{W})+1)=m$ if and only if $\omega\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=m$, where $m=\operatorname{dim}(\mathcal{V})-(\operatorname{dim}(\mathcal{W})+1)$.

Proof. Let \mathcal{W} be a k-dimensional subspace of n-dimensional vector space \mathcal{V} and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\},\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n-1}\right\}$ be the bases of \mathcal{W} and \mathcal{V}, respectively. Let $\mathcal{W}_{j}=\left\langle v_{1}, v_{2}, \ldots, v_{j}\right\rangle$ for $j=k+1, k+2, \ldots, n$. Clearly, $\mathcal{N}=\left\{\mathcal{W}_{k+1}, \mathcal{W}_{k+2}, \ldots, \mathcal{W}_{n-1}\right\}$ is a clique. If possible, let $\mathcal{N} \cup\left\{\mathcal{W}^{\prime}\right\}$ be a clique where $\mathcal{W}^{\prime} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right) \backslash \mathcal{N}$. Thus by Lemma 2.6, there exists $i \in\{k+1, k+$ $2, \ldots, n-2\}$ such that $\mathcal{W}_{i} \subset \mathcal{W}^{\prime}+\mathcal{W} \subset \mathcal{W}_{i+1}$. Since the inclusion is proper and \mathcal{V} is finite dimensional, we have $\operatorname{dim}\left(\mathcal{W}_{i}\right)<\operatorname{dim}\left(\mathcal{W}^{\prime}+\mathcal{W}\right)<\operatorname{dim}\left(\mathcal{W}_{i+1}\right)$, i.e., $i<\operatorname{dim}\left(\mathcal{W}^{\prime}+\mathcal{W}\right)<i+1$, a contradiction. Thus \mathcal{N} is a clique of size $n-(k+1)$. If possible, let $\mathcal{N}^{\prime}=\left\{\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots, \mathcal{U}_{n-k}\right\}$ be a clique of size $n-k$ and $\mathcal{U}_{1}+\mathcal{W} \subset \mathcal{U}_{2}+\mathcal{W} \subset \cdots \subset \mathcal{U}_{n-k}+\mathcal{W}$. Again as \mathcal{V} is finite dimensional and each inclusion is proper, we have $\operatorname{dim}(\mathcal{W})<\operatorname{dim}\left(\mathcal{U}_{1}+\mathcal{W}\right)<\operatorname{dim}\left(\mathcal{U}_{2}+\mathcal{W}\right)<$ $\cdots<\operatorname{dim}\left(\mathcal{U}_{n-k}+\mathcal{W}\right)$. Since $\operatorname{dim}\left(\mathcal{U}_{i}+\mathcal{W}\right)$ are distinct integers between $k+1$ and $n-1$, we have $n-k$ integers in $[k+1, n-1]$, a contradiction. Thus, $\omega\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=n-(k+1)$.

Conversely, suppose that $\omega\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=m$. Let $\operatorname{dim}(\mathcal{V})-(\operatorname{dim}(\mathcal{W})+1)=$ $p \neq m$. Then by the directed part, $\omega\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=p$ and hence $p=m$. This completes the proof.

Theorem 2.8. If \mathcal{W} is a k-dimensional subspace of an n-dimensional vector space \mathcal{V}, then $\chi\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=n-k-1$.
Proof. By Theorem 2.7, $\omega\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=n-k-1$, and therefore $\chi\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right) \geqslant$ $n-k-1$. To show the equality, we demonstrate a $(n-k-1)$ colouring of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$. For any $\mathcal{U} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$, if $\operatorname{dim}(\mathcal{U}+\mathcal{W})=k+j$, then color \mathcal{U} with the j th color. This coloring is proper since by Lemma 2.6, any two $\mathcal{U}_{1}, \mathcal{U}_{2} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\operatorname{dim}\left(\mathcal{U}_{2}+\mathcal{W}\right)=\operatorname{dim}\left(\mathcal{U}_{1}+\mathcal{W}\right)=k+j$ are never adjacent and hence the theorem follows.

