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ON THE FIRST TWO ENTRIES OF THE f-VECTORS OF

6-POLYTOPES

JIN HONG KIM

Abstract. In 1906, Steinitz gave a complete characterization of the
first two entries of the f -vectors of 3-polytopes, while Grünbaum ob-
tained a similar result for 4-polytopes in his well-known book published
in 1967. Recently, Kusunoki and Murai and independently Pineda-
Villavicencio, Ugon, and Yost completely determined the first two entries
of the f -vectors of 5-polytopes. This paper can be regarded as a contin-
uation of their works for 6-polytopes. To be more precise, let k denote
the number of vertices of a 6-polytope. The aim of this paper is to show
that, when the number of edges is greater than or equal to 7

2
(k − 1)

and k ≥ 14, we can completely characterize the first two entries of the
f -vectors of 6-polytopes. As a consequence, for 7 ≤ k ≤ 15 we also give
a complete characterization of the first two entries of the f -vectors of
6-polytopes except for three cases (12, 39), (13, 43), and (15, 47).

1. Introduction

Let P be a convex polytope of dimension d in the Euclidean space Rd, and
let fi(P ) denote the number of i-dimensional faces of P for each 0 ≤ i ≤ d−1.
For the sake of simplicity, in this paper a convex polytope of dimension d
will be often called a d-polytope. Let f(P ) be the f -vector of P given by

f(P ) = (f0(P ), f1(P ), . . . , fd−1(P )),

and, for 0 ≤ i < j ≤ d− 1, let

Edij := {(fi(P ), fj(P )) |P is a convex polytope of dimension d}

From now on, let

Ed := Ed01.
It is one of the fundamental problems in convex geometry to find all

possible f -vectors (in particular, Edij) of a convex d-polytope (refer to [8],

[11], and [12]). For d = 3, it is well-known as in [10] that Steinitz obtained
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all possible f -vectors of 3-polytopes (also refer to [4, Section 10.3]). That
is, he has completely determined E3 by

(1.1) E3 =

{
(v, e)

∣∣∣ 3

2
v ≤ e ≤ 3v − 6

}
.

It then will not be difficult to completely determine all possible f -vectors,
not just E3, of 3-polytopes by using (1.1) together with Euler’s formula.

On the other hand, for polytopes of dimension greater than or equal to 4,
a complete characterization of f -vectors is still elusive. However, we remark
that there are some works of Grünbaum, Barnette, Barnette and Reay, and
Sjöberg and Ziegler for the determination of the sets E4ij (see [1], [2], [4], and

[9]). In particular, for d ≥ 4 it is easy to obtain

(1.2)
d

2
f0(P ) ≤ f1(P ) ≤

(
f0(P )

2

)
.

In [4], Grünbaum proved that

E4 =

{
(v, e)

∣∣∣ 2v ≤ e ≤ (v
2

)}
\{(6, 12), (7, 14), (8, 17), (10, 20)}.

In higher dimensions, it is pretty much expected that the situation is
more complicated (refer to [12]). Nonetheless, recently Kusunoki and Murai
and independently Pineda-Villavicencio, Ugon, and Yost gave a complete
characterization of E5 in [5, Theorem 1.2] and [7, Theorem 7.2], as follows.

Theorem 1.1. Let

L5 :=

{(
v,

[
5

2
v + 1

]) ∣∣∣ v ≥ 6

}
,

and let G5 := {(8, 20), (9, 25), (13, 35)}. Then the following identity holds:

E5 =

{
(v, e)

∣∣∣ 5

2
v ≤ e ≤

(
v

2

)}
\(L5 ∪G5).

Here [x] denotes the Gauss function of x, i.e., the largest integer less than
or equal to x.

Our main result of this paper is to give a partial characterization of E6,
as follows.

Theorem 1.2. The following statements hold.

(1){
(v, e)

∣∣∣ 7

2
(v − 1) ≤ e ≤

(
v

2

)
, v ≥ 7

}
\ {(8, 25), (9, 28), (9, 29), (10, 32), (10, 34), (11, 36), (12, 39), (13, 43)}
⊆ E6.
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(2) If the number v of vertices of a 6-polytope is no less than 14, then
E6 restricted to the collection of 6-polytopes whose number of edges
is no less than 7

2(v − 1) coincides with{
(v, e)

∣∣∣ 7

2
(v − 1) ≤ e ≤

(
v

2

)
, v ≥ 14

}
.

