
Advance Sustainable Science, Engineering and Technology    

 

0200107-01 

 

Prediction of 4f7-4f65d1 transition energy of Eu2+ in oxides based 

on first-principles calculations and machine learning  

Hiroyuki Hori, Shota Takemura, Hayato Obata and Kazuyoshi Ogasawara 

School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen Sanda, 

Hyogo 669-1337 Japan 

dmn11370@kwansei.ac.jp 

Abstract. In order to establish a method to predict the 4f7-4f65d1 transition energy of Eu2+ in 

oxides, linear regression models were created based on first-principles calculations and machine 

learning. The model clusters consisting of the central Eu2+ and O2- ions closer than the nearest 

cation were constructed and the 4f7-4f65d1 absorption energy of Eu2+ in these clusters were 

calculated by first-principles many-electron calculation using the relativistic discrete variational 

multi-electron (DVME) method. However, the 4f7-4f65d1 absorption energies of Eu2+ in oxides 

calculated by relatively simple first-principles calculations tend to be overestimated by ca. 1.6 

eV. In order to improve the accuracy of the prediction, we performed machine learning 

considering the calculated absorption energy as well as the other electronic and structural 

parameters as the attributes. As a result, the regression formula to predict the 4f7-4f65d1 

absorption energy of Eu2+ in oxides has been created by machine learning. The 4f7-4f65d1 

absorption energy predicted by this model are in good agreement with the experimental ones. 

Therefore, accuracy of the prediction was significantly improved compared to the simple first-

principles calculations. In a similar way, a predictive model of the 4f65d1-4f7 emission energy of 

Eu2+ in oxides has been also created. 

1.  Introduction  

The 4f7-4f65d1 transition energy of Eu2+ in oxides are utilized as phosphors for cathode-ray tube, 

fluorescent lamp, white light emitting diode (WLED) [1]. For theoretical design of novel phosphors 

based on Eu-doped oxides, it is indispensable to predict 4f7-4f65d1 transition energy of fictitious 

materials. At first, we calculated the 4f7-4f65d1 absorption energy by relatively simple first-principles 

calculations. However, the calculated values tend to be overestimated by ca. 1.6 eV compared to the 

experimental values. Although the accuracy of the prediction can be improved by performing more 

sophisticated calculations considering larger model clusters, structural optimization, and so on, such 

calculations are computationally expensive. Recently, the machine learning technique has been drawing 

attention as an efficient approach for materials discovery and design [2]. Therefore, we tried to improve 

the accuracy of the prediction of the 4f7-4f65d1 absorption energy by creating a machine learning model 

considering the calculated 4f7-4f65d1 absorption energy as well as the other electronic and structural 

parameters as the attributes. In this work, in addition to the predictive model of the 4f7-4f65d1 absorption 

energy, the predictive model for the 4f65d1-4f7 emission energy was also created.  
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2.  Computational Methods 

 

2.1.  First-principles calculation  

We performed the first-principles calculations of the 4f7-4f65d1 absorption energy using the relativistic 

discrete variational multi-electron (DVME) method [3]. We considered 26 oxide crystals and 

constructed the corresponding model clusters consisting of the doped Eu2+ ion and the first-neighbor O2- 

ions based on the crystal structure data [5-29]. Table 1 shows the oxides and the model clusters 

considered in this work. The four component relativistic molecular orbitals (MOs) were obtained by 

performing the MO calculations using the discrete-variational Xα (DV-Xα) method [4]. Then the 

multiplet energies in the 4f7 and 4f65d1 configurations were obtained by performing the configuration 

interaction (CI) calculations using the relativistic DVME method. The theoretical 4f7-4f65d1 absorption 

energy was estimated as the energy of the lowest level mainly composed of 4f65d1 configuration relative 

to the lowest level mainly composed of 4f7 configuration.  

2.2.  Machine learning 

We used the machine learning software called WEKA (Waikato Environment for Knowledge Analysis) 

which was developed in the University of Waikato [30]. For the creation of the predictive model of 4f7-

4f65d1 transition energy based on the electronic and structural parameters, the linear regression (single 

layer perceptron) model was adopted. We considered the following 7 attributes: (1) calculated 4f7-4f65d1 

absorption energy, (2) net charge of Eu2+, (3) bond order between  Eu and O, (4) barycentre of 5d levels 

relative to the lowest 4f level, (5) crystal field splitting of 5d levels, (6) average bond length, (7) valence 

of the substituted cation. 