Theorem 2.9. If \mathcal{W} is a k-dimensional subspace of an n-dimensional vector space \mathcal{V}, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ contains a graph \mathcal{G}^{\prime} such that $\mathcal{G}^{\prime} \cong \mathcal{J}_{n-k}(\mathcal{V} / \mathcal{W})$.

Proof. We know that proper subspaces of \mathcal{V} containing \mathcal{W} are in one-toone correspondence with the nontrivial subspaces of $\mathcal{V} / \mathcal{W}$, i.e., $\mathfrak{A}=\{\mathcal{U} \subset$ $\mathcal{V} \mid \mathcal{W}<\mathcal{U}<\mathcal{V}\} \longleftrightarrow \mathfrak{B}=\left\{\mathcal{U}^{\prime} \subset \mathcal{V} / \mathcal{W} \mid(0)<\mathcal{U}^{\prime}<\mathcal{V} / \mathcal{W}\right\}$. Clearly, $\mathfrak{A} \subseteq \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ and $\mathfrak{B}=\mathcal{V}\left(\mathcal{J}_{n}(\mathcal{V} / \mathcal{W})\right)$. Now if we define \mathcal{G}^{\prime} on \mathfrak{A} by $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})[\mathfrak{A}]$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})[\mathfrak{A}] \cong \mathcal{J}_{n-k}(\mathcal{V} / \mathcal{W})$ and hence the theorem follows.

Theorem 2.10. If \mathcal{W} is a k-dimensional subspace of an n-dimensional vector space \mathcal{V} such that $n-k \geq 3$, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is not planar.
Proof. We know that by Theorem 2.9, $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ contains a graph \mathcal{G}^{\prime} such that $\mathcal{G}^{\prime} \cong \mathcal{J}_{n-k}(\mathcal{V} / \mathcal{W})$, by Theorem 5.2 of $[7], \mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ contains a graph which is not planar, and by Kuratowski's theorem, $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is not planar.

Theorem 2.11. Let \mathcal{W}_{1} and \mathcal{W}_{2} be two subspaces of a finite dimensional vector space \mathcal{V}. Then $\mathcal{J}_{n}\left(\mathcal{W}_{1}\right) \simeq \mathcal{J}_{n}\left(\mathcal{W}_{2}\right)$ if and only if $\operatorname{dim}\left(\mathcal{W}_{1}\right)=\operatorname{dim}\left(\mathcal{W}_{2}\right)$.

Proof. Suppose that \mathcal{W}_{1} and \mathcal{W}_{2} are two k-dimensional subspaces of an n-dimensional vector space \mathcal{V} and let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be
the bases for $\mathcal{W}_{1}, \mathcal{W}_{2}$, respectively and $\mathfrak{A}=\left\{u_{1}, u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}\right\}$, $\mathfrak{B}=\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ be the extended bases for \mathcal{V}. Define a map \mathfrak{f} : $\mathfrak{A} \longrightarrow \mathfrak{B}$ by $\mathfrak{f}\left(u_{i}\right)=v_{i}$ for $i=1,2, \ldots, n$. Clearly, the map $\mathfrak{g}: \mathcal{V}\left(\mathcal{J}_{n}\left(\mathcal{W}_{1}\right)\right) \longrightarrow$ $\mathcal{V}\left(\mathcal{J}_{n}\left(\mathcal{W}_{2}\right)\right)$ defined by $\mathfrak{g}(\mathcal{U})=\mathfrak{f}(\mathcal{U})$ for $\mathcal{U} \in \mathcal{V}\left(\mathcal{J}_{n}\left(\mathcal{W}_{1}\right)\right)$ is bijective and adjacency preserving and hence $\mathcal{J}_{n}\left(\mathcal{W}_{1}\right) \simeq \mathcal{J}_{n}\left(\mathcal{W}_{2}\right)$.