Theorem 1.2 provides some new results for the range of the number of
edges of convex 6-polytopes with a given number of vertices. As a conse-
quence, roughly speaking, the remaining values to be determined for convex
6-polytopes are between 3v and 3.5(v−1) and seems to be relatively narrow.
In fact, by using the arguments in this paper we also provide an interest-
ing result for the range of the numbers of convex d-polytopes with a given
number of vertices for any d ≥ 6 (see Corollary 2.10 for more details).

The results and techniques of Kusunoki and Murai in [5] and Pineda-
Villavicencio, Ugon, and Yost in [6] play important roles in the proof of The-
orem 1.2. Especially, the excess degree introduced by Pineda-Villavicencio,
Ugon, and Yost in [6] turns out to be very useful when we want to decide
whether or not a given 6-polytope is actually realized.

In addition, Theorem 1.2 partially answers a question given in [5], and it
is reasonable to expect that we can obtain certain sporadic results further
by the same techniques of this paper. However, it should be remarked that
our main results of this paper also show that the problem of completely
characterizing the first two entries of the f -vectors of 6-polytopes could be
much more complicated compared to that of 5-polytopes.

We organize this paper as follows. In Section 2, we first give some prelim-
inary results necessary for the proofs of our main results, and then complete
the proof of Theorem 1.2. Section 3 is devoted to giving some partial results
for 6-polytopes with a low number of vertices less than 16. To be more
precise, by a case-by-case analysis we completely characterize the first two
entries of the f -vectors of 6-polytopes with a low number of vertices except
for a few cases.

2. Proof of Theorem 1.2: pyramids, truncations, and
6-polytopes

The aim of this section is to construct many new 6-polytopes from 5-
polytopes by taking two well-known procedures of taking a pyramid over a
5-polytope and truncating a 6-polytope along a simple vertex, and give a
proof of Theorem 1.2.

To do so, we first need the following lemma.

Lemma 2.1. Let Q be a pyramid over a convex polytope P of dimension 5
such that

5

2
f0(P ) ≤ f1(P ) ≤

(
f0(P )

2

)
.



ON THE FIRST TWO ENTRIES OF THE f -VECTORS OF 6-POLYTOPES 93

Then (f0(Q), f1(Q)) satisfies

7

2
(f0(Q)− 1) ≤ f1(Q) ≤

(
f0(Q)

2

)
.

Proof. It is easy to see

(2.1) f0(Q) = f0(P ) + 1, f1(Q) = f0(P ) + f1(P ).

For simplicity, let v = f0(P ) and v′ = f0(Q), and let e = f1(P ) and e′ =
f1(Q). It follows from (2.1) that we have

v′ = v + 1, e′ = v + e = v′ − 1 + e.

Thus the inequality 5
2v ≤ e ≤

(
v
2

)
implies the inequality

5

2
(v′ − 1) ≤ 1− v′ + e′ ≤

(
v′ − 1

2

)
,

which is in turn equivalent to

7

2
(v′ − 1) ≤ e′ ≤

(
v′ − 1

2

)
+ (v′ − 1) =

(
v′

2

)
,

as desired. �

As a consequence, it is immediate to see that the following corollary holds.

Corollary 2.2. The following inclusion holds:{
(v, e) | 7

2
(v − 1) ≤ e ≤

(
v

2

)
, v ≥ 7

}
\(M6 ∪G6) ⊂ E6,

where

M6 =

{(
v,

[
7

2
v − 5

2

]) ∣∣∣ v ≥ 7

}
,

G6 = {(9, 28), (10, 34), (14, 48)} .

Proof. By Lemma 2.1, it suffices to note that the pair(
v,

[
5

2
v + 1

])
, v ≥ 6

has to be changed to the pair(
v,

[
7

2
v − 5

2

])
, v ≥ 7

after taking the pyramid over a 5-polytope. Note also that G5 should be
changed to G6 after the procedure of taking the pyramid over a 5-polytope.

�

Recall that the degree deg a of a vertex a of a convex d-polytope P is
the number of edges of P that contain a and that a vertex a is simple if
deg a = d. Let us denote by V (P ) the vertex set of a convex polytope P .
Then the following lemma holds.
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Lemma 2.3. Let P be a convex polytope of dimension 6 such that

(2.2) f1(P ) ≤ 7

2
f0(P )− α, α > 0.