3.  Results and discussion 

3.1.  Predictive model of 4f7-4f65d1 absorption energies 

The experimental 4f7-4f65d1 absorption energies in Table 1 [1] were used as the training data for machine 

learning. Since excessive number of attributes usually results in poor generalization ability, we tried to 

create a predictive model with as little attributes as possible. By creating predictive models considering 

the calculated 4f7-4f65d1 absorption energies and two additional parameters as the attributes and 

comparing the results, we obtained the following predictive model, 

 

𝐸 =  0.6050𝐸𝑐𝑎𝑙𝑐 −  0.8775𝑄 + 0.7174𝑉 − 0.0924,  (1) 

 

where 𝐸𝑐𝑎𝑙𝑐 is the calculated 4f7-4f65d1 absorption energy, 𝑄 the net charge of Eu2+, and 𝑉 the valence 

of the substituted cation. 

 

 Figure 1 shows the correlation between the 4f7-4f65d1 absorption energies calculated by the simple 

DVME calculations and the experimental ones. The correlation coefficient was 0.8042 and the 

calculated values are overestimated by ca. 1.6 eV. Figure 2 shows the correlation between the 4f7-4f65d1 

absorption energies predicted by eq. (1) and the experimental ones. The correlation coefficient was 

0.9142. Therefore, the accuracy of the prediction of 4f7-4f65d1 absorption energy was significantly 

improved by net charge of Eu2+ and valence of the substituted cation. 
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Table 1. Comparison between the 4f7-4f65d1 absorption energies predicted by the machine learning 

model of eq. (1) and experimental ones. 

Crystal Substituted ion Model cluster Predicted (eV) Experimental (eV) Deference (eV) 

SrSO4 ［5］ Sr EuO12
22- 3.48 3.62［1］ -0.14 

CaSO4 ［6］ Ca EuO8
14- 3.62 3.27［1］ 0.35 

BaBe2(BO3)2 ［7］ Ba EuO12
22- 3.28 3.60［1］ -0.32 

KBaPO4 ［8］ Ba EuO9
16- 3.38 3.21［1］ 0.16 

KSrPO4 ［9］ Sr EuO9
16- 3.34 3.16［1］ 0.18 

BaB8O13 ［10］ Ba EuO10
18- 3.68 3.45［1］ 0.23 

SrB4O7 ［11］ Sr EuO8
14- 3.23 3.48［1］ -0.25 

Ba2LiB5O10 ［12］ Ba EuO8
14- 3.27 3.31［1］ -0.04 

CaB2O4 ［13］ Ca EuO8
14- 3.12 3.37［1］ -0.25 

Ba2Mg(BO3)2 ［14］ Ba EuO9
16- 2.93 3.00［1］ -0.07 

SrAl2B2O7 ［15］ Sr EuO6
10- 3.17 3.12［1］ 0.05 

CaBPO5 ［16］ Ca EuO10
18- 3.50 3.31［1］ 0.19 

Ba2MgSi2O7 ［17］ Ba EuO8
14- 2.98 2.76［1］ 0.22 

Sr2MgSi2O7 ［18］ Sr EuO8
14- 2.86 2.70［1］ 0.16 

Ca2MgSi2O7 ［19］ Ca EuO8
14- 2.61 2.70［1］ -0.09 

BaAl2(SiO4)2 ［20］ Ba EuO12
22- 3.20 3.35［1］ -0.15 

Li4Sr2Ca(SiO4)2 ［21］ Ca EuO8
14- 3.10 3.22［1］ -0.12 

CaB(OH)(SiO4) ［22］ Ca EuO8
14- 2.51 3.03［1］ -0.52 

CaMg(SiO4) ［23］ Ca EuO6
10- 2.87 3.14［1］ -0.27 

EuAlO3 ［24］ Eu EuO10
18- 2.39 2.95［1］ -0.56 

Y3Al5O12 ［25］ Y EuO8
14- 2.03 1.62［1］ 0.41 

Lu3Al5O12 ［26］ Lu EuO8
14- 2.08 1.76［1］ 0.32 

BaZrO3 ［27］ Ba EuO6
10- 2.78 2.67［1］ 0.11 

SrO ［28］ Sr EuO6
10- 1.85 2.21［1］ -0.36 

EuO ［29］ Eu EuO6
10- 1.85 1.43［1］ 0.42 

CaO ［28］ Ca EuO6
10- 1.81 1.85［1］ -0.04 

 
Figure 1. Correlation between the 4f7-4f65d1  

absorption energies calculated by first-

principles calculations and 

experimental ones. 
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Figure 2. Correlation between the predicted 

4f7-4f65d1  absorption energies by 

eq. (1)  and experimental ones.    
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The generalization ability of this model was evaluated by the cross-validation method [30]. The 

correlation coefficient by the leave-one-out method was 0.8592. Therefore, this model has higher 

accuracy and reasonable generalization ability. 

 

 Table 1 shows the predicted 4f7-4f65d1 absorption energies based on this machine learning model.  

The difference between the predicted and experimental values are within 0.56 eV, indicating that the 

absolute values of the 4f7-4f65d1 absorption energies are reasonably predicted. 