Conversely, assume that $\mathcal{J}_{n}\left(\mathcal{W}_{1}\right) \simeq \mathcal{J}_{n}\left(\mathcal{W}_{2}\right)$ and $\operatorname{dim}\left(\mathcal{W}_{1}\right)=k_{1}, \operatorname{dim}\left(\mathcal{W}_{2}\right)=$ k_{2}. Then by Theorem 2.7, $\omega\left(\mathcal{J}_{n}^{\mathcal{W}_{1}}(\mathcal{V})\right)$ and $\omega\left(\mathcal{J}_{n}^{\mathcal{W}_{2}}(\mathcal{V})\right)$ are $n-k_{1}-1$ and $n-k_{2}-1$, respectively. Since $\mathcal{J}_{n}\left(\mathcal{W}_{1}\right) \simeq \mathcal{J}_{n}\left(\mathcal{W}_{2}\right)$, we have $n-k_{1}-1=n-k_{2}-1$ and hence $k_{1}=k_{2}$.

3. When the base field \mathbb{F} is finite

In this section, we study some basic properties of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{W})$ if the base field \mathbb{F} is finite, i.e., $|\mathbb{F}|=q$ and $q=p^{r}$ for some prime p.

Theorem 3.1. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a finite field \mathbb{F} with q elements. Then the set containing those subspaces \mathcal{U} of \mathcal{V} such that $\mathcal{U}+\mathcal{W}=\mathcal{V}$ i.e., $\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}$ has $\left(\sum_{r=0}^{k-1} n_{r}+1\right)$ elements, where

$$
n_{r}=\frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)} .
$$

Proof. Since $\operatorname{dim}(\mathcal{W})=k<n$ for any subspace $\mathcal{W}^{\prime} \in\{\mathcal{U} \subset \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}$ of \mathcal{V} has dimension at least $n-k$, i.e., if $\mathcal{W}^{\prime} \in\{\mathcal{U} \subset \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}$, then $\operatorname{dim}\left(\mathcal{W}^{\prime}\right)=n-k+r$ and $\operatorname{dim}\left(\mathcal{W}^{\prime} \cap \mathcal{W}\right)=r$ where $0 \leq r \leq k-1$. To find such subspaces \mathcal{W}^{\prime}, we choose r linearly independent vectors from \mathcal{W} and $n-k$ linearly independent vectors from $\mathcal{V} \backslash \mathcal{W}$, and generate \mathcal{W}^{\prime} with these $n-k+r$ linearly independent vectors. Since the number of ways we can choose r linearly independent vectors from \mathcal{W} is $\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)$, the number of ways we can choose $n-k$ linearly independent vectors from $\mathcal{V} \backslash \mathcal{W}$ is $\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)$. The number of bases of an $(n-k+r)$ dimensional subspace is $\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)$, the number of subspaces \mathcal{W}^{\prime} with $\operatorname{dim}\left(\mathcal{W}^{\prime}\right)=n-k+r$ and $\operatorname{dim}\left(\mathcal{W} \cap \mathcal{W}^{\prime}\right)=r$ is

$$
n_{r}=\frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)} .
$$

If $r=k$, then \mathcal{V} is the only subspace which satisfies the given condition. Since $0 \leq r \leq k-1$,

$$
|\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}|=\sum_{r=0}^{k-1} n_{r}+1
$$

Theorem 3.2. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a finite field \mathbb{F} of order q. Then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is a graph of
order $\mathcal{G}(n, q)-\left(\mathcal{G}(k, q)+\sum_{r=0}^{k-1} n_{r}+1\right)$, where

$$
n_{r}=\frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)}
$$

and $\mathcal{G}(n, q)$ is the Galois number. In particular, when $\mathcal{W}=(0)$, the order of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is $\mathcal{G}(n, q)-2$.

Proof. By the definition of the graph $\left.\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V}), \mathcal{V} \mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)=\{\mathcal{U} \subset \mathcal{V}\} \backslash\left(\left\{\mathcal{U}^{\prime} \subset\right.\right.$ $\mathcal{W}\} \cup\{\mathcal{U} \subset \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\})$. Since the number of r-dimensional subspaces of a n-dimensional vector space over a finite field of order q is the binomial coefficient (see [7])

$$
\left[{ }_{r}^{n}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)},
$$

the total number of subspaces of \mathcal{V} is given by

$$
\sum_{r=0}^{n}\left[\begin{array}{r}
n \\
r
\end{array}\right]_{q}=\mathcal{G}(n, q)-2 .
$$