Then there exists at least one simple vertex of P .

Proof. For the proof, note that the degree deg a of every vertex a of P is at
least 6. Suppose on the contrary that deg a is greater than 6 for all vertices
a of P . Then it follows from (2.2) and the well-known identity

f1(P ) =
1

2

∑
a∈V (P )

deg a

that we have
7

2
f0(P ) ≤ f1(P ) ≤ 7

2
f0(P )− α, α > 0.

But clearly this is a contradiction. Therefore, there should exist at least one
vertex a of P whose degree deg a is equal to 6. This completes the proof of
Lemma 2.3. �

By Theorem 1.1, there does not exist a convex 5-polytope in L5. Thus,
simply by taking a pyramid over a convex 5-polytope P in L5 we cannot
obtain a convex 6-polytope Q such that(

f0(Q),

[
7

2
f0(Q)− 5

2

])
∈ E6, f0(Q) ≥ 7.

However, it turns out that the following lemma holds.

Lemma 2.4. The following inclusion holds:{(
v,

[
7

2
v − 5

2

]) ∣∣∣ even v ≥ 14

}
⊂ E6.

Proof. For the proof, note that for any odd integer v ≥ 9 we have (v, 72v −
1
2) ∈ E6 by Corollary 2.2. That is, there is a 6-polytope Q such that f1(Q) =
7
2f0(Q)− 1

2 for any odd f0(Q) ≥ 9. Note also that by Lemma 2.3 there is a
simple vertex a of Q. Thus we can take the truncation tr(Q, a) of Q at the
simple vertex a.

It is well-known that the truncation tr(Q, a) satisfies

f0(tr(Q, a)) = f0(Q) + 5, f1(tr(Q, a)) = f1(Q) +

(
6

2

)
= f1(Q) + 15.

Thus we can obtain a 6-polytope P := tr(Q, a) such that

f1(P )− 15 =
7

2
(f0(P )− 5)− 1

2
.

As a consequence, we have

f1(P ) =
7

2
f0(P )− 3 =

[
7

2
f0(P )− 5

2

]
for any even f0(P ) ≥ 14. This completes the proof of Lemma 2.4. �
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For the case of odd f0(P ) > 13, Lemma 2.5 below also holds. Before
giving a proof of Lemma 2.5, we first need to recall the notion of the excess
degree (or excess number) ζ̄(P ) of a polytope P of dimension d introduced
in [6]:

ζ̄(P ) = 2e− dv =
∑

a∈V (P )

(deg a− d).

It has been shown in [6, Theorem 7 (3)] that for l := v − d ≤ d we have

ζ̄(P ) ≥ (l − 1)(d− l).

Lemma 2.5. The following inclusion holds:{(
v,

[
7

2
v − 5

2

]) ∣∣∣ odd v ≥ 15

}
⊂ E6.

Proof. Let R be a 5-polytope such that

f1(R) =
5

2
f0(R) +

7

2
, odd f0(R) > 7.

Note that such a polytope R exists by Theorem 1.1. Since the excess degree
ζ̄(R) of R is equal to

2f1(R)− 5f0(R) = 7 < f0(R),

there should be a simple vertex in R.
Now, let Q be a pyramid of dimension 6 over R. Since we have

f0(Q) = f0(R) + 1 and f1(Q) = f1(R) + f0(R),

f1(Q) satisfies

f1(Q) =
7

2
f0(Q).

Observe that the polytope Q still has a simple vertex a with its degree equal
to 6. By truncating Q at the simple vertex a, we can obtain a 6-polytope P
such that

f1(P ) =
7

2
f0(P )− 5

2
=

[
7

2
f0(P )− 5

2

]
with odd f0(P ) ≥ 15, as required. �

By Lemmas 2.4 and 2.5, it still remains to determine whether or not the
following pairs

(8, 25), (10, 32), (12, 39)︸ ︷︷ ︸
v even

, (9, 29), (11, 36), (13, 43)︸ ︷︷ ︸
v odd

∈M6

are elements of E6. For some of these cases, we prove the following result in
Section 3.

Lemma 2.6. The following properties hold.