3.2.  Predictive model of 4f65d1-4f7 emission energies 

The predictive model of the 4f65d1-4f7 emission energies was also created in a similar way. The 

experimental 4f65d1-4f7 emission energies in Table 2 [1] were used as the training data for machine 

learning. We also tried to create a predictive model with as little attributes as possible. By creating 

predictive models considering the calculated 4f7-4f65d1 absorption energies and one additional 

parameter as the attributes and comparing the results, we obtained the following predictive model, 

 

𝐸 =  0.5305𝐸𝑐𝑎𝑙𝑐 − 0.5855𝑄 − 0.7546,  (2) 

 

where 𝐸𝑐𝑎𝑙𝑐 is the calculated 4f7-4f65d1 absorption energies and 𝑄 the net charge of Eu2+. 

 

 Figure 3 shows the correlation between the 4f7-4f65d1 absorption energies calculated by the simple 

DVME calculations and the experimental 4f65d1-4f7 emission energies. The correlation coefficient was 

0.8481. Figure 4 shows the correlation between the predicted and experimental 4f65d1-4f7 emission 

energies. The correlation coefficient was 0.9050 and correlation coefficient of leave one out method was 

0.8795. Therefore, this predictive model has higher accuracy and reasonable generalization ability. 

 

 

 

 

 

 

 
Figure 3. Correlation between the 4f7-4f65d1  

absorption energies calculated by first-

principles calculations and the 

experimental 4f65d1-4f7 emission 

energies. 
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Figure 4. Correlation between the predicted 

4f65d1-4f7 emission energies by 

eq. (2)  and experimental ones. 
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Table 2. Comparison between the 4f65d1-4f7 emission energies predicted by the machine learning 

model of eq. (2) and experimental ones.  

 

Crystal Substituted ion Model cluster Predicted (eV) Experimental (eV) Deference (eV) 

SrSO4 ［5］ Sr EuO12
22- 3.07 2.96［1］ 0.11 

CaSO4 ［6］ Ca EuO8
14- 3.17 3.21［1］ -0.04 

BaBe2(BO3)2 ［7］ Ba EuO12
22- 2.95 3.16［1］ -0.21 

KBaPO4 ［8］ Ba EuO9
16- 3.03 2.95［1］ 0.08 

KSrPO4 ［9］ Sr EuO9
16- 2.98 2.90［1］ 0.08 

BaB8O13 ［10］ Ba EuO10
18- 3.27 3.18［1］ 0.09 

SrB4O7 ［11］ Sr EuO8
14- 2.89 3.38［1］ -0.49 

SrAl2B2O7 ［14］ Sr EuO6
10- 2.83 3.03［1］ -0.20 

CaBPO5 ［16］ Ca EuO10
18- 3.09 3.08［1］ 0.01 

Ba2MgSi2O7 ［17］ Ba EuO8
14- 2.71 2.48［1］ 0.23 

Sr2MgSi2O7 ［18］ Sr EuO8
14- 2.59 2.61［1］ -0.02 

Ca2MgSi2O7 ［19］ Ca EuO8
14- 2.36 3.30［1］ 0.06 

BaAl2(SiO4)2 ［20］ Ba EuO12
22- 2.88 2.90［1］ -0.02 

Li4Sr2Ca(SiO4)2 ［21］ Ca EuO8
14- 2.83 2.90［1］ -0.07 

CaB(OH)(SiO4) ［22］ Ca EuO8
14- 2.85 2.78［1］ 0.07 

CaMg(SiO4) ［23］ Ca EuO6
10- 2.57 2.61［1］ -0.04 

EuAlO3 ［24］ Eu EuO10
18- 2.80 2.39［1］ 0.41 

SrO ［28］ Sr EuO6
10- 1.84 1.98［1］ -0.14 

CaO ［28］ Ca EuO6
10- 1.79 1.68［1］ 0.11 

 

 Table 2 shows the predicted values of the 4f65d1-4f7 emission energies based on this machine learning 

model. The difference between the predicted and experimental values are within 0.49 eV, indicating that 

the absolute values of the 4f65d1-4f7 emission energies are reasonably predicted. 

4.  Conclusion 

 

By considering the 4f7-4f65d1 absorption energy obtained by the first-principles calculation as one of the 

attributes, we performed machine learning and created the predictive model of the 4f7-4f65d1 absorption 

energy of Eu2+ in oxide crystals. As a result, we successfully created the predictive model of the 4f7-

4f65d1 absorption energy using the calculated 4f7-4f65d1 absorption energy, the net charge of Eu2+, and 

the valence of the substituted cation as the attributes. In a similar way, we also created the predictive 

model of the 4f65d1-4f7 emission energy considering the calculated 4f7-4f65d1 absorption energy and the 

net charge of Eu2+ as the attributes. The predicted values are in reasonable agreement with the 

experimental ones in both models.  
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