Similarly, the total number of subspaces of \mathcal{W} is given by

$$
\sum_{r=0}^{k}\left[{ }_{r}^{k}\right]_{q}=\mathcal{G}(k, q)-2 .
$$

By Theorem 3.1, $\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}$ has $\sum_{r=0}^{k-1} n_{r}+1$ elements, where

$$
n_{r}=\frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)} .
$$

Since $\left\{\mathcal{U}^{\prime} \subset \mathcal{W}\right\} \cap\{\mathcal{U} \subseteq \mathcal{V} \mid \mathcal{U}+\mathcal{W}=\mathcal{V}\}=\varnothing$, the order of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is $\mathcal{G}(n, q)-\left(\mathcal{G}(k, q)+\sum_{r=0}^{k-1} n_{r}+1\right)$, where

$$
n_{r}=\frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{r-1}\right)\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \cdots\left(q^{n}-q^{n-1}\right)}{\left(q^{n-k+r}-1\right)\left(q^{n-k+r}-q\right) \cdots\left(q^{n-k+r}-q^{n-k+r-1}\right)}
$$

and $\mathcal{G}(n, q)$ is the Galois number. Trivially, when $\mathcal{W}=(0)$, the order of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is $\mathcal{G}(n, q)-2$.

Theorem 3.3. Let \mathcal{W} be a k-dimensional subspace of a n-dimensional vector space of \mathcal{V} over a finite field \mathbb{F} of order q and $\mathcal{U} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\operatorname{dim}(\mathcal{U}+\mathcal{W})=l$. Then

$$
\operatorname{deg}(\mathcal{U})=\sum_{r=1}^{l-k-1}\left[{ }_{r}^{l-k}\right]_{q}\left(\sum_{i=0}^{k-1} n_{i}+1\right)+\sum_{s=1}^{n-l-1}\left[{ }_{s}^{n-l}\right]_{q}\left(\sum_{i=0}^{k-1} p_{i}+1\right),
$$

where

$$
\begin{aligned}
n_{i}= & \frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{i-1}\right)}{\left(q^{r+i}-1\right)\left(q^{r+i}-q\right)} \\
& \quad \times \frac{\left(q^{k+r}-q^{k}\right)\left(q^{k+r}-q^{k+1}\right) \cdots\left(q^{k+r}-q^{k+r-1}\right)}{\left(q^{r+i}-q^{2}\right) \cdots\left(q^{r+i}-q^{r+i-1}\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
p_{i}= & \frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{i-1}\right)}{\left(q^{l+s-k+i}-1\right)\left(q^{l+s-k+i}-q\right)} \\
& \quad \times \frac{\left(q^{l+s}-q^{k}\right)\left(q^{l+s}-q^{k+1}\right) \cdots\left(q^{l+s}-q^{l+s-1}\right)}{\left(q^{l+s-k+i}-q^{2}\right) \cdots\left(q^{l+s-k+i}-q^{l+s-k+i-1}\right)}
\end{aligned}
$$

Proof. First we find the subspaces of \mathcal{V} which properly contains \mathcal{W} as a subspace and properly contained in $\mathcal{U}+\mathcal{W}$. We know that there is a one-to-one correspondence between the $(k+r)$-dimensional subspaces of $\mathcal{U}+\mathcal{W}$ containing \mathcal{W} and the r-dimensional subspaces of $(\mathcal{U}+\mathcal{W}) / \mathcal{W}$, i.e., $\mathfrak{A}=$ $\{\mathcal{A} \mid \mathcal{W}<\mathcal{A}<\mathcal{U}+\mathcal{W}\} \longleftrightarrow \mathfrak{B}=\{\mathcal{B} \mid(0)<\mathcal{B}<(\mathcal{U}+\mathcal{W}) / \mathcal{W}\}$. It may be noted that the number of r-dimensional subspaces of $(l-k)$-dimensional vector space $(\mathcal{U}+\mathcal{W}) / \mathcal{W}$ over a finite field of order q is the binomial coefficient

$$
\left[{ }_{r}^{l-k}\right]_{q}=\frac{\left(q^{l-k}-1\right)\left(q^{l-k-1}-1\right) \cdots\left(q^{l-k-r+1}-1\right)}{\left(q^{r}-1\right)\left(q^{r-1}-1\right) \cdots(q-1)}
$$