(1) (9, 29) /∈ E6.
(2) (10, 32) /∈ E6.
(3) (11, 36) /∈ E6.
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Proof. For the proofs of (1), (2), and (3), see the proofs of Lemmas 3.2 and
3.3 in Section 3. �

Remark 2.7. We do not know whether or not (12, 39) and (13, 43) are
actually realized as convex 6-polytopes. It seems very difficult to completely
determine those cases for E6.

On the other hand, in order to deal with the elements of G6 we first show
that by a result in [7] the following lemma holds.

Lemma 2.8. For any v ≥ 7, we have

(v, 3v + 1) /∈ E6.

Proof. By a main result of [7], the excess degree ζ̄ = 2f1−df0 of a d-polytope
with (f0, f1) cannot have any natural number between 0 and d− 2. Since

0 < 2(3v + 1)− 6v = 2 < 4 = 6− 2 = d− 2,

any pair (v, 3v + 1) does not belong to E6, as desired. �

The following lemma holds.

Lemma 2.9. The following properties hold.

(1) (8, 25), (9, 28) /∈ E6.
(2) (10, 34) /∈ E6.
(3) (14, 48) ∈ E6.

Proof. (1) By Lemma 2.8, (8, 25) = (8, 3 · 8 + 1) and (9, 28) = (9, 3 · 9 + 1)
are not an element of E6.

(2) Suppose that (10, 34) is realized as a convex 6-polytope P . Then we
have l = 4 and d = 6, and the excess degree satisfies

ζ̄(P ) = 2e− 6v = 8 ≥ (l − 1)(d− l) = 6.

So we cannot apply [6, Theorem 7 (3)] to show that (10, 34) /∈ E6. However,
it follows from [6, Theorem 19] that in this case either P is a triplex with
f1(P ) = 33 or its excess degree ζ̄(P ) = 8 would be at least 3 · 6 − 8 = 10.
Hence, we have (10, 34) /∈ E6.

(3) Let Q be the prism ∆5 × [−1, 1] of dimension 6 over the 5-simplex
∆5. Then we have (f0(Q), f1(Q)) = (12, 36). Now, let P be the 6-polytope
obtained by adding two pyramids over each of two 5-simplices ∆5 × {±1}.
Then we have

(f0(P ), f1(P )) = (14, 48),

as desired. �

Now, we are ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. By combining Corollary 2.2 with Lemmas 2.4, 2.5,
2.6, and 2.9, it is immediately seen that Theorem 1.2 holds. �

By repeatedly applying the procedure of taking the pyramid, staring from
a convex polytope in E6 it is straightforward to obtain the following corollary.
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Corollary 2.10. For each dimension d ≥ 6, the following inclusion holds:

Zd :=

{
(v, e)

∣∣∣ 1

2

(
(2d− 5)v − (d2 − 4d− 5)

)
≤ e ≤

(
v

2

)
, v ≥ d+ 8

}
⊂ Ed.

Proof. We prove the corollary by induction on d. To do so, for each n ≥ 6 let
Q be a convex polytope obtained by taking the pyramid over a polytope P
in Zd, and let (v, e) = (f0(P ), f1(P )) (resp. (v′, e′) = (f0(Q), f1(Q)). Then,
clearly we have

v′ = v + 1, e′ = e+ v.

Thus it is easy to see that the inequality

1

2

(
(2d− 5)v − (d2 − 4d− 5)

)
≤ e ≤

(
v

2

)
, v ≥ d+ 8

is equivalent to

1

2

(
(2d− 5)(v′ − 1)− (d2 − 4d− 5)

)
+ v′ − 1 ≤ e′

≤
(
v′ − 1

2

)
+ v′ − 1, v′ ≥ d+ 9.

That is, we have the inequality

1

2

(
(2d− 3)v′ − (d2 − 2d− 8)

)
≤ e′ ≤

(
v′

2

)
, v′ ≥ (d+ 1) + 8

for Zd+1. This implies that Zd+1 is a subset of Ed+1, as desired. �

3. 6-polytopes with the number of vertices ≤ 15

The aim of this section is to completely characterize the first two entries
of 6-polytopes for 6-polytopes with the number of vertices up to 15, except
for the cases (12, 39), (13, 43), and (15, 47). Here the number 15 is taken
simply because it is a relatively small number that is manageable. This
section may be regarded as an appendix to Section 2.