Corresponding to each r-dimensional subspace in \mathfrak{B}, there is a $(k+r)$ dimensional subspace in \mathfrak{A} and therefore the number of $(k+r)$-dimensional subspaces in \mathfrak{A} is given by

$$
\left[{ }_{r}^{l-k}\right]_{q}=\frac{\left(q^{l-k}-1\right)\left(q^{l-k-1}-1\right) \cdots\left(q^{l-k-r+1}-1\right)}{\left(q^{r}-1\right)\left(q^{r-1}-1\right) \cdots(q-1)}
$$

Let $\mathcal{W}^{\prime} \in \mathfrak{A}$ be a $(k+r)$-dimensional subspace of $\mathcal{U}+\mathcal{W}$. If $\mathcal{W}_{i} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{W}_{i}+\mathcal{W}=\mathcal{W}^{\prime}$, then $\mathcal{W}_{i} \subseteq \mathcal{W}^{\prime}$. Therefore by Theorem 3.1, the number of $\mathcal{W}_{i} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{W}_{i}+\mathcal{W}=\mathcal{W}^{\prime}$ is given by $\sum_{i=0}^{k-1} n_{i}$, where

$$
\begin{aligned}
n_{i}= & \frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{i-1}\right)}{\left(q^{r+i}-1\right)\left(q^{r+i}-q\right)} \\
& \quad \times \frac{\left(q^{k+r}-q^{k}\right)\left(q^{k+r}-q^{k+1}\right) \cdots\left(q^{k+r}-q^{k+r-1}\right)}{\left(q^{r+i}-q^{2}\right) \cdots\left(q^{r+i}-q^{r+i-1}\right)}
\end{aligned}
$$

Therefore, we have $\left[{ }_{r}^{l-k}\right]_{q}-(k+r)$-dimensional subspaces, where $r=1$, $2, \ldots, l-k-1$. Thus the number of subspaces $\mathcal{U}^{\prime} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{U}^{\prime}+\mathcal{W} \subset \mathcal{U}+\mathcal{W}$ is $\sum_{r=1}^{l-k-1}\left[{ }_{r}^{l-k}\right]_{q}\left(\sum_{i=0}^{k-1} n_{i}+1\right)$. Now we find the subspaces of \mathcal{V} which properly contains $\mathcal{U}+\mathcal{W}$ as a subspace and is properly contained in \mathcal{V}. There is a a one-to-one correspondence between the $(l+s)$-dimensional subspace of \mathcal{V} containing $\mathcal{U}+\mathcal{W}$ and the s-dimensional subspace of $\mathcal{V} /(\mathcal{U}+\mathcal{W})$, i.e., $\mathfrak{C}=\left\{\mathcal{A}^{\prime} \mid \mathcal{U}+\mathcal{W}<\mathcal{A}^{\prime}<\mathcal{V}\right\} \longleftrightarrow \mathfrak{D}=\left\{\mathcal{B}^{\prime} \mid(\mathcal{U}+\mathcal{W})<\mathcal{B}<\mathcal{V} /(\mathcal{U}+\mathcal{W})\right\}$.

Note that the number of s-dimensional subspaces of the $(n-l)$-dimensional vector space $\mathcal{V} /(\mathcal{U}+\mathcal{W})$ over a finite field of order q is the binomial coefficient

$$
\left[{ }_{s}^{n-l}\right]_{q}=\frac{\left(q^{n-l}-1\right)\left(q^{n-l-1}-1\right) \cdots\left(q^{n-l-s+1}-1\right)}{\left(q^{s}-1\right)\left(q^{s-1}-1\right) \cdots(q-1)}
$$