To do so, we first introduce the set L6 analogous to L5, as follows.

L6 :=
{

(v, 3v + 1)
∣∣∣ v ≥ 8

}
.

For the notational simplicity, we also set

K6 := {(8, 24), (9, 27), (9, 29), (10, 30), (10, 32), (10, 34), (11, 33), (11, 36),

(12, 38), (12, 39), (13, 43), (14, 42), (14, 44), (15, 45), (15, 47)},

X :=

{
(v, e)

∣∣∣ 3v ≤ e ≤ (v
2

)}
\(L6 ∪K6).

Let
Xk := {(v, e) ∈ X | v = k}

for each k ∈ Z. If k ≥ 16, we have

Xk =

{
(k, e)

∣∣∣ 3k ≤ e ≤ (k
2

)}
\ {(k, 3k + 1)} .
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It would be interesting to note the following lemma which enables us to
inductively characterize large classes of E6 and shows some way of treating
cases with (v, e) such that 3v ≤ e ≤ 7

2v − 1.

Lemma 3.1. For k ≥ 16, if Xk ⊂ E6, then Xk+5 ⊂ E6.

Proof. Let P be a convex polytope of dimension 6 with f0(P ) = k and

f1(P ) ≤ 7

2
f0(P )− 1 =

7

2
k − 1.

Then there exists a simple vertex of P by Lemma 2.3. As mentioned above,
by truncating at the simple vertex, we can always make a new convex poly-
tope Q of dimension 6 with

f0(Q) = k + 5, f1(Q) = f1(P ) + 15.

Thus, if Xk ⊂ E6, then we have

E6 ⊃
{

(k + 5, e+ 15) | 3k ≤ e ≤ 7

2
k − 1

}
−
{(

k + 5,

[
7

2
(k + 5)− 5

2

])
, (k + 5, 3(k + 5) + 1)

}
=

{
(k + 5, e) | 3(k + 5) ≤ e ≤ 7

2
((k + 5)− 1)

}
−
{(

k + 5,

[
7

2
(k + 5)− 5

2

])
, (k + 5, 3(k + 5) + 1)

}
.

(3.1)

It then follows from (3.1) and Theorem 1.2 that we have

Xk+5 ⊂ E6,
as desired. �

For simplicity, from now on let k denote the number of vertices of a 6-
polytope. Then, the following series of lemmas hold.

Lemma 3.2. If k = 8, 9, or 10, then E6 coincides with Xk.

Proof. It is easy to obtain that

X8 = {(8, e) | 24 ≤ e ≤ 28, e 6= 24, 25},
X9 = {(9, e) | 27 ≤ e ≤ 36, e 6= 27, 28, 29},
X10 = {(10, e) | 30 ≤ e ≤ 45, e 6= 31, 32, 34}.

First, we show that (8, 24) /∈ E6. To see it, suppose on the contrary that
(8, 24) ∈ E6. In this case, l = 2 ≤ 6 = d. But then we have the excess degree

ζ̄ := 2e− dv = 2 · 24− 6 · 8 = 0 ≥ (l − 1) · (d− l) = 1 · 4.
This is a contradiction. Since (8, 25) ∈ L6, by Theorem 1.2 this completes
the proof for the case X8. The proofs of the cases for X9 and X10 are same
as in the case of X8. �
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Lemma 3.3. If k = 11, then E6 coincides with X11.

Proof. Note that X11 = {(11, e) | 33 ≤ e ≤ 55, e 6= 33, 34, 36}. But, for
case (11, 33), l = 5 ≤ d = 6, and we have ζ̄(P ) = 0. But (l − 1)(d − l)
is equal to 4. So, we have (11, 33) /∈ E6. Moreover, (11, 36) /∈ E6. Indeed,
in the case of (11, 36) its excess degree is equal to 6. So any 6-polytope P
with (f0(P ), f1(P )) = (11, 36) cannot be a triplex by [6, Theorem 7 (iii)].
Moreover, in that case (d = 6 and l = 5) it follows from [6, Theorem 18]
that the excess degree of P should be at least

(l − 1)(d− k) + 2(l − 3) = 8,

which is a contradiction. Since (11, 34) ∈ L6, it follows from Theorem 1.2
that X10 is the same as E6 for k = 11. �

Lemma 3.4. If k = 12 and (12, 39) /∈ E6, then E6 coincides with X12.