Corresponding to each s-dimensional subspace in \mathfrak{D}, there is a $(l+s)$ dimensional subspace in \mathfrak{C}. Therefore the number of $(l+s)$-dimensional subspaces in \mathfrak{C} is given by

$$
\left[{ }_{s}^{n-l}\right]_{q}=\frac{\left(q^{n-l}-1\right)\left(q^{n-l-1}-1\right) \cdots\left(q^{n-l-s+1}-1\right)}{\left(q^{s}-1\right)\left(q^{s-1}-1\right) \cdots(q-1)}
$$

Let $\mathcal{W}^{\prime} \in \mathfrak{C}$ be a $(l+s)$-dimensional subspaces of \mathcal{V}. If $\mathcal{W}_{i} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{W}_{i}+\mathcal{W}=\mathcal{W}^{\prime}$, then $\mathcal{W}_{i} \subseteq \mathcal{W}^{\prime}$. Therefore by Theorem 3.1, the number of $\mathcal{W}_{i} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{W}_{i}+\mathcal{W}=\mathcal{W}^{\prime}$ is given by $\sum_{i=0}^{k-1} p_{i}+1$, where

$$
\begin{aligned}
p_{i}= & \frac{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{i-1}\right)}{\left(q^{l+s-k+i}-1\right)\left(q^{l+s-k+i}-q\right)} \\
& \quad \times \frac{\left(q^{l+s}-q^{k}\right)\left(q^{l+s}-q^{k+1}\right) \cdots\left(q^{l+s}-q^{l+s-1}\right)}{\left(q^{l+s-k+i}-q^{2}\right) \cdots\left(q^{l+s-k+i}-q^{l+s-k+i-1}\right)} .
\end{aligned}
$$

Therefore we have $\left[{ }_{s}^{n-l}\right]_{q}-(l+s)$-dimensional subspaces, where $s=1$, $2, \ldots, n-l-1$. Thus the number of subspaces $\mathfrak{U}^{\prime} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\mathcal{U}+\mathcal{W} \subset \mathfrak{U}^{\prime}+\mathcal{W}$ is $\sum_{s=1}^{n-l-1}\left[{ }_{s}^{n-l}\right]_{q}\left(\sum_{i=0}^{k-1} p_{i}+1\right)$. Hence

$$
\operatorname{deg}(\mathcal{U})=\sum_{r=1}^{l-k-1}\left[{ }_{r}^{l-k}\right]_{q}\left(\sum_{i=0}^{k-1} n_{i}+1\right)+\sum_{s=1}^{n-l-1}\left[{ }_{s}^{n-l}\right]_{q}\left(\sum_{i=0}^{k-1} p_{i}+1\right) .
$$

Theorem 3.4. Let \mathcal{W} be a k-dimensional subspace of an n-dimensional vector space \mathcal{V} over a finite field with q elements. Then the following statements hold.
(i) If q is odd, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is Eulerian.
(ii) If q is even, then $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is Eulerian if and only if $n-k$ even.

Proof. (i) It can be easily seen that from [11, Proposition 7.1, p. 25]: $G(n+$ $1, q)=2 G(n, q)+\left(q^{n}-1\right) G(n-1, q)$ with $G(0, q)=1$ and $G(1, q)=2$. Thus if q is odd, then all Galois numbers are even. Let $\mathcal{W} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that $\operatorname{dim}\left(\mathcal{W}_{1}+\mathcal{W}\right)=\ell$. Thus by Theorem 3.3, $\operatorname{deg}(\mathcal{U})$ in $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is

$$
(G(\ell-k, q)-2)\left(\sum_{i=0}^{k-1} n_{i}+1\right)+((G(n-\ell, q)-2))\left(\sum_{i=0}^{k-1} p_{i}+1\right)
$$

an even number. Thus the degree of each vertex of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is even and hence $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is Eulerien.
(ii) If q is even, then by [11, Proposition 7.1, p. 25], $G(2 m, q)$ is odd and $G(2 m+1, q)$ is even for $m \in \mathbb{N} \cup\{0\}$. Now, if $\mathcal{U} \in \mathcal{V}\left(\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})\right)$ such that
$\operatorname{dim}\left(\mathcal{U}+\mathcal{W}_{1}\right)=\ell$, then $\operatorname{deg}(\mathcal{U})$ is $(G(\ell-k, q)-2)\left(\sum_{i=0}^{k-1} n_{i}+1\right)+((G(n-$ $\ell, q)-2))\left(\sum_{i=0}^{k-1} p_{i}+1\right)$.