Proof. In this case, X12 = {(12, e) | 36 ≤ e ≤ 66, e 6= 37, 38, 39}. We can
show that (12, 36) ∈ E6. Indeed, let P be the triplex that is the prism over
the 5-simplex. Then we have (f0(P ), f1(P )) = (12, 36). On the other hand,
we can show that (12, 38) /∈ E6 by using the same argument as in the case
of (11, 36). Since (12, 37) ∈ L6, it follows from Theorem 1.2 that, when
(12, 39) /∈ E6, X12 is the same as E6 for k = 12. �

Lemma 3.5. If k = 13 and (13, 43) /∈ E6, then E6 coincides with X13.

Proof. Note that X13 = {(13, e) | 39 ≤ e ≤ 78, e 6= 40, 43}. We first show
that (13, 39) /∈ E6. To prove it, suppose that (13, 39) is realized as a convex
6-polytope P . Then its excess degree ζ̄(P ) is equal to zero. Thus P is a
simple polytope. Hence it follows from [3, Example 1.30 (3)] (or see also [3,
Theorem 1.29] and [3, Theorem 1.37]) that we have

39 = f1(P ) ≥
(
d

1

)
· k −

(
d+ 1

2

)
=

(
6

1

)
· 13−

(
7

2

)
= 57

with d = 6 and v = 13. This is a contradiction.
On the other hand, it is easy to see that (13, 41) ∈ E6. Indeed, note that

by Lemma 3.1 (8, 26) is realized as a 6-polytope P . Since 26 is less than
7
2 · 8− 1 = 27, there is a simple vertex a of P . By taking the truncation of
P at a, we can obtain a 6-polytope Q with (f0(Q), f1(Q)) = (13, 41).

Since (13, 40) ∈ L6, it follows from Theorem 1.2 that, when (13, 43) /∈ E6,
X13 is the same as E6 for k = 13. �

Lemma 3.6. If k = 14, then E6 coincides with X14.

Proof. Note that X14 = {(14, e) | 42 ≤ e ≤ 91, e 6= 43, 44}. By a similar
argument as in the case of (13, 39), we can show that (14, 42) /∈ E6. On the
other hand, it is easy to see that (14, 45) ∈ E6. Indeed, note that by Theorem
1.2 (9, 30) is realized as a convex 6-polytope Q. Moreover, by Lemma 2.3
there is a simple vertex a of Q. Thus, if we truncate the vertex a from Q,
we obtain a convex polytope P such that (f0(P ), f1(P )) = (14, 45).
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Finally, note that (14, 43) ∈ L6, so that (14, 43) /∈ E6 by Lemma 2.6. As
a consequence, it follows from Theorem 1.2 that X13 is the same as E6 for
k = 14. �

Lemma 3.7. If k = 15 and (15, 47) /∈ E6, then E6 coincides with X15.

Proof. In this case, we have X15 = {(15, e) | 45 ≤ e ≤ 105, e 6= 45, 46, 47}.
Note first that (15, 46) ∈ L6. Moreover, it is not difficult to show that
(15, 45), (15, 46) /∈ E6, and (15, 48) ∈ E6. In particular, for the case (15, 48),
note first that by Theorem 1.2 (10, 33) is realized as a convex 6-polytope
Q and that by Lemma 2.3 there is a simple vertex a of Q. Thus, if we
truncate the vertex a from Q, we obtain a convex polytope P such that
(f0(P ), f1(P )) = (15, 48), as desired. This together with Theorem 1.2 com-
pletes the proof of Lemma 3.7. �

Combining all of the results above, we can state the following theorem.

Theorem 3.8. Let k denote the number of vertices of a 6-polytope. Assume
that 7 ≤ k ≤ 15. Then E6 restricted to the collection of 6-polytopes with
7 ≤ k ≤ 15 coincides with

15⋃
k=7

Xk,

provided that (12, 39), (13, 43), and (15, 47) are not elements of E6.

Remark 3.9. We do not know whether or not (15, 47) is actually realizable
as a convex 6-polytope. As in the case of Remark 2.7, it seems to be very
difficult to completely determine this case for E6.
Remark 3.10. By similar techniques in this section, it is possible to deter-
mine the first two entries of the f -vectors of many 6-polytopes even with
more than 15 vertices and thus obtain some sporadic results.
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