If $n-k$ is even, then $G(n-\ell, q)$ and $G(\ell-k, q)$ are both either even or odd and hence the degree of \mathcal{U} is even.

If $n-k$ is odd, then we have the following cases.
Case 1: n is even, k is odd, and ℓ is even.
Then $G(n-\ell, q)$ is odd and $G(\ell-k, q)$ is even, and the degree of \mathcal{U} is odd.
Case 2: n is even, k is odd, and ℓ is odd.
Then $G(n-\ell, q)$ is even and $G(\ell-k, q)$ is odd and the degree of \mathcal{U} is odd.
Case 3: n is odd, k is even and ℓ is even.
Then $G(n-\ell, q)$ is even and $G(\ell-k, q)$ is odd and the degree of \mathcal{U} is odd.
Case 4: n is odd, k is even and ℓ is odd.
Then $G(n-\ell, q)$ is odd and $G(\ell-k, q)$ is even and the degree of \mathcal{U} is odd.
Thus in all the cases degree of \mathcal{U} is odd and hence $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ is not Eulerian.

4. Conclusion

In this paper, we have introduced a subspace based subspace inclusion graph on the vector space $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ of a finite dimensional vector space \mathbb{V} and investigated various interrelationships between $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ (as a graph) and \mathbb{V} (as a vector space). The diameter, girth, clique number, and chromatic number of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ have been studied. It is shown that two subspace based subspace inclusion graphs $\mathcal{J}_{n}^{\mathcal{W}_{1}}(\mathcal{V})$ and $\mathcal{J}_{n}^{\mathcal{W}_{2}}(\mathcal{V})$ are isomorphic if and only if \mathcal{W}_{1} and \mathcal{W}_{2} are isomorphic. Further, some properties of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ have also been obtained when the base field is finite. As an area of further research, one can look into the structure of the automorphism group of $\mathcal{J}_{n}^{\mathcal{W}}(\mathcal{V})$ in case of a finite field.

Acknowledgment

The authors are grateful to the anonymous referee for his/her valuable comments and suggestions, which have helped us improve the previous version of the paper.

References

1. D. F. Anderson and A. Badawi, On the zero-divisor graph of a commutative ring, Comm. Algebra, 36(8) (2008), 3073-3092.
2. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42(1) (2014), 108-121.
3. On the dot product graph of a commutative ring, Comm. Algebra, 43(1) (2015), 43-50.
4. A. Das, Nonzero component graph of a finite demensional vector space, Comm. Algebra, 44(9) (2016), 3918-3926.
5. \qquad , Non-zero component union graph of a finite demensional vector space, Linear Multinear Algebra, 65(6) (2017), 1276-1287.
6. \qquad , Subspace inclusion graph of a vector space, Comm. Algebra, 44 (2016), 47244731.
7. On subspace inclusion graph of a vector space, Linear Multinear Algebra, 66(3) (2018), 554-564.
8. \qquad , On non-zero component graph of vector spaces over finite fields, J. Algebra Appl., 16(1) (2017), 1750007.
9. G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw Hill, Edition New Delhi, 2006.
10. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
11. V. Kac and P. Cheung, Quantum calculus, Springer Universitext, 2001.
12. D. W. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.

Department of Mathematics, Aligarh Muslim University, Aligarh-202002
India
E-mail address: mashraf80@hotmail.com
Department of Mathematics, Aligarh Muslim University, Aligarh-202002
India
E-mail address: mohitkumaramu123@gmail.com
Department of Mathematics, Aligarh Muslim University, Aligarh-202002
India
E-mail address: mohdghulam202@gmail.com

[^0]: Received by the editors February 5, 2019, and in revised form October 25, 2019.
 2010 Mathematics Subject Classification. 13B99,05C07,05C69.
 Key words and phrases. diameter; girth; connected graph; subspace.

